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Abstract

We analyse the classification of simple symmetric matrix singu-
larities depending on two parameters which was obtained recently by
Bruce and Tari [2]. We show that these singularities are classified by
certain reflection subgroups Y of the Weyl groups X = A,,D,, E,.
The Dynkin diagram of such a subgroup is obtained from the affine
diagram of X by deleting vertices of total marking 2: deletion of two
1-vertices corresponds to a 2 X 2 matrix singularity, and deletion of
one 2-vertex gives rise to a 3 X 3 matrix. The correspondence is based
on an isomorphism of the discriminants and on the description of a
relevant monodromy group of the determinantal curve. Moreover, the
base of a miniversal deformation of a simple matrix singularity turns
out to be isomorphic to the quotient of the complex configuration
space of the group X by the subgroup Y.

We discuss lattice properties of symmetric matrix families in two
variables which, in the case of simple singularities, define the choice
of the subgroups.

A wide range of algebro-geometrical problems involve representation of
functions as determinants of matrix families. Among those are such clas-
sical as finding curves tangent to a given plane curve at all points of their
intersection (this goes back to Hesse [6] and Clebsch [4]) and resolutions



of Cohen-Macaulay modules over singular hypersurfaces (see [10] and the
bibliography there).

However, it seems that a natural question of deforming matrix fami-
lies (corresponding, for example, to deforming a hypersurface over which
a Cohen-Macaulay module is defined) had not been addressed until recently.
Only a few years ago, Bruce and Tari studied in detail equivalences of germs
of square matrix families, both arbitrary and symmetric ([2, 3]), which in a
standard way lead to versal deformations. Bruce and Tari have listed simple
singularities of the matrix families, but left a question of relating the lists to
anything else open.

In this paper we are establishing one of possible relations, for simple
symmetric matrix families in two variables. We are doing this by studying
versal deformations of the families and the discriminants in their bases, as
well as the vanishing topology of the determinantal curves. The relation
we obtain is very similar to that between simple function-germs and the
reflection groups A,, D, E,,, which is one of the cornerstones of singularity
theory. First of all, since the determinant of a simple matrix family is a
simple function, the relevant Weyl group X appears. But representing the
function as a determinant introduces certain constraints which give rise to a
reflection subgroup Y C X. It shows up in the following ways.

On one hand, the subgroup Y is the monodromy group of the one-variable
stabilisation of the determinantal curve. On the other, the base of a miniver-
sal deformation of a matrix family turns out to be naturally isomorphic to
the quotient of the configuration space C* of the group X by its subgroup
Y. The mapping A : C*/Y — C#/X which completes the factorisation in a
sense induces the miniversal matrix deformation from a miniversal deforma-
tion of the simple function singularity X.

The reflection subgroups Y C X corresponding to the matrix singularities
can be conveniently described in terms of the affine Dynkin diagrams (Figure
1). Namely, corank 2 simple symmetric matrix families in two variables are
in one-to-one correspondence with those Y C X for which a deletion of two 1-
vertices from the diagram X leaves the diagram of Y. Similarly, each corank
3 family corresponds to a deletion of one 2-vertex from X.

Such a diagrammatic way of seeing Y in X follows from lattice properties
we are establishing for arbitrary, not necessarily simple, two-variable families
of symmetric matrices. However, the matrix realisation of each diagrammatic
(or, actually, lattice) possibility is just an experimental result. It would be
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Figure 1: The affine Dynkin diagrams.

very interesting to understand if the correspondence observed goes beyond
the simple classification.

There arise some other natural questions aiming at generalisations of facts
which are true for simple matrix singularities. We formulate them within the

exposition.

The paper is organised as follows.

In Section 1, we remind the simple classification from [2] and list all the
adjacencies of the simple matrix singularities.

Section 2 introduces the discriminant ¥ of a matrix family.

Section 3 deals with the geometry of the discriminant X of a simple matrix
family. The determinantal function defines a mapping A between the bases
of miniversal deformations of a matrix singularity and of its determinant.
For a simple matrix, the dimensions of the bases are the same. We prove in
Subsection 3.1 that in this case A is a finite covering.

In Subsection 3.2, this allows us to show that the complement to the
discriminant of a simple matrix singularity is a k(w, 1) space.



Subsection 3.3 establishes an isomorphism between the base of a miniver-
sal deformation of a simple matrix family and the quotient of the configura-
tion space of the Weyl group by its subgroup.

In Section 4, we study topology of the determinantal curves and of their
one-variable stabilisations. The main result there is the characterisation, in
terms of the Dynkin diagrams, of the pairs (Weyl group, its subgroup) which
classify the simple matrix families. We also establish a number of lattice
properties which hold for all 2-parameter families of symmetric matrices, not
necessarily simple. These properties restrict very tightly the range of possible
group pairs allowed to appear in the simple context. A remarkable feature
of the simple classification is that all the group pairs within the range show
up.

Section 5, the last one, contains a proof of the fact that the monodromy
group of the one-variable stabilisation of the determinantal curve of a simple
matrix is exactly the related subgroup of a Weyl group. There we also write
out miniversal deformations of all simple matrix singularities. In fact, all the
results of this paper have emerged from an observation that the weights of
parameters in these deformations match sets of degrees of basic invariants of
certain reflection groups, most of which are reducible.

We are very thankful to Maxim Kazarian, Peter Slodowy, Duco van
Straten and Terry Wall for useful discussions, and to Ilya Bogaevsky for
his help with MAPLE calculations.

1 Simple symmetric matrix singularities

Let Sym,, ~ C™"*+1/2 be the space of complex symmetric n x n matrices. A
holomorphic map-germ S : (C™,0) — Sym,, is called a family of (symmetric
order n) matrices.

Two such families, S; and S,, are said to be §G-equivalent (S for ‘sym-
metric’, G for ‘general linear’) if there exist a biholomorphism-germ h of
(C™,0) and a map-germ A : (C™,0) — GL(n,C) such that

Sl oh= ATSQA7 (]‘)

where AT is the transpose of A.



Allowing in (1) families A of special linear matrices only, we obtain equiv-
alence of matrix families which we shall call the SS-equivalence (the second
S stays here for ‘special linear’).

It is natural to define the corank of a matriz family S as the corank of the
matrix S(0). Classifying corank k families is equivalent to classifying families
S of order k matrices such that S(0) is the zero matrix. For example, in the
case of corank 1 matrix families, the SS-classification coincides with the R-
classification of function-germs while the SG-classification is the same as the
contact classification of functions.

A classification of SG-simple matrix families has been obtained by Bruce
and Tari in [2]. Its most interesting part concerns 2-parameter families. If
such a family is simple its corank is at most 3. The classification is given
in Table 1. Our notation of each singularity there is a pair (X;Y) = (Weyl
group; its subgroup generated by reflections). Here X is also the singularity
of the determinantal function of the family. The subgroup Y will be shown
to be a corresponding monodromy group. The discriminant of the family will
be described in terms of the inclusion ¥ C X. Relating the subgroups Y to
the simple matrix singularities is the main objective of this paper.

