
Further details on the calculation of matrix elements in “The Coulson-Fischer +

r12 wavefunction for H2” by Nick J. Clarke, David L. Cooper, Joseph Gerratt and

Mario Raimondi, Molecular Physics 81, 921-935 (1994).

The calculations were performed in confocal elliptical coordinates (ξ,η,φ) defined as:
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φ is the angle between the AeB plane and the yz plane. A and B are the two nuclei, which define the

z axis, and e is an electron. The integration ranges are:   +1 ≤ ξ  ≤ ∞;    −1 ≤ η ≤ +1;    0 ≤ φ ≤ 2π.

ra and rb are easily written in terms of ξ and η. Expressions for x, y and z are given in the

paper. This leaves only the volume element and r12.
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Substituting these expressions into the matrix elements below allows for their solution by standard

numerical integration procedures.

The Born-Oppenheimer Hamiltonian (minus the internuclear potential) is:
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Writing the Coulson-Fischer+r12 wavefunction as ( )( )Ψ Ψ ΨCF r HL IONc pr+ = + +
12

1 12  and ignoring the

parameters c and p, which are optimised later, the Hamiltonian matrix elements required are:
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          i and j = HL or ION;    m and n = 0 or 1

The matrix elements involving 
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V V and 12  are evaluated directly by the relevant substitutions to

confocal elliptical coordinates given above, leaving only: 〈 〉 〈 〉Ψ Ψ Ψ Ψi j i jr T r T r12 12 12|
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Firstly
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ΨHL and ΨION are both symmetric in the coordinates of the two electrons, therefore:

〈 〉 = −〈 ∇ 〉Ψ Ψ Ψ Ψi j i jr T r12 12 1
2|

�

| | | .

Denoting 1sa(1) as a1 etc and taking i and j as HL, for example
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since operating on a1 or b1 with ∇1
2  produces identical results. The orbital a1 is a standard 1s STO so

∇ = −








1

2
1

2
1

2

1

a
r

a
a

ζ ζ

where ζ is of course the STO exponent, giving:
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Substitution of confocal elliptical coordinates now renders this soluble.

Finally we have matrix elements of the form:
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using the same reasoning as before. Analysis gives
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Combining these all together gives:
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Again, substitution of the confocal elliptical equivalents of these variables makes this integral soluble.


