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Abstract. We show that, for hypersurface sections (in the sense of Damon) of
isolated functions singularities, the Tjurina and Milnor numbers coincide. An
application of this to the families of 2 x 2 symmetric and arbitrary matrices
proves the conjectures naturally arising from the results of [2] and [3]. In
addition, we study the vanishing homology of the determinantal curves of
two-parameter families of symmetric order 2 matrices and construct Dynkin
diagrams of simple singularities of such families.

Recently the first author and F. Tari ([2] and [3]) obtained classifications of
simple singularities of families of symmetric and arbitrary square matrices (see
also [11] for a partial result). The equivalences they used are the most natural
and, similar to [7, 8], involve the following.

A family of symmetric matrices determines a mapping of the parameter space
into the space of quadratic forms equipped with the standard action of the general
linear group.

A family of arbitrary square matrices is a mapping of the parameter space
into the set of linear operators between equidimensional vector spaces equipped
with the action of the product of the corresponding general linear groups.

Diffeomorphisms of the parameter space along with the families of transfor-
mations from the linear groups form the equivalences considered in [2, 3].

The results of the two papers lead to a series of conjectures related to the
questions traditionally being asked in singularity theory: what is the relation be-
tween the Tjurina and Milnor numbers? what can we say about the vanishing
topology of a singularity?

The present paper is devoted to the analysis of these questions.

The very first observation about the lists of simple classes is that, for some
special choices of the dimensions, the Tjurina number of a matrix singularity
coincides with the Milnor number of the determinantal hypersurface.

Attempts to generalise this observation lead to a conjecture that this must
be a particular case of a universal property of sections of an isolated function
singularity f considered up to a version of Damon’s Ky -equivalence preserving
all the levels of f rather than just the hypersurface V = {f = 0} (it was first
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introduced in [6]). The sections to consider are by arbitrary mappings while the
earlier investigations have been mostly concentrating on sections by embeddings
(see [4, 5]).

The main result of the first half of the paper is Theorem 1.3 describing the
relation between the Tjurina and Milnor numbers of sections of isolated hypersur-
face singularities. The best case turns out to be that when the section is done by
a hypersurface too (Corollary 1.6).

The second half of the paper (Sections 3 and 4) studies vanishing homology of
the discriminantal curve of a two-parameter family of order 2 symmetric matrices.
We describe the types of vanishing cycles and construct the Dynkin diagrams of
all the simple singularities.

1. Sections of isolated hypersurface singularities

1.1. The equivalences

Consider a diagram of holomorphic map-germs
(©,0) 5 (€,0) % (€,0), (1)

in which function f has an isolated critical point at the origin. Let V be the zero
set of f. In what follows we fix f, but vary F.

Definition 1.1. Two map-germs F, F’ : (C™,0) — (C",0) are called Ky -equivalent
if the preimages of V under F and F' are diffeomorphic.

The tangent space Tk, F' to the Ky -equivalence class of a germ F' has the
following description (see [4]).

Let 6,, be the space of germs of holomorphic vector fields on (C™,0). The
differential dF sends an element £ € 6,, to the derivative dF(&) of F along €.

Now let Derlogy, C 6, be the algebra of vector fields on (C",0) tangent to
V, that is, sending the function f to its multiple. Every vector field n € 6,, on the
target of F' provides a variation F*(n) of F.

We have

Tk, F = dF(0.,) + F*(Derlogy,) .

There exists a more restrictive version of this kind of equivalence requiring
preserving all the level-sets of the composed map.

Definition 1.2. Two map-germs F, F': (C™,0) — (C",0) are called K¢-equivalent
if there exists a diffeomorphism of (C™,0), which, for each &, sends the fibre
foF =¢ to the fibre fo F' =¢.

As we shall see, this equivalence is in a sense nicer than the previous one:
it has general properties shared only by quasi-homogeneous maps within the Ky -
context (cf. [6]).
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The corresponding tangent space
Tx,F = dF(0y,) + F*(Derlog,) (2)

is obtained by taking the vector fields Derlog; C 6, annihilating f. Over the
functions on C", the module Derlog; is generated by elementary hamiltonian fields
fi0y; — f;0y,, where y1, ...,y are coordinates on C* and f; = 9f/0y;.

