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Neurotrophins use two types of receptors, the Trk tyrosine
kinase receptors and the p75 neurotrophin receptor (p75NTR),
to regulate the growth, development, survival and repair of the
nervous system. These receptors can either collaborate with or
inhibit each other’s actions to mediate neurotrophin effects.
The development and survival of neurons is thus based upon
the functional interplay of the signals generated by Trk and
p75NTR. In the past two years, the signaling pathways used by
these receptors, including Akt and MAPK-induced signaling via
Trk, and JNK, p53, and NF-κB signaling via p75NTR, have
been identified. In addition, a number of novel p75NTR-
interacting proteins have been identified that transmit growth,
survival, and apoptotic signals. 
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Abbreviations
FKHRL1 Forkhead 1
JNK Jun amino-terminal kinase
MAPK mitogen activated protein kinase
MEK MAPK kinase
NGF nerve growth factor
NRIF neurotrophin receptor interacting factor
PI-3K phosphoinositide 3-kinase
P75NTR p75 neurotrophin receptor
TNFR1 tumor necrosis factor receptor 1

Introduction
Neurotrophins mediate the survival, differentiation, growth,
and apoptosis of neurons by binding to two types of cell sur-
face receptors, the Trk tyrosine kinases and the p75
neurotrophin receptor (p75NTR). These receptors, often
present on the same cell, coordinate and modulate the
responses of neurons to neurotrophins. The functions of the
neurotrophin receptors vary markedly, from the sculpting of
the developing nervous system to the regulation of the sur-
vival and regeneration of injured neurons. Strikingly, while
Trk receptors transmit positive signals such as enhanced sur-
vival and growth, p75NTR transmits both positive and
negative signals. The signals generated by the two neu-
rotrophin receptors can either augment or oppose each other.
Trk and p75NTR thus exist in a paradoxical relationship,
each acting to suppress or enhance the other’s actions. How
the two neurotrophin receptors act together to regulate the
responses of cells to neurotrophins, and the nature of the
intracellular signals used by these receptors to exert their
effects, are the key questions in neurotrophin signal 

transduction. In the past two years, several of the intracellu-
lar signaling proteins and signal transduction pathways used
by these receptors to promote neurotrophin actions have
been identified. In this review, we discuss the latest findings
in neurotrophin signaling, emphasizing the mechanisms
used by the neurotrophin receptors to promote neuronal sur-
vival and apoptosis in primary neurons and in vivo systems. 

Trk-mediated survival often emanates from Ras
A potent activity of neurotrophins, particularly in sympa-
thetic and sensory neurons, is neuronal survival. Both
during development and in culture, the survival of these
neurons is absolutely dependent upon a constant exposure
to optimal amounts of neurotrophins. The first neu-
rotrophin-activated signaling protein shown to mediate
survival of these neurons was the small GTP-binding pro-
tein Ras. Inhibition of Ras activity decreased survival of
most, but not all, populations of sympathetic neurons [1,2],
whereas increasing Ras activity as a result of deletion of
neurofibromatosis-1 (NF-1), a Ras regulatory inhibitor,
allowed peripheral neurons to survive in culture in the
absence of neurotrophins [3]. Ras, which in most cases is
responsible for 40–60% of neurotrophin-dependent sur-
vival, does not act directly to promote survival. Rather, it
functions by translating and directing neurotrophin-initiat-
ed signals into multiple signaling pathways. Recent data
indicate that two of these signaling pathways, PI-3K/Akt
and MEK/MAPK, are the major effectors of neurotrophin
and Ras-activated survival (Figure 1). In the first part of this
review, we discuss recent data supporting this conclusion. 

The PI-3K/Akt survival pathway
PI-3K was first identified as a regulator of neurotrophin-
mediated survival responses by Cooper and colleagues in
nerve growth factor (NGF)-dependent PC12 cells [4].
Subsequently, many groups showed that in cerebellar, sym-
pathetic, sensory, cortical and motor neurons, PI-3 kinase
activity was responsible for as much as 80% of neurotrophin-
regulated cell survival [5–8,9•,10••,11,12,13••,14,15],
indicating that PI-3K is the major survival-promoting pro-
tein for neurons. Not all studies, however, supported this
conclusion. In particular, one group reported that inhibition
of PI-3K activity did not decrease NGF-mediated survival
of rat sympathetic neurons [16], while three other groups
reported that it did [5,9•,10••,12]. Whether these contrasting
data are due to differences in culture conditions or inhibitor
concentrations is not known, but it highlights the pitfalls of
relying upon dominant-inhibitory mutants or selective
inhibitors without biochemical confirmation that these
reagents specifically block the activity of PI-3K.