In the table, we use the conventions: Ay = {e}, Dy = A; & Ay, D3 = A;.
In what follows we shall also set D; = {e} and allow m =1 in the corank 3
series (Dgim; Dk @ Dy,), thus including the corank 2 series (D,; D,_1) into
it.

A few invariants of the simple matrix families are given in Table 2. The
invariants p9 and wt(Xs) are defined in Sections 2 and 3.2 respectively. The
values of the invariants strongly suggest certain interplay between the singu-
larities.

Corank 1 matrix singularities will be denoted as the singularities of their
determinantal functions.

All adjacencies of corank < 2 simple matrix families can be obtained by
composing the standard adjacencies of simple functions and the following:

(Ak+m+1, Ar®Am) = Ak, (Akpm; Ak—1©An), (Akym; AeDAm_1);

(Dy; A1) = Auct, (Dyuers Apa), (A Ap®Au i), k > [A57];

(Du; Dy—1) = Dy1, (Dy—1; Dy—s), (Ap—1; Au2®Ao);

(Eﬁ, Ds) — Ds, (Ds; Ds), (Ds; As), (As; As®Ao), (As; AsDA);

(E7; Es) — Es, (Es; Ds), (Ds; Ds), (Dg; As), (Ag; As@Ao), (As; AsDAy).
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Table 1: Simple corank > 1 two-parameter families of symmetric matrices

(Aptmt1; Ac®Ay,) zFtt oy (Dag; Agg—1) Yy 0
E>m>0

(D Dy-s) v 0 (Dak15 Aak) y xF
pz 0y +at? k> 2 2k ay
T 2 T 0
(Ee; Ds) < % 32 ) (E7; Es) < 0 22 447
z 0 0 z 0 y
Dytm; Dy ® Dy, g

l(f >k+m > g ) 0 2ty (Ee; As@ A1) 0 v* =z
= - 0 y .’L'm_l y @ 0
(E7; Ds @ Ay) 0 2y x (Fs; Er®A;) 0 ¢y =
z 0 0 xr 0 y2

(B7; A7) 0y z (Es; D) 0 y =z
0 z o° w2 oz 0




To obtain all adjacencies of all simple matrix singularities, we have to add

(Ditm; Dk®Dp,) = (Diktm—1; De—1® D), (Dktm—1; Dk®Dipp—1),
(Agtm—1; Ap—1BAm—1);

(Be; AsD A1) = As, (Ds; Ds®Ds), (Ds; Ag), (As; As® A1), (As; A2sBAy);

(E7; De® A1) = Ds, (Eg; As® A1), (E6; Ds), (Ds; Da® D), (Ds; As),
(Ag; AsDAy), (Ag; AsD A1), (Ag; A3DAy);

(E7; A7) = As, (Ee; As® A1), (Dg; D3®Ds), (Ds; As), (As; As®As);
(Es; Er® A1) — E7, (Er; De®A,), (E7; Eg), (D73 Ds®D3), (D73 Dg),

(D7; Ag), (A7; Ae®Ao), (Ar; AsP A1), (A7; AP As);
(Es; Dg) — D7, Az, (Er; A7), (Er; De® A1), (Dr; Ag), (Dr; Da®Ds),

(A7; As®A), (A7; AyPAy), (A7; A3PA3).

Table 2: Some numerical invariants of simple matriz singularities (X;Y)

X Atmt1 D, Dy E¢ | FEg E;| E; | Eq Eg Eg
Y Ay®An | Au1| Di®D, | Ds|As@®A || Es | De®A | Ar | B:®A; | Dy
X:V] | G | et | 28 o7 36 |56 63 |72 120 [135
i m+1 (4] m+§$j 2 4 3 4 5 4 5
wt(o) || (k+1)(m+1) | L2 | 2km 16| 20 27| 32 |35| 56 |64




We call a matrix family S = (s;;) quasihomogeneous if, in addition to the
mapping S being quasihomogeneous, we also have

weight(s;jSpe) = weight(sieSk;)

for all the entries.

All the families of Table 1 are quasihomogeneous. Moreover, all the SG-
fencing (i.e. first non-simple) 2-parameter matrix families contain moduli
in their principal parts. Therefore, the table is also the classification list of
SS-simple 2-parameter singularities.

Consider the extended tangent space TssS to the SS-orbit of a family
S in the space of all m-parameter symmetric order n matrix families (here
the extension is in the standard sense of allowing diffeomorphisms A in (1)
to shift the origin). As usual we define the Tjurina number 7ss of the family
S as the codimension of TssS in the space Oﬁz("“)/ 2 of all variations of the

matrix family:
7ss(S) = dimg O""Y/2 /TS .

The number 7s55(S) is defined similarly. It coincides with 7s5(S) if S is
quasihomogeneous. However, the general behaviour of 7ss with respect to
other invariants of matrix singularities is much better than that of 75g. For
example, numerical experiments suggest

Conjecture 1.1 For any 2-parameter family S of symmetric matrices,
Tss(S) = p(det S).

Remark 1.2 The conjecture has been proven in [1] for order 2 matrices, and
it is easy to check that it is true for all the singularities of Table 1 too.

In particular, any adjacency of simple matrix families is a composition of
those dropping the Tjurina number by 1. Indeed, pairs of singularities in all
the adjacencies listed above have neighbouring 7ss.

Once the quotient O""*+1/2 /TssS is of finite dimension, it can be viewed
in the standard way as a base of an SS-miniversal deformation of the family
S (in particular, this base is smooth). This follows from the general result
due to Damon [5].



Remark 1.3 Apparently one must have 7 = y also for 3-parameter families
M of arbitrary n X n matrices and the equivalence M ~ (AM B) o h, where h
is a diffeomorphism-germ of (C?,0), and A and B are 3-parameter families of
elements of SL(n,C). According to [1] again, the equality holds for corank
< 3 families.

2 Discriminant of a matrix family

From now on we shall be considering only 2-parameter families of symmetric
matrices, from the point of view of the SS-equivalence. For short, they will
be called just matriz families or matriz singularities. We always assume Tsg
finite.

The base C” of an SS-miniversal deformation of a mapping Sy : (C%,0) —
Symy,, T = Tss(So), contains the discriminant hypersurface ¥ formed by
those values of the parameters A € C” for which the corresponding perturba-
tion Sy of Sy is not transversal to the variety of order n degenerate matrices.
The latter condition is equivalent to the function ) = det S, having critical
value zero.

The discriminant consists of two components:

31, which corresponds to the non-transversality to the stratum of corank
1 matrices, and

Y9, corresponding to mappings whose image has non-empty intersection
with the set of matrices of corank at least 2.

