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Three-Stage Approach for 2D/3D Diffeomorphic Multimodality Image
Registration with Textural Control\ast 

Ke Chen\dagger and Huan Han\ddagger 

Abstract. Intensity inhomogeneity is a challenging task in image registration. Few past works have addressed
the case of intensity inhomogeneity due to texture noise. To address this difficulty, we propose a
novel three-stage approach for 2D/3D diffeomorphic multimodality image registration. The proposed
approach contains three stages: (1) H - 1+H0+H2 decomposition which decomposes the image pairs
into texture, noise, and smooth component; (2) Blake--Zisserman homogenization which transforms
the geometric features from different modalities into approximately the same modality in terms
of the first-order and second-order edge information; (3) image registration which combines the
homogenized geometric features and mutual information. Based on the proposed approach, the
greedy matching for multimodality image registration is discussed and a coarse-to-fine algorithm is
also proposed. Furthermore, several numerical tests are performed to validate the efficiency of the
proposed approach.
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1. Introduction. Image registration is used to search for a spatial transformation such
that the deformed image looks like the target image as much as possible. In mathemat-
ics, it is formulated in the following way. Given a bounded domain \Omega \subset \BbbR d(d = 2,3) with
Lipschitz boundary \partial \Omega and two functions/images T,R : \Omega \rightarrow \BbbR , the goal of diffeomorphic
image registration is to search for a bijective deformation \bfitvarphi : \Omega \rightarrow \Omega such that the de-
formed floating image T \circ \bfitvarphi (\cdot ) looks like the target image R(\cdot ) as much as possible. For
this purpose, the framework for the 2D/3D diffeomorphic image registration is formulated as
follows:

min
\bfu \in \scrN 

\xi \scrD (T \circ \bfitvarphi (\cdot ),R(\cdot )) +\varpi \scrS (\bfu ),(1.1)
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THREE-STAGE MULTIMODALITY REGISTRATION 1691

where \xi ,\varpi > 0, \scrD (\cdot , \cdot ) is the fidelity, and the regularization \scrS (\bfu ) provides some prior estimate
on \bfu ; here and in what follows, \bfitvarphi (\bfx ) = \bfx + \bfu (\bfx ), and \scrN is a set which enforces the model
(1.1) to produce diffeomorphic deformation.

Concerning the regularization \scrS (\bfu ), different applications may adopt different forms.
Many types of \scrS (\bfu ) have been proposed, for instance, total variation (TV) [8], mean cur-
vature [9], Gaussian curvature [26], and fractional-order TV \alpha -L2 [52]. For the fidelity \scrD (\cdot , \cdot ),
one may also have different choices [3, 7, 21, 22, 31, 39, 40] according to whether the image
pair T (\cdot ) and R(\cdot ) are produced by the same imaging technique. Generally, if T (\cdot ) and R(\cdot )
are of the same type (i.e., CT-CT, MRI-MRI), it is called monomodality image registration.
In this case, the sum of squared difference (SSD) [3, 21, 22] is the most popular fidelity for
image registration because of its robustness and simple structure. For the case that T (\cdot )
and R(\cdot ) are of different types of images (i.e., CT-MRI, PET-CT), it is named multimodality
image registration. In this case, the intensity difference based SSD no longer works, since
the intensity in different modalities is of different physical meanings. To address this prob-
lem, some other fidelities are proposed to characterize the similarity of multimodality image
pairs, for example, mutual information (MI) [17], the maximum correlation coefficient (MCC)
[7], the normalized cross-correlation (NCC) [31], and the normalized gradient fields (NGF)
[17]. These fidelities can be classified into two categories: geometric feature based fidelity
(GFBF) and intensity based fidelity (IBF). For GFBF, the main advantage is incarnated in
registration for images with dominant geometric features. The pioneering work for GFBF
is the NGF proposed by Droske and Rumpf [14], who modeled the fidelity by the SSD of
the normalized gradients for the image pair. Later on, Haber and Modersitzki [17] improved
the NFG by replacing the SSD in [14] with cosine of the normalized gradients for the image
pair. Also based on gradient information, Wirth [44] introduced a penalty term to enforce the
registration of edges in the segmentation-registration joint problem. As an improvement for
gradient-based registration, Theljani and Chen [42] also proposed a new normalized gradient
field (NNGF). These works are modeled by using the gradient information. As we all know,
due to noise and data imperfection/inconsistency (for example, intensity inhomogeneity for
images), it is expected to extract consistent geometric information by a model rather than
simply scaling the gradients information. This is specifically important for images whose
gradients are not prominent or second-order information is equally useful, for example, the
multimodality registration with intensity inhomogeneity. In addition, NGF and NNGF pay
attention to the deformation for boundaries, and the lack of control for the small scale feature
(i.e., texture) may lead to an error in matching for these small scale features. In fact, texture
is an important image feature and viewed as a set of primitive texels in some regular or re-
peated pattern. It is a small scale feature which is modeled as an oscillating component (see
section 2.1 for a review of the modeling of texture) and easily destroyed in image processing
[34]. For this reason, the registration for textures is challenging. To our knowledge, there
seem to be few results for this challenge. This will be a problem to be addressed in this paper.
Concerning the IBF, the advantage focuses on the characterization of the global intensity cor-
relation between the image pairs. The pioneering work for IBF comes from Maes et al. [29],
who modeled the fidelity using MI between the image pairs. Since then, many other fidelities
for multimodality image registration have been introduced, for example, MCC [7] and NCC
[31]. Though there are many different fidelities, MI is considered the state-of-the-art fidelity
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1692 KE CHEN AND HUAN HAN

for multimodality image registration, although it has a number of well-known disadvantages.
The main disadvantage of the MI based registration model lies in the difficulty of estimating
the probability density function and the lack of local geometric feature characterization. To
improve MI, some new fidelities [35] which combine MI and gradient information are proposed.
For these models, the main drawback is the lack of ability to address image registration with
intensity inhomogeneity, because the gradient information does not work well for intensity
inhomogeneity.

In addition to intensity inhomogeneity and textural control, physical mesh folding [53] is
also a key challenge for multimodality image registration. As we know, mesh folding implies
the volume vanishing of particles after transformation. This contradicts the physical principle.
Therefore, eliminating mesh folding is a key challenge for image registration, especially for
medical image registration. Under this framework, deformation \bfitvarphi is expected to be a bijection.
As we all know, the inverse function theorem [15] provides a sufficient condition for this goal.
Generally, it is stated as follows.

Theorem 1.1 (inverse function theorem). Suppose \Omega is a simply connected domain and
\bfitvarphi \in C1(\Omega ); then \bfitvarphi : \Omega \rightarrow \Omega is a local bijection (the inverse \bfitvarphi  - 1 \in C1(\Omega ) is also a local
bijection) if and only if det(\nabla \bfitvarphi (\bfx )) \not = 0 for any \bfx \in \Omega .

In physical view, det(\nabla \bfitvarphi (\bfx )) denotes the volume stretching rate for the transformation
\bfitvarphi : \Omega \rightarrow \Omega . Stretching rate is positive. Hence, the condition det(\nabla \bfitvarphi (\bfx )) \not = 0 in Theo-
rem 1.1 is replaced by det(\nabla \bfitvarphi (\bfx )) > 0 in this article. In addition, by additionally giv-
ing the boundary condition \bfitvarphi (\bfx ) = \bfx on \partial \Omega and defining \bfitvarphi (\bfx ) = \bfx if \bfx \in \BbbR d \setminus \Omega , then
\bfitvarphi \in C1(\BbbR d) with lim\| \bfx \| \rightarrow +\infty \| \bfitvarphi (\bfx )\| = +\infty . It follows from the corollary on page 200 in

[45] that \bfitvarphi : \BbbR d \rightarrow \BbbR d is a C1 global diffeomorphism. That is, the local bijection in The-
orem 1.1 can be replaced by global bijection if the condition \bfitvarphi (\bfx ) = \bfx on \partial \Omega is added.
Under this framework, some diffeomorphic image registration models have been proposed
[27, 11, 20, 21, 24, 28, 36, 37, 46, 49, 50]. These models can be mainly classified into three cat-
egories: (i) using quasi conformal/conformal theory [27, 20, 21, 24, 37, 46, 49, 50] to control the
Beltrami coefficient; (ii) constraining the solution to the set which ensures det(\nabla \bfitvarphi (\bfx ))> 0 for
each \bfx \in \Omega [53]; (iii) introducing the stored energy function of an Ogden material [11]. For the
first choice, Chun and Lui [27] introduced the quasi-conformal theory to control the mesh fold-
ing. Following this work, several models were proposed to improve the quasi-conformal model
[48]. Particularly, Han, Wang, and Zhang also gave a series of 2D/3D diffeomorphic image
registration models and algorithms by restricting \bfu into the 2D/3D conformal set [20, 21, 24].
For the second choice, Zhang, Chen, and Yu [53] proposed a diffeomorphic image registration
model by restricting the deformation \bfitvarphi into a set which ensures det(\nabla \bfitvarphi (\bfx )) > 0 for each
\bfx \in \Omega . For the third choice, Debroux, Le Guyader, and Vese [11] established a framework of
variational methods and hyperelasticity by viewing the shapes to be matched as Ogden mate-
rials. The above works for mesh folding mainly focus on the monomodality image registration
in which SSD acts as fidelity. To our knowledge, there seem to have been only a few works
addressing mesh folding for multimodality, for example, [13, 14, 51]. This will be a problem to
be addressed in this paper. Though more restrictive compared with quasi-conformal mappings,
the 2D/3D conformal set [21] is still selected as the constraint in this paper for the following
reasons: it preserves the topological structure of tissue and provides a much simpler constraint
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THREE-STAGE MULTIMODALITY REGISTRATION 1693

for diffeomorphic mappings, which further makes possible the mathematical analysis of the
proposed model (i.e., address the greedy matching [23, 24]).

To address the mesh folding, intensity inhomogeneity, and small feature (i.e., texture) con-
trol for multimodality image registration, we propose a novel three-stage approach for 2D/3D
diffeomorphic multimodality image registration (see section 2 for details). The contribution
of this paper is as follows:

\bullet Propose a three-stage approach for 2D/3D diffeomorphic multimodality image reg-
istration with intensity inhomogeneity; the proposed approach contains three parts:
(I) H - 1 + H0 + H2 decomposition which decomposes the image pairs into texture,
noise, and smooth component. Note that throughout this paper, H0 \triangleq L2 denotes the
Banach space L2. (II) Blake--Zisserman (B-Z) homogenization which transforms the
geometric features from different modalities into the same modality based on texture
and smooth component. (III) Image registration which combines the homogenized
geometric features and MI.

\bullet Introduce textural control to address the registration for small scale features inside
the boundary.

\bullet Discuss greedy matching for the proposed model to provide a more accurate solution.
\bullet Propose a coarse-to-fine algorithm for greedy matching.

Remark 1.2. To make the numerical implementation easier, the proposed three-stage
approach is purely sequential to avoid the coupled terms for different stages. In fact, one can
also consider some joint works for these three stages, for example, merging Stage 1 and Stage
2 to process jointly the decomposition steps and noticeable characteristic extraction.

The rest of this paper is organized as follows. In section 2, a three-stage approach for
2D/3D diffeomorphic multimodality image registration is proposed and the numerical imple-
mentation is also discussed. In section 3, greedy matching for the proposed multimodality
image registration model is discussed and a coarse-to-fine algorithm for solving the greedy
problem is proposed. In section 4, several numerical tests and comparisons are performed to
show the efficiency of the proposed algorithm. Finally, we conclude our paper and list some
problems for future research in section 5.

