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GAFFNEY’S WORK ON EQUISINGULARITY

C. T. C. WALL

To Terry Gaffney on his sixtieth birthday

Abstract

A survey of equisingularity theory focussed on Terry Gaffney’s work.
The article begins with an account of the early history of equisingularity. Next I develop

notation, particularly for polar varieties; recall the theory of integral closures of ideals,
show how Gaffney generalised this to integral closures of modules, and list a variety of
applications he has made.

The invariants available are classical and Buchsbaum-Rim multiplicities of modules, polar
multiplicities and Segre numbers of ideals, and generalisations to modules. Some of the
main theorems are of the form: the constancy of certain numerical invariants of a family
imply equisingularity of the family (usually in the form of Whitney triviality). Many of the
proofs use results showing that constancy of some invariants implies an integral dependence
relation. One notable paper gives a sufficient condition for topological triviality of families
of maps.

Introduction

The classification of singularities of plane curves was achieved in 1932 by
Brauner [2], Burau [6],[7] and Zariski [60]: it yields an easily stated necessary
and sufficient condition for topological equivalence, which clearly does not
imply analytic equivalence. Probably the simplest example is the case of 4
concurrent lines xy(x + y)(x + ty) = 0 with t an invariant of analytic, but not
of topological equivalence.

This situation presents the problem of creating a theory of equivalence of
families of objects (e.g. algebraic varieties or morphisms) which will say when
the members of the family are essentially the same. One needs a definition
allowing some flexibility but with which calculations can be made. This is the
problem of equisingularity, which lies at the heart of singularity theory.

Terry Gaffney has made major contributions to this, many of which appear
in Proceedings of earlier São Carlos meetings. His philosophy is to seek invari-
ants depending on members of the family whose constancy implies equisingu-
larity.

In this article, I seek to describe Terry’s work in this area. To put this
in perspective, I also give an account of the earlier work which led up to
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it. This seems appropriate, as Terry has always sought to give full credit to
others whose work or influence has contributed to his results. I am indebted
to David Trotman, Andrew du Plessis and particularly to Terry himself for
comments on earlier versions of this article.

I include a complete list of Gaffney’s papers, which are cited with a G, e.g.
as [G21], preceding the general bibliography.

1. Early results on equisingularity

The origins of the differential theory of equisingularity lie in attempts to
classify singularities of differentiable mappings. This began with pioneering
work of Whitney in the 1940s and 1950s [51], [52], [53], [54] classifying generic
singularities in particular dimensions. A discussion in general was given by
Réné Thom [44] in 1959, in particular conjecturing that topologically stable
maps were C∞−dense in all dimensions.

Thom announced new ideas at a lecture in Zürich in 1960 (see [45]) (where
the writer had the good fortune to be present). This contains definitions
of stratifications, mention of regularity and a statement that “Whitney has
proved that real algebraic sets admit regular stratifications”, the apparatus
(tubes, local retractions, carpeting functions), and went on with corresponding
ideas for C∞−mappings. Thom had amazingly good geometric intuition; not
only completely new ideas, but a good idea for what might be true and
provable. It was often left to others to flesh out his ideas to obtain clear
proofs. Gaffney is perhaps his true successor in having excellent geometric
intuition, but he finds proofs with help from collaborators.

Details followed a few years later. In [58], Whitney studied the behaviour
of the tangent plane TxX at a smooth point x ∈ X as x tends to a smooth
point y0 on a subvariety Y of X and formulated conditions on (X, Y ) at y0:

(A) if there is a sequence xi ∈ X such that xi → y0 and Txi
X tends to a

limit L, then TyY ⊂ L,
(B) if there is also a sequence yi ∈ Y such that yi → y0 and the unit vector

in the direction yixi (in the ambient space) tends to a limit v, then v ∈ L.
In fact, it was soon realised that (B) implies (A); however, (A) remains an

important condition. Whitney defined stratifications, called a stratification
regular if these conditions hold at all points, and proved that any complex
analytic variety has a regular stratification. For the real semi-analytic case, a
proof of existence of regular stratifications was given, also in 1965, in notes
[27] by  Lojasiewicz, which established basic facts about semi-analytic sets,
including his famous inequalities.

Thom’s ‘first isotopy lemma’ states that a regularly stratified set is locally
topologically trivial along strata. Proofs were given by Thom [47] and in
widely circulated lecture notes by Mather [31] in 1970. These involve the
construction of controlled vector fields, and their integration.
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A useful variant of the regularity conditions was given by Verdier [49],
anticipated in part by Hironaka [14] and the c-cosecance of Teissier [38]. For
linear subspaces A,B ⊂ RN , define

δ(A,B) := supu∈A⊥\{O}, v∈B\{O}
|(u, v)|
‖u‖.‖v‖

;

thus δ(A,B) = 0 ⇔ A ⊇ B. We can re-state the Whitney (A) condition as
δ(Txi

X, Ty0Y ) → 0 as xi → y0, i.e. as ‖xi − y0‖ → 0. Now say that (Xo, Y )
satisfies the Verdier condition W at y0: if

(W) there exist a neighbourhood U of y0 and C > 0 such that, for all
y ∈ U ∩ Y, x ∈ U ∩Xo, we have δ(TxX, TyY ) ≤ C‖x− y‖.
Verdier established that subanalytic sets admit stratifications satisfying this
condition, that it is stronger than Whitney’s condition (B); also that when
it holds, one obtains controlled vector fields satisfying a condition he terms
‘rugose’ (which is stronger than continuity but weaker than Lipschitz). This
can be generalised to ‘the strict Whitney condition A with exponent r’ by
replacing the right hand side of the inequality by C‖x− y‖r (see e.g. [41]).

In [45] Thom also enunciated a ‘second isotopy lemma’ giving a sufficient
condition for topological triviality of a family of C∞−mappings. This was
used in [46] to obtain deep results about singularities in general.

First he stated that any polynomial map is stratifiable, meaning that there
are stratifications of source and target such that the map submerses each
stratum of the source on a stratum of the target. He said that a map presents
blowing-up if, writing for X a stratum of the source with image X ′, and q(X)
for dim X − dim X ′, there exist strata Y ⊂ X with q(Y ) > q(X).

In [47], he defined a relative form of (A), now known as Thom regularity.
If f is a stratified map, the Thom condition holds for (X, Y ) relative to f at
y0 ∈ Y : if

(Af ) for any sequence xi ∈ X with xi → y0 and Ker(Tf |Txi
X) → L we

have Ker(Tf |TyY ) ⊆ L.
Note that we can re-state this as: δ(Ker(Tf |TxY ),Ker(Tf |Txi

X)) → 0 as
xi → y0. There is also a strict condition, first considered in [12],

(Wf ) there exist a neighbourhood U of y0 and C > 0 such that, for all
y ∈ U ∩Y, x ∈ U ∩Xo, we have δ(Ker(Tf |TyY ),Ker(Tf |TxX)) ≤ C‖x− y‖.