Denote by O,, the space of holomorphic function-germs on (C™,0). The
space of all variations of a particular map from (C™,0) to (C",0) is the module
O = Om(0y,,-..,0y,) (this can be identified with the space of all map-germs
from (C™,0) to C™). We introduce two Tjurina numbers:

Tv(F):dimcozt/TKij and Tf(F):dichfn/T;ch.

1.2. The Milnor number

Suppose m < n and 7y (F) < oco. Then the function ¢ = f o F' has an isolated
singularity at the origin. Denote by u(¢) its Milnor number.

Theorem 1.3. Let the B, be the Betti numbers of the Koszul complex of the ele-
ments F*(f1),...,F*(fn) € Op,. Then

p(p) = 74(F) = Br+ Bo-

Example 1.4. Assume m = n. Then the only non-zero Betti number is 5y which is
the degree of the composition of F' with the gradient map of f. Thus, the theorem
claims that p(p) — p(f) - deg F = 74(F), which turns out to be a sort of a p =7
statement once the left hand side of the equality is interpreted as an appropriate
Milnor number. For such an iterpretation, consider a generic perturbation F of
F. The hypersurface W = F~!(f = 0) has deg F singularities isomorphic to the
singularity of f at the origin. Being a perturbation of the singular level of the
function ¢, the hypersurface W is homotopic to a wedge of u(¢) — u(f) - deg F
copies of the n — 1 sphere.

Proof of Theorem 1.3. To shorten the notations, we write A for the module
of vertical vector fields O, (9y,, - - ., 8y, ), and A? for its ith exterior power.

The Koszul complex of the n-tuple F*(f1), ..., F*(fy,) is the complex of O,,-
modules

cC: oA BANB0,. 0, (3)

in which the operators d; are the convolutions igs with the differential df =
F*(f1)dy: + - - - + F*(fn)dyn of the function f.

The tangent space T' = Tk, F' is a subspace of codimension 7¢(F') in Al Tt is
mapped by d; onto the Jacobi ideal dp(6,,) of ¢: indeed, the second summand in
(2) is clearly the image of dy and hence is annihilated by d;, while the d;-image

df (dF (Om)> of the first summand is exactly dp(6,,)-
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Thus, we have, taking the dimensions of the C-vector spaces:
w(p) = dim O,, /dp(8,,) = dim O, /d; (A') + dim d; (A) /de(6,m)
= Bo +dimd; (A")/di(T) .
The last summand is the same as
dim A'/(T + Kerd;) = dim A*/T — dim (T + Ker d,)/T
= 7¢(F) —dimKerd, /(T NKerd;).

Therefore, the claim of the theorem is equivalent to the last term here being (i,
that is, to the following assertion.

Lemma 1.5. TKfF NKerd; =Imd,.

Proof. Since the image of dy is the second summand in (2), we just need to
check that the part of the first summand, dF(0,,), contained in Ker d; is in Im d5.
So, take ¢ = dF (£), & € 0,,, such that df (¢) = 0. Then dp(&) = (df odF)(£) =
0. Since function ¢ has an isolated singularity at the origin, this implies that &
is an Oy,-linear combination of elementary hamiltonian fields ¢;0,;, — ¢;0,, of ¢
(here the ¢; are the derivatives O /0x; with respect to some coordinates on C™).
It is enough to consider just £ = ¢;0x; — ¢;0.,. In this case

C = dF(E) = dF((piazj - (pjawi) =@i- dF(azJ) — Y5 dF(azl)

= df (aF(3..)) - dF(,,) - df (AF(3s,)) - AF (0a,)

= ig (dF(@wi) A dF(awj)) € Imd, .
This proves the lemma and hence the theorem.
Corollary 1.6. Form=n—1, pu(p)=71(F).

Proof. This is a well-known fact that 5; = By for the Koszul complex of m+1
elements g1, ..., gm+1 € On, provided they generate the ideal of finite codimension
Bo in O,,. However, to be self-contained, we shall prove this.

We are still considering the complex C of (3), with A = O (0y,,...,0y,.,,)
and with slightly more general differentials which are the convolutions with dg =
g1dy1 + -+ + gm+1dYm+1, where the y; are formal variables.