2. Three-stage approach for 2D/3D diffeomorphic multimodality image registration.
To address the intensity inhomogeneity, mesh folding, and textural control in 2D/3D multi-
modality image registration, we propose a novel three-stage approach for 2D/3D diffeomorphic
multimodality image registration. The proposed approach contains image decomposition, B-
Z homogenization, and image registration, which will be introduced in the following three
subsections, respectively.

2.1. \bfitH  - \bfone +\bfitH \bfzero +\bfitH \bftwo decomposition. Decomposition of an image into smooth, texture,
and noisy parts was much studied about 20 years ago based on the seminal work of Meyer [30],
but there are few follow-up works to extend the ideas to problems beyond a static image. For
image decomposition, it is usually modeled as an inverse problem: given an observed image
U0 : \Omega \rightarrow \BbbR , find another image U : \Omega \rightarrow \BbbR and feature V : \Omega \rightarrow \BbbR such that U is a cartoon of U0

and V represents the specific small scale feature. That is, U0 =U+V . Generally, V represents
noise (random pattern) or texture (oscillate feature). For the case V representing noise, it is
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1694 KE CHEN AND HUAN HAN

not kept. This is so-called noise removal; we refer readers to [6, 33, 38] for details. For the case
of V representing texture, it is modeled as an oscillating component for the image. Concerning
this topic, the pioneering works were done independently by Meyer [30] and Mumford and
Gidas [32], who modeled the texture by introducing the distribution div(L\infty (\Omega ,\BbbR d)). However,
the convex model in [30, 32] cannot be solved directly since the associated Euler--Lagrange
equation with respect to U cannot be expressed directly. To overcome this difficulty, Vese
and Osher [43] proposed a practical method by adopting div(Lp(\Omega ,\BbbR d))(p\geq 1) to model the
texture. Particularly, by taking p = 2, the model in [43] induced a classical model which
modeled the texture via H - 1(\Omega ) = div(L2(\Omega ,\BbbR d)). Motivated by the above works, Shen [41]
proposed an H - 1 +H0 +H1 model to decompose the image into texture, noise, and smooth
component. Note that in [41], only the first-order feature and the texture are included. To
additionally introduce the second-order feature which will be useful for latter modeling, here
we extend the model in [41] to the following H - 1 +H0 +H2 decomposition model:

min
U\in H2(\Omega ),V \in H - 1(\Omega )

\scrE (U,V ),(2.1)

where \scrE (U,V ) = \alpha 1

\int 
\Omega | \nabla 2U | 2d\bfx +\alpha 2

\int 
\Omega | \nabla U | 2d\bfx +\mu 

\int 
\Omega | \nabla ( - \bigtriangleup ) - 1V | 2d\bfx +\lambda 

\int 
\Omega (U0 - U - V )2d\bfx ,

( - \bigtriangleup ) - 1 is the inverse of the negative Laplacian operator, and constants \alpha 1, \alpha 2, \mu ,\lambda > 0, and
images U0,U,V : \Omega \rightarrow \BbbR are the original image, smooth component, and texture, respectively.

The minimization problem (2.1) involves the Hessian matrix of U denoted by \nabla 2U . It
appears like an H - 1 +H0 +H1 +H2 model, establishing its existence and uniqueness can
be done in a similar way to the proof of [41]. In particular, we highlight two key steps of
the proof for (2.1): (1) show the weak lower semicontinuity of \scrE (U,V ); (2) show the strict
convexity of \scrE (U,V ). Here we do not repeat it. The main challenge for the model (2.1) is
the texture term

\int 
\Omega | \nabla ( - \bigtriangleup ) - 1V | 2d\bfx . This term forces the texture component V to be an

oscillatory function. Therefore, directly solving the H - 1+H0+H2 model (2.1) is faced with
the difficulty of numerical instability. To address this difficulty, we introduce a new variable
\phi to relax ( - \bigtriangleup ) - 1V . That is,  - \Delta \phi \approx V . Based on this relaxation, (2.1) is reformulated into
the following relaxed form:

min
U\in \scrH ,V \in H1

0 (\Omega ),\phi \in H2
0 (\Omega )

\scrF (U,V,\phi ),(2.2)

where \scrF (U,V,\phi ) = \alpha 1

\int 
\Omega | \nabla 2U | 2d\bfx + \alpha 2

\int 
\Omega | \nabla U | 2d\bfx + \mu 

\int 
\Omega | \nabla \phi | 2d\bfx + \lambda 

\int 
\Omega (U0  - U  - V )2d\bfx +

\beta 
\int 
\Omega | V +\Delta \phi | 2d\bfx , \scrH = \{ U \in H2(\Omega ) :U | \partial \Omega =U0,

\partial lU
\partial xl

i
| \partial \Omega = 0, l= 1,2; i= 1, . . . , d\} , \beta > 0.

Remark 2.1. Intuitively, (2.1) and (2.2) are equivalent if \beta is large enough (i.e., \beta \rightarrow +\infty ).
Therefore, by giving some specific \beta , (U\beta , V\beta ) produced by (2.2) is only an approximate
solution of H - 1 +H0 +H2 model (2.1). In addition, in the case where the observed image
satisfies U0| \partial \Omega = 0, \scrH can be degenerated to H2

0 (\Omega ). To avoid too complex discussions of
the theoretical analysis of model (2.2), U is restricted into the space H2

0 (\Omega ) in the following
part for theoretical analysis. In fact, for the case where the observed image does not satisfy
U0| \partial \Omega = 0, one can extend the region \Omega to some larger region \widetilde \Omega (\Omega \subset \widetilde \Omega ) with U0 : \widetilde \Omega \rightarrow \BbbR such
that U0| \partial \widetilde \Omega = 0. By replacing \Omega with \widetilde \Omega in (2.2), the specific problem is transformed to the
case U0| \partial \Omega = 0 which will be discussed in the following part.
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THREE-STAGE MULTIMODALITY REGISTRATION 1695

Letting (U,V,\phi ) be the solution of model (2.2), then (U,V,\phi ) satisfies the following partial
differential equation (PDE) in the sense of distribution:

(2.3)

\left\{     
\alpha 1\Delta 

2U  - \alpha 2\Delta U  - \lambda (U0  - U  - V ) = 0,

 - \lambda (U0  - U  - V ) + \beta (V +\Delta \phi ) = 0,

 - \mu \Delta \phi + \beta \Delta (V +\Delta \phi ) = 0,

with boundary condition U | \partial \Omega = U0| \partial \Omega = 0, \partial lU
\partial xl

i
| \partial \Omega = 0 (l = 1,2; i = 1, . . . , d), V | \partial \Omega = 0,

\phi | \partial \Omega = 0.
Eliminating \phi using the second and the third equation in (2.3) leads to the following

equivalent PDE:

(2.4)

\Biggl\{ 
\alpha 1\Delta 

2U  - \alpha 2\Delta U  - \lambda (U0  - U  - V ) = 0,

 - \lambda \Delta V + \gamma V  - \theta (U0  - U) + \lambda \Delta (U0  - U) = 0,

where \theta = \mu \lambda 
\beta , \gamma = \mu + \theta .

Giving some initial guess U0 and V 0, (2.4) may be solved by the following alternating
minimization method (AMM):

(2.5)

\Biggl\{ 
\alpha 1\Delta 

2Uk+1  - \alpha 2\Delta U
k+1  - \lambda (U0  - Uk+1  - V k) = 0,

 - \lambda \Delta V k+1 + \gamma V k+1  - \theta (U0  - Uk+1) + \lambda \Delta (U0  - Uk+1) = 0,

where k= 0,1,2, . . ..
Furthermore, by (2.3) and (2.4), AMM (2.5) is equivalent to the following three subprob-

lems:

Uk+1 = argmin
U\in H2

0 (\Omega )
\scrF (U,V k, \phi k),(2.6)

V k+1 = argmin
V \in H1

0 (\Omega )
\scrF (Uk+1, V,\phi k),(2.7)

\phi k+1 = argmin
\phi \in H2

0 (\Omega )
\scrF (Uk+1, V k+1, \phi ).(2.8)

Based on (2.6)--(2.8), we give the convergence results of the AMM (2.5).

Theorem 2.2. The sequence \{ (Uk, V k)\} induced by AMM (2.5) converges (strongly in
L2(\Omega )\times L2(\Omega ) and weakly in H2

0 (\Omega )\times H1
0 (\Omega )) to the solution of (2.4) as k\rightarrow +\infty .

Proof. Giving a small number \varepsilon > 0 and setting some perturbation \varepsilon \~U \in H2
0 (\Omega ) along U

in the subproblem (2.6), then there holds

d\scrF (Uk+1 + \varepsilon \~U,V k, \phi k)

d\varepsilon 
| \varepsilon =0

(2.9)

= 2\alpha 1

\int 
\Omega 
\nabla 2Uk+1 \cdot \nabla 2 \~Ud\bfx + 2\alpha 2

\int 
\Omega 
\nabla Uk+1 \cdot \nabla \~Ud\bfx  - 2\lambda 

\int 
\Omega 
(U0  - Uk+1  - V k) \cdot \~Ud\bfx = 0

for any \~U \in H2
0 (\Omega ).
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1696 KE CHEN AND HUAN HAN

Taking \~U =Uk  - Uk+1 in (2.9), then we have that

\~L1 = \alpha 1

\int 
\Omega 
\nabla 2Uk+1 \cdot \nabla 2(Uk  - Uk+1)d\bfx + \alpha 2

\int 
\Omega 
\nabla Uk+1 \cdot \nabla (Uk  - Uk+1)d\bfx 

 - \lambda 

\int 
\Omega 
(U0  - Uk+1  - V k) \cdot (Uk  - Uk+1)d\bfx = 0.(2.10)

In addition, there holds

\scrF (Uk, V k, \phi k) - \scrF (Uk+1, V k, \phi k) = \alpha 1\| \nabla 2Uk  - \nabla 2Uk+1\| 2L2(\Omega ) + \alpha 2\| \nabla Uk  - \nabla Uk+1\| 2L2(\Omega )

+ \lambda \| Uk  - Uk+1\| 2L2(\Omega ) +
\~L1 \geq c1\| Uk  - Uk+1\| 2H2

0 (\Omega )(2.11)

for some c1 =min(\alpha 1, \alpha 2, \lambda ). Note that here we use the fact \~L1 = 0 in (2.10).
In a similar way, one can also know that

\scrF (Uk+1, V k, \phi k) - \scrF (Uk+1, V k+1, \phi k) = (\lambda + \beta )\| V k  - V k+1\| 2L2(\Omega ) \geq c2\| V k  - V k+1\| 2L2(\Omega )

(2.12)

and

\scrF (Uk+1, V k+1, \phi k) - \scrF (Uk+1, V k+1, \phi k+1)

= \mu \| \nabla \phi k  - \nabla \phi k+1\| 2L2(\Omega ) + \beta \| \Delta \phi k  - \Delta \phi k+1\| 2L2(\Omega )

\geq c3\| \phi k  - \phi k+1\| 2H1
0 (\Omega ) + \beta \| \Delta \phi k  - \Delta \phi k+1\| 2L2(\Omega )(2.13)

for some c2, c3 > 0.
Following (2.11), (2.12), and (2.13), we obtain that

ak  - ak+1\triangleq \scrF (Uk, V k, \phi k) - \scrF (Uk+1, V k+1, \phi k+1)

