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Abstract
We classify simple singularities of functions on space curves. We
show that their bifurcation sets have properties very similar to those
of functions on smooth manifolds and complete intersections [3, 4]:
the k(m,1)-theorem for the bifurcation diagram of functions is true,
and both this diagram and the discriminant are Saito’s free divisors.

More than 25 years ago Arnold started a tradition in singularity theory
to ask a couple of standard questions every time when a new classification
problem is considered: is the complement to a bifurcation variety of a simple
singularity an Eilenberg-MacLane k(7,1)-space? is a bifurcation variety of
a singularity a free divisor? In almost all decent situations the answers to
these questions are positive. For example, this is usually so when a function
is involved: for discriminants and bifurcation diagrams of functions in the
study of functions on smooth manifolds and manifolds with boundary, for bi-
furcation diagrams of functions on isolated complete intersection singularities
(3, 4].

In the present paper we answer positively similar questions in the case of
functions on space curves. Our initial interest in such functions was moti-
vated by a search for singularity theory realisations of Hurwitz spaces, that
is, of moduli spaces of functions on closed complex curves with given orders of
poles. A classical example of such a space is the miniversal deformation of the
Ay, function singularity which provides a moduli space of rational functions
with one pole (that is, polynomials in one variable), of order £+ 1. Similarly,
miniversal deformations of simple functions on one-dimensional complete in-
tersections [13] are convenient tools to study Laurent polynomials (see [2] for



details) and elliptic functions with one pole. Naturally, the next in the line
are functions on space curves, since a space curve singularity is sufficiently
easy to handle: the base of its miniversal deformation is smooth.

The paper is organised as follows.

In Sections 1 and 2 we introduce an equivalence relation for functions on
space curves and classify simple singularities.

In Section 3 we define analogs of Tjurina and Milnor numbers for our
functions.

In Section 4 we list versal deformations of simple singularities as partial
closures of certain Hurwitz spaces. We make use of this interpretation in
Section 6.

Section 5 on the geometry of the bifurcation sets contains theorems on
the free divisors and gives algorithms to construct basic vector fields tangent
to the sets. It also contains Lyashko-Looijenga type theorem on bifurcation
diagrams of functions of the simple singularities.

Calculation of the degree of the Lyashko-Looijenga mapping yields an-
swers in some particular cases of the Hurwitz problem on enumeration of
topologically distinct Morse meromorphic functions on closed curves with
fixed orders of poles and fixed critical values (Section 6). In all our cases the
answers were known earlier from combinatorial considerations [17, 22, 20].
Our approach looks promising for similar enumeration of the correspond-
ing non-Morse functions: basically, one has to calculate the degree of the
Lyashko-Looijenga mapping on the relevant stratum.

Acknowledgements. The author is thankful to E. V. Flynn and A.
Friihbis-Krueger for useful discussions.

1 Space curves

A germ of any reduced space curve is a determinantal variety: it is the zero
set of all order n minors of a germ of some n X (n + 1)-matrix M on C3. In
what follows we often treat a space curve as such a matrix.

Definition 1.1 Two curve-germs at the origin, given by matrices M and
M', are said to be equivalent if there exist two invertible matriz-germs A
and B and a biholomorphism-germ h of (C3,0) such that

AMB = M'oh.



We say that corank of a space curve-germ is c if the rank at the origin
of its defining matrix is n — c¢. Obviously, such a curve can be given by a
¢ X (¢4 1)-matrix which is just the zero matrix at the origin.

Classification of simple space curves within this approach has been ob-
tained in [10]. As a subset it contains simple plane A, D, E-curves and
Giusti’s list of simple 1-dimensional complete intersections in the 3-space
[11, 12, 4]. Those are corank 1 curves. All the other simple space curves
have corank 2. We are not reproducing the whole list since we will not need
it.

2 Simple function singularities

Definition 2.1 A function on a space curve is a pair of germs (M, f) on
C3, where M is ann X (n + 1)-matriz and f a function.

Definition 2.2 Two germs of functions on curves at the origin, (M, f) and
(M', f"), are R.-equivalent if there exist two invertible matriz-germs A and
B, a biholomorphism-germ h of (C*,0) and a function g from the ideal gen-
erated by the mazximal minors of M such that

(AMB,f+g)=(M'oh,f'oh).