The second isotopy lemma now refers to a stratified map f : X → Y and a
further π : Y → T such that, for each stratum S of Y , π|S is a submersion.
If also the maps are proper and Af holds at all points, f is locally trivial, so
the topological type of f |(π ◦ f)−1(t) is independent of t. Proofs, similar to
those of the first isotopy lemma, were sketched in [47] and in [31].

Clearly a necessary condition for f to possess a Thom regular stratification
is that f does not exhibit blowing up. A useful construction of Thom regular
maps is given in [9, §2]: here make the stronger hypothesis that the restriction
f |Σ(f) (where Σ(f) denotes the critical set of f) is proper and finite-to-one.
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Then a stratification of f(Σ(f)) is a critical value stratification c.v.s. (called
partial stratification in [9]) if, for all strata U , f−1(U) ∩ Σ(f) is smooth and
f induces a local isomorphism of it on U , and for all pairs U, V of strata,
f−1(V ) ∩ Σ(f) and f−1(V ) \ Σ(f) are Whitney regular over f−1(U) ∩ Σ(f).
Whitney’s arguments yield the existence of a c.v.s. provided the spaces and
maps are semialgebraic. Given a c.v.s., we can stratify the target of f by the
strata of the c.v.s. and their complement and stratify the source by the strata
just listed: then f is a stratified map which satisfies Thom regularity.

A general proof that a proper, complex analytic map which does not exhibit
blowing up admits a Thom regular stratification, and even one satisfying Wf ,
was finally given by Henry, Merle and Sabbah in [12]: the proof uses the
technique of polar varieties. The real analytic case was discussed in [15], and
can also be treated by taking real parts of the stratifications of [12]. The writer
has been unable to find a reference for existence of a Thom stratification in
the real semi-analytic case.

We turn to the algebro-geometric approach to equisingularity. From 1964,
when Hironaka [13] established the resolution of singularities in characteristic
zero, interest began to shift from resolving singularities to classifying them.
Zariski created a theory of equisingularity for families of curves, and hence for
a variety along a smooth subvariety of codimension 1, and proposed a general
definition by induction: roughly speaking, he required equisingularity of the
discriminant of a generic projection to a subspace one dimension lower. The
simplest non-trivial case is when we have a smooth point of Y , which has
codimension 2, so a transverse slice meets X in a plane curve. The theory for
this case was developed in considerable detail in the series [61] in 1965-68. In
this case, Zariski’s definition of equisingularity is equivalent to Whitney’s, as
holds more generally when the curve is not required to be planar.

In 1971 in [62], Zariski compared his definition with others and posed a
number of searching and motivating questions, notably the famous problem
of topological invariance of multiplicity. What is the relation between different
conditions? When do equivalent singularities lie in a 1-parameter family? Do
equivalent varieties have the same multiplicity? More generally, is equisingu-
larity preserved under taking generic hyperplane sections? or under taking
the discriminant of a generic projection? We will see that the techniques of
projection and of generic hyperplane sections are built in to the theory as it
has been developed by Gaffney.

The rather simple example z3 + tx4z + x6 + y6 = 0 (due to Briançon and
Speder [3]) is Whitney equisingular but not Zariski equisingular; moreover,
as Zariski shows in [64] in 1977, the blowup along the t−axis fails to be
equisingular at t = 0, which led Zariski to reject Whitney equisingularity as
a good notion.
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A general discussion of the equisingularity notions as known in 1974 was
also given by Teissier in [38]. He starts with Zariski’s work, which was his
own inspiration, and compares equisingularity in Zariski’s sense, in Whitney’s
sense, and topological local triviality, and he too formulated a number of
questions and conjectures.

Finally in 1979 Zariski proposed [65] a modified version of his definition
which, unlike earlier ones, is clearly invariant under local analytic equivalence;
here he also constructs a stratification.

Zariski’s work in [61] also led him to the notion of saturation, which he
developed in [63] in 1971-75. Here he gives a more algebraic form to equisin-
gularity for the plane curve case. In the introduction to Vol IV of Zariski’s
works, Teissier and Lipman record that later work inspired by equisaturation
led to the study of Lipschitz equisingularity. Talks were presented on Lipschitz
equivalence at this conference by Birbrair & Neumann, and by Valette giving
new insight on this concept: it does not at present seem likely to lead to a
workable theory of equisingularity in general.

A rather different equisingularity notion, of ‘blow analytic equivalence’, was
proposed by Kuo [25]. While this has had some success, it too does not seem
likely to lead to a general theory, as it is not clear that if a family of varieties
over T is blow analytically trivial over the open subsets T1, T2 of T it must
also be trivial over T1 ∪ T2.

Milnor’s 1968 book [33] was enormously influential, and focussed attention
on isolated singularities of hypersurfaces. Let {ft : (CN , 0) → (C, 0) | t ∈ C}
be a 1-parameter family of functions defining hypersurfaces Xt, each with an
isolated singularity, with union X ⊂ CN × C. There is an obvious numerical
requirement for a family to be equisingular: constancy of the Milnor number
µ(ft).

For this case, major developments appeared at the Cargèse conference in
1972. Speder [36] proved that Zariski equisingularity implies the Whitney
conditions. Lê [22] spoke on his result with Ramanujam that a µ−constant
deformation is topologically trivial (except possibly if N = 3).

There is also a major paper by Bernard Teissier [37], which is the real
starting point of modern equisingularity theory. He discussed integral closures,
introduced and studied the sequence µ∗(Xt) of Milnor numbers of generic
linear sections of Xt, and showed that a µ∗−constant family is Whitney
equisingular. This result was completed shortly afterwards by a proof [4] of
Briançon and Speder that Whitney equisingularity implies µ∗−constant and
their example [3] of a family with µ, but not µ∗, constant: for z5+tzy6+xy7+
x15 = 0, µ(3) = 15 is constant but µ(2) is not, and the family is topologically
trivial.

In [G30] Gaffney and Massey described (with hindsight) a somewhat sim-
plified version of Teissier’s argument, summarised in three steps:
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Whitney regularity of F = {ft} is implied by W-regularity, the condition
that the derivative ∂F/∂t belong to the integral closure mN · JzF , where
JzF = 〈{∂F/∂zi}〉;

this condition holds at a dense open set and (“the PSID”), provided the
multiplicity m(mN · JzF ) is constant, holds on a closed set; and

m(mN · JzF ) is a linear combination with positive coefficients of the upper
semicontinuous invariants µ(i)(Xt).

With the success of Teissier’s theory, one would like to extend it as far as
possible. To achieve this, the following are needed: an extension of the theory
of integral closure of ideals; invariants of equisingularity, corresponding to µ∗

above; a calculus for working with these invariants; and a generalisation of
the PSID. Gaffney has obtained many results of all of these types, and I will
try to summarise them. The next sections are devoted respectively to integral
closure; invariants and formulae for them; and criteria for equisingularity.