In fact, ¥; is the A; stratum in the base of a versal deformation, and X, is
the (A1; Ag @ Ap) stratum.

The multiplicities, we denote them g, and ps9, of the components ¥; and
Y9, are two basic invariants of a matrix family Sy. They can be calculated
as follows.

Let us consider, along with a family Sy = Sy(z,y) of order n symmetric
matrices, its generic 1-parameter deformation S; = Sy(z,y,t). Denote by
Min,_y C Ogy, the ideal generated by all order n — 1 minors of the matrix
50. Then

Mo = dlmc Om’y,t/Minn_l . (2)



For example, for order 2 matrix families, s is just the degree of the mapping
So : C* — Syms. N
Now introduce the ideal J C O, generated by the function det(Sp) and

its first order derivatives with respect to x and y. Then
u1 + 2/1,2 = dimc Ow,yyt/J . (3)

Algebraically, the relation is clear since J is of finite codimension in O, ;
and has three generators, while the dimension of the quotient for the A;
and (A; Ag @ Ayp) singularities is respectively 1 and 2 as it follows from the
form of the relevant miniversal deformations. A homological interpretation
of formula (3) will be given in Section 4.1.

The values of py for the simple singularities are given in Table 2.

The multiplicity p; turns out to be well-correlated with the Milnor num-
ber of the determinantal curve, at least in the simple cases. Namely, the
calculations show that

p11(So) = p(det So) — 1 (4)
for any corank 2 simple singularity Sy, and
p11(So) = p(det So) (5)

for any corank 3 simple singularity. We comment on the range of validity of
these two relations in Section 4.5.

3 The covering mapping
between the deformation bases

3.1 The inducing map

The determinantal function on an SS-miniversal family {S,} of a matrix
singularity Sy defines a 7-parameter deformation {,} of the isolated function
singularity ¢o. Like any other deformation, the latter is equivalent to a
deformation induced from an R-miniversal deformation of ¢y. Therefore,
there exists an inducing holomorphic map-germ

A:(C,0) = (C*0),  p=pleo), (6)
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into the base of an R-miniversal deformation of ¢.

Assume now that Sy is an SS-simple matrix singularity. Then, due to
Remark 1.2, 7 = pu, and A is a mapping between spaces of the same dimen-
sion.

Theorem 3.1 For a simple matriz singularity (X;Y), the inducing mapping
A is a ramified covering of order | X : Y.

Proof. Take a monomial SS-miniversal deformation of a table singularity
So € (X;Y). Such a deformation is quasihomogeneous with all the param-
eters A of positive weights wy,...,w,. (All the deformations are given in
Section 5.)

Now take a quasihomogeneous R-miniversal deformation of the simple
function ¢y = det Sy € X. All of its parameters are also of positive weights,

di,...,d,.
So, the mapping A of (6) is a quasihomogeneous polynomial mapping
of type (w1, ..., wy;d1,...,d,). For each of the simple matrix singularities,

it is easy to write out A explicitly and check that A='(0) = 0 (the cases
X = A,, D, follow immediately from the polynomial considerations of Sec-
tions 5.1, 5.2 and 5.3 below; the E cases involve not very much illustrative
calculations which we prefer to omit). Therefore, A : C¥ — C* is indeed a
finite covering.

The degree of A is []d;/ [T w;. Normalise the weights so that max{d;} is
the Coxeter number of the Weyl group X. A casewise check shows that then
the w; are exactly the degrees of basic invariants of the reflection subgroup
Y C X (for example, one of these degrees is 1 for the order 2 matrix families).
Hence, degA = | X : Y. O

Remark 3.2 As this has been pointed out by Duco van Straten, the cov-
ering number 27 for the (Eg; Ds) singularity is actually the number of finite
double tangent straight lines of a plane quartic with a degenerate inflection
at infinity. Each of the double tangents gives rise to a representation of the
quartic’s equation in a symmetric determinantal form which is a perturbation
of the (Es; Ds) singularity.

There must exist similar interpretations of the covering numbers in other
cases.
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3.2 The critical locus of the covering

A miniversal deformation of the (A; Ag®Ap) singularity has determinant

T+ Ao (] 22 42
det( y —ﬂf-l-)\o)_ Tt =y + A (7)

Thus, at least for simple matrix singularities, the inducing mapping A has
an order 2 folding along 3. So, 35 is a part of the critical locus C of A.

Proposition 3.3 For a simple matriz singularity, C = .

Proof. The critical locus C of the quasihomogeneous mapping A is given
by an equation of weight )~ d; — 3" w;. It is sufficient to check that the weight
of an equation of ¥ is the same.

For every simple order n matrix singularity So = Sy(z,y), it is possible
to find a quasihomogeneous one-parameter deformation Sp =S, (z,y,t) (not
necessarily generic) for which the number r = dimcO,,/Min,_; is finite.
Then the weight of an equation of 3, is r - wt(t), assuming the weights of x

and y normalised as in the proof of Theorem 3.1.

Example 3.4 Consider a 1-parameter quasihomogeneous deformation of the
singularity (Es; Dg):
x y?
t x

L o~

vz 0
For it, r = dim¢ Oy y+/Miny, = 8. Since the weight of ¢ here is also 8 (we

need the weight of the entire order 3 determinant to be equal to the Coxeter
number of Eg, which is 30), the weight of the equation of ¥ is 64.

The results of similar calculations for all the singularities are collected in
the wt(X2) line of Table 2. An immediate check shows that in all the cases

wt(EQ) = Edz - E’U)j. O
Conjecture 3.5 The simplicity assumption can be omitted in Proposition
3.8.

The inverse image A~'(A) of the discriminant A C C* of the function
singularity ¢q is the discriminant 3 of the matrix singularity Sy. Therefore,
we have

12



Corollary 3.6 For a simple matriz singularity (X;Y'), the mapping A : C*\
¥ — CH\ A is an unramified covering. Hence, C*\ ¥ is a k(m, 1) space,
where 7 is a subgroup of index |X : Y| in the Brieskorn braid group Bx of
the Weyl group X.

A better understanding of the group 7 is provided by the next Subsection.

3.3 Mirror description of the matrix discriminant

Theorem 3.7 Let (X;Y) be a simple matriz singularity. Consider the mir-
ror arrangement Ax C C* of the Weyl group X. Let Ay C Ax be the mirror
arrangement of the reflection subgroup Y, and Ax\y C Ax the mirrors which

are not in Ay. Then
(CH Ax)/Y ~ (CH X).

Moreover, this biholomorphism provides isomorphisms
Ay/YﬁZl and .Ax\y/YEEQ.
Proof. We shall base on

Lemma 3.8 For each simple singularity (X;Y), there exists a surjective
mapping
heven : T (CH\ 3,a) = Y

induced by the mapping A from the monodromy representation
h:m(CF\AbL) — X, b=A(a),
of the suspended function singularity @o(z,y, z) = det (So(a:, y)) + 22.