Notation R, is chosen to indicate that this is a sort of right equivalence
of functions, this time restricted to curves.

The notion of R -equivalence satisfies all the conditions of Damon’s good
geometrical equivalence [8, 9]. Thus all the standard theorems like those of
versality and finite determinacy are valid in our case. We can apply tradi-
tional technique [5, 3] to classify singularities and construct their R.-versal
deformations.

One of our aims is to classify R.-simple singularities. The R.-simplicity
requires the participating curve to be simple as a determinantal variety. Thus
we have to study functions either on simple plane curves, or on non-planar 1-
dimensional complete intersections in C3, or on determinantal space curves of
corank 2. The second case is easily shown to contain no R.-simple functions.
The simple lists for the two others are given below.



2.1 Functions on plane curves

Theorem 2.3 [13] The complete list of R.-simple functions on plane curves
18 as follows:

notation | curve singularity | function restrictions
Ay Ag: y=0 zhtl k>0
Cpq A zy=0 xP 4 y? p>qg>1
Bk Ak—l a:2+yk:O y k>3
By Ar: 2”4y =0 {a:yr k=2r+4>4

In the exposition we shall take care of not making any confusion between
curves Aj, and our functions Ay.

All the adjacencies of the listed functions are compositions of the adja-
cencies within the series obtained by reducing the indices (we additionally
set 32 = 01’1, F3 = B3) and

Fprgin = Cpg = Apig1 -
There are just two bounding functions:

X3 z+ay® on 22+y*=0
Jo: z+ay on z¥+9y*=0.

Here a is a generic complex number (modulus). Both singularities are adja-
cent to By and Fy. Also Xg is adjacent to Cs ;.

Remark 2.4 Singularity Jj, is a generic function on a Dy curve. Its non-
simplicity guarantees absence of R .-simple functions on any curve singularity
adjacent to Djy.



2.2 Functions on space curves

Theorem 2.5 The list of simple functions on determinantal space curves of
corank 2 is as follows:

notation | curve singularity function restrictions
L z y O » q ,
Char Ay Ytz pzqgz2r=>1
0 y =z
I z y 0 y" k=2r+32>5
Ey, A2 2 Z| Z+{xyr Ek=2r+6>6
- T Yy z
E E} : —
6 6 22z oy | z

Here the notation of the curve singularities a bit differs from that in [10].

Since the classification technique is very similar to that used in numerous
earlier classifications we do not give the proof of this theorem here. The only
point we would like to briefly explain is the absence of other simple functions.
There are two reasons for this:

(a) Figure 1 shows the hierarchy of space curves not adjacent to D, [10],
that is, of those on which there can exist R.-simple functions due to Remark
2.4. In the figure, the curves with the same Tjurina number are in the same
column.

<—A <—A <—A <—A <—A <—...

NN

N

Figure 1: The initial part of the hierarchy of space curves



(b) The list of the theorem contains all finitely degenerate functions on the
curve AL, The list also contains all finitely degenerate functions on A% and E}
with z in the linear part. The latter condition is necessary for R .-simplicity:
the evolution of the tangent cones to the curves in the deformations E§ —
AL — Aj (see [10]) shows that otherwise a function on AZ or Ej is adjacent
to the non-simple singularity X§ (which is a generic function on the space
with an Aj curve, such that the tangent cone to the curve is not transversal
to the critical level of the function).

The above shows that the two planar bounding singularities, Xg and Jj,

of the previous subsection serve as a complete bounding list in the corank
< 2 case as well.

One obtains obvious adjacencies of the singularities of Theorem 2.5 re-
ducing the indices in the series. Some other adjacencies showing the relations
between the series are:

Cpar = Cpyg Fy — Fj» Fpiqr3 = Cpg E¢ — F;

3 Tjurina number and Milnor number

Let (w1, 72, z3) be coordinates in (C3,0) and O3 the space of holomorphic
function-germs on it. Choosing an ordering of entries of pairs consisting of
an n X (n + 1)-matrix and a function, we identify the space of their germs
with the module O "™ The tangent space T(M, f) to the (extended) R.-
equivalence class of a germ (M, f) in this module is the O3-module generated
by the elements

(EXM,0
(MET™,0

(0, ¢y
(OM )0z, 0f |0z,

, i =1...n,

,  kiI=1,...,n4+1,
, r=1,...,n+1,
, s=12/3

~— N S ~—

Here E7: is the n X n-matrix having 1 at the intersection of the ith row with
the jth column and zeros everywhere else. The ¢, are the maximal minors
of the matrix M.