PI-3K is a target of Ras
An intimate connection between Ras and PI-3K activity
in PC12 cells was first reported by Downward and 
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colleagues [17], who demonstrated that Ras directly inter-
acted with PI-3K and that inhibition of Ras suppressed
NGF-mediated PI-3K activity. More recently, Ras was
shown to activate PI-3K survival promoting pathways in
peripheral neurons using two approaches. First, Ras effector
mutants that were selective for activating PI-3K, but not
those selective for activating MEK/MAPK or RalGDS (Ras-
related guanine-nucleotide dissociation stimulator), induced
survival [9•], while Ras-mediated survival was blocked by
the PI-3K inhibitor LY294002 [9•,11]. Ras is not, however,
the only means by which Trk activates PI-3K. In the Trk
system, PI-3K activation is probably due to the combined

actions of Ras and Gab-1, an adapter protein that binds and
stimulates PI-3K [18] and which, when overexpressed,
potently stimulated NGF-independent survival [19]. 

Akt is a crucial mediator of PI-3K-induced
survival activity
PI-3K, like Ras, stimulates the activities of many signaling
proteins. Among these is the serine/threonine kinase Akt
(or protein kinase B), a target of NGF-induced PI-3K activ-
ity [20,21]. Greenberg and colleagues [6] first reported a
role for Akt in neuronal survival, showing that cerebellar
neurons required Akt for 20% of IGF-1-induced survival.
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Trk signaling pathways regulating survival and neurite growth in
neuronal cells. Neurotrophin (NT) binding to Trk stimulates receptor
transphosphorylation, resulting in the recruitment of a series of
signaling proteins to docking sites on the receptor. These proteins
include Shc, which activates Ras through Grb-2 and SOS [108],
FRS-2 [109,110], rAPS [110], SH2-B [111•• ], and CHK [112], which
participate in activating MAPK, and PLC-γ1. Shc and FRS-2 bind to
phosphorylated Tyr490 of TrkA [108], while PLC-γ1 and CHK bind to
phosphorylated Tyr 785 [108,112]. MAPK activity is also regulated

through Raf [39•], Rap1 [39•], SHP-2 [113], and PKCδ [114]. The
pathways used by MEK and MAPK to regulate neurite growth and
survival are discussed in the text. Trk activates PI-3K through the Ras
and the Gab-1/IRS-1/IRS-2 family of adapter proteins [18,19,115].
PI-3K activity stimulates the activities of PDK1 and PDK2, which in
turn activate Akt [26,27]. The targets of PI-3K/Akt anti-apoptotic
activity, including BAD, Forkhead, GSK-3, Bcl-2, IAP, and the p53 cell
death pathway, are discussed in the text.



Subsequently, Akt activity was shown, using dominant-
inhibitory Akt, to be necessary for approximately 80% of
NGF-induced survival of sympathetic neurons [5,10••,12].
Akt not only mediates growth factor-regulated cell survival,
but also neuronal survival promoted by depolariza-
tion [10••,22•,23]. In cerebellar neurons, Akt induced
survival by stimulating Ca2+ influx through L-type calcium
channels [22•], while in sympathetic neurons, it promoted
survival by acting downstream of L-type channels and
Ras/PI-3K [10••]. In the latter case, suboptimal levels of
NGF and KCl synergistically stimulated maximal Akt
activity and neuronal survival, indicating that Akt is a con-
vergence point for diverse survival signals. During
development, neurons exposed to suboptimal levels of
neurotrophins but which are active may have a competitive
advantage over those that are not active, due to increased
amounts of Akt activity. 

Akt is most probably not the only target of PI-3K-induced
survival activity. Inhibition of PI-3K is often more effective
than inhibition of Akt at suppressing survival responses.
Another potential target of PI-3K is the IAP (inhibitor of
apoptosis) family of caspase inhibitors, which includes
X-linked inhibitor of apoptosis protein (XIAP), neuronal
apoptosis-inhibitory protein (NAIP), and human inhibitor of
apoptosis protein (HIAP, also known as inhibitor of T-cell
apoptosis [ITA]; see [24]). HIAP/ITA levels were induced by
NGF in chick sensory and sympathetic neurons in a manner
dependent upon PI-3K activity, and suppression of XIAP
levels decreased NGF-induced survival [25••]. Whether IAP
levels or activity are also controlled by Akt, either at the tran-
scriptional level or via phosphorylation, is not yet known. 