Details of the induced representation will be given in Section 4.3. A
case-by-case proof of the lemma itself is postponed till Section 5.

We shall need the following factorisation mappings:
Py : (Cu, .A)() — (C“, .Ax)/Y ~ (C“, E’) .
pxyy ¢ (C*X) — (CF, Ax)/X = (C*, A)
and Px =Px/y © Py -
We identify the target space of px/y with the base of an R-miniversal defor-
mation of the function singularity .
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Lemma 3.9 The mapping px/y induces from h a surjective homomorphism
W :m(CH\S,d) =Y, d €py)y(),
where Y' C X is a subgroup isomorphic to Y .

Proof. We need to show that the image Y’ of A’ is isomorphic to Y.
Choose ¢ € py'(a') and consider a commutative diagram

m(CMY,a) 25 v
PY,*/‘ J/pX/Y,* J/ \
{e} — m(C"\Ax,c) 25 m(CM\AL) 2 X — {e).

The horizontal sequence here is exact, and the vertical arrows and py,, are
embeddings. Hence the five-sequence going from {e} to {e} via A’ is also
exact. Therefore, | X : Y’'| =degpx/y =|X : Y| and |[Y'| =|Y|.

On the other hand, the kernel of the monodromy A’ contains in partic-
ular all loops in C* \ ¥ which are contractible in C* \ (Ax\y/Y). Thus,
K is defined on 1 (C#\ (Ay/Y), d) = m (C*\X, ') /m (CH\(Ax\y /Y), d!).
Therefore, Y’ satisfies all the relations which exist in Y and, hence, is iso-

morphic to a quotient group of Y. But the orders of Y’ and Y coincide, so
Y'~Y. O

For each of our pairs (X;Y), any such subgroup Y’ is conjugate to YV
in X (in general, a conjugating automorphism of X is allowed to be outer).
So, up to a symmetry of (C#, A) and up to an appropriate choice of o’ in
p}}y(b), we can assume that Y/ =Y.

The embedded groups A. <7T1 (CH\ X%, a)) and px /v« (7r1 (CH\ X, a’)) both
have the same index |X : Y| in m; (C*\ A, b). The homomorphisms heye, and
h' are basically restrictions of A to them, and have the same image Y C X.
Hence, h}(Y) = A.(m(C \ 5,a)) = px/v.. (1 (C* \ &, a’)) which implies
that the mapping A can be lifted via px/y to a biholomorphism

Bih: (C*\ X,a) = (C*\ Y, d).

Continuity of A and of px,y on their entire domains C* allows to extend Bih
to a biholomorphism of the pairs (C#,X) ~ (C*,%'), A = px/y o Bih.

14



Finally, the description of the discriminant components ¥; and ¥, fol-
lows from the decompositions of the inverse images of the discriminant A:
A_I(A) = 22 U 21 while p)_(}Y(A) == Ax/Y = Ax\y/Y U Ay/Y The first
subsets in these unions are the critical loci of A and of px/y respectively. O

Corollary 3.10 Identify the bases of miniversal deformations of a simple
matriz singularity (X;Y') and of the function singularity X with the quotients
CH/Y and C*/X. Then the inducing mapping A completes a commutative
triangle of the factorisation mappings

(CcrAx) 5 (omy)
/X N A
(C*, A)

Our constructions show that the group 7 = m; (C*\ %, a), when embedded
by A, into the Brieskorn group By = w1 (CH#\ A, b), is formed by exactly those
loops whose liftings into C* \ Ax join points from the same Y-orbit (rather
than from the same X-orbit as it happens for arbitrary elements of By).

Remark 3.11 The numbers of mirrors in Ay and Ay are respectively > (d;—
1) and Y} (w; —1). Hence, the weight 3> d; — > w; of ¥, is equal to the number
of mirrors in Ax\y.

Theorem 3.7 reduces the adjacency question for simple matrices to analy-
sing the stratification of the mirror arrangements. Namely, we have

Corollary 3.12 An adjacency (X;Y) — (X';Y') of simple matriz singu-
larities exists if and only if the following holds. Consider the complex con-
figuration space of the Weyl group X and any inclusion of Y into X as a
reflection subgroup. Then in the configuration space there must exist a point
with a stationary group X' such that X'NY =Y.

The corollary was used to obtain the adjacency lists of Section 1. Of
course, for corank 1 matrix families we set Y = X. In the X = E, cases the
del Pezzo root systems (see, e.g., [8]) make the subgroup search easier. The
completeness of the adjacency lists can be checked from the fact that the
degree | X : Y| of the covering mapping A can be calculated as the sum of
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the local degrees over a stratum X' in the target of A. This is the arithmetic
of the | X : Y| line of Table 2. For example,

‘Eg : (E7@A1)‘ =120=564+63+1= |E7 . Es‘ + |E7 : (D6®A1)| + ‘E7 : E7‘

shows that there are indeed just these three matrix singularities (E7;Y”)
adjacent to (Eg; E7®A;). On the other hand, the relation

|E7 . A7| =72=2-36= 2|E6 . (A5@A1)|

demonstrates that there is just one singularity with X' = FEg adjacent to
(E7; A7), and, under the mapping A of (E7; A7), its stratum covers the Fg
stratum in the R-miniversal deformation of E; twice.

Inspection of Table 2 suggests that there must also be certain relation
between its | X : Y| entries on one hand and the wt(35) line on the other.

4 Vanishing topology
of the determinantal curves

4.1 Distinguished sets of vanishing cycles

A choice of a generic line L in the base C” of a miniversal deformation
of a matrix singularity Sy = Sy(z,y) provides a family Sy = Sy(z, y, ) as in
Section 2 (here ¢ is a coordinate on L). Now let * be a generic point in C™ and
S, the corresponding generic perturbation of Sy. Let L, be the line parallel
to L and passing through *. It yields a matrix family S, = S,(z,y,t). We
denote by ¢g, @o, ¢« and @, the corresponding determinantal functions, and
by © and zi the Milnor numbers of ¢, and ¢y. We shall also be using curves
V. = {¢. = e} C C2 and surfaces V. = {@, = e} C C2, all localised
within appropriate balls. Here ¢ is a small generic number unless specified,
so the varieties V, and 175 are smooth while ‘N/o has Morse singularities.

Consider function ¢ on ‘N/O. Its critical values are intersections of L, with
> C C7: a critical value achieved at a regular point corresponds to an inter-
section with ¥; and the value at a singular point of V; gives an intersection
with 35. Therefore, function ¢ has pu; critical values of the first kind and p,
of the second. Also i is the number of singularities of Vj.
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Connect point * on L, with all the points of L, N'Y by a system of paths
having no mutual- and self-intersections. As usual, this gives a distinguished
set of vanishing cycles on Vj consisting of, what we call them, u; type 1 and
1o type 2 cycles. The types are defined as follows.