Passing to linear combinations of the g; if needed, we can assume that the
ideal I generated by g¢i,...,9m already has a finite codimension in O,,. Now
calculate the homology of the complex C using the spectral sequence associated
with the filtration by the number of the d,,, ,,’s in the exterior fields (the number
is at most either 0 or 1). Setting Ag = O (0y, ;- .., 0y,,), we have

A=A (aym+1 A Ag—l) .
The differential d° is the convolution with g1dy; + - - - + gmdym. The regularity of
the sequence g1, ..., gm implies that the E! is just the complex

05Q0,,.,, 3Q—0, Q=0u/I,
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with the differential d' being the convolution with Gm+14Ym+1. The Euler charac-
teristic of E' is zero. Thus, By = f1-

Remark 1.7. Another case when the homology of the Koszul complex is rather
simple, is when n—m = 2. Then By = B2 = 31/2 and all the higher Betti numbers
vanish. If the difference between n and m is greater, the situation becomes more
complicated. See, for example, [9, 10].

For the Ky-equivalence, the analog of Theorem 1.3 is also true, but just in
the quasi-homogeneous setting.

Corollary 1.8. Assume the map-germs F and f in (1) are quasi-homogeneous, with
the weights of the coordinate components of F' coinciding with the weights of the
arguments of f. Then

plp) = v (F) —B1+Bo-
Proof. Indeed, for a quasi-homogeneous function f,
Derlogy, = Derlog; & O, E,

where E is an Euler vector field on C". For F as in the assumption of the corollary,
the element dF(FE) is in dF(0,,). Therefore, Ty (F) = 74(F).

2. Families of 2 x 2 matrices

Now we apply the results of Section 1 to the study of mappings into the spaces
of 2 x 2 matrices. Of course, the equivalences we are considering below exist for
families of matrices of all orders, but only in the case of order 2 square matrices
the determinant is a function with an isolated singularity on the entire matrix
space.

2.1. Symmetric matrices

Let Sy ~ C3 be the space of complex symmetric 2 x 2-matrices. Consider a holo-
morphic map-germ S : (C™,0) — S:

2> S(z) = ( (@) b(z) ) . (4)

We call S a family of (symmetric) matrices.

Two such families, S and S’, are said to be §G-equivalent (S for ‘symmetric’,
G for ‘general linear’) if there exist a biholomorphism-germ h of (C™,0) and a
map-germ A : (C™,0) — GL(2,C) such that

S'oh=ATSA, (5)

where AT is the transpose of A.
The SG-equivalence provides the right equivalence of the hypersurfaces
det S = 0 in C™, that is of the inverse images of the cone SK = {ac — b* = 0} of
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degenerate matrices. In fact, it is easy to show (see [2]) that the SG-equivalence is
the same as Damon’s Ksg-equivalence [4] of such sections.

The latter is well-seen on the level of the tangent spaces to the orbits. Indeed,
let us identify the space of map-germs (4) with the space O3, of the 3-columns
of the functions a,b,c and denote da/0z; by a; as before. The extended tangent
space to the SG-orbit of a germ (4) is the O,,-submodule in O3, generated by the
elements

ay am 2a 0 2b 0
b1 |, | b |, b , a , c , b
c1 Cm 0 2b 0 2c

From the set of the last four generators here, the second, the third and the dif-
ference between the two others can be considered as the results of the action on
the mapping (a, b,c)” by the basic hamiltonian vector fields on C* preserving the
cone SK. The sum of the first and the forth generators is the result of the similar
action of the Euler field.

Therefore, for example, deformations and SG-miniversal deformations of fam-
ilies of matrices (defined and constructed in the standard way) are just those for
the Ksg-equivalence.

Allowing in (5) families A of special linear matrices only, we obtain equiv-
alence of matrix families which we shall call SS-equivalence (the second § stays
here for ‘special linear’). Clearly, this is the same as the Ks4.¢-equivalence on O3,
where sdet is the function ac — b2 on C? (in the rather abusive notation sdet, the
prefix s- is used for ‘symmetric’ consistently with the notation of the equivalences).

The results of Section 1 in particular imply the following for the obvious
Tjurina numbers 7ss and 7sg.