\geq c1\| Uk  - Uk+1\| 2H2
0 (\Omega ) + c2\| V k  - V k+1\| 2L2(\Omega ) + c3\| \phi k  - \phi k+1\| 2H1

0 (\Omega )

+ \beta \| \Delta \phi k  - \Delta \phi k+1\| 2L2(\Omega ),(2.14)

where ak \triangleq \scrF (Uk, V k, \phi k)\in \BbbR .
It follows from (2.14) that \{ ak\} \infty k=0 is a decreasing sequence with lower bound. Therefore,

there exists a\in \BbbR such that limk\rightarrow \infty ak = a and ak \geq a \forall k \in \BbbN . This implies

\| Uk  - Uk+1\| H2
0 (\Omega )

k - \rightarrow 0, \| V k  - V k+1\| L2(\Omega )
k - \rightarrow 0(2.15)

and

\| \phi k  - \phi k+1\| H1
0 (\Omega )

k - \rightarrow 0, \| \bigtriangleup \phi k  - \bigtriangleup \phi k+1\| L2(\Omega )
k - \rightarrow 0(2.16)

as k goes to infinity.
By (2.9), there holds\int 

\Omega 
[\alpha 1\bigtriangleup 2Uk+1  - \alpha 2\bigtriangleup Uk+1  - \lambda (U0  - Uk+1  - V k)] \~Ud\bfx = 0,
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THREE-STAGE MULTIMODALITY REGISTRATION 1697

and it is reformulated as\int 
\Omega 
[\alpha 1\bigtriangleup 2Uk+1  - \alpha 2\bigtriangleup Uk+1  - \lambda (U0  - Uk+1  - V k+1)] \~Ud\bfx =

\int 
\Omega 
\lambda (V k+1  - V k) \~Ud\bfx .(2.17)

By using the Holder's inequality and (2.15), we have that\bigm| \bigm| \bigm| \bigm| \int 
\Omega 
(V k+1  - V k)] \~Ud\bfx 

\bigm| \bigm| \bigm| \bigm| \leq \| V k+1  - V k\| L2(\Omega )\| \~U\| L2(\Omega )
k - \rightarrow 0,(2.18)

as k goes to infinity.
It follows from (2.17) and (2.18) that \alpha 1\bigtriangleup 2Uk+1 - \alpha 2\bigtriangleup Uk+1 - \lambda (U0 - Uk+1 - V k+1) goes

to 0 as k\rightarrow +\infty , in the sense of distribution.
Giving a small number \varepsilon > 0 and setting some perturbation \varepsilon \~V \in H1

0 (\Omega ), \varepsilon 
\~\phi \in H2

0 (\Omega )
along V and \phi in the subproblem (2.7) and (2.8), respectively, there holds

d\scrF (Uk+1, V k+1 + \varepsilon \~V ,\phi k)

d\varepsilon 
| \varepsilon =0

= 2

\int 
\Omega 
[ - \lambda (U0  - Uk+1  - V k+1) + \beta (V k+1 +\Delta \phi k)] \~V d\bfx = 0(2.19)

and

d\scrF (Uk+1, V k+1, \phi k+1 + \varepsilon \~\phi )

d\varepsilon 
| \varepsilon =0

= 2\mu 

\int 
\Omega 
\nabla \phi k+1 \cdot \nabla \~\phi d\bfx + 2\beta 

\int 
\Omega 
(V k+1 +\Delta \phi k+1)\Delta \~\phi d\bfx = 0(2.20)

for any \~V \in H1
0 (\Omega ),

\~\phi \in H2
0 (\Omega ).

(2.19) is reformulated as

\int 
\Omega 
[ - \lambda (U0  - Uk+1  - V k+1) + \beta (V k+1 +\Delta \phi k+1)] \~V d\bfx = \beta 

\int 
\Omega 
(\bigtriangleup \phi k+1  - \bigtriangleup \phi k) \cdot \~V d\bfx k - \rightarrow 0,

(2.21)

because | 
\int 
\Omega (\bigtriangleup \phi k+1  - \Delta \phi k) \cdot \~V d\bfx | \leq \| \bigtriangleup \phi k+1  - \bigtriangleup \phi k\| L2(\Omega )\| \~V \| L2(\Omega )

k - \rightarrow 0 as k goes to infinity.
That is,

 - \lambda (U0  - Uk+1  - V k+1) + \beta (V k+1 +\Delta \phi k+1)\rightarrow 0,(2.22)

as k goes to infinity in the sense of distribution.
By (2.14), \alpha 1\| \nabla 2Uk\| 2L2(\Omega ) + \alpha 1\| \nabla Uk\| 2L2(\Omega ) + \mu \| \nabla \phi k\| 2L2(\Omega ) \leq \scrF (Uk, V k, \phi k) \leq \scrF (U0, V 0,

\phi 0) \triangleq \~M . This concludes Uk (or \phi k) is bounded in H2
0 (\Omega ) (or H1

0 (\Omega )) and thus compact
in L2(\Omega ) [15], we can extract a subsequence of Uk (or \phi k) which is labeled by Unk (or \phi nk)
such that Unk (or \phi nk) strongly converges to some U \in L2(\Omega ) (or \phi \in L2(\Omega )), and we may
also assume \nabla 2U,\nabla U (or \nabla 2\phi ,\nabla \phi ) are the weak limits of \nabla 2Unk ,\nabla Unk (or \nabla 2\phi nk ,\nabla \phi nk),
respectively.
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1698 KE CHEN AND HUAN HAN

Based on these notations, from (2.22), there holds

V k+1 =
\lambda (U0  - Uk+1) - \beta \bigtriangleup \phi k+1

\lambda + \beta 

k - \rightarrow \lambda (U0  - U) - \beta \bigtriangleup \phi 
\lambda + \beta 

(2.23)

in the sense of distribution.
That is, there exists some V = \lambda (U0 - U) - \beta \bigtriangleup \phi 

\lambda +\beta \in L2(\Omega ) such that V k+1 k - \rightarrow V , which implies

 - \lambda (U0  - U  - V ) + \beta (\bigtriangleup \phi + V ) = 0.(2.24)

Furthermore, we claim that

\alpha 1\bigtriangleup 2U  - \alpha 2\bigtriangleup U  - \lambda (U0  - U  - V ) = 0.(2.25)

To show the claim (2.25), we define \scrA (\psi ) = \alpha 1\bigtriangleup 2\psi  - \alpha 2\bigtriangleup \psi and \scrT = \lambda (U0  - U  - V ). As
\scrA is the derivative of a convex functional, it is a monotone operator and we can write

(\scrA (Unk) - \scrA (\psi ),Unk  - \psi )\geq 0(2.26)

for any \psi \in H2
0 (\Omega ).

As k\rightarrow +\infty ,

(\scrA (\psi ),Unk) =

\int 
\Omega 
\alpha 1\nabla 2\psi \cdot \nabla 2Unk + \alpha 2\nabla \psi \cdot \nabla Unkd\bfx 

\rightarrow 
\int 
\Omega 
\alpha 1\nabla 2\psi \cdot \nabla 2U + \alpha 2\nabla \psi \cdot \nabla Ud\bfx = (\scrA (\psi ),U),(2.27)

as \nabla 2Unk and \nabla Unk converge to \nabla 2U and \nabla U , weakly in L2(\Omega ), respectively.
Furthermore, by the fact that \alpha 1\bigtriangleup 2Uk+1  - \alpha 2\bigtriangleup Uk+1  - \lambda (U0  - Uk+1  - V k+1) goes to 0,

we have

(\scrA (Unk),Unk) = \lambda 

\int 
\Omega 
(U0  - Unk  - V nk)Unkd\bfx + \lambda 

\int 
\Omega 
(V nk  - V nk - 1)Unkd\bfx (2.28)

goes to (\scrT ,U) using the strong convergence of Unk .
By (2.26)--(2.28), we have that

(\scrT  - \scrA (\psi ),U  - \psi )\geq 0.(2.29)

Taking \psi =U + \tau \chi for any \tau > 0 and any \chi \in C\infty 
c (\Omega ), (2.29) is reformulated as

(\scrT  - \scrA (U + \tau \chi ), \chi )\leq 0.(2.30)

That is,

(\scrT , \chi )\leq (\scrA (U), \chi ).(2.31)

Therefore, \scrT =\scrA (U), which concludes the claim (2.25).
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THREE-STAGE MULTIMODALITY REGISTRATION 1699

In a similar way, one can show

\mu \bigtriangleup \phi + \beta \bigtriangleup (V +\Delta \phi ) = 0.(2.32)

By (2.24) and (2.25), we know (U,V ) is the solution of (2.3) and (2.4).

The first equation in (2.5) is a fourth-order PDE whose numerical implementation is
faced with numerical instability. To overcome this difficulty, we introduce a new variable
\psi k+1 = - \Delta Uk+1. (2.5) is approximated by the alternating minimization method

(2.33)

\left\{     
 - \alpha 1\Delta \psi 

k+1 + \alpha 2\psi 
k+1 = \lambda (U0  - Uk  - V k),

 - \Delta Uk+1 =\psi k+1,

 - \lambda \Delta V k+1 + \gamma V k+1 = \theta (U0  - Uk+1) - \lambda \Delta (U0  - Uk+1),

by giving some initial guess U0, V 0,\psi 0 with k = 0,1,2, . . ., and the three PDEs in (2.33) are
all of the type  - \gamma \Delta U(\bfx ) + e(\bfx )U(\bfx ) = f(\bfx ) whose numerical implementation can be realized
as in Appendix C.

Taking the Barbara image (Figure 1(a)) as an example, where we set Figure 1(a) to be
U0, the smooth component U(\cdot ) and texture V (\cdot ) produced by model (2.33) are given in
Figures 1(b) and 1(c), respectively. One can see that the proposed model (2.33) is efficient in
texture extraction. In addition, to compare the proposed model (2.33) with theH - 1+H0+H1

model in [41], we perform the same numerical test on theH - 1+H0+H1 model [41]. The results
are given in Figures 1(e)--1(g). By comparing the peak signal to noise ratio (PSNR) [19], we see
that the proposed model achieves nearly the same smooth result of the H - 1+H0+H1 model.
Note that, compared with the H - 1+H0+H1 model [41], the proposed H - 1+H0+H2 model
additionally provides the possibility to extract the second-order feature. This is important for
the case where the second-order feature also plays a dominant role.

(a) (b) (c) (d)

(e) (f) (g)

Figure 1. (a) U0(\cdot ); (b) smooth component U(\cdot ) by (2.33), PSNR = 43.73; (c) texture V (\cdot ) by (2.33); (d)
homogenized texture W (\cdot ) by (2.33); (e) smooth component U(\cdot ) by Shen's model [41], PSNR = 42.16; (f)
texture V (\cdot ) by Shen's model [41]; (g) homogenized texture W (\cdot ) of V (\cdot ) in Shen's model [41].
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1700 KE CHEN AND HUAN HAN

Setting U0 = T and U0 = R in (2.33), one can obtain the smooth component-texture
(UT , VT ), (UR, VR) of T and R, respectively. Note these two groups of images will be set as
the initial input in the next stage.