The targets of Akt
In neurons, Akt has only been shown to regulate survival,
and not any other response such as neurite outgrowth or
differentation. Thus, all of the proposed direct targets of
Akt activity identified in the past year have been proteins
that regulate cell survival in many cell systems: these
include Bad, an inhibitor of the Bcl-2 anti-apoptotic pro-
tein; pro-caspase-9, which is cleaved into the pro-apoptotic
caspase-9; and Forkhead, a transcription factor that
induces apoptosis by increasing levels of Fas ligand (FasL)
(Figure 1). In each case, Akt suppresses apoptosis by phos-
phorylating the apoptotic protein in the Akt consensus
phosphorylation site RXRXXS/T (single-letter amino acid
code). How Akt regulates the activity of its many targets,
as well as the mechanisms whereby PI-3K regulates Akt
activity, have been extensively discussed in three recent
reviews [26,27,28•]. Therefore, we will discuss whether
Akt phosphorylation of one or more of these targets is
responsible for neurotrophin-induced neuronal survival.

The first reported target of Akt-mediated survival activity
was Bad. Phosphorylation by Akt at Ser136 in Bad induced
its association with 14-3-3, and prevented it from associat-
ing with and inactivating the anti-apoptotic Bcl-2 and
Bcl-XL proteins [29,30]. Evidence for the importance of

Akt-induced Bad phosphorylation derives from overex-
pression experiments in cerebellar neurons, whereby
insulin-like growth factor 1 (IGF-1) or constitutively active
Akt suppressed the apoptotic activity of wild-type Bad, but
not of Bad mutated at Ser136 [29]. These experiments pro-
vide compelling evidence for Akt regulation of ectopically
expressed Bad, but three other lines of evidence indicate
that endogenous Bad phosphorylation might not be impor-
tant for growth factor-mediated neuronal survival. First,
endogenous Bad has not been reported to be phosphory-
lated in neurotrophic factor-treated neurons, except for
increases in brain-derived neurotrophic factor (BDNF)-
treated cerebellar neurons [31•]. Second, analysis of the
Bax knockout mice indicate that Bax is the apoptotic Bcl-2
family member that is required for cerebellar neuron cell
death [32]. Third, neurons from the Bad knockout mouse
do not show alterations in apoptosis [33]. 

The proteolytic cleavage and activation of pro-caspase-9
was also shown to be effectively inhibited by Akt in vitro
and in overexpression experiments. However, the lack of
conservation of the Ser196 Akt phosphorylation site in
nonhuman procaspase-9 [34], as well as the dearth of
reports of Akt-induced phosphorylation of endogenous
procaspase-9 in neurons, does not support a role for this
phosphorylation event in neurotrophic factor mediated
neuronal survival. The third and best candidate for a
direct Akt target in neurons is Forkhead 1 (FKHRL1).
Genetic studies in C. elegans first indicated that the 
activity of a Forkhead family member, DAF16 (Dauer-for-
mation-16), which contains an Akt consensus
phosphorylation site, was suppressed by Akt [35].
Greenberg’s group then showed that ectopic expression of
FKHRL1 mutated at the Thr32 and Ser315 Akt phospho-
rylation sites increased apoptosis of cerebellar neurons
cultured in IGF-1 by 20% [36••]. Apoptosis induced by
FKHRL1 was reduced by inhibition of FasL binding to
its receptor, indicating that FKHRL1 stimulates apopto-
sis, in part, by inducing the transcription of cell death
ligands such as Fas. While endogenous Forkhead has not
been shown to be phosphorylated by Akt in neurons, the
strong genetic evidence for this protein as an Akt target,
coupled with the compelling in vitro and non-neuronal
cell data showing regulation of Forkhead by Akt phospho-
rylation [36••], makes Forkhead an attractive target for
Akt in mammalian neurons.