We set 7(M, f) to be the dimension of the linear space Oy ™ /T (M, f)
and call it the Tjurina number of the function singularity. This is the di-
mension of the base of an R, miniversal deformation of (M, f). Such a
deformation can be taken in the form

71
(Maf)+z)‘iei ;
i=0

where the ); are the parameters, and the ¢; are elements of Oy (n+1+1 which
project to a linear basis of the quotient OF™ ¥ /T(M, f).

For singularities Cp, and Cp,, we have T =p+gand 1 =p+q+ 17+
1 respectively. For all the other simple singularities of our lists, 7 is the

subscript in the notation. Also 7(Xg) = 7(J;,) = 6.

Another characteristic of a function-germ on a curve is the number
w(M, f) of Morse critical points which a generic small perturbation of f
has on a generic smoothing of curve M. We call u(M, f) the Milnor number
of the singularity.

Algebraically, u(M, f) is the dimension of the linear space O3/J, where
J is the ideal generated by the maximal minors ¢, ..., 9,41 of M and by
all maximal minors of the Jacobi matrix 0(¢1, - . ., ¢nt1, f)/0(21, 2, 3). In
fact, it is sufficient to take only those Jacobian minors which involve f: all
the others are in the ideal generated by the ¢;.

Conjecture 3.1 T(M, f) =pu(M, f) .

The conjecture is true for functions on complete intersections [13], for
R.-simple singularities and in some other particular cases.

4 R.versal deformations as moduli spaces of
meromorhpic functions

For our further considerations we need explicit R.-miniversal deformations of
the simple singularities. Instead of just straightforward writing out lengthy
families of functions, we show in this section how to arrive at the same
families from a geometrical point of view treating their generic members as



meromorphic functions on smooth curves of low genus. As a result, the versal
families come out as partial closures of moduli spaces of functions on curves
with fixed orders of the poles. This will be helpful for the Hurwitz problem
of enumeration of meromorphic functions considered in Section 6.

Below all the Greek letters and non-fixed coefficients in the polynomials
are parameters of a deformation of a function on a curve. In correspondence
with our further notation, we denote the free term of all the functions by
Ag- Each of the versal families obtained is quasihomogeneous, with all the
arguments and parameters of positive weights. Therefore, each family is
defined globally, on the whole of the complex linear space of the arguments
and on the whole of the complex linear space of the parameters (not just on
the germs of the two). Each of the deformations contains a versal deformation
of the corresponding curve.

4.1 Functions on the complex line

Ay. Any function on the complex line with just one pole, of order k + 1, is
equivalent to a polynomial

.’L‘k+1 + )\k_lxkfl =+ ... )\1.1’ + )\0 . (1)
The family of all such polynomials is a versal deformation of function Ay.

Cp,q- Any function on the complex line with two poles, of orders p and g, is
equivalent to a member of the family of functions on the family of curves:

fol®) +94(y) + X0 on zy=¢, (2)

where f, and g, are arbitrary monic polynomials with no free term, of degrees
p and g respectively. This is a miniversal deformation of the (), , singularity.

Cp q,r- Similarly (see [16]), any rational function with 3 poles, of orders p, ¢
and 7, is a member of the miniversal deformation of function C, ,, which is

T Y a
B y+vy 2

Again fp, g4, h, are monic polynomials of the corresponding degrees, with
no free term. The discriminant of the curve Af participating in this series of
function singularitiesis oo+ 3 -y = 0.

(3)

fo(@) + 94(y) + he(2) + Ag  om




4.2 Elliptic functions

Foi1. A genus 1 curve with a marked point is a plane curve
v +y’+ay+f=0, ofeC, (4)

with its infinite point marked. Function y on (4) has a pole of order 2 at
infinity, and = a pole of order 3. Therefore, any degree n elliptic function
with only one pole is a member of a family of functions with the support of
one of the two types shown in Figure 2. In the first case n = 2r, and in the
second n = 2r + 3. The coefficient of the black monomial can be reduced to
1 by the quasihomogeneous rescaling allowed by a spare degree of freedom

in (4).