2.2. Blake--Zisserman homogenization. To design the fidelity for multimodality image
registration, we have a choice of statistic ones [29] and NGF [17, 42] types. Due to noise
and intensity inhomogeneity, we wish to extract consistent geometric information by a model
rather than simply scaling their gradients. This is specifically important for images whose
gradients are not prominent or second-order information is equally useful. In addition, NGF
[17] and NNGF [42] pay attention to the deformation for boundaries. The lack of control
for the small scale features (i.e., texture) may lead to error in matching for these small scale
features. To address these difficulties, our solution is modeling the geometric feature by the
following B-Z [1, 4, 5, 47] type functional:

min
(Z,\omega ,W )\in [H1(\Omega )]3

\scrB (Z,\omega ,W ),(2.34)

where \scrB (Z,\omega ,W ) =\scrF 1(Z)+\scrF 2(\omega )+\scrF 3(W ), \scrF 1(Z) = \tau 1
\int 
\Omega (Z - 1)2| \nabla 2U | 2d\bfx +\theta 1

\int 
\Omega \varepsilon | \nabla Z| 2+

1
4\varepsilon Z

2d\bfx , \scrF 2(\omega ) = \tau 2
\int 
\Omega (\omega  - 1)2| \nabla U | 2d\bfx + \theta 2

\int 
\Omega \varepsilon | \nabla \omega | 2 + 1

4\varepsilon \omega 
2d\bfx , \scrF 3(W ) = \tau 3

\int 
\Omega (W  - 1)2

| \nabla V | 2d\bfx +\theta 3
\int 
\Omega \varepsilon | \nabla W | 2+ 1

4\varepsilon W
2d\bfx , \tau i, \theta i > 0 (i= 1,2,3), and \varepsilon > 0 is a small number. Note that

here \omega ,Z,W represent the homogenized first-order discontinuity, second-order discontinuity,
and texture feature for the original image U0, respectively.

Remark 2.3. Three comments are due for (2.34):
(i). One can notice that in the minimization problem (2.34), the first term in \scrF i(\Psi ) (\Psi =

Z,\omega ,W ; i = 1,2,3) enforces the final result \Psi to be close to 1 at the points \bfx where
the geometric features are discontinuous, and the second term in \scrF i(\Psi ) enforces \Psi to
be close to 0 at the points \bfx in flat region. In this way, the geometric features are
uniformly rescaled into the same type even if T (\cdot ) and R(\cdot ) are of different modalities.
This is the main motivation for us to introduce the B-Z functional in multimodality
image registration.

(ii). The reason for introducing the H2-structure in Stage 1 is the necessity of extracting
the second-order discontinuity features in Stage 2. It is used only for the purpose of
smoothing the image (similar to the convolution operation). Though it may induce
some blur (e.g., Figure 1(b)), it has little influence on extracting the discontinuous
feature.

(iii). One can notice that V \in L2(\Omega ) in Stage 1, but \nabla V is used in (2.34) to extract the edge
of texture. Here we want to emphasis that V in Stage 2 is the smooth version (i.e.,
texture convolutes some Gaussian kernel) of texture V in Stage 1. This smoothing
process may help to extend the width of some thin texture and capture the texture
with very thin thickness.

Let (Z,\omega ,W ) be the solution of (2.34). Then by the variational principle [15], there holds

(2.35)

\left\{     
\scrA 1Z = 4\varepsilon \tau 1| \nabla 2U | 2,
\scrA 2\omega = 4\varepsilon \tau 2| \nabla U | 2,
\scrA 3W = 4\varepsilon \tau 3| \nabla V | 2,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THREE-STAGE MULTIMODALITY REGISTRATION 1701

where \scrA 1 = - 4\varepsilon 2\theta 1\Delta +(4\varepsilon \tau 1| \nabla 2U | 2+\theta 1), \scrA 2 = - 4\varepsilon 2\theta 2\Delta +(4\varepsilon \tau 2| \nabla U | 2+\theta 2), \scrA 3 = - 4\varepsilon 2\theta 3\Delta +
(4\varepsilon \tau 3| \nabla V | 2 + \theta 3).

Concerning the existence and uniqueness of the solution to (2.34) and (2.35), we have the
following results.

Theorem 2.4. Assume ess sup\bfx \in \Omega | \nabla 2U(\bfx )| 2 < \=M <+\infty , ess sup\bfx \in \Omega | \nabla U(\bfx )| 2 < \=M <+\infty ,
ess sup\bfx \in \Omega | \nabla V (\bfx )| 2 < \=M <+\infty for some M > 0; then there exists a unique solution for PDE
(2.35).

Proof. Define \=\scrF 1(Z, \~Z) =
\int 
\Omega 4\theta 1\varepsilon 

2\nabla Z \cdot \nabla \~Zd\bfx +
\int 
\Omega [4\varepsilon \tau 1| \nabla 2U | 2 + \theta 1]Z \cdot \~Zd\bfx ; then there

holds

| \=\scrF 1(Z, \~Z)| \leq 4\theta 1\varepsilon 
2\| \nabla Z\| L2(\Omega )\| \nabla \~Z\| L2(\Omega ) + [4\varepsilon \=M\tau 1 + \theta 1]\| Z\| L2(\Omega )\| \~Z\| L2(\Omega )

\leq C1\| Z\| H1(\Omega )\| \~Z\| H1(\Omega )(2.36)

for some constant C1.
Furthermore, we have that

\=\scrF 1(Z,Z) = 4\theta 1\varepsilon 
2\| \nabla Z\| 2L2(\Omega ) +

\int 
\Omega 
[\theta 1 + 4\varepsilon \tau 1\| \nabla 2U\| 2]Z2d\bfx \geq C2\| Z\| 2H1(\Omega )(2.37)

for some C2 > 0.
By (2.36)--(2.37) and Lax--Milgram theorem [10], there exists a unique solution for the

first PDE in (2.35).
In a similar way, one can show that there exists a unique solution for the second and the

third PDE in (2.35). This concludes Theorem 2.4.

The three PDEs in (2.35) are all of the type  - \gamma \Delta U(\bfx )+e(\bfx )U(\bfx ) = f(\bfx ) whose numerical
implementation can be found in Appendix C. Using (2.35), we draw the homogenized texture
feature for the Barbara image (Figure 1(d)). One can notice that Figure 1(d) gives an accurate
characterization of the texture distribution for the Barbara image. Furthermore, to show the
efficiency of model (2.1) and (2.34), we select a square (Figure 2(a)) and Pineapple-Pepper
(Figure 3(a)) as test images. By setting Figures 2(a) and 3(a) to be U0, the geometric features
extracted by model (2.1) and (2.34) are shown in Figures 2(b)--2(c) and Figures 3(b)--3(c),
respectively. In addition, to validate the advantage of models (2.1) and (2.34), we also use the
NGF [17] to detect the boundary of Figure 2(a), and the result is shown in Figure 2(d). By the
comparison between Figures 2(c) and 2(d), one can see that the second-order feature produced

(a) (b) (c) (d)

Figure 2. (a) U0(\cdot ). (b) First-order feature Z by (2.34). (c) Second-order feature \omega by (2.34). (d) Boundary
detected by NGF.
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1702 KE CHEN AND HUAN HAN

(a) (b) (c) (d)

Figure 3. (a) U0(\cdot ). (b) First-order feature Z. (c) Second-order feature \omega . (d) Texture W .

by (2.34) extracts the weak boundary well while the NGF [17] ignores the weak boundary.
This advantage provides us the possibility to address the inhomogeneity in multimodality
image registration. It is also the main reason why the second-order feature is added in model
(2.1) and (2.34). Besides, by the comparison in Figures 2(b) and 2(c), we see that the first-
order feature provides much more information inside the boundary; this is our motivation to
add a first-order feature in model (2.1) and (2.34). Moreover, it follows from the comparison
in Figure 3(b)--(d) that the first-order feature and second-order feature do not extract the
texture inside the boundary while the texture W produced by (2.34) succeeds in extracting
the texture with very thin thickness. It will be a very useful control for the registration
inside the boundary of the object. This is the main motivation why the textural control is
additionally introduced in our model. In fact, the textural control is a novelty of the proposed
model (2.1) and (2.34) compared with the NGF [17] and NNGF [42] for the multimodality
image registration.

Setting (U,V ) = (UT , VT ) and (U,V ) = (UR, VR), one can solve (2.35) to obtain the
homogenized geometric feature ZT , \omega T ,WT and ZR, \omega R,WR, respectively. These homogenized
features will be the initial input for the 2D/3D image registration model in the next stage.

2.3. Novel 2D/3D diffeomorphic multimodality image registration. Based on the ho-
mogenized geometric features ZT , \omega T ,WT and ZR, \omega R,WR extracted by (2.34), respectively,
for the given image pair T (\cdot ) and R(\cdot ), we propose the following geometric similarity:

g(\bfu ) = \delta Z\| ZT \circ \bfitvarphi (\cdot ) - ZR(\cdot )\| 2L2(\Omega ) + \delta \omega \| \omega T \circ \bfitvarphi (\cdot ) - \omega R(\cdot )\| 2L2(\Omega )

+ \delta W \| WT \circ \bfitvarphi (\cdot ) - WR(\cdot )\| 2L2(\Omega ),(2.38)

where \bfitvarphi (\bfx ) = \bfx + \bfu (\bfx ) and the weights \delta \nu > 0 (\nu =Z,\omega ,W ).

Remark 2.5. g(\bfu ) is a well-defined similarity because of the existence and uniqueness of
the solutions to model (2.1) and (2.34). This is due to \Phi \nu (\Phi = Z,\omega ,W , \nu = T,R) being
uniquely determined if T,R, and \bfu are known. In addition, one can selectively set the weights
\delta \nu (\nu =Z,\omega ,W ) according to whether the related features are dominant, for example, in data
Pineapple-Pepper (Figure 3(a)), whose texture is dominant, it is suggested that one choose a
larger \delta W .

In order to combine the geometric feature and the global intensity correlation, we propose
the following 2D/3D diffeomorphic multimodality image registration model:

min
\bfu \in \scrN M

d,\varepsilon (\Omega )
\scrK (\bfu ) = \xi \scrD (\bfu ) +\varpi \scrS (\bfu ),(2.39)
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THREE-STAGE MULTIMODALITY REGISTRATION 1703

where \scrD (\bfu ) = g(\bfu )\scrM (\bfu ), \scrM (\bfu ) = \| 1  - MI(T \circ \bfitvarphi (\cdot ),R(\cdot ))\| 2L2(\Omega ), \scrS (\bfu ) =
\int 
\Omega | \nabla \alpha \bfu | 2d\bfx , the

MI for T \circ \bfitvarphi (\cdot ) and R(\cdot ) is MI(T \circ \bfitvarphi (\cdot ),R(\cdot )) =
\int +\infty 
 - \infty 

\int +\infty 
 - \infty pT,R\bfitvarphi (i1, i2) log

pT,R
\bfitvarphi (i1,i2)

pR(i2)pT
\bfitvarphi (i1)

di1di2,

G\sigma (i1, i2) = K\sigma (i1)K\sigma (i2), K\sigma (i) = 1\surd 
2\pi \sigma 

e - 
i2

2\sigma 2 , pT,R\bfitvarphi (i1, i2) = 1
| \Omega | 
\int 
\Omega G\sigma (i1  - T \circ \bfitvarphi (\bfx ), i2  - 

R(\bfx ))d\bfx , pR(i2) =
\int +\infty 
 - \infty pT,R\bfitvarphi (i1, i2)di1, p

T
\bfitvarphi (i1) =

\int +\infty 
 - \infty pT,R\bfitvarphi (i1, i2)di2, \xi ,\varpi ,\sigma > 0, and for some

small \varepsilon > 0, the 2D/3D conformal constraint

\scrN M
d,\varepsilon (\Omega ) = \{ \bfu = (u1, . . . , ud)

T \in [H\alpha 
0 (\Omega )]

d : \| \nabla \varphi 1(\bfx )\| 2 = \cdot \cdot \cdot = \| \nabla \varphi d(\bfx )\| 2 \leq M2,

det(\nabla \bfitvarphi )\geq \varepsilon ,\nabla \varphi i(\bfx ) \cdot \nabla \varphi j(\bfx ) = 0, for i \not = j and \forall \bfx \in \Omega \} ,(2.40)

M > 0, \bfitvarphi (\bfx ) = (\varphi 1(\bfx ), . . . ,\varphi d(\bfx ))
T \triangleq \bfx + \bfu (\bfx ), d = 2,3, the definition of fractional-order

derivatives can be found in [18], and the fractional-order \alpha satisfies \alpha > \{ 2, d= 2,
2.5, d= 3, to ensure

H\alpha 
0 (\Omega ) \lhook \rightarrow C1(\Omega ) [12, 18], which ensures the derivatives in \scrN M

d,\varepsilon (\Omega ) are well-defined.