These results suggest that a signaling pathway consisting of
Ras/PI-3K/Akt is the major regulator of neuronal survival.
Akt may suppress apoptosis directly by inhibiting the activi-
ties of Forkhead or Bad, indirectly by suppressing GSK-3
apoptotic activities [37,38•], increasing IAP, Bcl-2, or Bcl-XL
levels, or, as will be discussed below, by blocking the func-
tion of the primary neuronal apoptotic pathway in neurons,
JNK-p53-Bax (Figure 1). Akt probably mediates cell survival
at a number of levels, depending upon the cell type, target
availability, and the requirement for transcriptional or post-
transcriptional events to suppress apoptosis. 
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MEK/MAP kinase — a second survival pathway
used by neurotrophins?
A second survival-promoting pathway used by neu-
rotrophins consists of the Ras-MEK-MAPK pathway
(Figure 1). This pathway has many roles in neurons, includ-
ing synaptic plasticity, long-term potentiation, and survival
(reviewed in [39•]). The evidence for the contribution of
this pathway to neuronal survival is, however, conflicting.
While NGF induces a strong and sustained activation of
MAPK in sympathetic neurons and PC12 cells, most stud-
ies have found that inhibition of MEK has minimal effects
on NGF-dependent neuronal survival [9•,40–42]. Thus,
although the selective activation of MEK/MAPK can pro-
mote neuronal survival [9•,19,42,43], the lack of dramatic
effects of MEK inhibitors (<20% decreases in cell survival)
in these same cell types indicates that MEK activity is 
sufficient, but not necessary, for most of neurotrophin-
mediated survival. The only exception to this
generalization is in P6 rat cerebellar neurons, where the
data are conflicting, with one report showing no role for
MEK/MAPK in BDNF or insulin-dependent survival [44],
and another demonstrating that MEK activity was required
for survival promoted by these factors [31•]. However, in
the latter study, BDNF-mediated survival was suppressed
by only 20–30% when MEK was inhibited, indicating that
MEK-MAPK is only one contributor to neurotrophin-
mediated cerebellar neuron survival. 

The major role for MEK-induced survival pathways may be
to protect neurons from death due to injury or toxicity, rather
than from trophic factor withdrawal. In cortical neurons, con-
stitutively active MEK protected, while inhibition of MEK
blocked BDNF-regulated neuroprotection from cam-
pothecin-induced apoptosis [13••]. In this study, MEK
played no role in serum or BDNF-induced survival under
basal conditions. Rather, PI-3K mediated this effect.
Similarly, MEK/MAPK protected sympathetic neurons
against apoptosis due to cytosine arabinoside [45•], cerebellar
neurons from apoptosis caused by oxidative stress [46], and
retinal ganglion cells from death following axotomy [47••].
MEK may also play a more prominent role in TrkB-induced
survival. We have shown that TrkB, unlike TrkA, uses both
MEK and PI-3K to promote the survival of sympathetic neu-
rons (J Atwal, F Miller, D Kaplan, unpublished data). 

Targets of MEK/MAPK survival activity
Akt induces survival by inhibiting the activity of apoptotic
proteins. In contrast, MEK/MAPK induces survival by
stimulating the activity or expression of anti-apoptotic pro-
teins, including Bcl-2 and the transcription factor CREB
(cAMP response element binding protein). NGF potently
increased Bcl-2 levels in sympathetic neurons [48••],
which in turn protected these and other neurons from
apoptotic cell death [49]. Inhibition of MEK/MAPK
activity in PC12 cells completely blocked NGF’s ability
to increase Bcl-2 levels [50], suggesting that Bcl-2 is a
transcriptional target of the MEK/MAPK pathway.
CREB activity is also required for Bcl-2 expression and

survival induced by NGF in sympathetic neurons [51••],
suggesting a MEK/MAPK–CREB–Bcl-2 survival path-
way. CREB, like Bcl-2, is clearly a key mediator of
neuronal survival, as dominant-inhibitory forms of CREB
induced apoptosis of virtually all sympathetic neurons
grown in NGF [51••], and 25% of cerebellar neurons
grown in BDNF [31•]. The activation of CREB by sur-
vival factors is likely to be due to phosphorylation at
Ser133 by multiple kinases, including MAPK activated-
Rsk [31•], p38MAPK [52], and Akt [53]. p38MAPK is,
however, an unlikely candidate for this role, since it
induces apoptosis [43] or neurite outgrowth [54] in PC12
cells, but not survival. MEK/MAPK is also an unlikely
CREB activator in sympathetic neurons, as MEK activi-
ty is not required for NGF-mediated survival. Perhaps
CREB is activated by Akt in sympathetic neurons, as
occurs in 293T cells [53], while it may be activated by
both Akt and MAPK in cerebellar neurons. 

p75NTR as a signaling receptor 
Although p75NTR was the first-isolated neurotrophin recep-
tor, as well as the first-reported member of the
p75NTR/Fas/TNFR1 (tumor necrosis factor receptor 1) fam-
ily (reviewed in [55]), our understanding of its physiological
role and the underlying signaling mechanisms has lagged con-
siderably behind our understanding of the Trk neurotrophin
receptors. In particular, studies on p75NTR have been com-
plicated by the fact that it can interact directly with Trk [56],
and by the finding that its signaling capacity is modified by
the coincident activation of Trk receptors. Nonetheless, the
past year has seen the emergence of a consensus regarding
the signaling pathways activated by p75NTR and of its
potential biological functions, and has led to the elucidation
of a number of p75NTR-interacting proteins (Figure 2).