Corollary 2.1. (i) For a two-parameter family S of symmetric 2 X 2 matrices,
Tss(8) = w(d),
where § is the function ac — b* on C2.

(i) If the family S is quasi-homogeneous and such that weight(a) +
+ weight(c) = 2 weight(b), then

756(S) = w(9).

2.2. Arbitrary matrices and the stabilisation
Now let My ~ C* be the space of all order 2 square matrices and M : (C™,0) —

My,
v M(z) = ( a() b(x) ) ,

a family of such matrices.
The natural equivalence, we call it the G-equivalence, of the families in this
case consists of biholomorphisms of the source and of the two-side multiplication
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M — AM B by m-parameter families of non-degenerate 2 X 2 matrices. If A and
B here are allowed to be families of just special linear matrices, we obtain what
we call the S-equivalence.

Let det = ad — be be the function on My and K = {det = 0} C M, the set
of degenerate matrices. Then the G- and S-equivalences coincide with respectively
Kx- and K4e-equivalences. The straightforward analog of Corollary 2.1 on the
equality of the relevant Tjurina and Milnor numbers holds for three-parameter
matrix families.

It turnes out that a family of symmetric order 2 matrices possesses a natural
stabilisation by a family of arbitrary 2 x 2 matrices. This is absolutely analogous to
addition of the square of a new variable to a function singularity and is a particular
case of the stabilisation construction for sections of isolated hypersurface singular-
ities. A separate paper on this is in preparation now. However, we formulate the
result for the matrix families here.

Theorem 2.2. 1. A germ M : C™*! — M,, M(0) = ( g 8 , such that the
tmage of the first differential contains a matriz of rank two, is S-equivalent to a

germ of the form

- 0 )
g(M) = < 2 0 ) + Su(z1,--- s Zm) -
Here the x; are local coordinates on C™t1 and Sy is a family of symmetric ma-
trices.

2. The equivalence g above can be chosen so that M’ is S-equivalent to M"
if and only if the related symmetric families Sy and Sy are SS-equivalent.

The same holds for the G-equivalence versus the SG-equivalence. This, for
example, explains the one-to-one correspondence between simple singularities of
two-parameter families of symmetric order 2 matrices and simple singularities of
three-parameter families of arbitrary 2 x 2 matrices (one immediately conjectures
existence of such by comparing the lists from [2] and [3]).

3. Vanishing homology

From now on we concentrate on the vanishing topology of two-parameter families
of order 2 symmetric matrices, from the point of view of the SG-equivalence.

The base C™ of an SG-miniversal deformation of a mapping S : (C?,0) — S,
T = 75g(S), contains the discriminant hypersurface A formed by those values of
the parameters for which the corresponding perturbation of M is not transversal
to the cone SK. The discriminant consists of two components:

Y5, which corresponds to mappings with the image passing through the origin
in Sy, and
3¢, corresponding to the non-transversality to the smooth part of SK.
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The indexation of the components is based on the types, short and long, of the
cycles vanishing on the inverse image of the cone SK under a generic perturbation
of M when the deformation parameters tend to the component. The cycles are
defined, rather traditionally, as follows.

Consider a generic line L ~ C in the base C". It meets A at a finite number
of points ci,...,c, and does this transversally. Mark a generic point * € L. The
inverse image in C? of the cone SK under the mapping S, corresponding to *
is a smooth curve. Connect point * by a system of v paths ;, without mutual-
and self-intersections, with all the points ¢;. In what follows we assume that the
indexation of the paths and critical values (and of the corresponding vanishing
cycles) is actually done in the counter-clockwise order in which the paths leave
point *.

Approaching a point ¢; € X along the path v;, we contract on the curve
Vi = {det S, = 0} a l-cycle (we call it a short vanishing cycle) in the same way as
we contract the 1-cycle on a generic section of SK when the sectional plane moves
through the vertex. The latter is isomorphic to the contraction of the real 1-cycle

in the family
z Y _
det ( y —z+A ) =0

when the real parameter A tends to zero.

Approaching a point ¢; € Xy, we define a long vanishing cycle on the curve
V. C C?which can be described locally as the real 1-cycle vanishing inthe family

2, .2
¢ +y +A 0
det ( 0 1= 0

when the negative real number A tends to zero.