Figure 2: Supports of elliptic functions with one pole.

The family of functions of Figure 2 on the family of curves (4) is an
R.-miniversal deformation of the F,,,; singularity.

F,.3. An elliptic curve with two distinct marked points is a curve

z(z+v) -y’ + By +6) =0, (5)

with the infinity and origin marked. Up to an additive constant, a function

on such curve with two simple poles at the marked points is z = a(z + ) /y

(see Figure 3). This time there is no freedom in (5) to normalise « to 1.
Function z lifts the planar curve (5) to a space curve

x Yy o«
V+By+6 x4y z

(6)

The obtained family is a versal deformation of the space curve Af.
Let f,(z,y) be a function with the support as in Figure 2 and n calculated
as for the previous series of singularities. Now a function on an elliptic curve

9



Figure 3: Construction of an elliptic function with two simple poles.

with two poles, of orders 1 and n > 1, is a function z + f,(x,y) on a curve
(6). The family of all such functions on the family of all such curves is an
R.-miniversal deformation of the singularity Fn+3.

The case of two simple poles is covered by the next series (singularity
B3).

Remark 4.1 The discriminant of the family (6) is
a- (279" — 726v%6 — 163%6% + 163°4* + 646%) = 0 (7

If a = 0, the curve is a plane cubic wedged with a straight line transversal
to the plane. The second factor in (7) is the discriminant of the plane family
(5) which coincides with the discriminant of function Aj.

4.3 Degree 2 functions

Byx. To carry a degree 2 function a curve must be hyperelliptic:
2+ ooty + o =0. 8)

Function y + A¢ on it has either two simple poles (for k even) or one order 2
pole (for k odd) at the infinity. Here again we can assume the coefficient of
y in the function to be quasihomogeneously scaled down to 1.

The family of functions y + A\g on the family of curves (8) is an R.-
miniversal deformation of the function Bjy.

10



4.4 Degree 3 functions on genus 2 curves

Eg. A genus 2 curve with a marked non-Weierstrass point is a hyperelliptic
curve

Y2=X4+aX*+b2* +cX?’+dX +e, a,...,ecC, (9)

with one of the two points at the infinity marked.
The same curve can be written as a member of the miniversal deformation

x+40 Y z

10
2+az+B+yy T y+e (10)

of the E{ curve singularity with the marked point being the infinite one. The
transformation from (9) to (10) is

z = (£2Y +2X3+aX +b)/4
y = 2X +c/4—a’/16 (11)
r = yX,
with the parameter settings
a=-2y b=-2a c=—-4e+7 d=40+2ay e=—-4f+4ye+a’.
(12)
The sign choice for z is the choice of one of the two infinite points of curve
(9) as marked.
Now any degree 3 meromorphic function on a genus 2 curve with only one
pole is a function z + Ag on a curve (10). We can normalise the coefficient

of z in the function to be 1. The function family z + Ay on the curve family
(10) is an R.-miniversal deformation of the function singularity Fg.

Remark 4.2 The relation (12) between the two families, (9) and (10), shows
that the discriminant in the versal deformation of the curve Ej is the bifur-
cation diagram of zeros of function As.

5 Geometry of bifurcation sets

5.1 Discriminant as a free divisor

Definition 5.1 Consider the base C™ of an R.-miniversal deformation of
singularity (M, f). The discriminant A(M, f) C C7 of (M, f) is the set

11



of those values of the deformation parameters for which the function on the
curve has critical value 0.

Consideration of the C;; singularity shows that, within this definition
and in what follows, a singular point of a curve must be treated as critical
for a function on the curve.

We recall that a hypersurface H in N-dimensional complex linear space
is called a free divisor if the algebra ©p of vector fields on CV tangent to H
(that is, preserving its ideal) is generated by N elements as a module over
functions on CV.

Theorem 5.2 Assume (M, f) = u(M, f). Then the discriminant A(M, f)
C C7 s a free divisor.