A local model for a type 1 cycle is the real 1-cycle vanishing in the stan-

dard A; family
332 + y2 + /\() 0 .
det ( 0 L. )= 0 (8)

when the real negative number )\, tends to zero. Here I,,_; is the order (n—1)
identity matrix.

A type 2 cycle is modelled by the real 1-cycle which is contracted in the
miniversal (A;; Ay ® Ap) family

$+)\0 Y 0
det Y —x+X O =0, thatis z?+y*>—A2=0,
0 0 I,_o

when the real parameter \q tends to zero.
In [1], type 1 and 2 cycles were called respectively long and short.

Proposition 4.1 A distinguished set of vanishing cycles generates Hy (Vy; Z).

Proof. Consider the non-trivial part of the exact homological sequence of
the pair (Vp, Vp):

0 — Hy(Vy) — Hy(Vo, Vo) — Hy(Vy) — 0. (9)

The middle term here is freely generated by the thimbles based on a dis-
tinguished set of vanishing cycles on V. Now the claim follows from the
surjectivity of the boundary operator. O

The ranks of the groups in (9) are respectively i — po, p1 + po and p.
Hence we obtain

Corollary 4.2 A+ = 1+ 2us .
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Since H = dlmC 0%,11/(900,:61 900,y> and /7/ = dlmC Ow,y,t/<¢0,za 950,317 QBO,t)
(here ¢g ; = 0py/0x etc.), we have

M1+ 2:“’2 = dlmc Ow,y,t/«zo,wa @0,3/7 t@o,t) .

The expression (3) for the same quantity from Section 2 is based on
counting critical values of function ¢ on a smooth surface V.. The number of
these values is

dime Oy /{Po; Powr Poy) = 1 + 242 -

Indeed, each point of L, MY, contributes 1 to the dimension of the quotient,
and each point of L, N ¥y contributes 2.

4.2 The type 1 sublattice mod2

The Picard-Lefschetz operator corresponding to a type 2 cycle e is the square
of the ordinary operator, that is sends any l-cycle ¢ to ¢ — 2(c,e)e (the
brackets denote the intersection number). Therefore, H;(V},Z,) contains
a well-defined subspace spanned by a distinguished set of type 1 vanishing
cycles. We denote this space by L?).

Proposition 4.3 For a matriz singularity of corank > 1,

Hy(Vo, Z) /LY =~ Z,.
Proof. We start with showing that the quotient cannot be bigger.
Lemma 4.4 7(C" \ X)) = Z.

Proof. 1t is sufficient to show that X5 is irreducible and its only codimen-
sion 1 singularities are transversal self-intersections.

Let S : CZ, x C} — Symy be an SS-versal deformation of a corank
n matrix family Sy = Sp(z,y). Then the rank at 0 € C?*7 of the Jacobi
matrix of mapping S is maximal, equal to the dimension of Sym,. Hence,
the inverse image under S of the set D of corank > 2 matrices is diffeomorphic
to a cylinder over D, and thus is irreducible. So, ¥, is irreducible too since
it is the projection of S~!(D) onto the A-space.
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The only codimension 2 local matrix singularity of corank > 1 is
(Ag; A1 Ap). For it, Yo is smooth. So, the only stratum that contributes
to the codimension 1 singularities of the set ¥ of an arbitrary matrix fam-
ily is the bi-germ 2(A;; Ag®Ap). And its discriminant is a pair of smooth
transversal lines in C2. O

Thus, any two type 2 vanishing cycles coincide modulo £§2).
On the other hand, consider the restriction S’ to V4 of the mapping S, :
C?% — Sym,,:
SV =W,

where the target is the space of order n quadratic forms of corank 1. The
target is homotopy equivalent to the manifold U(n)/ (U (1) xO(n— 1)) of all
(n — 1)-dimensional isotropic subspaces II in the 2n-dimensional symplectic
space (see [9], p.178). Here U(1) acts on the kernel K of a quadratic form @),
and O(n — 1) acts on the subspace IT hermitian-orthogonal to K and chosen
so that @ is positive definite on it. A generator of Hy(W,Zy) ~ Zs can be
represented by a loop Q;(uy, us) +u3+...+u2 of corank 1 forms along which
a vector in C?, on which @, is positive, homotops to its negative.
A type 2 vanishing cycle

r+1 Y 0
y l—z 0 , 4yt =1, z,y € R, (10)
0 0 I,

has a parametrisation z = cos2t, y = sin2¢, t € [0,7]. The corresponding

quadratic forms are positive on the vectors (cost,sint,0,...,0). Hence, the
S’-image of a type 2 cycle generates Hy (W, Zs).
Clearly, mapping S’ kills all type 1 vanishing cycles. O

In fact, the quotient of H;(Vy,Z) by the integer sublattice spanned by
all possible type 1 vanishing cycles (not only those from a distinguished set)
is also Zgy provided the matrix singularity has corank > 1 and 7 > 1. This
follows from Proposition 4.3 and the validity of the claim for the (Ay; A1®Ayp)
singularity to which any such matrix family is adjacent.
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4.3 Stabilisation of the determinantal curve and
characterisation of the subgroups Y

Weyl groups arise in the study of function singularities as monodromy groups
of simple function-germs on an odd-dimensional manifold. Looking for sim-
ilar realisations for our reflection subgroups Y we follow this pattern and
consider the one-variable stabilisation

Po(x,y, ) = det(So(z,y)) + 2*

of the determinantal function ¢, of a 2-parameter symmetric matrix family
So. In the same way we stabilise the determinantal function of the entire
SS-miniversal family and introduce

Gr=det Sy + 2%, Ne CH.

Consider now the corresponding one-dimensional suspensions (all of them
will be denoted by the hat) of all the topological objects we dealt with in
Section 4.1. As before, a distinguished set of suspended vanishing cycles
generates Hy(Vy, Z). The Picard-Lefschetz operator on Hy(Vj, Z) associated
with a suspended type 1 (type 1, for short) cycle € is just the standard
Picard-Lefschetz operator of a 3-variable function:

oo+ (0,€)e.

For a type 2 cycle, the monodromy operator is clearly the square of the
standard operator, that is the identity.

We shall call the monodromy group I' of the function family {@,} the
even monodromy group of the matrix singularity Sy. (The odd monodromy
group is, of course, that of the non-stabilised family of the determinantal
functions.) For a simple matrix singularity (X;Y'), this group is clearly a
reflection subgroup of X. Lemma 3.8 insists that the subgroup is exactly Y.

Purely diagrammatic observations show that the following is true.