2. Notations

I now fix notation for the rest of this article, for simplicity of exposition;
though some of Gaffney’s results were obtained in greater generality than I
give below. The reader should be warned that though this notation is based
on Gaffney’s, it differs from his in many cases. We have a complex analytic
variety-germ (X, 0) ⊂ (CN , 0) (for brevity, I will restrict almost entirely to
the complex analytic case, though Gaffney also has many results in the real
case); we assume X equidimensional, of dimension d, and generically reduced.
Write ΣX for the singular set and Xo := X \ ΣX. We may suppose X given
as F−1(0) for F : CN → Cp; take co-ordinates {zi} on CN .

When we wish to study families we take T = Cs as parameter space, with
co-ordinates {tj}, let X ⊂ CN × T be given as F−1(0) for F : CN × T → Cp,
write π : CN × T → T for the projection (and its restriction to X → T ),
Xo for the set of points where X is smooth and π submersive. Write also
Xt := X ∩ π−1(t), and suppose each Xt as in the preceding paragraph. We
write T for {0}×T ⊂ X and study Whitney equisingularity of X over T along
T .

For any k, Ok denotes the ring of germs of holomorphic functions at 0 ∈ Ck;
mk denotes its maximal ideal. We write OX for the sheaf of holomorphic
functions on X, OX,x for the sheaf of germs at x ∈ X, and mX,x for its
maximal ideal. I will normally use roman letters to denote rings and modules
and calligraphic ones for sheaves.

First we suppose each Xt has an isolated singular point at O; later we
relax this. Also we first have the hypersurface case p = 1, then the complete
intersection case where F is a submersion at a generic point, then the general
case.
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Sometimes regularity conditions Af and Wf are considered relative to a
further map f : (X, O) → (C, 0) or f : (X, T ) → (C, 0): these are non-trivial
even if p = 0 so X = CN × T . We denote the zero locus of f by Z (or Z).

Whitney’s and other related conditions are defined in terms of the limiting
behaviour of tangent spaces to X. Thus we are led to the study of the Nash
blowup N(X), the closure of the set of pairs (x, TxX) where x ∈ Xo, and the
conormal space C(X), the closure of the set of pairs (x, H) where x ∈ Xo

and H ∈ PN−1 is a hyperplane containing the tangent space to X at x. If
X has codimension 1 these coincide, but for a subset of higher codimension,
while early work used the Nash blowup, it was shown by Henry and Merle
[11] that the conormal space was more convenient and gave better results. For
example, polar varieties and polar multiplicities are defined below by pulling
back from linear subspaces of projective space; to use the Nash blowup, we
would have to study instead subvarieties of Grassmannians. In the case of a
family, we have the relative conormal, which can be defined as the closure of
the set of pairs (x, H) with x ∈ Xo and H a hyperplane tangent to X at x
and containing (a parallel of) T . We denote this by CT X and can regard it
as a subspace of X× PN−1.

Given an ideal I = 〈g1, . . . , gq〉 C OX , the blowup BI(X) is defined to
be the closure in X × P q−1 of the graph of X \ V (I) → P q−1 defined by
z 7→ (g1(z), . . . , gq(z)), with projection bI : BI(X) → X; we write DI for
the exceptional divisor. Equivalently, we can form the Rees algebra (see [35])
R(I) :=

⊕
n≥0 In; then its graded ideals define BI(X) = Proj(R(I)) (where

Proj denotes the analytic homogeneous spectrum). If X has codimension 1,
the Jacobian ideal is J(F ) = 〈∂F/∂z1, . . . , ∂F/∂zN 〉 and C(X) coincides with
its blowup BJ(F )(X).

If X has codimension greater than 1, C(X) is not a blowup of X: it has
dimension N − 1. To extend the techniques to this case, Gaffney introduced
the following. Write E := Op

X for the free module, JMF ⊂ E for the (Jacobian)
submodule generated by the columns of the Jacobian matrix JF = (∂Fi/∂zj),
which has generic rank N − d; write SE for the symmetric algebra on E and
RJMF for the (Rees) subalgebra generated by JMF . Then P = Proj(SE)
has dimension d+p−1, and the image of Proj(RJMF ) in P can be identified
with C(X).

In general, for L ⊂ CN×T a linear subspace, write JMFL for the submodule
of JMF generated by the ∂F/∂v for ∂/∂v tangent to L (in the case p = 1,
JFL for the subideal of JF ). Thus in the case of a family F : CN × T → Cp,
JMFT is generated by the columns ∂Fi/∂zj for zj the co-ordinates in CN .
The relative conormal CT X is now the image of Proj(RJMFT ) in P .

Gaffney [G28] comments that the exceptional divisors of these blowups
record behaviour of the limiting tangent hyperplanes, which are relevant for
the Whitney conditions: more precisely, the fibre over O of the exceptional
divisor of JMFT records the limits as (x, t) → (0, 0) of limiting tangent
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hyperplanes to Xt; in the module case, the fibre of the conormal need not
be a divisor, but does still record the limits.

3. Integral closures

Let I be an ideal in a ring R (we write I C R). We say that x is integral
over I if there exist elements ar ∈ Ir with xk +

∑k
1 arx

k−r = 0. The set of
such elements x is called the integral closure of I and denoted I: it is an ideal
in R. The proof uses the fact that x is integral over I if and only if there is a
faithful finitely generated R−module M with xM ⊆ I ·M .

The integral closure has marvellous properties. An excellent reference is the
beautiful set of lecture notes [24] of Monique Lejeune-Jalabert and Bernard
Teissier. These were, it seems, motivated by a study of a section of Hironaka’s
big paper [13].

For R a complete local ring, and I a proper ideal, I defines a function νI

on R by setting νI(x) := sup{n ∈ N |x ∈ In} and νI(x) := limk→∞ νI(xk)/k.
This is an order function, i.e. νI(x + y) ≥ inf(νI(x), νI(y)), νI(xy) ≥ νI(x) +
νI(y), νI(0) = ∞ and νI(1) = 0. Then x is integral over I if and only if
νI(x) ≥ 1.

If νI(x) > 1, we say that f is strictly dependent on I, and write f ∈ I†: I†
also is an integrally closed ideal. Although strict dependence had been used
previously, the definition of I†, and of a corresponding notion for modules,
are due to Gaffney [G27].

We can regard I as the largest ideal equivalent to I: sometimes we would
prefer a smallest. If J ⊂ I and J = I, then J is said to be a reduction of
I; a minimal reduction is one with the minimal number of generators. For
I of finite codimension in Ok, we can take the ideal generated by k general
elements of I.

Now let X be a reduced complex analytic space, ICOX the coherent sheaf
of ideals defining a nowhere dense analytic subspace Y , x ∈ Y , Ix the germ
of I at x; f ∈ OX . The following are equivalent ([24], see also [41]):

(i) (algebraic condition) f ∈ Ix;
(ii) (evaluation) for some f.g. faithful OX,x−module Mx, f.Mx ⊂ Ix.Mx;
(iii) (valuative criterion) for every arc, i.e. map-germ φ : (C, 0) → (X, x),

we have f ◦ φ ∈ φ∗Ix.O1;
(iv) (growth condition) for V a neighbourhood of x in X, and {gi} gen-

erators of Γ(V, I), there exist C ∈ R+ and a neighbourhood of x on which
|f(y)| ≤ C supi |gi(y)|.