Remark 2.6. Here the constraint \scrN M
d,\varepsilon (\Omega ) is used to control the physical mesh folding. In

fact, it is equivalent to the Cauchy--Riemann constraint\biggl\{ 
\bfu = (u1, u2)

T \in [H\alpha 
0 (\Omega )]

2 :
\partial u1
\partial x1

=
\partial u2
\partial x2

,
\partial u1
\partial x2

= - \partial u2
\partial x1

\biggr\} 
(2.41)

in [21, 23, 24] when d= 2 (see Appendix A for details). This constraint makes the numerical
implementation for the 2D image registration much easier. An alternative way of imposing
diffeomorphism is by adding another and explicit control term in the functional of (2.39) as
done in [25, 48, 49, 50].

Concerning the existence of solution to (2.39), we have the following results.

Theorem 2.7. Assume the discontinuous sets for T and \Phi T (\Phi = Z,\omega ,W ) are all zero
measure sets; then there exists at least one solution for (2.39).

Proof. Selecting a minimizing sequence \{ \bfu k\} of the functional \scrK (\bfu ), then there holds\int 
\Omega 
| \nabla \alpha \bfu k| 2d\bfx \leq 1

\varpi 
\scrK (\bfu k)\leq 1

\varpi 
\scrK (\bfzero )<+\infty ,(2.42)

as k is large enough.
That is, \{ \bfu k\} is a bounded sequence in [H\alpha 

0 (\Omega )]
d. By the compactness of H\alpha (\Omega ), there

exists a subsequence of \bfu k which is still labeled by k and a \bfu \in [H\alpha (\Omega )]d such that \bfu k weakly
converges to \bfu with

\scrS (\bfu )\leq lim
k\rightarrow \infty 

inf \scrS (\bfu k).(2.43)

By the compact embedding theorem (Theorem 4.58 in [12]), we know that H\alpha 
0 (\Omega ) \lhook \rightarrow 

C1(\Omega ). Namely, there exists a subsequence of \bfu k which is still labeled by k and a \=\bfu \in [C1(\Omega )]d

such that \bfu k converges to \=\bfu in [C1(\Omega )]d. Moreover, by the uniqueness of the limit, we obtain

that \=\bfu = \bfu . That is, \bfu k k - \rightarrow \bfu in [C1(\Omega )]d and satisfies det(\nabla (\bfx + \bfu k))
k - \rightarrow det(\nabla (\bfx + \bfu ))\geq \varepsilon 

because of the fact that det(\nabla (\bfx + \bfu k))\geq \varepsilon . Therefore, we conclude that \bfu \in \scrN M
d,\varepsilon (\Omega ).
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1704 KE CHEN AND HUAN HAN

In addition, by the fact \bfu k k - \rightarrow \bfu in [C1(\Omega )]d, we have that

pT,R\bfitvarphi k (i1, i2) =
1

| \Omega | 

\int 
\Omega \setminus \bigtriangleup k

U

G\sigma (i1  - T \circ \bfitvarphi k(\bfx ), i2  - R(\bfx ))d\bfx 

k - \rightarrow pT,R\bfitvarphi (i1, i2) =
1

| \Omega | 

\int 
\Omega \setminus \bigtriangleup U

G\sigma (i1  - T \circ \bfitvarphi (\bfx ), i2  - R(\bfx ))d\bfx ,(2.44)

where \bfitvarphi k(\bfx ) = \bfx + \bfu k(\bfx ), \bfitvarphi (\bfx ) = \bfx + \bfu (\bfx ), and \bigtriangleup k
U = (\bfitvarphi k) - 1(\bigtriangleup T ). Note that \bigtriangleup k

U is a
zero measure set because of the fact that \bfitvarphi k : \Omega \rightarrow \Omega and (\bfitvarphi k) - 1 : \Omega \rightarrow \Omega are bijections
(\bfu k \in \scrN M

d,\varepsilon (\Omega ) implies det(\nabla \bfitvarphi k) > 0) and \bigtriangleup T \triangleq \{ \bfx : T (\bfx ) is discontinuous at \bfx \} is a zero

measure set. Moreover, by the fact \bfu k k - \rightarrow \bfu in [C1(\Omega )]d, we know that \bfitvarphi k k - \rightarrow \bfitvarphi in [C1(\Omega )]d.

By deduction, (\bfitvarphi k) - 1 k - \rightarrow \bfitvarphi  - 1 in [C1(\Omega )]d (see Appendix D for details), which implies \bigtriangleup k
U

goes to \bigtriangleup U as k goes to infinity, where \bigtriangleup U =\bfitvarphi  - 1(\bigtriangleup T ).
Similarly, there holds

pT\bfitvarphi k(i1)
k - \rightarrow pT\bfitvarphi (i1).(2.45)

By (2.44) and (2.45), we conclude that

\scrM (\bfu k)
k - \rightarrow \scrM (\bfu ).(2.46)

Similarly, by the fact that the set \Delta \Psi T \triangleq \{ \bfx : \Psi T (\bfx ) is discontinuous at \bfx \} (\Psi =Z,\omega ,W )

are all zero measure sets, and the fact \bfu k k - \rightarrow \bfu in [C1(\Omega )]d, we conclude that

g(\bfu k)
k - \rightarrow g(\bfu ).(2.47)

By (2.43), (2.46), and (2.47), we obtain \scrD (\bfu k)
k - \rightarrow \scrD (\bfu ) and

\scrK (\bfu )\leq lim
k\rightarrow \infty 

inf\scrK (\bfu k),(2.48)

which ensures the existence of a solution for (2.39).

To transform the nonconvexity of \bfu , we introduce a new variable \bfv to relax \bfu . In a similar
way, variable \bfs is also introduced to address the nonlinear constraint in \scrN M

d,\varepsilon (\Omega ). Based on
these new variables, (2.39) is relaxed to the following variational model:

min
\bfu \in [H\alpha 

0 (\Omega )]d,\bfv \in [L2(\Omega )]d,\bfs \in \BbbM d\times d(L2(\Omega ))
\scrJ (\bfv ,\bfu , \bfs ),(2.49)

where \scrJ (\bfv ,\bfu , \bfs ) = \xi \scrD (\bfv )+ 1
2\upsilon 

\int 
\Omega | \bfu  - \bfv | 2d\bfx +\varpi \scrS (\bfu )+\Theta 

\int 
\Omega \| \bfs \bfs T - \| \bfs \| 2

d \bfI \| 2d\bfx +\Upsilon 
\int 
\Omega \| \bfs  - \nabla \bfitvarphi \| 2d\bfx ,

\upsilon > 0,\Theta > 0,\Upsilon > 0.

Remark 2.8. In (2.49), \bfu \in \scrN M
d,\varepsilon (\Omega ). Note that here \scrN M

d,\varepsilon (\Omega ) is used to rule out the
deformation \bfitvarphi (\bfx ) = \bfx + \bfu whose Jacobian determinant is too small. In fact, by setting some
large \Theta , one can also achieve this goal. To simplify the numerical implementation, we restrict
\bfu to [H\alpha 

0 (\Omega )]
d and control \bfu \in \scrN M

d,\varepsilon (\Omega ) by setting some appropriate \Theta .
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THREE-STAGE MULTIMODALITY REGISTRATION 1705

To solve (2.49), we use the AMM, which splits (2.49) into the following three
subproblems:

\bfv k+1 = argmin
\bfv \in [L2(\Omega )]d

\scrJ (\bfv ,\bfu k, \bfs k),(2.50)

\bfu k+1 = argmin
\bfu \in [H\alpha 

0 (\Omega )]d
\scrJ (\bfv k+1,\bfu , \bfs k),(2.51)

\bfs k+1 = argmin
\bfs \in \BbbM d\times d(L2(\Omega ))

\scrJ (\bfv k+1,\bfu k+1, \bfs ).(2.52)

The sketch of the proof of the convergence of (2.50)--(2.52) under some specific conditions
can be divided into two steps: \bfS \bft \bfe \bfp \bfone . Show \{ \scrJ (\bfv k,\bfu k, \bfs k)\} is a decreasing sequence with
respect to k and show (\bfv k,\bfu k, \bfs k) converges to some (\=\bfv , \=\bfu ,\=\bfs ); \bfS \bft \bfe \bfp \bftwo . Show (\=\bfv , \=\bfu ,\=\bfs ) is a
minimizer of (2.49). One can use the similar technique of Theorem 3.2 in [21] and Theorem
3.1 in [24] to complete the proof. Here we omit it and focus on the numerical implementation
of (2.50)--(2.52).