p75NTR as an apoptotic receptor independent
of Trk
The original finding that p75NTR could mediate neuronal
apoptosis in a neural cell line [57] has, over the past several
years, been extended to a large number of primary neural
cells, both in culture and in vivo. In particular, ligand-depen-
dent activation of p75NTR has been shown to cause the
apoptosis of cultured neonatal sympathetic neurons [58••],
motor neurons [59,60], sensory neurons [61,62•], oligoden-
drocytes [63] and Schwann cells [64•]. Still controversial,
however, is the role of p75NTR in regulating survival of basal
forebrain cholinergic neurons; while Yeo et al. [65] reported
increased numbers of cholinergic neurons in p75NTR–/– ani-
mals, Van der Zee et al. [66] have withdrawn their earlier
report describing similar findings, and Peterson et al. [67]
recently published a report indicating that neuronal number
is actually decreased in p75NTR–/– animals. Whether this dis-
crepancy is due to differing genetic backgrounds and/or other
potential confounds associated with the p75NTR–/– animals
(see discussion below) remains to be clarified. 

In addition to confirming that p75NTR plays an impor-
tant role in regulating neural apoptosis, a number of major
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conclusions can be derived from these studies. First, in all
of these cells, the apoptotic actions of p75NTR were 
ligand-mediated, indicating that ligand binding to
p75NTR does not abolish its ability to mediate apopto-
sis, as previously suggested [68]. Second, these studies
indicate that p75NTR signals apoptosis in a Trk-inde-
pendent fashion. For example, p75NTR activation
caused apoptosis when sympathetic neurons were main-

tained in KCl [10••,48••], when sensory neurons were
maintained in ciliary neurotrophic factor (CNTF) [62•],
and when Schwann cells were maintained in IGF plus
neuregulin [64•] — all Trk-independent survival signals.
Third, in all of these studies, p75NTR only mediated
apoptosis when Trk was inactive or suboptimally activat-
ed, leading to the conclusion that Trk activation silences
p75NTR apoptotic signaling. For example, robust Trk
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Figure 2

Cell death pathways induced by NGF
withdrawal from neurons. Two pathways are
activated by withdrawal of NGF from
sympathetic neurons. The first consists of
cdc42/Rac [116], Ask1 [117•] and possibly
MEKK1, MKK4/7, JNK [48•• ], and p53
[48•• ]. JNK isoforms induce cell death
through c-Jun [118] and increase in FasL
[119•• ], or by increases in p53 and Bax levels
or activity [48•• ]. A second pathway involves
the activation of cell cycle regulatory
molecules such as CDK4/6 [120], which
results in increased pRb phosphorylation, and
possibly the subsequent activation of p53
through p19ARF [121•• ]. We hypothesize
that each pathway converges upon and
activates p53 to cause cell death. JNK3 is
involved in stress-induced cell death [119•• ],
while JNK1 and 2 are involved in
developmental cell death [122].
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Figure 3

p75NTR signaling pathways. p75NTR binds a
number of interacting proteins, including
TRAF2, 4, and 6, NRAGE, SC-1, and RhoA,
which play roles in cell survival, cell cycle
regulation, and neurite outgrowth. p75NTR
also increases ceramide levels and activates
the JNK-p53-Bax cell death pathway. See text
for a discussion of these proteins and
pathways.
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activation blocked p75NTR-mediated death of sympa-
thetic [58••] and trigeminal mesencephalic sensory
neurons [62•], and expression of exogenous TrkA in oligo-
dendrocytes inhibited NGF-induced apoptosis [69••].
Thus, the outcome of neurotrophin-mediated p75NTR
signaling depends on the expression of Trk receptors;
NGF has the potential to be pro-apoptotic for cells that do
not express TrkA (such as oligodendrocytes [69••]), while
BDNF would be pro-apoptotic for those cells that do not
express TrkB (such as sympathetic neurons [58••]). 