Moreover, the Ix are the stalks of a coherent sheaf I.

If I ⊂ J there is a natural map BJ (X) → BI(X). This map is finite if and
only if I = J , i.e. I is a reduction of J .



GAFFNEY’S WORK ON EQUISINGULARITY 9

We also need the normalised blowup, which we denote by b̃I : B̃I(X) → X,
with exceptional divisor D̃I ; write I∗ for the pullback of I. To construct it,
take the normalisation X̃ of X, the pullback I ′ to it of I, the integral closure
I ′ of I ′, and then B̃I(X) = BI′(X̃).

Suppose X compact, or more generally that we consider germs along some
compact subset K ⊂ X. Then D̃I has only finitely many irreducible compo-
nents Dα. The ideal I∗ is supported on

⋃
α Dα; in the neighbourhood of a

smooth point of Dα, it can only be a power Inα
α of the ideal Iα defining Dα.

Thus if f ∈ I, the lift of f to B̃I(X) must belong to each Inα
α . But much

more is true. Suppose X normal, ICOX an invertible ideal defining a Cartier
divisor D =

⋃
α Dα, f ∈ Γ(X,OX). Then

fx ∈ Ix for all x ∈ X ⇔ for each α we can find xα ∈ Dα with fxα
∈ Inα

α,x.
It follows that in (iii) above, we only need one arc φα for each component Dα

of D. This has numerous consequences: for example we can define fractional
powers by letting f ∈ I [p/q] if, for some N , fqN ∈ IpN

: it follows that we can
take all fractions to have denominator the least common multiple of the nα;
this is also a denominator for the  Lojasiewicz exponent.

We can now give a global version of the above set of equivalent conditions
to f ∈ I, referring to germs at K:

(i) f ∈ Ix (∀x ∈ K);
(ii) for every proper π : X ′ → X with image containing K and I.OX′

invertible, there is an open neighbourhood U ′ of π−1(K) with f.OU ′ ∈ I.OU ′ ;
(iii) for each α, f ◦ φα ∈ φ∗αIx.O1;
(iv) there exist an open neighbourhood U of K in X, generators {gi} of

Γ(U,OX) and C ∈ R+ such that |f(x)| ≤ C · sup{|gi(x)|} for all x ∈ U .

Integral closures of ideals are the key to the study of equisingularity for
families of hypersurfaces. To generalise to subvarieties of larger codimension,
Gaffney begins [G21] by introducing the integral closure of a module or, more
accurately, of a module given as a submodule of a free module. An earlier,
purely algebraic treatment of an equivalent concept had been given by Rees
[35], generalising results in [66]; but Gaffney takes the valuative criterion as
definition. He notes that this also gives a useful notion in the real case, but
we will restrict to the complex case.

For h ∈ Op
X,x and Mx ⊂ Ex = Op

X,x a submodule, the following are
equivalent:

(i) h ∈Mx in the sense of Rees,
(ii) for some faithful Ix COX,x we have Ix · h ⊆ Ix · Mx.
(iii) for all germs φ : (C, 0) → (X, x), we have h ◦ φ ∈ φ∗(Mx) · O1 (as

above, it suffices to check for rather few arcs φ),
(iv) For each choice {si} of a set of generators for Mx there is a neighbour-

hood U of x such that for each φ ∈ Γ(Hom(Cp, C)) there exists C > 0 such
that, for all z ∈ U we have |φ(z)h(z)| ≤ C supi |φ(z)si(z)|.



10 C. T. C. WALL

Moreover, if M is a coherent sheaf of submodules of Op
X , there is a unique

coherent sheaf M with Mx = Mx for all x ∈ X.
Integral closures of modules can be reduced, to some extent, to those of

ideals. Suppose X irreducible, and write H = M + OX · h. Then [G21, 1.7]
h ∈ M if and only if ∧kH ⊆ ∧kM, where k is the largest integer with
∧kH 6= 0. Here ∧k refers to exterior powers, or rather to their images in ∧kE .

We can now define M to be a reduction of N if M ⊂ N and M = N .
According to [21, (2.6)], this is equivalent to the natural map Proj(RM) →
Proj(RN ) being a finite map. Again a minimal reduction is one with the
minimum number of generators; ifM has finite codimension inOp

X,x, a general
set of d + p− 1 elements generates a minimal reduction.

Strict dependence in the module case was introduced in [G27], see also [G29,
§3]. We say that h is strictly dependent on M, and write h ∈ M† if, for all
germs φ : (C, 0) → (X, x), we have h◦φ ∈ φ∗(Mx) ·m1. Then M† is a module,
and if M is a reduction of N , M† = N †.

Gaffney has shown the flexibility of the concept of integral closure of mod-
ules by applying it to obtain simplified and strengthened versions of a variety
of interesting results. Most relevant to equisingularity theory is a recasting of
Whitney regularity conditions using integral closures. Observe that regularity
gives a condition on tangent hyperplanes of X at a series of points converging
to T . In the hypersurface case, the tangent hyperplane to X is given by
t∂F/∂t +

∑
i zi∂F/∂zi = const. The Whitney A condition requires ∂F/∂t to

be ‘smaller’ than the ∂F/∂zi. Recall that JFT denotes the ideal 〈∂F/∂zi〉 C
ON+s generated by the ∂F/∂zi. For dim(T ) = 1, we have the following
characterisations:

∂F/∂t ∈ mN ·JFT is Mather’s criterion for triviality under right equivalence.
∂F/∂t ∈ (JFT )† is Gaffney’s [G27] criterion for A-regularity.
∂F/∂t ∈ mN · JFT is equivalent [41] to the W condition of Verdier,

but care is needed: for Mather’s condition, these are ideals in ON+1, for the
others, in OX .

For the general case F : CN × T → Cp, we have:
A-regularity holds if and only if for all tangent vectors ∂/∂t to T , ∂F/∂t ∈

JMF †, i.e. JMFT ⊆ JMF † [G29];
W-regularity holds if and only if for all tangent vectors ∂/∂t to T , ∂F/∂t ∈

mN · JMF , i.e. JMFT ⊆ mN · JMF [G21],[G25];
There are corresponding assertions for Af and for Wf with F replaced by

(F, f) ([G33, 2.1], [G40, 2.8]). Simpler versions for the case when F is absent
are given in [G27] for Af and in [G28] for Wf .

We now mention briefly several other papers of Gaffney giving applications
of integral closure of modules.
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In [G27], Gaffney shows that a hyperplane H is a limiting tangent plane
to X if and only if JMFH is not a reduction of JMF . In [G29] he shows
that X is A-regular over T if and only if every limiting tangent hyperplane
contains T (which gives the above condition for A-regularity); and that JMFT

is a reduction of JMF if and only if no hyperplane containing T is a limiting
tangent hyperplane. Relativisations of these equivalences are given in [G29,§5].

In [G31], Gaffney obtains a necessary and sufficient condition for a poly-
nomial map F : CN → Cp to be non-characteristic over t0 at infinity. He
gives an inequality which generalises Malgrange’s condition, and shows that
this is equivalent to the non-characteristic condition, and to an inequality
∂F ′/∂ti ∈ JMF ′ at t0, where F ′ is essentially F referred to affine co-ordinates
with t0 at the origin, and that this implies local topological triviality.