\bfv -\bfp \bfr \bfo \bfb \bfl \bfe \bfm (\bftwo .\bffive \bfzero ). Define t1(\bfu ) = ZT (\bfx + \bfu )  - ZR(\bfx ), t2(\bfu ) = \omega T (\bfx + \bfu )  - \omega R(\bfx ),
t3(\bfu ) =WT (\bfx + \bfu ) - WR(\bfx ), t4(\bfu ) =MI(T (\bfx + \bfu ),R(\bfx )); then there holds

t1(\bfv 
k+1)\approx t1(\bfu 

k) +\nabla ZT (\bfx + \bfu k) \cdot (\bfv k+1  - \bfu k),(2.53)

t2(\bfv 
k+1)\approx t2(\bfu 

k) +\nabla \omega T (\bfx + \bfu k) \cdot (\bfv k+1  - \bfu k),(2.54)

t3(\bfv 
k+1)\approx t3(\bfu 

k) +\nabla WT (\bfx + \bfu k) \cdot (\bfv k+1  - \bfu k),(2.55)

t4(\bfv 
k+1)\approx t4(\bfu 

k) + \delta \bfu MI(T (\bfx + \bfu k),R(\bfx )) \cdot (\bfv k+1  - \bfu k).(2.56)

Substituting (2.53)--(2.56) into (2.50) yields

\bfA \bfv k+1 = \bfb k,(2.57)

where \bfA = \bfI +2\xi \upsilon \scrM (\bfu k)(\delta Z\bfG Z+\delta \omega \bfG \omega +\delta W\bfG W )+2\xi \upsilon g(\bfu k)\bfG M , \bfb k = - 2\xi \upsilon \scrM (\bfu k)[\delta Zt1(\bfu 
k)

\bfV Z - \delta Z\bfG Z\bfu 
k+\delta \omega t2(\bfu 

k)\bfV \omega  - \delta \omega \bfG \omega \bfu 
k+\delta W t3(\bfu 

k)\bfV W  - \delta W\bfG W\bfu k]+2\xi \upsilon g(\bfu k)[(1 - MI(T (\bfx +

\bfu k),R(\bfx )))\bfV M + \bfG M\bfu k] + \bfu k, \bfV Z = (\partial ZT \circ \bfitvarphi k

\partial x1
, . . . , \partial ZT \circ \bfitvarphi k

\partial xd
)T , \bfV \omega = (\partial \omega T \circ \bfitvarphi k

\partial x1
, . . . , \partial \omega T \circ \bfitvarphi k

\partial xd
)T ,

\bfV W = (\partial WT \circ \bfitvarphi k

\partial x1
, . . . , \partial WT \circ \bfitvarphi k

\partial xd
)T . Note that here

\bfV M = \delta \bfu MI(T (\bfx + \bfu k),R(\bfx )) = - 1

| \Omega | 

\biggl( 
\partial G\sigma 

\partial i1
\ast L\bfitvarphi 

\biggr) 
(T (\bfx + \bfu k),R(\bfx )) \cdot \nabla \bfu T (\bfx + \bfu k(\bfx )),

L\bfitvarphi (i1, i2) = 1 + log
pT,R
\bfitvarphi (i1,i2)

pT
\bfitvarphi (i1)p

R(i2)
, \bfG T = \bfV T\bfV 

T
T , \bfG \omega = \bfV \omega \bfV 

T
\omega , \bfG W = \bfV W\bfV T

W , \bfG M = \bfV M\bfV T
M ,

and the derivation for \delta \bfu MI(T (\bfx + \bfu k),R(\bfx )) can be found in Appendix B.
\bfu -\bfp \bfr \bfo \bfb \bfl \bfe \bfm (\bftwo .\bffive \bfone ). The associated Euler--Lagrange equation for (2.51) is

(2.58)

\Biggl\{ 
\scrL \bfu k+1 = \bfv k+1  - 2\Upsilon \upsilon div(\bfs k),

\bfu k+1(\bfx )| \bfx \in \partial \Omega = 0,

where \scrL =  - 2\Upsilon \upsilon \Delta + 2\xi \upsilon div\alpha \ast (\nabla \alpha ) + \bfI and the definition of the fractional-order operator
div\alpha \ast (\nabla \alpha ) can be found in [18, 21].
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1706 KE CHEN AND HUAN HAN

Concerning the numerical implementation of (2.58), one can use the multigrid approach
to search for a solution. For d= 2 and d= 3, we refer readers to Algorithms 3.1--3.2 in [23] and
Algorithm 3.1 in [24], respectively. Since there is no essential difference, we do not repeat it.

\bfs -\bfp \bfr \bfo \bfb \bfl \bfe \bfm (\bftwo .\bffive \bftwo ). Before the numerical implementation of (2.52), let us recall the fol-
lowing lemma in [16].

Lemma 2.9. Suppose \bfX 1 and \bfX 2 are d\times d (d= 2,3) matrices, and define

\scrP (\bfQ 1,\bfQ 2) = \| \bfQ \ast 
1\bfX 1\bfQ 2  - \bfX 2\| 2,(2.59)

where \bfQ 1,\bfQ 2 are d\times d unknown orthogonal matrices, and \| \cdot \| denotes the Frobenius norm.
Let \bfX 1 = \bfP 1\bfLambda 1\bfR 

\ast 
1 and \bfX 2 = \bfP 2\bfLambda 2\bfR 

\ast 
2 be the singular value decomposition (SVD) of \bfX 1

and \bfX 2, respectively. Then the minimizer \bfQ 1,\bfQ 2 of \scrP (\bfQ 1,\bfQ 2) satisfies

\bfP 1 =\bfQ 1\bfP 2\bfPi ,\bfR 1 =\bfQ 2\bfR 2\bfPi ,(2.60)

where \bfPi is the permutation matrices that minimizes Tr(\bfLambda \ast 
2\bfPi 

\ast \bfLambda 1\bfPi ).

At the end of this section, we focus on the problem of how to optimize \bfs in (2.52). Let
\bfs (\bfx ) \in \BbbM d\times d(L

2(\Omega )) be defined in (2.52), and assume the SVD of \nabla \bfitvarphi k+1(\bfx ) is \nabla \bfitvarphi k+1(\bfx ) =
\bfU (\bfx )\bfLambda (\bfx )\bfV \ast (\bfx ), where \bfLambda (\bfx ) \in \scrT d, and \bfU (\bfx ), \bfV (\bfx ) are orthogonal matrices. Then, for any
orthogonal matrices \bfP (\bfx ) and \bfQ (\bfx ), define \bfP (\bfx ) \~\bfLambda (\bfx )\bfQ (\bfx ) =\bfU \ast (\bfx )\bfs (\bfx )\bfV (\bfx ), where \~\bfLambda (\bfx ) \in 
\scrT d is a diagonal matrix. Note that here \bfU (\bfx ), \bfV (\bfx ) are known matrices and \bfP (\bfx ), \~\bfLambda (\bfx ),
\bfQ (\bfx ), and \bfs (\bfx ) are unknown functions for matrix. Based on these facts, \bfs (\bfx ) is optimized if
P,Q, \~\bfLambda are optimized. To achieve this goal, we use Lemma 2.9 to give some results for the
\bfs -problem (2.52).

Theorem 2.10. Let \scrT d be a set containing all d-order (d= 2,3) diagonal matrices, and let
\bfLambda be the solution of

min
\bfLambda \in \scrT d

\Upsilon 

\int 
\Omega 
\| \bfLambda  - \bfLambda \| 2d\bfx +\Theta 

\int 
\Omega 

\bigm\| \bigm\| \bigm\| \bigm\| \bfLambda 2  - \| \bfLambda \| 2
d

\bfI d

\bigm\| \bigm\| \bigm\| \bigm\| 2 d\bfx .(2.61)

Then \bfU \bfLambda \bfV \ast is a minimizer of subproblem (2.52). Here the SVD of \nabla \bfitvarphi k+1 is \nabla \bfitvarphi k+1 =\bfU \bfLambda \bfV \ast 

and \bfI d is d-order (d= 2,3) identity matrix.

Proof. Based on the above notations, then we know that

\bfs =\bfU \bfP \~\bfLambda \bfQ \bfV \ast , \bfs \bfs T =\bfU \bfP \~\bfLambda 2\bfP \bfU \ast , \| \bfs \| 2 = \| \~\bfLambda \| 2.(2.62)

Substituting (2.62) into (2.52), (2.52) is equivalent to minimizing the following functional:

\scrP (\bfP , \~\bfLambda ,\bfQ ) =\Theta 

\int 
\Omega 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bfP (\bfx ) \~\bfLambda 2(\bfx )(\bfx )\bfP \ast (\bfx ) - \| \~\bfLambda (\bfx )\| 2
d

\bfI d

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

d\bfx +\Upsilon 

\int 
\Omega 
\| \bfP (\bfx ) \~\bfLambda (\bfx )\bfQ (\bfx ) - \bfLambda (\bfx )\| 2d\bfx 

=\Theta 

\int 
\Omega 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\bfLambda 2(\bfx ) - \| \~\bfLambda (\bfx )\| 2
d

\bfI d

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

d\bfx +\Upsilon 

\int 
\Omega 
\| \bfP (\bfx ) \~\bfLambda (\bfx )\bfQ (\bfx ) - \bfLambda (\bfx )\| 2d\bfx .(2.63)

Note that in (2.62) and (2.63), we use the relationship \| \bfA \| 2 = \lambda 1 + \cdot \cdot \cdot + \lambda d, where \lambda i (i =
1, . . . , d) are the eigenvalues of \bfA \bfA T .
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THREE-STAGE MULTIMODALITY REGISTRATION 1707

We propose to solve minimizing (2.63) by alternating minimization: first fixing \~\bfLambda and
optimizing (P,Q), and second optimizing \~\bfLambda based on the optimized (P,Q) in the first step. The
process is listed as follows. Fixing \~\bfLambda , then the minimizing problem (2.63) with (\bfP ,\bfQ ) being
unknown functions is of the form of (2.59). Suppose (\bfP ,\bfQ ) is the minimizer of \scrP (\bfP , \~\bfLambda ,\bfQ )
for some fixed \~\bfLambda . By Lemma 2.9, \bfI d =\bfP \bfPi =\bfQ \bfPi . Besides, for any orthogonal matrices \bfP ,\bfQ 
and diagonal matrix \~\bfLambda ,

\scrP (\bfP , \~\bfLambda ,\bfQ ) =\Theta 

\int 
\Omega 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\bfLambda 2(\bfx ) - \| \~\bfLambda (\bfx )\| 2
d

\bfI d

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

d\bfx +\Upsilon 

\int 
\Omega 
\| \bfP (\bfx ) \~\bfLambda (\bfx )\bfQ (\bfx ) - \bfLambda (\bfx )\| 2d\bfx 

\geq \Upsilon 

\int 
\Omega 
\| \bfPi \ast \~\bfLambda (\bfx )\bfPi  - \bfLambda (\bfx )\| 2d\bfx +\Theta 

\int 
\Omega 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\bfLambda 2(\bfx ) - \| \~\bfLambda (\bfx )\| 2
d

\bfI d

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

d\bfx 

\geq \Upsilon 

\int 
\Omega 
\| \~\bfLambda (\bfx ) - \bfLambda (\bfx )\| 2d\bfx +\Theta 

\int 
\Omega 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \~\bfLambda 2(\bfx ) - \| \~\bfLambda (\bfx )\| 2
d

\bfI d

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

d\bfx 

=\scrP (\bfI d, \~\bfLambda , \bfI d) \forall \~\bfLambda \in \scrT d.(2.64)

That is, \scrP (\bfP , \~\bfLambda ,\bfQ ) \geq \scrP (\bfI d, \~\bfLambda , \bfI d) \geq \scrP (\bfI d,\bfLambda , \bfI d) with \bfP = \bfQ = \bfI d. This concludes
\bfI d\bfLambda \bfI d =\bfU \ast \bfs \bfV and \bfs =\bfU \bfLambda \bfV \ast .

By Theorem 2.10, (2.52) is equivalent to (2.61). Furthermore, by the variational principle
[15], the Euler--Lagrange equation of (2.61) for \bfLambda is

\Upsilon (\bfLambda  - \bfLambda ) + 2\Theta 

\biggl( 
\bfLambda 

2  - 1

d
\| \bfLambda \| 2\bfI d

\biggr) 
\bfLambda = \bfzero .(2.65)

Letting \bfLambda = diag(\kappa 1, . . . , \kappa d) and \bfLambda = diag(\sigma 1, . . . , \sigma d), then (2.65) is equivalent to the
following cubic algebraic equations:

\Upsilon (\sigma i  - \kappa i) + 2\Theta 

\Biggl[ 
\sigma 2i  - 

1

d

d\sum 
i=1

\sigma 2i

\Biggr] 
\sigma i = 0, i= 1, . . . , d.(2.66)

That is,

2\Theta \sigma 3i +

\Biggl[ 
\Upsilon  - 2\Theta 

d

d\sum 
i=1

\sigma 2i

\Biggr] 
\sigma i  - \Upsilon \kappa i = 0, i= 1, . . . , d.(2.67)

Here we can write (2.67) as a nonlinear system

\bfg (\sigma ) = \bfzero ,(2.68)

where \bfg (\sigma ) = (g1(\sigma ), . . . , gd(\sigma ))
T , \sigma = (\sigma 1, . . . , \sigma d), gi(\sigma ) = \sigma 3i + p\sigma i  - 1

d(\sigma 
2
1 + \sigma 22 + \sigma 23)\sigma i  - p\kappa i

(i= 1, . . . , d), and p= \Upsilon 
2\Theta .