Theorem 4.5 Let X be one of the Weyl groups A,, D, E,, andY C X a
reflection subgroup whose Dynkin diagram is obtained by deletion of vertices
of total marking 2 from the affine diagram of X. There erists a one-to-one
correspondence between such group pairs and simple corank > 1 symmetric
matriz families in two variables. It relates
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e deletions of two 1-vertices to corank 2 matriz singularities, and
e deletions of a 2-vertex to corank 3 matrices.

The relevant matriz singularities are exactly those denoted (X;Y).

The next subsection demonstrates that there is absolutely no surprise
that only such group pairs arise as pairs (singularity of the determinant of
a simple matrix family; monodromy group of the stabilised determinantal
curve within the SS-versal deformation). What is indeed surprising in the
classification is that all the group pairs singled out are realised.

To proceed, we need to notice that, according to [7, 11],

e the Dynkin diagram Y can be obtained from the affine diagram X by
a deletion of two 1-vertices if and only if the quotient L£x/Ly of the
integer lattices is Z and Ly + Za = Lx for any root « of the group X
which is not a root of the subgroup Y;

e similar deletion of one 2-vertex is equivalent to the condition Lx /Ly =~
Z,.

4.4 The type 1 integer sublattice

The results of this subsection are a sort of 1-dimensional suspension of the
results of Section 4.2. Our main object will now be the sublattice £; C
HQ(%, Z) spanned by a distinguished set of type 1 cycles. Due to the triviality
of the Picard-Lefschetz operators corresponding to type 2 vanishing cycles,
£, does not depend on the choices and contains all possible type 1 cycles.

Theorem 4.6 For any corank 2 matriz singularity,

Hy(Vy, Z)/ L, ~ Z.

Proof. Smooth surface Vy is given by the equation

aley)  blay)+2)
it (s ") =0

Here the rank of the matrix is never 0. Hence we have a mapping £ : Vo —
CP! which sends a point to the direction of the image of the matrix.
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Consider its action on the second homology:
B, : Hy(Vy) = Hy(CPY) = Z.

All the type 1 cycles are in the kernel of 8,. For a standard type 2 cycle,

_ z+1 y+z\_ . o2 9 o :
O—det(y_z 1_33)-1 =y + 2%, x,y,12 € R, (11)
B(x,y,z) = (y+2)/(1 —x) is a stereographic projection of the unit 2-sphere.
So, . sends this cycle to a generator of Hy(CP?). a

Theorem 4.7 For any corank > 2 matrix singularity,
HQ(%, Z)/,Cl ~ Zg.

Proof. Any such matrix singularity is adjacent to (Dy; Dy@® D) for which
the lattice quotient is Zo. Therefore, it is sufficient to prove that
Hy(Vo, Zs)/ (L1 @ Zsy) ~ Zy.

Let us introduce some notations. We denote by e the type 2 vanishing
cycle (10), and by € its suspension

z+1 Y 0
0 = det Y 11—z 0 +22=1—-22—y*+ 22, x,y,1z2 € R.
0 0 I,

The subsets W C W' C Sym,, will be the subsets of respectively all corank
1 and all corank < 1 matrices. We shall denote by ¢’ the 2-disc

z+1 Y 0
det Y 11—z 0 , z,y €R, <1,
0 0 I,

which contracts e in W".
We are going to show that € is a non-trivial element in the homology of
the variety

W = {det(M) + 2> =0,M € W'} C Sym,, x C,,

into which Vj is naturally mapped. All the homology in our considerations
will be with coefficients in Z,.
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The complement to W’ in Sym,, ~ C™"+t1)/2 is of complex codimension
3. Therefore, the Alexander duality implies that H;(W') =0, 0 < j < 5. So,

Hj(W’,W)’:Hj_l(W), 1<j<5b. (12)

Consider now a fragment of the Smith exact sequence of the double cov-
ering W — W' .
oo Hy (W, W) 225 Hy(W!, W)®Ho (W) -2 Hy(W) —
— Hy (W', W) -2 H\(W' , W)eH, (W) — ... .

According to (12), the operators 03 and J, followed by the projections
onto the second summands of their targets are isomorphisms. So, the restric-
tion of i onto the first summand of its source is an isomorphism too.

From the proof of Proposition 4.3, e is a non-trivial element in H;(W).
Hence €' is also non-trivial in Ho(W',W). Therefore, iy(e') is a non-zero

o~

element of Hy(W). But iz(e') = €. O

We return now to the characterisation of simple matrix singularities. First
of all, it is easy to show that their determinants must be simple functions
X=A4,D,FE, Let ' C X be the S§§-monodromy group of the stabilised
determinantal curve of such a singularity. We would like to demonstrate,
without using Lemma 3.8, that I' must be one of the subgroups Y which can
be obtained from X by the vertex deletion as mentioned in Theorem 4.5.

If our simple singularity has corank 3, Theorem 4.7 guarantees that the
quotient Lx/Lr of the integer lattices is Zy, which immediately restricts us
to the choices of the corank 3 case of Theorem 4.5.

For a simple corank 2 matrix, Theorem 4.6 implies Lx /Ly ~ Z. From
Lemma 4.4, £Lx = L1 + Z&, where € is any type 2 vanishing cycle. On the
other hand, Theorem 3.1 guarantees that any root of X is either a type 1 or
a type 2 cycle. But all type 1 cycles are in Lr. So, Lx = Lr + Zé, where &
is any root of X which is not a root of I'.

This shows that Theorem 4.5 follows in one direction mainly from the
properties of arbitrary (not necessarily simple) matrix singularities, as this
has been promised in Section 4.3. The only claim specific for simple matrices
we have unfortunately used at this point is Theorem 3.1. However, Theorem
3.1 was used only to guarantee that any vanishing cycle of the determinantal
function is either a type 1 or a type 2 cycle. And it is very likely that this
much weaker property holds for any matrix singularity, not just for simple.
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Remark 4.8 Tt was noticed in [1] that addition of 22 to the determinant

b lc) > is a passing to a family

of an order 2 symmetric matrix family ( @

b—z
1.3) 3-parameter families of arbitrary matrices are related this way to all
SS-simple order 2 symmetric families in 2 variables and, hence, a bit more
directly to the reflection pairs (X;Y).

( a b ‘|C' < ) of arbitrary matrices. For example, all simple (see Remark

4.5 The multiplicity of >; and the Milnor number

In this subsection we point out cases in which elements of distinguished sets
of suspended type 1 vanishing cycles are linearly independent.

Proposition 4.9 Consider an order 2 matriz singularity which has corank
2 and non-zero 1-jet. For it, p; = p— 1.

Proof. Such a singularity reduces to the form

(i oty )

For its generic 1-parameter deformation one can take

5 T b(y) +t
S = ’
bly) +t clz,y) +1
where 7y is a generic constant. The codimension of the ideal spanned by the
entries of this matrix in O, ; is the minimum r of the orders of b and ¢|,—o.
Therefore, po = 7.