A fourth and somewhat surprising conclusion is that
p75NTR is, for some cells, essential for apoptosis following
growth factor withdrawal. Barrett and Bartlett [61] first
showed that sensory neuron survival following neurotrophin
withdrawal was enhanced when p75NTR levels were
decreased. More recent work extended this finding to other
primary cells; apoptosis of p75NTR–/– sympathetic neurons
was greatly delayed following NGF withdrawal [58••], and
p75NTR–/– Schwann cells showed enhanced survival in the
absence of survival factors [64]. Interestingly, as no exoge-
nous p75NTR ligand is present following growth factor
withdrawal, these data may suggest that p75NTR can signal
apoptosis in a ligand-independent fashion [68]. However, as
both sympathetic neurons and Schwann cells make endoge-
nous p75NTR ligands, these data raise the equally
interesting possibility of an autocrine p75NTR-driven apop-
tosis loop that is suppressed by survival factors. 

p75NTR mediates apoptosis following injury
and during development
The past year has also seen a number of studies indicating
that the apoptotic function of p75NTR is important follow-
ing neural injury and during development. The first
suggestion that p75NTR might be involved in injury-
induced apoptosis originated with studies showing that
neuron-specific expression of the p75NTR intracellular
domain caused the death of injured facial motor neurons in
transgenic mice [70]. More recently, endogenous p75NTR
was shown to play a role in the death of injured neonatal
facial motor neurons [59,71], and, following seizure in adult
animals, neuronal apoptosis was accompanied by induction
of p75NTR in the dying neurons [72•]. In this regard,
exogenous BDNF exacerbated the death of CA3 pyramidal
neurons following kainic acid treatment [73], suggesting
that both endogenous and exogenous neurotrophins might
act through p75NTR to cause apoptosis in the damaged ner-
vous system. Recent evidence also indicates that p75NTR
is essential for rapid and appropriate apoptosis during devel-
opmental cell death (reviewed in [74]). In particular,
apoptosis is significantly reduced in embryonic retinae of
NGF–/– and p75NTR–/– mice [75,76], and the period of natu-
rally-occurring sympathetic neuron death is greatly delayed
in the p75NTR–/– mice [58••]. Moreover, 75NTR is essential
for maintaining the specificity of neuronal survival respons-
es to different neurotrophins; sympathetic neurons of
p75NTR–/– but not wild-type mice utilized NT3 as a survival
ligand both in vivo [77••] and in culture [78]. Previous work

demonstrating that NT3 activates TrkA on sympathetic
neurons but does not maintain survival [79], and that
p75NTR activation has no effect on sympathetic neuron
TrkA activation [48••,58••], suggests that p75NTR ‘selects’
survival ligands not by regulating TrkA activation, as is seen
in some cell lines (reviewed in [80]), but by antagonistically
signalling neuronal apoptosis. 

p75NTR apoptotic signal transduction
How does p75NTR signal apoptosis? One recently eluci-
dated pathway involves JNK (Jun amino-terminal
kinase)-p53-Bax, which is activated by p75NTR activation
and following NGF withdrawal ([48••], Figures 2 and 3).
p53 appears to be a key death sensor in this pathway, with
the levels of this protein determining whether neurons
undergo apoptosis in vivo and in culture [48••]. MEKK and
JNK function upstream of p53 in p75NTR-mediated apop-
tosis, while cdc42/Rac1, Ask1, MKK (mitogen-activated
protein kinase kinase), JNK, c-jun, and p53 have been
shown to act in a signaling pathway regulating NGF-with-
drawal-induced apoptosis (Figures 2 and 3). The presence
of apoptotic proteins common to both p75NTR and
NGF-withdrawal-induced cell death pathways, and the
observation that p75NTR–/– sympathetic neurons are greatly
delayed in their death following NGF withdrawal, suggests
that a major component of NGF withdrawal-induced apop-
tosis involves p75NTR-driven activation of the
JNK-p53-Bax pathway. Although it is not yet known whether
this pathway is important for apoptosis in other cells, it is
intriguing that p75NTR is induced in dying cells following
seizure [72•], and that seizure-induced apoptosis requires
JNK3 [81] and p53 [82]. Also intriguing is the finding that
p75NTR-mediated apoptosis of oligodendrocytes involves
the same pattern of caspase activation as did radiation-
induced oligodendrocyte apoptosis [83], which is known to
require p53 [84]. Thus, although it is as yet unclear how
p75NTR activates the JNK-p53-Bax cell death pathway, this
pathway may well play a key role in a variety of p75NTR-dri-
ven apoptotic events. Interestingly, in sympathetic neurons
TrkA activation, which inhibits p75NTR-mediated apopto-
sis, silences this JNK-p53 death pathway via Ras and perhaps
PI-3K/Akt [9•], while in oligodendrocytes, TrkA activation
selectively silences JNK activation coincident with its
repression of p75NTR-mediated apoptosis [69••]. 