Proof (cf. [24, 25, 26, 14, 15, 4]). Let (M, F) = (M(z, A), F(z,A)) be
an R.-miniversal deformation of (M, f), with A = (X, ..., A\,_1) € CT being

the parameters. For any ¢ = 0,...,7 — 1, due to the versality there exists a
decomposition
F 9 (M, F) = (AMB;,G;) + ih- i(./\/l F)—i—TZ_lvi(M F)
8)\1 ) - (] 1) I = 1saxs ) = ] 6A] ) )

where A;(z, A) and B;(z, A) are matrix-germs, h;s(z, A) and v;;(\) function-
germs, and G;(z,A) is an element of the ideal generated by the maximal
minors of M in the ring of functions in z, A\. A functional factor or differ-
entiation in front of a pair (matrix, function) means multiplication by the
function or the differentiation of both items.

The vector fields v; = ]T-;é v35(A)0y; are tangent to A. Assume that the
deformation (M, F') is monomial and )y is the free term of F. Then it is
easily verified that det(v;;(Xo,0,...,0)) = AJ. On the other hand, det(v;;)
has to vanish on A, and hence is proportional to its defining equation. Since
the latter is a polynomial of degree p = 7 in A9, det(v;;) = 0 may be taken
to be such an equation itself. This implies that the vector fields vy, ..., 1
generate Or as a free module over O;. O

Thus, for example, the discriminant of any R.-simple singularity is a

free divisor. Modulo Conjecture 3.1 this is true for any singularity of finite
R.-codimension.

12



5.2 Bifurcation diagram of functions as a free divisor

Consider a truncated R miniversal deformation (M, F’) of a singularity
(M, f), that is, one allowing just functions vanishing at 0 € C3. Its base is of
dimension 7(M, f) — 1. Note that in this case the deformation (M, F'+ ),
where ) is an additional parameter, is R.-miniversal for (M, f).

Definition 5.3 The bifurcation diagram of functions Z(M, f) C C™! is
the set of those values of parameters of the truncated deformation for which
either the corresponding curve is not smooth or the function on it has either
a degenerate critical point or at least two critical points on the same level.

In general, ¥ has three irreducible components responsible for the three
degenerations mentioned in the definition.

Theorem 5.4 Assume 7(M, f) = u(M, f). Then the bifurcation diagram of
functions (M, f) C C™ 1 is a free divisor.

A proof of this statement is absolutely similar to those for functions on
smooth manifolds [7, 23] and for functions on complete intersections [14, 15].
The generators of Oy

T7—1
wi = > wi;(N)0y, , i=1,...,7—1, N=(y,..., 1) €C 1
Jj=1
are obtained from the decompositions

71 o
(M, F") + (0, wy) + Z wijﬁ(MaFl) )
J

j=1

3
. 0
(0, F") = (AAMB;, G)) + > _ b,
o YO0
where the Aj(z,\') and Bj(z,\') are matrix-germs, hl (z,\') and w;;()\)
function-germs, and G/(z,\') is an element of the ideal generated by the
maximal minors of M.

Example 5.5 As Section 4 implies, the singularity C; 1, has a truncated
R.-miniversal deformation

(

Ty
B y+y z

, Tty+z )
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The algebra of vector fields on C? tangent to the bifurcation diagram X(C1 1 1)
is a free module over O3 generated by the fields of degree 1 (the Euler field),
2 and 3.

The projectivisation of £(C41,1) in CP? is a nodal cubic with its three
tangent lines at the inflection points (thus, as expected, its degree is the sum
of the degrees of the basic fields). The cubic corresponds to functions with
degenerate critical points on smooth curves and the three lines a- -7 =0
to non-smooth curves. On the left-hand side of Figure 4 we show this pro-
jectivisation (the isolated point in the centre is the node of the cubic). On
the right-hand side of the same figure there is given the bifurcation diagram
in R3 of the other obvious real version of the complex singularity Ci1,1: the
isolated straight real line inside the cone bounded by the cubic is the inter-
section of the two conjugate planes tangent to the cubic along its complex

parabolic lines.

\

Figure 4: Two real versions of the bifurcation diagram of complex singularity

Cin-

5.3 Lyashko-Looijenga mapping

Let C#~! be the space of all monic polynomials in one variable of degree u
with vanishing sum of the roots, and = C C*™! the set of polynomials with
multiple roots.