In [G34] he studies finite determinacy with respect to left equivalence. He
recalls that if F is an injective immersion outside T , the condition for a rugose
trivialisation is W regularity, i.e. JMFT ⊆ mN · JMF . For left equivalence,
one must consider double points, so for any ideal I C On, define ID C O2n

to be the ideal generated by the h(z) − h(w) for h ∈ I. Then he obtains the
necessary and sufficient condition (mk+1

n )D ⊂ (f∗mp)†D for f : Cn → Cp to be
k−determined with respect to rugose trivialisation.

In [G43] (with Trotman and Wilson, and generalising [G24]) he studies the
tr condition, due originally to Thom [46] in the real case, and refined by Kuo
and Trotman [26] and Trotman and Wilson [48]. One says that X is (tr)
regular over T at O if every Cr−submanifold Q of dimension N , transverse to
T at O, is transverse to X near O. We say X is (tr) regular for P over T at O
if this holds for all Q with the same r−jet as P (here we may regard Q as the
graph of a map RN → T ). With this form of the condition it is the condition
on jets that is crucial, not the degree of differentiability, so the condition is
also non-vacuous in the complex case. There are also variants depending on
the degree of differentiability of Q; P only enters via its r−jet. Then provided
r > 0 (the results for r = 0 are slightly different),

X \ΣF is tr for P if and only if mr
N · JMtF ⊆ mN · JMFP + I(P )JMt(F ),

and
X is tr for P if and only if X \ ΣF is so and mr

N · OΣ ⊆ I(P )OΣ.
A genericity theorem, which states that the multiplicity m(JMFP ; X ∩ P )
takes its generic value among all transversals with a given (r − 1)−jet if and
only if tr holds for P , ties this to other results.

4. Invariants

The main theorems about equisingularity are stated in terms of numeri-
cal invariants, mostly multiplicities. The development of the theory of these
invariants is an important part of the story. In fact, few of the definitions
are solely due to Gaffney: his role has been that of someone with ideas and
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suggestions, provoking others (most notably, David Rees, Steve Kleiman and
Anders Thorup), to make his ideas precise and to prove his conjectures.

Algebraic definitions of multiplicity start with an ideal I of finite colength
in a sufficiently nice ring R of dimension d (e.g. a noetherian local ring OX

with dim X = d); then for k large, the length (in our case, dimension over C)
of R/Ik is a polynomial in k with leading term mkd

d! ; and m is defined to be
the multiplicity m(I). If I ⊆ J , then [34] m(I) ≤ m(J), and m(I) = m(J) ⇔
I = J . Gaffney points out that this shows that multiplicities ‘control’ integral
closures; it follows that they control Whitney conditions. Moreover, I admits a
reduction with d generators, and if I itself has d generators, m(I) = dim(R/I).

This is easily generalised to the mixed multiplicities mi,j(I, J) (i + j = d)
of two ideals. For k and ` large enough, it is shown in [37, Chap I,§2] that
the length of R/IkJ` is a polynomial of degree d in k and `, whose leading
term we denote by

∑d
i=0 mi,d−i(I, J)ki

i!
`d−i

(d−i)! . It can be shown that mi,j(I, J)
is equal to the multiplicity of the ideal generated by i general elements of I
and j elements of J . The multiplicity of the product ideal is given [37] by
m(I · J) =

∑d
i=0

(
d
i

)
mi,d−i(I, J).

The concept generalises to the Buchsbaum-Rim multiplicity [5] of a sub-
module M of finite colength of a free module E := Rp. Here we take the
(graded) symmetric algebra S(E) over R generated by E, the Rees subalgebra
R(M) generated by M , and consider its colength dim(Sn(E)/Rn(M)) in grade
n. For n large enough, this is polynomial of degree d+p−1 in n; if the leading
term is m(M) nd+p−1

(d+p−1)! , then m(M) is an integer defined to be the multiplicity.
The following were conjectured by Gaffney and proved by Rees and Kirby

[19]: if M ⊆ N , then m(M) ≤ m(N), and m(M) = m(N) ⇔ M = N : in
this latter case, M is said to be a reduction of N . Moreover, by [35] or [G25],
M admits a reduction with d + p− 1 generators (it suffices to take d + p− 1
generic elements of M), and if M admits d + p − 1 generators, we have ([5],
[G25]) the simple formula m(M) = dim(E/M) = dim(R/ ∧p (M)). In our
usual setup, the function m(JMFt) is upper semicontinuous [G29, Prop 1.1].

One can define mixed multiplicities for two modules M, N each of finite
colength as in case of ideals: take i generic elements from M and j generic
elements of N where i + j = d + p − 1, and compute the Buchsbaum-Rim
multiplicity of the module they generate. There is a product formula [19]
which, in the geometric case, is

m(I ·M) =
(
m
d

)
m(I) +

∑d−1
j=0

(
m
j

)
m(M |Sj),

where Sj is the quotient of OX by j generic elements of I.
We can also consider the relative multiplicity of a submodule N ⊂ M ⊂ E

of finite colength in M : not surprisingly, with increased technicalities.

Geometrical invariants are obtained from polar varieties and their gener-
alisations. Polar curves of plane curves were used in the mid 19th century,
for example in the proof of Plücker’s formulae counting singularities of plane
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curves. The use of polar varieties in equisingularity theory begins with [38],
where Teissier states that their use was advocated by Thom. For X as above,
and 0 ≤ k < d, take a linear subspace L ⊂ CN of codimension d− k + 1,
defining pL : CN → Cd−k+1. Then the polar variety is defined to be the
closure Pk = Pk(X, L) of the set of x ∈ Xo critical for pL|X (the notation is
chosen so that Pk has codimension k). It can be shown that for a dense Z-open†

set of subspaces L of codimension d− k + 1, the multiplicity at O of Pk(X, L)
is independent of L: this is defined to be the polar multiplicity mk(X). The
extreme cases are k = 0, with P0 = X, so m0(X) is the multiplicity of X at
0, and k = d, with Pd discrete, so md(X) = 0.

When we have a family X, we still choose a generic L ⊂ CN , now defining
pL : CN × T → Cd−k+1 × T , and define the relative polar variety to be the
closure PT,k of the set of x ∈ Xo critical for pL, and mT,k(X)t to be the
multiplicity of PT,k ∩ (CN × {t}) at 0× {t}. We may not assume that this is
equal to mk(Xt) since the notion of genericity for the subspace L is different
in the two cases. In the extreme case k = d, PT,d is finite over d, so its closure
meets T at points with mT,d(X)t > 0. We see that the absence of such points
is important for equisingularity.