A second potential p75NTR-dependent apoptotic path-
way involves the recently-reported neurotrophin receptor
interacting factor (NRIF) [85••]. NRIF is a ubiqiuitously-
expressed zinc finger protein that interacts with p75NTR
in GST pulldown assays. Analysis of the NRIF–/– mice
revealed a deficit in apoptosis in the embryonic retina that
was similar to that seen in the NGF–/– and p75NTR–/–

mice [76,85••], raising the possibility that p75NTR might
signal apoptosis in some cells via NRIF. 

Finally, the past year has seen the description of a number
of additional p75-interacting proteins that may regulate
cell survival, including members of the TRAF (tumor
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necrosis factor receptor-associated factor) family [86•] (see
the discussion below), and two novel proteins, the zinc
finger motif protein SC-1 [87•] and NRAGE (neuro-
trophin receptor-interacting MAGE [melanoma antigen
gene] homologue) (A Salehi, P Barker, personal commu-
nication). One of these latter two proteins, SC-1, is a zinc
finger protein that, like NRIF, associates with p75NTR
in GST pulldown assays. Interestingly, NGF-mediated
activation of p75NTR led to translocation of SC-1 from
the cytoplasm to the nucleus and inhibited cellular pro-
liferation [87•] suggesting that it, like other members of
the same family, may play a role in growth arrest. The
second protein, NRAGE, is a member of the MAGE
family, and can be coimmunoprecipitated with p75NTR
from PC12 nnr5 cells (A Salehi, P Barker, personal com-
munication). Like SC-1, NRAGE appears to play a role
in growth arrest. It is unclear whether these two proteins
play any role in apoptosis but it is intriguing that cell
cycle deregulation is thought to be involved in many
types of neuronal apoptosis (Figure 3). 

p75NTR as a signaling receptor in the
presence of Trk activation
One of the major conclusions that can be derived from recent
studies on the neurotrophin receptors is that the signaling
capacity and biological role of p75NTR is a function of cel-
lular Trk activation status. In particular, as discussed above,
Trk signaling silences p75NTR-mediated apoptotic path-
ways such as the JNK-p53 pathway, while leaving other
p75NTR pathways ‘intact’. Moreover, emerging evidence
indicates that crosstalk between these two receptors is bidi-
rectional, with p75NTR modulating certain Trk signaling
pathways. We will discuss these issues by focusing on
p75NTR-mediated NF-κB signaling, and by examining how
p75NTR modulates the morphological growth of neurons.

The finding that p75NTR caused activation of the tran-
scription factor NF-κB in Schwann cells [88] has recently
been extended to oligodendrocytes [89] and sensory neu-
rons [90]. Unlike the JNK-p53 pathway, p75NTR-mediated
activation of the NF-κB pathway is not silenced by coinci-
dent TrkA activation [69••]. Two recent publications suggest
that NF-κB activation represents a p75NTR-mediated pro-
survival pathway that collaborates with Trk. Specifically,
Maggirwar et al. [91•] demonstrated that NGF treatment of
sympathetic neurons led to NF-κB activation, and that this
activation was important for NGF-mediated survival.
Although this study did not examine the relative roles of
TrkA versus p75NTR, Hamanoue et al. [92•] demonstrated
that NGF-induced NF-κB activation in sensory neurons
required p75NTR and that this pathway was important for
survival. How does p75NTR activate NF-κB? Recent work
demonstrated that p75NTR interacts with TRAF6, and that
dominant-negative TRAF6 blocked p75NTR-mediated
NF-κB activation in Schwann cells [86•]. In non-neuronal
cells, TRAF6 also forms a signaling complex with
TRANCE (tumor necrosis factor-related activation-induced
cytokine) to activate Akt [93]. Thus, p75NTR and Trk may

synergistically activate Akt’s survival-promoting activity in
cells where p75NTR can associate with TRAF6 or other
TRAF family members. In this regard, a related publication
demonstrates that other TRAF family members interact
with p75NTR, at least as assayed by GST pulldowns [94]. 