For a singularity (M, f), with its Tjurina number equal to its Milnor
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number u, consider the mapping
CHI\Z(M, f) = C+ 1\ E

from the complement of the bifurcation diagram of functions which sends a
Morse function on a smooth curve to the unordered set of its critical values
shifted by their arithmetic mean, that is, to the monic polynomial whose roots
are the shifted critical values. This mapping is easily verified to be extendible
to that between the ambient complex linear spaces [13]. Again, the extension
counts every singular point of a curve to be critical for a function on the curve.
We call the extension the Lyashko-Looijenga mapping and denote it by LL.

Theorem 5.6 For an R.-simple function on a space curve, the Lyashko-
Looijenga mapping is a finite covering. As a mapping from CH 1\ T to
CH=1\ E 4t has no branching.

Since the space C#~! \ E is a classification space of the Artin braid group
B(p) on p threads, we get

Corollary 5.7 For an R.-simple singularity (M, f), the complement to its
bifurcation diagram of functions in the base of its trunkated R.-miniversal
deformation is a k(m,1)-space, where 7 is a subgroup of finite index in the
group of braids on u(M, f) threads.

Both statements may be understood not on the germ level only, but also
globally, as related to the truncations of the quasihomogeneous R .-miniversal
deformations of Section 4.

The index [B(p) : 7] is the degree of the mapping LL : CF~! — CH L.
The latter is finite quasihomogeneous for a quasihomogeneous deformation,
and hence its degree is the ratio of the products of the weights of the coordi-
nate functions and of the arguments. Using the truncations of the deforma-
tions of Section 4, we obtain the following indices:

Ak Cp,q Fk Bk
k— +q—1)!pP q? k—2)(k—1)kEk
(k+ 1)t (fp—ql)!()q—]_;]! G 1
Coar E}, Eq
(p+g+r+1)pPqir™ (k—3)F (k—2)(k—1)k 35
(=)' (g—1)! (r—1)! 24

15



Remark 5.8 The theorem and its corollary are analogous to the classical
theorem on simple functions on smooth manifolds [1, 19, 6, 3] and generalise
similar assertions about simple functions on plane curves [13, 4] (the latter
provide the upper half of the index table). The assertion for the C, 4, series is
a particular case of the Lyashko-Looijenga type theorem for rational functions
proved in [16]. Therefore, only F, and Eg are really new cases here.

Proof of Theorem 5.6. Consider the version LL : C* — C* of the
Lyashko-Looijenga mapping defined on the base of a non-truncated miniver-
sal deformation of an R.-simple function singularity (M, f) and sending a
member of the family to the monic degree p polynomial whose roots are
non-shifted critical values of the function. The base C* contains extended
bifurcation diagram of functions $(M, f) defined in the obvious way and iso-
morphic to 2(M, f) x C. The dicriminant = in the target polynomial space
C*# is similarly cyllindrical: E~ExC.

The theorem is equivalent to the analogous claim for the mapping LL and
we shall prove the latter. The proof will be carried out for the deformations
of Section 4 defined globally.

As in the versions of the theorem mentioned in the last remark, we have
to prove two facts:

1) mapping LL is proper,

2) mapping LL is a local diffeomorphism out of .

1) Since the weights of all the variables in the miniversal deformations of

Section 4 are positive, it is sufficient to show that fffl(O) = 0.

Consider a member (M,, f,) of the miniversal deformation of an R.-
simple singularity. Denote by I'y C C? the curve defined by M,. Assume f,
has only one critical value 0 € C on T'y.

Take an arbitrary regular value w € C of f,. Join it with 0 by the
straight path I. The inverse image f, '(I) C Iy is a disjoint union of wedges
of intervals, with the wedge points being the critical ponts of fy. On the
other hand, f, *(I) is a retract of the connected curve T'y. Hence, fy '(I) is
just one wedge. Therefore, I') is contractible and has at most one singular
point. For the curves participating in the R .-simple singularities this means
that I'y is just the undeformed curve. Now a quick check of the miniversal
deformations of Section 4 shows that a function on the undeformed curve
with a single critical value 0 is the undeformed function.