Thus obtained, from a system of paths ~;, set of v vanishing short and long
cycles on the curve V, is called a distinguished set of vanishing cycles.

Theorem 3.1. A distinguished set of vanishing cycles generates Hy (V).

The proof is absolutely traditional (cf., for example, a similar theorem for
complete intersections in [1]).

The Picard-Lefschetz operator on Hy (V) corresponding to a long vanishing
cycle e is the standard one:

oo —(o,¢e)e,
where the brackets denote the intersection number. For a short cycle, the mon-
odromy is clearly the square of the standard operator, thus being

o o—2(a,e)e.

Remark 3.2. The number s of short cycles in a distinguished set of the family (4)
is easily seen to be dim O3 /I where I is the ideal generated by two generic linear
combinations of the functions a, b, c.

The number [ of long cycles in a distinguished set can be obtained as follows.
Choose generic constants «, 3,7 € C, and consider functions A = a + a\, B =
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b+ B and C = c + A in three variables z,y, A\. Set D = AC — B2. Let J C O3
be the ideal generated by D, D, D,. Then dim O3/J =1 + 2s.

4. Dynkin diagrams of simple families
of symmetric matrices

4.1. Simple singularities

SG-simple two-parameter families of symmetric 2 X 2 matrices have been classified
in [2]. They are listed in the table below. Here we denote the matrix singularities
by the types of their determinantal functions. Such notations are slightly delicate
since, in fact, no two families in the table are equivalent: for example, singularity
D5+2 is different from D2.3+1.

Since all the singularities in the table are quasihomogeneous, the table also
serves as a complete list of SS-simple two-parameter families of symmetric order
2 matrices.

TABLE 1. §G-simple two-parameter families of order 2 symmetric matrices

Apiea Yy oz Diy» 0
{>k>1 T yl k>2 y2+xk
Doy 11 z yk Doy, 0
k> 2 vk zy k>3 zy + y*
2
Tz y 0
E¢ ( 2 o > Er ( 0 a2+ )

In the remaining subsections, for each of the simple families we construct
a distinguished set of vanishing cycles in the vanishing homology of its determi-
nantal curve and calculate the corresponding Dynkin diagram. In the diagrams,
white vertices represent short vanishing cycles and black vertices represent long.
A directed edge a — b of multiplicity r stays for the positive intersection number
(a,b) =r.

4.2. Agip_1
Consider a deformation of this singularity of the form

( _)\y y—l—;\p(w) ) ’
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where p is a monic degree k polynomial with all its roots real and simple.

Choose a non-bifurcational value A¢g of A as shown in Figure 1 and take a
system of paths corresponding to the clusters of the bifurcation values of A (all
k — 1 positive values are in the cluster I, all £ — 1 negative in III, and there are
k vanishing short cycles at A = 0).

We denote the long cycles I4,...,Ix—1 and I1I4,...,I11I;_1, and the short
cycles Iy, ..., II;. The Roman number corresponds to the ordering of the clusters
of the critical values. The short cycles II; are those vanishing at the nodes of the
curve A = 0 of Figure 1, with II; vanishing at the rightmost node. The long cycles
I11I; are the real ovals of the curve A = A\, with I1I; also being the rightmost. The

curves A = A9 and A = — )¢ coincide. The real ovals of the latter are the cycles I;.
For each i =1,...,k — 1, we have a relation
L=1II;+II; — II;,, (6)
that is

I = ITI; + (IT1;, II)IT; + (I111;, T1;41) 114 .

Indeed, I11I; is the image of I; under the square root of the monodromy operator
corresponding to the cluster II consisting of all short cycles.