On the other hand, the determinant of S has singularity Ag._;. Now
Corollary 4.2 implies the claim. |

Of course, the relation 1y = g — 1 does not hold in general for corank 2
matrix singularities. For example, a generic order 2 matrix family with the
trivial 2-jet has determinant of type Xy, along with uy, = 4 and gz = 9, which
implies pu; = 10.

For order 3 matrices, numerical experiments suggest
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Conjecture 4.10 Consider a corank 8 matriz singularity whose determi-
nant has a non-zero 3-jet. For it, uy = p.

All simple corank 3 singularities share this property. However, for the
family

22y 0

y 0 =z

0 =z y

u =29, while s =4 and i > 8, and thus p; > 9.

5 Even monodromy and discriminants
of the simple matrix singularities.
Proof of Lemma 3.8

In this section we prove Lemma 3.8 showing, case by case, that the even
monodromy group of a simple singularity (X;Y) is Y. This is done mainly by
identifying the relevant strata in the base of an SS-miniversal deformation.

In a base of a versal deformation of a corank 2 simple matrix singularity,
we point out a stratum of the corank 1 singularities (i.e. of the function
singularities) Y. This guarantees that the group I' = heyen (m(C“ \ Z))
contains the reflection group Y. On the other hand, I' cannot be bigger than
Y since the multiplicity of ¥; is 4 — 1 and all of it already comes from the
multiplicity of the discriminant of Y.

Majority of corank 3 simple families (X;Y") have subgroups Y reducible:
Y =Y'®Y”. In a versal deformation of such a singularity, we find the strata
Y'Y" C ¥, and check that they are transversal to each other. Since the
multiplicities of the discriminants of the function singularities Y’ and Y
now add up to the multiplicity p of 3¢, we conclude that ' = Y'@Y".

Finally, for the two remaining corank 3 families, (E7; A7) and (Es; Ds),
we calculate relevant Dynkin diagrams which allow us to check the conclusion
of Lemma 3.8 for these singularities too.

While looking for specific strata in bases of versal deformations in the
X = A,, D, cases, we obtain simple descriptions of the discriminants X
making Theorem 3.7 obvious.
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In what follows, the lower index in the notation of a polynomial is its
degree.

5.1 Series (Axim+1; ArDAn)

This singularity has a miniversal deformation

< Pe+1(2) Yy ) 7 (13)

Yy Im+1 (37)

where p and ¢ are monic polynomials, with the sum of the coefficients of
respectively z¥ and 2™ being zero.

The monodromy. The stratum Ay C X of the corank 1 matrix singular-
ities is given by the condition of the polynomial p having the only root, of
multiplicity £ + 1. Similarly, the stratum A,, corresponds to the polynomial
q having a root of multiplicity m + 1. The two strata meet transversally
along the stratum AjA,, C ¥; which is smooth one-dimensional and has a
regular parametrisation

p= (:U— (m+1)t)k+1, qg= (x+(k+1)t)m+l.

The multiplicity u; of the discriminant component 3y of (Agim+1; Ax®An)
is 4 —1 = k + m. Therefore, a line in the base of deformation (13) passing
through a point of the stratum AzA,, and having a generic direction does
not meet ¥; anywhere else. Hence, the even monodromy is indeed Ay®A,,.

In particular, a distinguished set of vanishing cycles for this singularity
can be chosen so that the Dynkin subdiagram for the type 1 cycles is a
disjoint union of the standard Ay and A, diagrams (cf. Remark 5.1 below).

The discriminant. The discriminant component Y; in the base of de-
formation (13) corresponds to either p or ¢ having a multiple root. The
component Y, is the resultant of p and ¢. Thus indeed (CF™! ¥) ~
(Ck+m+1’ WAHmH)/AkEBAm as in Theorem 3.7.

The mapping A of the base of deformation (13) to the base of the miniver-
sal deformation of the function singularity Ag,m,.1 is given by the coefficients
of the polynomial p(z) - ¢(z). In terms of the root sets of the polynomials,
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this is a passing from the A,®A,, orbits on C*+™*! to the Aj,,,.1 orbits.
So, A has degree

(k+m+2)!
(k+ D! (m+1)!"

[Aktmt1 : (AxDAm)| = (14)

The fundamental group of the complement, C**™+1\ A to the discriminant
of the function singularity Agim,.1 is the group Bgypmio of braids on k+m+2
strings. The group m; (C¥t™+! \ X)) is a subgroup of 2-coloured braids in
Byj i m+2. The colouring is by two subsets of the endpoints containing £ + 1
and m + 1 elements: the coloured braids are allowed to realise permutations
only within the subsets. The mapping A embeds the subgroup into Bjimi2-
The index of the subgroup in By mo is given by (14).

5.2 Series (D,; A,-1)

For p =2k and p = 2k + 1, we take for miniversal deformations respectively

y ak—1(z) and y ax(z) ‘
Gr-1(z) Y+ pi(z) g (z) zy + pe(z)
In the first family p is a monic polynomial and ¢ arbitrary, and in the second

vice versa.

The monodromy. One can easily find regular parametrisations of the 4,,_,
strata (which are smooth) in the deformations:

( 0 ay+ (g: + 1)k ) e ( (o oy FQ:(fJ)rktz)k ) |

Again, a line of a generic direction in the base of the miniversal deformation
passing through a point of the A,_; stratum cannot meet ¥; anywhere else
since 1 = p — 1. So, the even monodromy group I''is A,,_;.

The discriminant. To understand the discriminant, one can start with
eliminating y from the condition that the curve det = 0 in the above defor-
mations is singular. This implies that the discriminant ¥ in the both cases
can be described as the set of polynomials

P’ (@) + 4’ (x) (15)
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with multiple roots.
Setting z = 22 in (15), we factorise it as

(p(zQ) - 2izq(22)) . (p(z2) + 2izq(22)) i (16)

Notice that the roots of one of the factors here are exactly the negatives of
the roots of the other. Thus we can consider the set of roots of (16) as a set
of 1 dipoles in C symmetric about the origin: the points in the dipole are
marked either — or + depending on which factor they are roots of. Dipoles
are allowed to collapse to the origin. For non-discriminantal values of the
deformation parameters, at most one of the y dipoles can collapse and the
points in all the other dipoles must all be geometrically distinct. T'wo dipoles
coinciding along with their markings (that is, each of the two factors in (16)
having a double root) corresponds to ¥;. Two dipoles coinciding while the
markings being opposite (that is, each of the two factors in (16) has both zj
and —zp as its roots) corresponds to Y.

Now, any fixed ordered set of (z1,...,%2,) € C¥ is the set of roots of, say
the first factor in (16) for a certain choice of the deformation parameters. The
factorisation C#/S,, by the action of the full symmetric group S, ~ 4, ; isa
passing to the coefficients of the first factor in (16), that is to the parameters
of the SS-miniversal deformation. Therefore, consistently with Theorem 3.7,

(C¥,Wp,)/Au—1 = (Ch,,T),
where Wp, is the set of the mirrors z; = +2;.