16



2) Consider the critical values ¢y, ..., c,_1 of the members (M), f,) of a
miniversal family (M, F). Out of the diagram 3, each of the ¢; is locally a
holomorphic function of the parameters A = (Ag,...,A,—1) of the deforma-
tion. Local diffeomorphness of LL at some point = Cr \ ¥ is equivalent to
the non-degeneracy of the p x p-matrix (dc;/9A;) at A.

For the sake of uniformity we shall assume that all the curves in the
R .-simple singularities are space curves defined by 2 x 3-matrices.

Denote by @, the order 2 minor of the 2 x 3-matrix M obtained by
omitting its rth column, » = 1,2, 3. Those are the equations of the family of
the curves participating in the function deformation.

An exercise in calculus shows that the velocity (9c;/@);)()) is the value
of the ratio of the determinants

p; = ||a((1)1“aq>7"7F)/a(xsaxS’a)‘j)||
! 10(®r, @) /0(s5, z51)||

(13)

at the critical point of function f;; at which it attains the value ¢;. Here
Z1, T2, x3 are the coordinates in the space.
We have an easy

Lemma 5.9 The ratio (13) of the evaluated determinants does not depend
on the choice of r,7', s, s" for which the denominator does not vanish.

On the other hand, the family C C C3™# of the critical loci of functions
£ is defined by the ideal J generated by the ®, and three maximal minors
of the Jacobi matrix 9(®y, P2, 3, F)/9(x1, 22, x3) involving F. The quotient
O3,/ J is a free rank p O,-module (this is easy to straightforwardly check
for the simple singularities). Let functions 7, ..., 7,1 € O34, represent its
generators.

Non-degeneracy of the matrix (d¢;/8);) out of ¥ is equivalent to the
existence of a representation on C

p—1
szaejpja £:07"'7u_1a (14)
=0
such that
(i) the functions as; = as;(A) are holomorphic on CH,

(i) the p x p-matrix (ag;) is invertible on C#\ .

17



It is not so difficult to verify that for the simple singularities such rep-
resentations do exist. In fact in each case det(as;) = 0 turns out to be an
equation of X. O

Remark 5.10 Condition (ii) reflects the fact that vanishing of the evalua-
tions of all possible denominators in (13) is equivalent to the corresponding
curve being singular.

The sense of the decompositions (14) is discussed in the next section.

5.4 Discriminants of space curves

Consider a miniversal deformation M of a space curve M. Let C™ be its
base. Let A(M) C C™ be the discriminant of M, that is, the set of those
values of the deformation parameters for which the corresponding curve is
singular.

Theorem 5.11 [21] The discriminant of a space curve is a free divisor.

Apparently there exists the following algorithm to construct generators
of ©a(u) based on the decompositions (14).

Take an arbitrary function f on C? so that the pair (M, f) is finitely R
degenerate. Extend deformation M to an R.-miniversal deformation (M, F')
of (M, f). Let C™ x C™ be the base of the extension.

Assume that u(M, f) = 7(M, f), that is, u(M, f) = 11 + 72. Assume also
that the representations (14) for (M, F') exist (with the obvious modification
for curves of arbitrary corank). Each of them defines on C™*™ a vector field

T1+72—1

Qy = Z agj()\)a,\j.

=0

Let @, be the restriction of a;, to C™ x 0.
Modulo Conjecture 3.1 we have

Conjecture 5.12 Decompositions (14) satisfying conditions (i) and (ii) ex-
ist for any finitely degenerate function on a space curve. Within the above
construction, one can choose elements ng, . .., Nry+ro—1 € O30y 17, SO that the
vector fields ao, . . .,a,,—1 generate the O -module © ().
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Example 5.13 Consider function F2r+3 and its miniversal deformation of
Section 4.2. Take 1,v,...,y" ', z,zy,...,zy" L, z for the elements n,. All
of these, except for z,y",zy"~! and y"*!, are among the velocities p;. The
complement of the p-set to its intersection with the n-set consists of the ve-
locities involving the derivatives with respect to the four parameters o, 3, v, §
of the versal deformation (6) of the curve A%. Decompositions (14) of the
elements z,y", zy" !, 4" (in this order) provide the following matrix of the
components of basic vector fields in C* tangent to the discriminant of A%:

a 0 0 0 Oa
0 28 3y 45 95
0 3y 26 206y Oy (15)

0 46 2By 286+ 34%/2 05

To be precise, to obtain the above matrix one has to correct basic vector
fields of higher quasihomogeneous degree given by (14) for our choice of the
basic elements by the vector fields of lower degree. Also the fields must be
multiplied by some non-zero constants. The first two vector fields are Euler.
Notice the symmetry of the matrix. The determinant of the matrix is the
discriminant (7) of the curve A%.