A=A
C)\ 0 y

)‘OT S o *

o<--x\->oH -

I et I o ‘ o R_

m, I, I, I,

X 11, I,

I, I, I, I,

k-1

Fi1GURE 1. Singularity Axy1x—1, kK = 5. Top left: a distinguished
system of paths. Top right: the marked Milnor fibre A = Xg.
Bottom left: all the distinguished short vanishing cycles 1I; con-
tracted. Bottom right: the Dynkin diagram.
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4.3. Apio_1

Now we consider the k < £ case. We deform the singularity

("7 ein )

choosing the polynomials p and ¢ (monic, of degrees k and ¢ respectively) with all
their roots real and simple, and the graphs as shown in Figure 2. Taking the same
system of paths in Cy as for Agr_1, we obtain the Dynkin diagram also shown in
Figure 2. The k — 1 relations between the distinguished cycles are absolutely the
same as in the Ay r_1 case.

m, I I, I,

10
11,

1, I, I, Img 1, I, I, II,

-1

FI1GURE 2. Singularity Axte—1, kK = 5, £ = 9: the marked and
critical values of the deformation parameter, graphs of the poly-
nomials participating in the deformation, the marked Milnor fibre
and the Dynkin diagram.

4.4. Dy,

Consider the following deformation of a singularity of this class:

T EA
eX plz)—y 4+ )’

where ¢ is a small positive constant, and the degree k£ monic polynomial p is chosen
so that it has all its roots double (except for at most one) and real positive, and
the graph of the function zp(z) is as shown in Figure 3. The slopes of the dashed
tangents are the bifurcational values of A. The lower left diagram of Figure 3 shows
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the distinguished Milnor fibre (the bold curve whose ovals are the vanishing cycles
I) and the curve A = 0 (fine). Here we also indicate the way how the movement of
the branches of the Milnor fibre generates the saddle point corresponding to the
third bifurcational value of A. The rhombus on the left of the Dynkin diagram is
again a relation of type (6).

ImrmrIiImeI

11T v
k-1

FIGURE 3. Singularity D42, k= 1T.

4.5. Doy
We take a deformation of the form:

(ot 20)

where a degree k monic polynomial p(z) is such that all its roots are real and
simple, and the function zp?(x) has just two critical values, 0 and c. Then the
first and third discriminantal values of the family are (—c)'/2. The k — 1 standard
relations of type (6) are easily seen in the Dynkin diagram in Figure 4.

4.6. Doy,
We choose a deformation of a singularity of this class in the form

Y €A
ted z(y+pr—1(z)+ A )’
where the monic degree k — 1 polynomial p(z) has all its roots simple and real
positive. For A = 0, the determinantal curve is shown in Figure 5. It differs from
the Ag1x—1 curve of Figure 1 just by one extra node. Further comparison with the
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FIGURE 4. Singularity Dag41, k = 4.

Dy 9 curve implies that Dy has a Dynkin diagram as in Figure 5, with the k — 1

standard relations.
11T 111 1
1

WX

III

by

| x
A - I

FIGURE 5. Singularity Doy, k = 5: the curve with all the short
cycles contracted and the Dynkin diagram.

k-1

4.7. Eg

Consider the following deformation of this singularity:

Y 2 +a )
224+a yY*+By+A )

Take o < 0 and 8 > 0 such that 27a? = 483. For A = 0, the determinantal
curve of (7) is the standard Fg trefoil, with three nodes, two of which correspond
to the short vanishing cycles and one to a long cycle (see Figure 6).

Relation: e; — ey — e +e3 = 0.

48. E,

We take its deformation in the form

Y e
e Y4+t —azx+ )
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FIGURE 6. Singularity Eg.

Here a > 0 and ¢ is a small real non-zero number.
Calculations of the discriminantal values of A and of the vanishing cycles
provide the results represented in Figure 7. We have two standard relations:

eg —es —ea+e; =0 and eg —eg —e3z+ey =0.

FI1GURE 7. Singularity E7.

Remark 4.1. The stabilisation of section 2.2 of two-parameter families of sym-
metric matrices to the three-parameter families of arbitrary matrices affects the
Dynkin diagrams in absolutely the same way as addition of the square of a new
variable affects the intersections within a set of distinguished vanishing cycles of a
function of two variables (see, for example, [1]). The suspensions € of both long and
short vanishing cycles have self-intersections —2 in our case. The Picard-Lefschetz
operator for a long € is the standard reflection. However, the operator for a short
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€ is just the identity since it is the square of the standard reflection. The latter
was the major reason for us to consider here in detail the families of symmetric
2 x 2 matrices rather than of arbitrary.
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