The Newton's method [2] is used to solve (2.68). After completing the computation of
(2.68), the solution of (2.52) is formulated as \bfs k+1 =\bfU \ast \bfLambda \bfV .

The numerical implementation for solving (2.49) can be found in Algorithm 2.1.
The overall framework of our proposed three-stage image registration approach is graphi-

cally illustrated in Figure 4.
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1708 KE CHEN AND HUAN HAN

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bftwo .\bfone AMM for 2D/3D multimodality image registration.

\bfI \bfn \bfp \bfu \bft : region \Omega , accuracy, initial error E = 1, k= 0, \lambda ,M,\Theta ,\Upsilon , \mu , and maximum iteration
times K.
\bfw \bfh \bfi \bfl \bfe E >accuracy and k\leq K
1. Use (2.57) to obtain \bfv k+1;
2. Use (2.58) to obtain \bfu k+1 and \bfitvarphi k+1;

3. Compute the SVD of \bfitvarphi k+1(\bfx ) = \bfx + \bfu k+1(\bfx ) =\bfU \bfLambda \bfV \ast and use (2.67) to obtain \bfLambda =
diag(\sigma 1, . . . , \sigma d);

4. Update \bfs k+1 by setting \bfs k+1 =\bfU \bfLambda \bfV \ast ;

5. Compute T (\bfx + \bfu k+1(\bfx )), registration error E =
\| T (\cdot +\bfu k+1(\cdot )) - R(\cdot )\| 2

L2(\Omega )

\| T (\cdot ) - R(\cdot )\| 2
L2(\Omega )

and let k= k+ 1;

\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 
\bfO \bfu \bft \bfp \bfu \bft : T (\cdot + \bfu k(\cdot )) for some k\leq K.

Figure 4. Framework of the proposed three-stage diffeomorphic multimodality image registration.

3. Greedy matching for 2D/3D diffeomorphic multimodality model (2.39). (2.39) pur-
sues the minimizer of \xi \scrD (\bfu ) +\varpi \scrS (\bfu ), while the ultimate goal for 2D/3D diffeomorphic mul-
timodality image registration is to search for a global minimizer of \scrD (\bfu ) on \scrN M

d,\varepsilon (\Omega ). This is
so-called greedy matching, which is formulated as follows:

inf
\bfu \in \scrN M

d,\varepsilon (\Omega )
\scrD (\bfu ).(3.1)

Obviously, (3.1) provides a much more accurate registration result than (2.39). In order to
give a more accurate solution for 2D/3D diffeomorphic multimodality image registration, we
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THREE-STAGE MULTIMODALITY REGISTRATION 1709

focus on the numerical implementation for (3.1) in this section. For this purpose, we propose
the following coarse-to-fine approach:

\bfI : \bfD \bfo \bfw \bfn \bfs \bfa \bfm \bfp \bfl \bfi \bfn \bfg . Given N \in \BbbN +, we downsample the geometric features \Psi \rho (\Psi =
Z,\omega ,W ; \rho = T,R) and the image pair T (\cdot ),R(\cdot ) with size 2n (n= 0,1,2, . . . ,N) to obtain the
downsampled features \Psi n

\rho and the image pair Tn(\cdot ),Rn(\cdot ), respectively.
\bfI \bfI : \bfI \bfm \bfa \bfg \bfe \bfr \bfe \bfg \bfi \bfs \bft \bfr \bfa \bft \bfi \bfo \bfn . Based on the downsampled features \Psi n

\rho (\Psi =Z,\omega ,W ; \rho = T,R;
n = 0,1,2, . . . ,N), we propose a coarse-to-fine approach for solving the greedy matching
problem (3.1). The proposed approach is divided into the following N + 1 steps, and note
that here and in what follows, \Omega n =\Omega \downarrow 2N - n denotes the downsampling of the region \Omega with
size 2N - n, for example, giving the region \Omega = (1,129)d, \Omega \downarrow 21 denotes the region (1,65)d):

\bfS \bft \bfe \bfp \bfzero . Taking \Psi N
\rho (\Psi = Z,\omega ,W ; \rho = T,R) and the image pair TN (\cdot ), RN (\cdot ) as initial

features and image pair, we solve the following variational problem on \Omega 0:

(3.2) \bfu 0 \in argmin
\bfu \in \scrN \infty 

d,\varepsilon 0
(\Omega 0)

\scrK 0(\bfu ),

where \varepsilon 0 > 0, \scrK 0(\bfu ) = \xi 0\scrD \Omega 0
(\bfu ) + \varpi \scrS \Omega 0

(\bfu ), \scrD \Omega 0
(\bfu ) = g\Omega 0

(\bfu )\scrM \Omega 0
(\bfu ), \scrM \Omega 0

(\bfu ) = \| 1  - 
MI(T \circ \bfitvarphi (\cdot ),R(\cdot ))\| 2L2(\Omega 0)

, \scrS \Omega 0
(\bfu ) =

\int 
\Omega 0

| \nabla \alpha \bfu | 2d\bfx . Note that here \scrD \Omega 0
(\bfu ), g\Omega 0

(\bfu ), \scrM \Omega 0
(\bfu ),

and \scrS \Omega 0
(\bfu ) are all defined by replacing \Omega with \Omega 0 in (2.39).

At the end of Step 0, we define \~\bfitvarphi 0(\bfx ) =\bfitvarphi 0(\bfx ) = \bfx + \bfu 0(\bfx ) for each \bfx \in \Omega 0.
\bfS \bft \bfe \bfp \bfone . Scale \~\bfitvarphi 0(\bfx ) to \Omega 1 and solve the following variational problem on \Omega 1 (note that

here | \Omega 1| = 2d| \Omega 0| ):

(3.3) \bfu 1 \in argmin
\bfu \in \scrN \infty 

d,\varepsilon 1
(\Omega 1)

\scrK 1(\bfu ),

where \varepsilon 1 > 0, \scrK 1(\bfu ) = \xi 1\scrD \Omega 1
(\bfu ) + \varpi \scrS \Omega 1

(\bfu ), \scrD \Omega 1
(\bfu ) = g\Omega 1

(\bfu )\scrM \Omega 1
(\bfu ), here and in what

follows, g\Omega n
(\bfu ) = \delta T \| ZN - n

T \circ \~\bfitvarphi n - 1(\cdot + \bfu (\cdot )) - ZN - n
R (\cdot )\| 2L2(\Omega n)

+ \delta \omega \| \omega N - n
T \circ \~\bfitvarphi n - 1(\cdot + \bfu (\cdot )) - 

\omega N - n
R (\cdot )\| 2L2(\Omega n)

+\delta W \| WN - n
T \circ \~\bfitvarphi n - 1(\cdot + \bfu (\cdot )) - WN - n

R (\cdot )\| 2L2(\Omega n)
, \scrM \Omega n

(\bfu ) = \| 1 - MI(TN - n \circ 
\~\bfitvarphi n - 1(\cdot + \bfu (\cdot )),RN - n(\cdot ))\| 2L2(\Omega n)

.

After finding the solution of (3.3), we define \bfitvarphi 1(\bfx ) = \bfx + \bfu 1(\bfx ) and \~\bfitvarphi 1(\bfx ) = \~\bfitvarphi 0 \circ \bfitvarphi 1(\bfx )
for each \bfx \in \Omega 1.

\bfS \bft \bfe \bfp \bfitN . Scale \~\bfitvarphi N - 1(\bfx ) to \Omega N and solve the following variational problem on \Omega N (note
that \Omega N =\Omega ):

(3.4) \bfu N \in argmin
\bfu \in \scrN \infty 

d,\varepsilon N
(\Omega N )

\scrK N (\bfu ),

where \varepsilon N > 0, \scrK N (\bfu ) = \xi N\scrD \Omega N
(\bfu ) +\varpi \scrS \Omega N

(\bfu ).
At last, we define \bfitvarphi N (\bfx ) = \bfx + \bfu N (\bfx ) and \~\bfitvarphi N (\bfx ) = \~\bfitvarphi N - 1 \circ \bfitvarphi N (\bfx ).

Remark 3.1. Three comments are due for (3.2)--(3.4):
(i). In \scrN M

d,\varepsilon (\Omega ), M is only required as a technical requirement to show the convergence of
alternating minimization (2.50)--(2.52). In practical implementation, M is replaced by
\infty to simplify the constraints.
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1710 KE CHEN AND HUAN HAN

(ii). To ensure the coarsest grid contains at least 5 nodes (divided into 4 parts and 3 grids
belonging to interior points for finite difference method), total time point N is chosen
by N =max\{ n : \lfloor Ns

2n \rfloor \leq 4\} , where Ns is the total number of nodes on x direction and
\lfloor \cdot \rfloor is the round down operator.

There is a scaling for \bfu n and \bfitvarphi n in each step. To establish the connection between
\bfitvarphi n : \Omega n \rightarrow \Omega n and the final deformation \bfitvarphi N : \Omega \rightarrow \Omega , we give the following notations for
functions \bfitvarphi n : \Omega n \rightarrow \Omega n, \bfu n : \Omega n \rightarrow \BbbR and functions \bfitvarphi : \Omega \rightarrow \Omega , \bfu : \Omega \rightarrow \BbbR . By the
principle of scaling, we define \bfitvarphi (\bfy ) = \bfitvarphi n( \bfy 

2N - n ), \bfu (\bfy ) = 2N - n\bfu n( \bfy 
2N - n ), where \bfy \in \Omega and

\bfx = \bfy /2N - n \in \Omega n. Here, functions fn(f = \bfitvarphi ,\bfu ) denote the scaled version of the function
f on the domain \Omega n. In addition, there also holds \Psi n

\rho (
\bfy 

2N - n ) = \Psi \rho (\bfy ) and \rho n( \bfy 
2N - n ) = \rho (\bfy )

(\Psi =Z,\omega ,W ;\rho = T,R).
Using the variable substitution \bfy = 2N - n\bfx , the variational functional for Step n (n =

0,1,2, . . . ,N) is reformulated as follows:

\scrK n(\bfu ) =
\xi n

4(N - n)d

\int 
\Omega 
\delta Z [ZT \circ \~\bfitvarphi n - 1 \circ \bfitvarphi (\bfy ) - ZR(\bfy )]

2 + \delta \omega [\omega T \circ \~\bfitvarphi n - 1 \circ \bfitvarphi (\bfy ) - \omega R(\bfy )]
2

+ \delta W [WT \circ \~\bfitvarphi n - 1 \circ \bfitvarphi (\bfy ) - WR(\bfy )]
2d\bfy 

\int 
\Omega 
[1 - MI(T \circ \~\bfitvarphi n - 1 \circ \bfitvarphi (\bfy ),R(\bfy ))]2d\bfy 

+
\varpi 

4(N - n)d
\scrS (\bfu ),(3.5)

where \~\bfitvarphi  - 1(\bfx ) = \bfx .
This implies the variational problem in Step n is equivalent to

\bfu n \in argmin
\bfu \in \scrN \infty 

d,\varepsilon n
(\Omega )

\~\scrK n(\bfu ),(3.6)

where \~\scrK n(\bfu ) = \xi n \~\scrD n(\bfu )+\varpi \scrS (\bfu ), \~\scrD n(\bfu ) =
\int 
\Omega [ZT \circ \~\bfitvarphi n - 1\circ \bfitvarphi (\bfy ) - ZR(\bfy )]

2+[\omega T \circ \~\bfitvarphi n - 1\circ \bfitvarphi (\bfy ) - 
\omega R(\bfy )]

2 + [WT \circ \~\bfitvarphi n - 1 \circ \bfitvarphi (\bfy ) - WR(\bfy )]
2d\bfy 

\int 
\Omega [1 - MI(T \circ \~\bfitvarphi n - 1 \circ \bfitvarphi (\bfy ),R(\bfy ))]2d\bfy .