The free term in (15) is a square. Hence, the expansion of (15) provides
the mapping A of C4 into the space C*/D,, ~ C4 of the polynomials

o+ A+ A+ A (17)

which also serves as the base of a miniversal deformation of the function
singularity D,. Passing from (16) to (17) is the consideration of the above
dipole sets up to an even number of repolarisations in the p pairs of points.
Therefore, the degree of A is 2¢7L.

The mapping A embeds 7, (Ck \X) into the Brieskorn braid group Bp, =
m1(Cy \ Ap,) of the Weyl group D,.
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5.3 Series (Dyim; D®Dy)

A miniversal deformation now is

x Q B
a pr1(7) y
ﬂ Y Qm—1($)

Here p and ¢ are monic polynomials, £ > m > 1, £k +m > 4. Recall that
D1 = {6} and DQ = Al@Al.

The monodromy. The stratum Dy C ¥; is given by the equations oo = 0,
p = xz*7'. Similarly to the previous cases, for m = 1 (that is for a corank
2 matrix singularity) it provides all the multiplicity y; = p— 1 = k of ¥
which guarantees that the even monodromy group is Dy.

For m > 1, we notice that the stratum D,, = {8 = 0,q = 2™ '} meets
the Dy stratum transversally. A line joining generic points of the two strata
does not meet X; elsewhere since y; = p = k + m. Therefore, the even
monodromy group is indeed Dy®D,,, and a distinguished set of vanishing
cycles can be chosen so that the Dynkin subdiagram formed by the type 1
cycles is a disjoint union of the standard Dy and D, diagrams.

The discriminant. Eliminating y from the equation det = 0 in assumption
that it should define a singular curve, we see that the discriminant 3 of the
matrix singularity is the set of polynomials

(ap(x) - a?) - (2q(z) - °) (18)

with multiple roots: any of the factors in (18) having a multiple root cor-
responds to ¥; and a common root of the two factors corresponds to .
Expanding (18) and collecting the coefficients of the powers of z, one obtains
the mapping A into the base of a miniversal deformation (17) of the function
singularity Dy .

The two factors in (18) give rise to the groups Bp, and Bp,, when consid-
ered just individually. Similar to Section 5.1, the group m;(C**™\ ¥) can be
viewed as a subgroup of 2-coloured D-braids (with & ‘strings’ of one colour
and m of the other) in Bp, , .
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5.4 Exceptional singularities
5.4.1 Corank 2 families

Their miniversal deformations are:

2
x v +a
Eg: Ds) :
(Es; Ds) <y2+a x2+8xy+5y2+7x+ﬁy+a>’

(y: Ey) T ey’ +by+a
[t/ el +by+a 2+ +0ry+yr+By+a )

One finds the crucial corank 1 strata (both smooth) in the deformations:

(EG, D5) — D5 :

det T y2 — 86
y? — 8t% 2 + Stwy + 20t%y? + 20t*x + 96t%y + 112t

= X% —Y* 4+ 2tX?Y, where X =z 4 2ty + 4t*, Y = y + 4¢3,

(E7, Eﬁ) — E6 :

det T 3ty? — 9ty + 13¢° _
Sty — 9t°y + 1317 2® + y® — 6t%zy + 21¢°x — 36¢5y + 83¢'?

=X?+ XY? — 1#2Y* with X =z — 2%y + 715, YV = y — 4¢*.

Now @1 = p—1 implies that the even monodromy groups are respectively
D5 and Ejg as it has been anticipated.

5.4.2 Miniseries (E,;Y, ;©A)

These have the following miniversal families:

T o Y
(Fg; As®A;) : a Y¥+cex+by+a z+8 |,
Y z+p v
T o y
(E7; Dg®A;) : a zy+dy?+cz+by+a z+8 |,
Y z+p Y
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T (0} Yy
(Eg; E:0A,) : a P+exy+dy +cx+by+a z+p
y z+p g

In all three cases, the stratum A; C ¥; contains a smooth component
v = 0. It meets transversally the complementary smooth one-dimensional
strata V,_:

(EG, A5@A1) — A5 :

T 0 Y
det | 0 y?+2x+2t2 z+3t2 | =
Yy x + 3t? 4t

= —(te— ) - ) — (@ - )%

(E7, DG@AI) — D6 :

T —%t‘l Y
det | —3t* zy+ty® — 2%z — 23y z+23 | =
y T+ 283 —4t

=—X3 - XY?—tX?Y, where X =a+ty—t3, Y =y — t2;

(Eg, E7@A1) — E7 s
3747

z ) Y
det | 2147 o — 3twy + 21¢%y* — 21¢tz + 112t0y + 68¢° =+ 21¢° | =
y T+ 21t° —4t

=—X3 Y5 —tXY3 with X = o — 4t%y — 1445, Y = y + 5¢3.

The transversality and pu; = p imply that in each case the even mon-
odromy group is Y =Y, ;®A;.

5.4.3 Singularities (E£,;Y),) with irreducible subgroups Y,

Their miniversal deformations are:

x Q by +a
(E7; A7) o y r+yy+p8 |,
by+a z+yy+8 yr+dy+c
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x o v +by+a
(Es; Dg) : o Y x+yy+p
v +by+a v+yy+B ey’ +dy+c

Setting in the (E7; A7) versal deformation all the parameters except for
a to be zero gives a Zr-equivariant determinantal function. We deform it
using the parameter c. This provides the complete graph with 7 vertices and
(—1)-edges as the Dynkin diagram formed by the type 1 cycles. Since this is
one of possible A;-diagrams, the even monodromy group I' is A7.

Now perturb the (Fg; Dg) singularity by assigning non-zero values to just
two of the versal parameters, a and e, |a| << |e|. After this, variation of ¢
gives a distinguished set of type 1 cycles whose Dynkin diagram is the same
complete graph as in the (E7; A7) case, but with two of its vertices attached
to an extra vertex by the edges of weight 1. This is a Dg graph.

Remark 5.1 The even monodromy groups of all corank 2 simple matrix
families could also be obtained from the odd Dynkin diagrams calculated in
[1]. These can be easily modified to describe the suspended case.

The modification pattern is illustrated in Figure 2 by the (Agimi1; Ax @
Ap,) singularity. There white vertices are type 2 cycles and black are type
1. An edge €' — €” of multiplicity £ means (¢/,e") = k. Each rhombus gives
a relation a = b — ¢+ d between its vertices. A rhombus looses its diagonal
when we pass to the surface. The relation becomes a = b—¢—d. Now clear
all the type 2 cycles off the diagram obtained. This leaves the diagram of
Ar® A, =T
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