More generally, if I C OX is an ideal with q generators and Λ ⊂ P q−1 is
a linear subspace of codimension k, the polar variety Pk(X, Λ) is the image
in X of BIX ∩ (X × Λ). Again, for a dense Z-open set of subspaces Λ of
codimension k, the multiplicity at O of Pk(X, Λ) is independent of Λ, and is
defined to be the polar multiplicity mk(X, I). In the case when X is the zero
set of F : CN → C and I is the Jacobian ideal JF , we see (taking Λ as the
annihilator of L) that Pk(X, JF ) is the same as Pk(X). As above, if I COX

there is a relative version mT,k(I)t.
If I ⊂ J and I = J , the natural map BJ (X) → BI(X) is finite, so we

can take the same Λ for both I and J , and use the projection formula to see
that mk(X, I) depends only on the integral closure of I.

If the polar variety is a curve, then so is its strict transform under the
simple blowup of the origin in CN , and m1(X) is the intersection number of
the preimage with the exceptional divisor. In general we can intersect with
generic hyperplanes to cut down to a curve, then do the same. Equivalently,
take the preimage in the blowup, and intersect with d − k − 1 hyperplanes
and with the exceptional divisor. This leads to an interpretation of polar
multiplicities as intersection numbers, which is due to Kleiman and Thorup
[21].

The projection Bm·I(X) → X factors through both Bm(X) and BI(X).
Over BI(X) we have the line bundle induced from the universal bundle
on P q−1: write `I for its first Chern class and DI for the corresponding

†Here and below we write Z-open to mean open in the Zariski topology.
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exceptional divisor; and use the same notations for their pullbacks to Bm·I(X).
Over Bm(X) we have the line bundle coming from the universal bundle on
P (CN ), with first Chern class `m and divisor Dm. Then P (X, L) corresponds
to the intersection `k

I and mk(X, I) is given by `k
I · `d−k−1

m · Dm or, in the
notation of intersection theory,

mk(X, I) =
∫

`k
I · `d−k−1

m ·Dm.

For the application to equisingularity for hypersurfaces, we take I to be
the Jacobian ideal. If X has non-isolated singularity, this does not have
finite codimension. To allow for this case, in [G28] Gaffney & Gassler define
further invariants. For L ⊂ P q of codimension k, the polar variety of I is the
projection to X of P (X, I) := BI(X)∩ (X ×L) and we now define the Segre
cycle as the image of Q(X, I) := DI ∩ BI(X) ∩ (X × L). Its multiplicity is
constant for L in a dense Z-open set, defining the Segre number sek(X, I).
This too can be defined as an intersection number

sek(X, I) =
∫

`k−1
I `d−k−1

m DI ·Dm (1 ≤ k ≤ d− 1),
sed(X, I) =

∫
`d−1
I DI .

Thus
sek(X, mN · I) =

∫
hk−1`d−k−1

m D ·Dm (1 ≤ k ≤ d− 1),
sed(X, mN · I) =

∫
hd−1D,

so substituting h = `I + `m leads to the product rules
sek(X, mN · I) =

∑k
i=1

(
k−1
i−1

)
sei(X, I) (1 ≤ k ≤ d− 1),

sed(X, mN · I) =
∑d−1

i=0

(
d
i

)
mi(X, I) +

∑d
i=1

(
d−1
i−1

)
sei(X, I).

These generalise the Lê numbers of Massey [29], which are defined in the
case p = 1 as λk(Ft) := sek(Xt, JFT ). Massey showed that the reduced
Euler characteristic χ̃k(t) of the Milnor fibre of Ft|Lk (for Lk a generic linear
subspace of dimension k) is given by χ̃k(t) = mk(Ft) +

∑k
i=0(−1)iλk−i(Ft).

It is also shown in [G28, Cor 4.5] that if I COX induces It on Xt, while the
sei(Xt, It) individually need not be upper semicontinuous in t, the sequence
(se1, . . . , sed) is, provided sequences are ordered lexicographically.

Somewhat similar definitions for the case of modules are made in [G29],
following [21]. Suppose M ⊂ E = Op

X has finite colength (or, in the relative
case, that Supp(E/M) is finite over T : in fact all the definitions are as easily
made over T , this is what is needed for the application). Set P := Proj(SE),
and P ′ := Proj(RM), where RM is the Rees algebra. Let B be the blowup
of P by the sheaf of ideals on SE generated by M, with exceptional divisor
D. Let `E , `M denote the classes on B induced from the first Chern classes
of the tautological sheaves on P and P ′. Now define Segre classes by sei :=∫

`i−1
M `r−i

E [D], where r = d + p− 1. In fact, sei = 0 for i < d.
Now set ej :=

∑r−j
i=1 sei (so that ep−1 = sed, e0 =

∑
i sei). Then the ej

are all upper semicontinuous (the sei need not be). With this definition, the
Kleiman-Thorup multiplicity is e0.
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More generally, suppose given two submodules M ⊂ N ⊂ E , with N/M
of finite length, or equivalently, M = N in a punctured neighbourhood of
x. Write ρ(M) for the ideal on Proj(RN ) generated by M, BM for the
normalised blowup of Proj(RN ) along ρ(M), and DM,N for the exceptional
divisor. Over BM there are two canonical line bundles, one coming from
M one from N : denote their first Chern classes by `M , `N . Then, following
Kleiman and Thorup [21], Gaffney defines the multiplicity of the pair M⊂ N
as

m(M,N ) :=
∑d+r−2

j=0

∫
`d+r−2−j
M `j

NDM,N .
This generalises the Buchsbaum-Rim multiplicity m(M) = m(M, E), and
satisfies additivity: if L ⊂M ⊂ N then m(L,N ) = m(L,M) + m(M,N ).

However, the analogues of the polar and Segre multiplicities do not have
such good properties as in the ideal case, as is shown by a counterexample in
[G37,§4].

5. Criteria for equisingularity

We now discuss the main developments in chronological order, and begin
in 1973 with Teissier’s work [37] on isolated hypersurface singularities. The
plan of his proof is as follows. Since the Whitney conditions hold generically,
the inclusion ∂F/∂t ∈ mN · JFT which characterises them holds at an open
set of points in T . The key step is now the “Principle of Specialisation of
Integral Dependence” (PSID) which shows that for any g and any ideal ICOX

such that the It COX,t have finite codimension and the multiplicity m(It) is
constant along T , the set of t ∈ T at which the germ h ∈ It is closed.

The rough idea is as follows (for a fuller, but still very short and geometric
account see [G28, pp 700-701]). Let I C OX; blow up along I; let D be the
exceptional divisor of the blowup. If m(It) is constant, the projection D → T
is equidimensional. Now whether or not g ∈ I depends on the valuations vi(g)
corresponding to the components Di of D. Since the projection is equidimen-
sional, the list of vi is independent of t; since also the vi(g) are semicontinuous
the result follows.