p75NTR and the regulation of neuronal growth
A second biological function of p75NTR in the presence of
Trk activation is the modulation of neuronal growth. Such a
role for p75NTR was first suggested by the finding that sym-
pathetic innervation patterns were perturbed in p75NTR–/–

mice [95]. More recent studies led to the conclusion that 
ligand-mediated p75NTR activation inhibits TrkA-mediated
growth and target innervation of sympathetic neurons [96•].
Remarkably, elimination of p75NTR even led to robust
sprouting of adult sympathetic nerve fibers on CNS myelin
[97••]. The finding that p75NTR inhibits neuronal growth is
not limited to sympathetic neurons; BDNF-mediated activa-
tion of NGF-dependent sensory neurons also inhibits their
growth [90], and there is cholinergic hyperinnervation of the
hippocampus and hypertrophy of basal forebrain cholinergic
neurons in p75NTR–/– animals [65]. Together these studies
raise the possibility that neurotrophins act as growth
inhibitors via p75NTR, providing a mechanism for regulating
the specificity or density of axonal growth and target innerva-
tion and/or for axon collateral elimination. 

How does p75NTR inhibit TrkA-mediated growth? Recent
studies indicate that p75NTR activation causes a selective
downregulation of the TrkA-dependent Raf–MEK–MAPK
pathway, which is a major growth pathway for sympathetic
neurons (R Aloyz, FD Miller, DR Kaplan, unpublished data).
Although the p75NTR-derived signals that are responsible
for negatively regulating this pathway are currently unknown,
it is intriguing that elevation of ceramide, a known down-
stream p75NTR effector, inhibits NGF-dependent growth of
distal sympathetic neurites [98] and the activation of Raf-1
and Akt in non-neuronal cells [99,100]. In this regard,
p75NTR-mediated ceramide increases are thought to modu-
late the growth of cultured hippocampal neurons [101]. 

p75NTR probably also regulates axonal growth via a recent-
ly-described modulation of the growth regulatory protein
Rho. Yamashita et al. [102••] demonstrated that, in 293 cells,
transfection of p75NTR led to a robust activation of Rho,
and that neurotrophin binding to p75NTR largely sup-
pressed this p75NTR-dependent Rho activation. As Rho
activation has been shown to inhibit neuronal growth [103•],
this work raises the possibility that p75NTR might regulate
axonal growth either positively or negatively, depending on
the proportion of unliganded to liganded p75NTR present
in the local microenvironment. 

At this point, it is worth mentioning a number of limitations
to some of the current approaches in studying p75NTR
function. The first two caveats involve the p75NTR–/– mice.
The homologous recombination strategy used to generate
these mice left intact a p75NTR splice variant that lacks
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exon III, and which generates a protein that is incapable of
binding neurotrophins [104], making these animals hypo-
morphs rather than true knockouts. A second caveat with
these mice involves the fact that p75NTR is now known to
regulate both the migration [105] and survival [64•,106] of
Schwann cells, meaning that any perturbations in growth or
innervation pattern observed in the PNS of these animals
might be attributable to a Schwann cell phenotype rather
than to a neuronal phenotype. The final issue involves the
use of p75NTR antibodies to assess the biological role of this
receptor and in particular the use of MC192 [107]. Although
many studies have used MC192 to ‘block’ neurotrophin
binding to p75NTR, this antibody has now been shown to
cause NF-κB translocation in sensory neurons [90], presum-
ably by functioning as an ‘activating’ antibody. This finding
obviously changes the interpretation of many experiments
that have been published previously, and makes it a poor
choice as a blocking antibody for future experiments. 

Conclusions
Neurotrophins regulate neuronal survival and apoptosis at
several levels. Trk uses at least two mechanisms,
Ras/PI-3K/Akt-induced suppression of apoptotic proteins and
pathways, and MEK/MAPK activation of anti-apoptotic 
proteins, to stimulate survival. p75NTR can potentiate Trk
activity through the activation of NF-κB. In most cases, 
however, p75NTR functions as a ligand-stimulated apoptotic
receptor, inducing the activity of the JNK–p53–Bax 
apoptosis pathway, and of other proteins that regulate cell
death such as NRIF. Trk, through Ras and probably
PI-3K/Akt, can interfere with p75NTR-induced apoptosis
by suppressing the JNK–p53–Bax pathway upstream of
JNK, or by inhibiting the activities of cell death proteins
such as Forkhead. p75NTR, in turn, can suppress Trk-
induced cell survival and growth pathways, possibly through
ceramide-mediated inhibition of Akt and Raf activities.
This functional crosstalk between Trk and p75NTR 
signaling pathways appears to be a key process in determin-
ing how the nervous system develops and is repaired
following injury. In the next year, the characterization of both
the newly identified and novel targets of Trk and p75NTR
will allow us to identify the mechanisms used by these recep-
tors to develop, maintain, and repair the nervous system. 
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