6 Enumeration of meromorphic functions

Corollary 5.7 provides a singularity theory approach to the problem on enu-
meration of certain holomorphic coverings of the 2-sphere. The problem goes
back to Hurwitz who stated it for rational functions [18]. The setting is as
follows.

Consider two holomorphic mappings, f and f’, from closed connected
complex curves I' and IV to CP!. We say that they are of the same topological
type if there exists a commutative diagram

r — r
N v Ff
CP!

in which the horizontal arrow is a homeomorphism.
Mark a point (infinity) on CP! and call its inverse images poles. Consider
the space of holomorphic coverings of CP! by curves of fixed genus having
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fixed orders of poles. We shall be interested in the case when all finite
critical points of the coverings are Morse and situated on different levels.
Such coverings will be called Morse meromorphic functions.

The Riemann-Hurwitz theorem provides a relation on the genus g of a
curve, the degree d of a Morse function, and the numbers p and s of the
Morse points and poles:

2-29g—s=d—p.

Theorem 6.1 The number N of topologically different Morse meromorphic
functions on genus g curves having fixed critical values and s poles of fized
orders di,...,ds (and thus the degree d = dy + ... + ds) is given, in the
following cases, by the table:

g | {d:} N singularity restrictions

0| n nn3 Ay n>2

0| pg e e Cou |P>qg>1p>1
0|p,qr| Greiiyerer Cpar | P2g>r>1
1| n n(w 1) For n>3

1] 1.n nn+2(n+1)2(4n—|—2)(n+3) Foos n> 2

2| 3 3t Es —

g| 2 1 Big1 g=>1

g| L1 1 Bagi2 g=>1

In both the C-series, € is the number of poles of coinciding order.

The space T of various topological types of all the Morse meromorphic
functions in each of these cases is a smooth complex p-dimensional variety.
The variety T is a k(m,1)-space, where w is a subgroup of index N in the
Artin group of braids on u threads.
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Proof. All Morse functions of the listed cases enter the R, -miniversal
deformations of Section 4. Representatives of all topological types of Morse
functions with fixed critical values are contained in one fibre of the cor-
responding Lyashko-Looijenga mapping LL. On each fibre there acts the
group Aut of homeomorphisms of the curve which preserves the topological
type of a function. In each case this is a subgroup of quasihomogeneous auto-
morphisms of the miniversal family (see Example 6.2 below). The subgroups
are easily seen to be as follows:

Anfl Cp,q CVp,q,r Fn+1 Fn+3 Eﬁ Bk

T | SeX Dy X Tg | Se X Ty X g X T | Ty | Zp | Zs| 1

To prove the theorem one just needs to show that the action of each of
these groups on the complement to the diagram ¥ is free. This is easy to
check in all the cases and we are not going to demonstrate this.

The space T of topological types of Morse meromorphic functions is the
quotient-space (C*\ ¥)/Aut. Let ¢ be the factorisation map. The Lyashko-
Looijenga mapping LL factors through it: there exists a mapping £¢: 7T —
CH\ = such that LL = #¢ o . This implies the k(m,1) claim of the theorem.
This also calculates the index of 7,(7) in the braid group B(u) as the ratio
[B(u) = w1 (C#\ )] /] Aut]. O

Example 6.2 Consider the singularity Fg. Set w = /1. The action of the
group Aut(Fg) = Zs on the miniversal deformation of Section 4.4 multiplies
each of the variables v of the deformation by w™**), where wt(v) is the weight
of v, with the normalisation wt(z) = 3.

Remark 6.3 The Hurwitz problem can be considered as a problem on enu-
meration of certain connected graphs with d vertices and u ordered edges (see
[2] for details). For example, the entry N = n™~3 for the A,_; singularity in
the table of the theorem is the number of trees with n vertices and ordered
edges which is a famous theorem by Cayley.
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