The invariants µ∗ appear as follows. First, the relation of multiplicities to
Milnor numbers for icis (due to Lê [23] and Greuel [10]) gives m(JFT ) =
µ(N)(Xt) + µ(N−1)(Xt). Next the formula for the multiplicity of a product
of ideals gives m(mN · J) =

∑N
i=0

(
N
i

)
mi,N−i(mN , J). But the mixed multi-

plicity mi,N−i(mN , J) is equal to the multiplicity of the restriction of J to
a generic codimension i subspace, and hence to µ(i+1)(Xt) + µ(i)(Xt). Thus
m(mN ·JFT ) =

∑N
i=0

(
N
i

)
(µ(i+1)(Xt) +µ(i)(Xt)). It follows, since the µ(i) are

semicontinuous, that µ∗(Xt) is independent of t if and only if m(mN · JFT )
is.
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By 1980, Teissier had obtained a general criterion for regularity, which
appeared in [41]. He developed the theory of (relative) polar multiplicities, in
essentially our standard situation. Then his main theorem states that Whitney
regularity is equivalent to constancy of polar multiplicities. More precisely, for
X reduced complex analytic of pure dimension d and T a smooth subspace,
the following are equivalent:

(i) (m0X,m1X, . . . ,md−1X)t is constant along T ;
(ii) (if dim(T ) = 1) CN ×{0} is transverse to all limits of tangent spaces of

Xo and
(m(X)t,mT,1(X)t, . . . ,mT,d(X)t) is constant along T ;

(iii) (Xo, T ) satisfies at t the Whitney A and B conditions;
(iv) (Xo, T ) satisfies at t the strict Whitney A condition with exponent 1

and strict Whitney B with exponent > 0.
It follows that for any stratification of a complex analytic space, constancy

along strata of polar multiplicities is necessary and sufficient for Whitney
regularity, or for Verdier regularity. Teissier deduced that a complex analytic
variety has a unique minimal regular stratification.

In Terry’s great 1993 paper [G22] these results are refined and extended
to obtain sufficient conditions for equisingularity of a family of maps. Jim
Damon, using largely algebraic arguments, had previously proved in [8], uni-
fying several earlier results:

If F0 : CN → Cp is A−finite, i.e. finitely determined with respect to right-
left-equivalence, any polynomial unfolding of non-negative weight is topolog-
ically trivial.
Gaffney aimed to improve this by replacing the weight condition by geometri-
cal conditions on the unfolding. Now if F0 is A−finite, any (multi-)germ of F0

outside the origin is stable. We require the same to hold for any (multi-)germ
outside T of the unfolding F : CN × T → Cp × T of F0: a criterion on F
for this to hold follows from Damon’s work. Hence differentiable triviality is à
priori guaranteed at points outside T . Adding a simplicity hypothesis, we may
suppose that only finitely many K−classes (strata) occur. It thus remains to
prove, for each stratum in source or target, Whitney regularity over T : we
then have a c.v.s. and the desired result will follow from the second isotopy
lemma.

For this we have the above criterion of Teissier for regularity in terms of
polar multiplicities. However, these are defined in terms of the whole variety
X ⊂ CN×T (or Y ⊂ Cp×T ). Gaffney’s aim was to find a condition depending
only on the individual fibres Xt. To replace relative polar multiplicities of
X by polar multiplicities of Xt, two main issues arise. First, one needs to
show that each CN × {t} is transverse to limiting tangent planes of strata.
Gaffney succeeds here by using the fact that the stratification is regular in
the complement of T and mT,d(X) vanishes along T . He then uses delicate
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arguments to show that mi(Pi(F, t)) is constant if and only if mi(Xt) is so
for 0 ≤ i < d and, again, mT,d(X) = 0 along T .

Secondly, since d = dim Xt, md(Xt) is not defined, so we need a replacement
to control mT,d(X): this is the main difficulaty. Let Q be a K−equivalence
class and S(Q) the corresponding stratum: write d := dim(S(Q)) − dim T .
To define the d−stable multiplicity md(Ft,Q), take a versal unfolding G :
Cn×T → Cp×T , denote projection on T by π, and pick a general hyperplane
L ⊂ Cp defining a polar variety P := Pd(Q(G), π). Define md(F,Q) as the
multiplicity of the ideal ms · OP COP : this can be proved independent of all
choices. Now to avoid ‘coalescing’, i.e. an arc in S(Q) converging to a point
of T , it is enough to require m0(F,Q) constant.

This paper has led to a whole industry of obtaining more explicit, and
much shorter lists of invariants in low dimensions whose constancy guarantees
equisingularity. Many such results have been reported at São Carlos. In [G22],
Gaffney gave a detailed study of the cases C2 → C2 and C2 → C3; his results
were improved by Houston [16]. Jorge Peréz treated map-germs C3 → C3 in
his thesis [18]. In [G38], Gaffney and Vohra dealt with maps Cn → C2. Corank
1 maps Cn → Cn+1 were treated by Houston [17]. In addition, in several of the
equisingularity results (for spaces) below, constancy of the invariants controls
some strata below the top dimension.

In successive papers generalising Teissier’s first equisingularity theorem,
certain themes reappear. In the original argument, the fact that Whitney
conditions hold generically, which Whitney proved geometrically using his
wing lemma, was used. Later Teissier replaced this by his ‘idealistic Bertini
theorem’ [40]. In later papers, Gaffney and collaborators used a transversality
theorem of Kleiman [20] for this purpose. There are also successive versions
of the PSID. In each case, the general outline of the argument is the same:
first we blow up, then examine the geometry. In each case we have X as usual,
h ∈ I (for ideals) or h ∈ M (for modules) on Xt for a dense set of points
t ∈ T , and can conclude the same at all points provided certain multiplicities
are constant.

In 1996 Gaffney [G25] extends Teissier’s results on isolated hypersurface
singularities to the icis case. In fact in [G22] he had already shown that, in this
case, Whitney regularity was equivalent to constancy of the polar invariants
mk(Xt), so it follows from properties of the invariants discussed in §4 that,
for icis germs, the following are equivalent:

(i) (X, T ) is Whitney regular,
(ii) mk(Xt) is constant (0 ≤ k ≤ d)
(iii) for all tangent vectors ∂/∂t to T , ∂F/∂t ∈ mN · JFT

(iv) m(mN · JFT )t is constant.
He also proves m(mN · JMF ) =

∑d
j=0

(
N−1

j

)
md−j(X). The argument in this



18 C. T. C. WALL

paper does not refer directly to a PSID, but such a result applicable to this case
was later obtained in [G29]. Again the Lê-Greuel formula allows restatement
in terms of µ(i).

Three of Gaffney’s major papers appeared in 1999. We referred above to
the introduction and development by Gaffney & Gassler [G28] of the Segre
numbers of an ideal. Next they obtain a PSID. Given a family in our usual
notation and ideal ICOX , if h has germ at t in It for a dense open set of t, and
the Segre numbers sek(It) are constant for 1 ≤ k ≤ d, then h ∈ I. They apply
this version of the PSID to the general hypersurface Z in X = CN × T , and
show that the Wf condition holds, and hence the smooth part of Z is Whitney
regular over T , provided the polar multiplicities m∗(ft) and Segre numbers
se∗(ft) are constant, or equivalently, m∗ and the reduced Euler characteristics
χ∗ are constant. Also in this situation, the codimension 1 strata of Σ(Z) are
Whitney regular over T . Even more surprisingly, the converse holds: if Z
admits a Whitney stratification with T a stratum, then Wf is satisfied.

Gaffney & Kleiman [G29] prove a version of PSID for modules M of finite
codimension: more precisely, the support S of E/M is finite over T . The
required condition is that m(M) is constant. It is also shown in the icis case
in [G29] that A-regularity holds if the Segre numbers se∗(JMF ) are constant:
in fact they state the result in terms of the partial sums ej =

∑r−j
1 sei.

This condition is not necessary for A-regularity, and they offer an interesting
example to show that no condition depending only on the members of the
family can be both necessary and sufficient: the families z2

1 − z3
2 + z2

2tb = 0
are A-regular if b ≥ 2 but not if b = 1, but have the same sets of members.
They also obtain a number of results on Af , which lead them to conjecture
that Af holds when the multiplicity or the Milnor numbers are defined and
constant.

Gaffney and Massey [G30] prove the equivalence (in the complete intersec-
tion case) of:

(i) Wf holds,
(ii) both X and Z are Whitney regular over T , and
(iii) the Xt and Zt all have only isolated singularities and the sequences

µ∗(Xt) and µ∗(Zt) are both constant in t.
If we just know that the Xt and Zt have isolated singularities and µ(Xt) and
µ(Zt) are both constant in t, then Af holds. In [G33] the relation between
Milnor numbers and multiplicities is used to reduce the condition to constancy
of m(m · JM (F, f)).

It is also shown that the conditions Wf and Af usually imply local analytic
triviality if the target dimension of f exceeds 1, so are not of interest in this
case.
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6. Recent work

The pattern of nearly all the equisingularity theorems is to relate failure of
regularity to jumps in dimension of exceptional sets arising in blowups and
thence to non-constancy of invariants such as polar multiplicities. In [G37]
Gaffney gives examples where the invariants previously studied (the Segre
numbers) are constant and yet the dimension jumps. He argues that this is
because strata of different dimensions are making contributions, and so he is
led to a new approach.

The basic idea is as follows. Suppose X as usual and M⊂ E = Op
X a sub-

module. Decompose the support of E/M in X into its irreducible components
Vα and denote by Fk the union of the Vα of codimension ≥ k. We think of
these as defining a stratification, though the Vα do not need to be disjoint, or
even to intersect nicely. A further complication is that rather than using the
components of the support S of E/M in X, we must form the preimage of S
under π, take its components, and define the Vα as the projections of these
back down to X.

Define the hull Hi(M) of M as the set of elements integrally dependent
on M in codimension i: h ∈ Hi(M) ⇐⇒ ∀z 6∈ Fi+1, h ∈ Mz. This can be
refined by considering germs at x ∈ X of both Hi(M) and Fi+1.

Then Fi+1 is the projection to X of the cosupport of ρ(M)R(Hi(M)),
thought of a sheaf of modules on Proj(R(Hi(M))).

For each α, we choose a smooth point zα of Vα and a slice Sα at that point.
Then if Vα has codimension i + 1, the multiplicity m(M|Sα,Hi(M)|Sα, zα)
is defined, and depends only on α. Denote it by mα(M).

The above extends naturally to families p : X → T and modules M ⊂ E
over X , but we cannot necessarily identify the fibre of the cosupport of M
over t ∈ T with the cosupport of the restriction of M to Xt. This point
makes for technical problems, and forces the proofs to go by induction on the
codimension of the Vα.

The formal treatment appears in [G36]. Start with M ⊂ N ⊂ E = Op
X ,

each of generic rank r: remark that though the cosupports of M and M in E
are the same, this is not the case for their cosupports in N . Denote by πX the
projection to X of Proj(R(M)) or similars. Gaffney constructs a sequence

M⊂M = Hd(M) ⊂ Hd−1(M) . . .H0(M) ⊂ E ,
with each Hi(M) integrally closed, the components of the cosupport of
ρ(M)R(Hi(M)) project to sets of codimension at least i + 1, and Hi(M)
is as small as possible subject to this.

Proceed by induction on i (I omit numerous details) with induction basis:
e0(M) := p− r, H0(M) := {h ∈ E | e0(M+ h · OX) = e0(M)}.

Now assume ek−1(M) and a coherent sheaf Hk−1(M) defined; consider the
cosupport CSk of ρ(M) on Proj(R(Hk−1(M))) induced by the inclusion
R(M) ⊂ R(Hk−1(M)); let Ak index the components Cα of codimension k of
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πX(CSk). As part of the inductive construction, there are none of lower codi-
mension; we can also expect these Cα to coincide with the Vα of codimension
k. Now set

ek(M) :=
∑

α∈Ak
m(Cα)m(M|Sα,Hk−1(M)|Sα),

Hk(M) := {h ∈ E | ek(M+ h · OX) = ek(M)},
where Sα is a slice transverse to Cα at a smooth point.

As well as the hulls, this yields new invariants ei(M). An important first
result: if M⊂ N and ei(M) = ei(N ) for 0 ≤ i ≤ d then N ⊂M.

The central result of this work to date is called by Gaffney the ‘multiplicity-
polar’ theorem. Suppose M ⊂ N ⊂ E such that the support C of N/M is
finite over T . Then for each t ∈ T , C ∩ π−1(t) is a finite set of points xi, at
each of which m(Mt,Nt, xi) is defined: define

m(M,N )t :=
∑

x∈C∩π−1(t) m(M,N , x).
Recall that the polar variety Pk(M) is defined as πX(Proj(RM)∩ (X ×L)),
where L is a generic plane of codimension r + k − 1. Then the multiplicity
polar theorem states

m(M,N )t −m(M,N )gen = multtPd(M)−multtPd(N ),
where gen is a generic point of T . A proof in the special case of ideals is
given in [G37]; the general proof appears in [G46]. The proof is motivated by
a review of the definition of Segre numbers of a module in terms of a sequence
of polars of different codimensions.

In his São Carlos paper [G37], Gaffney considers the case of isolated singu-
larities, and deduces the following version of the PSID: for M⊂ N as above,
if h ∈ N and ht ∈ Mt for a dense open set of t, then provided m(M,N )t

is constant, we have h ∈ M. The key point of the proof is to study the
dimensions of the fibres over T of the preimage in Proj(RM) of the locus of
points where M is not free.

He deduces a criterion for Whitney regularity for the general case when the
Xt have isolated singularities and ΣX = T : W-regularity holds if and only
if m(M,N )t + multtPd(N ), with M = mN · JM (Ft) and N = H0(JMz

(F )),
is independent of t. In the relative case when also the Zt have isolated sin-
gularities, the condition for Af to hold is obtained from this by taking M =
JM (F, f) and N = H0(JM (F, f)).

Terry has also used the multiplicity polar theorem to obtain a version of the
PSID in which the multiplicities required to be constant are the mα(Mt) +
multzα

Pi+1(Hi(M)).

As well as its theoretical value, Gaffney shows how to use the theorem
to obtain numerous effective calculations of numerical invariants; in [G39]
for a family of hypersurfaces whose singular locus has dimension 1, or other
constant dimension; also for map-germs C2 → C3; and in [G44] for isolated
singularities; in particular a calculation of MacPherson’s Euler obstruction.
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