By the fact \~\scrK n(\bfu 
n)\leq \~\scrK n(\bfzero ), we know that \{ \~\scrD n(\bfu 

n)\} is a decreasing sequence with lower
bound. Define

\delta = lim
n\rightarrow \infty 

\~\scrD n(\bfu 
n)(3.7)

and

\vargamma = inf\{ \scrD (\bfu ) : \bfu \in \scrN \infty 
d,0(\Omega )\} ;(3.8)

then we have the following results on the relationship between \delta and \vargamma .

Theorem 3.2. Let \bfitvarphi n and \~\bfitvarphi n be defined by (3.2)--(3.4), and suppose limn\rightarrow +\infty \varepsilon n = 0 and

limn\rightarrow +\infty B4n - 3 \~M4n

\xi n
= 0 for some \~M,B =B(\Omega )> 1. Then there holds \delta = \vargamma .

Proof. One can use the similar way of Theorem 2.3 in [23] to give a proof. Since there is
no essential different technique compared with the proof of Theorem 2.3 in [23], here we do
not repeat it. Note that here limn\rightarrow +\infty \varepsilon n = 0 is used to ensure \scrN \infty 

d,\varepsilon n
(\Omega )

n - \rightarrow \scrN \infty 
d,0(\Omega ).
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THREE-STAGE MULTIMODALITY REGISTRATION 1711

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone Coarse-to-fine algorithm for the greedy matching (3.1).

\bfI \bfn \bfi \bft \bfi \bfa \bfl \bfi \bfz \bfa \bft \bfi \bfo \bfn : n= 0, \bfu 0
n = \bfzero , \bfv 0

n = \bfzero , \bfs 0n = \bfI d, \xi n (n= 0,1,2, . . . ,N), \Theta , \upsilon , \varpi , and
maximum scale N .
Stage 1. Use (2.5) to obtain the smooth texture (UT , VT ) and (UR, VR) of T , R, respectively;
Stage 2. Set (U,V ) = (UT , VT ) and (U,V ) = (UR, VR), respectively, and use (2.35) to obtain
the homogenized geometric features \Psi \rho (\Psi =Z,\omega ,W ; \rho = T,R);
Stage 3. \bfI : \bfD \bfo \bfw \bfn \bfs \bfa \bfm \bfp \bfl \bfi \bfn \bfg : Downsample the geometric features \Psi \rho (\Psi =Z,\omega ,W ;\rho = T,R)
and the image pair T (\cdot ),R(\cdot ) with size 2n to obtain the downsampled features \Psi n

\rho 

(\Psi =Z,\omega ,W ; \rho = T,R; n= 0,1,2, . . . ,N) and the image pair Tn(\cdot ),Rn(\cdot ), respectively.
\bfI \bfI : \bfI \bfm \bfa \bfg \bfe \bfr \bfe \bfg \bfi \bfs \bft \bfr \bfa \bft \bfi \bfo \bfn :

\bfw \bfh \bfi \bfl \bfe n\leq N
\bfS \bft \bfe \bfp \bfone . Replace \Psi \rho (\Psi =Z,\omega ,W ; \rho = T,R), T (\cdot ),R(\cdot ) in (3.9) with \Psi N - n

\rho (\Psi =Z,\omega ,

W ; \rho = T,R), TN - n(\cdot ),RN - n(\cdot ), respectively, and use Algorithm 2.1 to compute \bfu n and \bfitvarphi n

on \Omega n;
\bfS \bft \bfe \bfp \bftwo . Compute \~\bfitvarphi n on \Omega n;
\bfS \bft \bfe \bfp \bfthree . Scale \~\bfitvarphi n onto a finer domain \Omega n+1;
Set n= n+ 1;

\bfe \bfn \bfd \bfw \bfh \bfi \bfl \bfe 
\bfO \bfu \bft \bfp \bfu \bft : \~\bfitvarphi N and T \circ \~\bfitvarphi N (\cdot ).

By Theorem 3.2, (3.2)--(3.4) provides a solution to the greedy matching problem (3.1) if \xi n
satisfies the assumptions, and the numerical implementation for (3.2)--(3.4) is approximating
(3.6) by replacing \~\scrD (\bfv ) with \~\scrD n(\bfv ) in (2.49). That is,

min
\bfu \in [H\alpha 

0 (\Omega )]d,\bfv \in [L2(\Omega )]d,\bfs \in \BbbM d\times d(L2(\Omega ))
\scrJ n(\bfv ,\bfu , \bfs ),(3.9)

where \scrJ n(\bfv ,\bfu , \bfs ) = \xi n \~\scrD n(\bfv ) +
1
2\upsilon 

\int 
\Omega | \bfu  - \bfv | 2d\bfx +\varpi \scrS (\bfu ) + \Theta 

\int 
\Omega \| \bfs \bfs T  - \| \bfs \| 2

d \bfI \| 2d\bfx +\Upsilon 
\int 
\Omega \| \bfs  - 

\nabla \bfitvarphi \| 2d\bfx , \upsilon > 0,\Theta > 0,\Upsilon > 0.
The details for the numerical implementation of greedy matching (3.1) can be found in

Algorithm 3.1.

4. Numerical tests. In this section, we perform three different kinds of numerical tests to
show the good performance of the proposed Algorithm 3.1. In Test 1, we design three experi-
ments to show the advantage of the proposed Algorithm 3.1 on the aspects of antinoise, weak
boundary detection, and textural control. The algorithms for numerical comparison involve
NGF [17], NNGF [42], MI [29], and Algorithm 3.1. In Test 2, several 2D/3D comparisons
between other methods like NGF [17], NNGF [42], MI [29], NCC [31], and our Algorithm
3.1 are performed to show the competitiveness of the proposed Algorithm 3.1. In Test 3,
the comparisons for the algorithms NGF [17], MI [29], and NCC [31] and Algorithm 3.1 are
performed on a public database (https://www.kaggle.com/datasets/awsaf49/brats20-dataset-
training-validation). All the numerical tests are performed under Windows 7 and MATLAB
R2012b with an Intel Core i7-6700 CPU @3.40 GHz and 8 GB memory. For the quantitative
comparison, we choose the following four indexes:
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1712 KE CHEN AND HUAN HAN

\bullet MI, which is defined by

MI(T,R,\bfu ) =
\sum 
i1,i2

pT,R\bfitvarphi (i1, i2) log
pT,R\bfitvarphi (i1, i2)

pR(i2)pT\bfitvarphi (i1)
.

\bullet Mesh folding number (MFN), which is defined by

MFN(\bfu ) = \sharp 
\bigl( 
detJ(\bfu )\leq 0

\bigr) 
,

where detJ(\bfu ) = (1 + \partial u1

\partial x1
)(1 + \partial u2

\partial x2
)  - \partial u1

\partial x2

\partial u2

\partial x1
and for any set A, \sharp (A) denotes the

number of elements in A.
\bullet NGFer(\bfu ), which is defined by

NGFer(\bfu ) =
NGF(T \circ \bfitvarphi ,R)
NGF(T,R)

,

where NGF(T,R) =
\int 
\Omega 1 - [\nabla nT (\bfx )\cdot \nabla nR(\bfx )]

2d\bfx , and \nabla n\nu (\nu = T,R) is the normalized
gradient.

\bullet Dice(\bfu ), which is defined by

Dice(\bfu ) = 2
| T \circ \bfitvarphi \bigcap R| 
| T \circ \bfitvarphi | + | R| ,

where | T \circ \bfitvarphi 
\bigcap 
R| is the total number of pixels that are correctly registered, and

| T \circ \bfitvarphi | + | R| is the total number of pixels in image registration.

Remark 4.1. In the sense of distribution, the boundary conditions for Stage 1 to Stage 3
are set as follows:

U | \partial \Omega =U0,
\partial lU

\partial xli
| \partial \Omega = 0 (l= 1,2; i= 1,2, . . . , d), V | \partial \Omega = 0, \phi | \partial \Omega = 0,\bfu | \partial \Omega = \bfzero .(4.1)

4.1. Parameter selection. In Stage 1 to Stage 3, there are many parameters we need to
tune. In this subsection, we discuss how to select appropriate parameters for each stage.

\bfS \bft \bfa \bfg \bfe \bfone . In the numerical version (i.e., (2.33)) of the H - 1 + H0 + H2 decomposition
model, the parameter contains \alpha 1, \alpha 2, \lambda , \mu , and \beta (note that here \theta = \mu \lambda 

\beta , \gamma = \mu + \theta ). By
the convergence results of (2.33) in Theorem 2.2, there is no additional condition for the
convergence result. Therefore, the numerical implementation for Stage 1 is stable (at least
holds in a theoretical sense). Based on this fact, one just need to select the parameters
to keep the stability of the numerical scheme of the three PDEs in (2.33) (all of the type
 - \gamma \Delta U(\bfx ) + e(\bfx )U(\bfx ) = f(\bfx )). By our observation, for the most cases, (2.33) produces an
accurate decomposition result. Here we recommend the parameters in Stage 1 to be \alpha 1 = 1,
\alpha 2 = 1, \lambda = 20, \mu = 2\times 10 - 5, \beta = 10 - 5. In fact, this parameter selection for Stage 1 keeps
unchanged for all the numerical tests in this paper.

\bfS \bft \bfa \bfg \bfe \bftwo . The parameters in B-Z homogenization model (2.34) contain \tau i, \theta i (i= 1,2,3),
and \varepsilon . Note that (2.34) is a convex model, and the existence and uniqueness of a solution
for each pair of parameters are clear (see Theorem 2.4). By our observation, for most \tau i, \theta i
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THREE-STAGE MULTIMODALITY REGISTRATION 1713

(i= 1,2,3), the model (2.34) works. Here we recommend to set \tau i = \theta i = 150 (i= 1,2,3). In
addition, by our observation, the parameter \varepsilon is very important for model (2.34). Intuitively,
for too small \varepsilon , \Phi \upsilon (\Phi =Z,\omega ,W and \upsilon = T,R) approaches to a dark image (all intensity equals
to 0) which is meaningless for Stage 3. Besides, for too large \varepsilon , the features extracted by (2.34)
are too rough, and this may also affect the registration in Stage 3. Here \varepsilon is recommended to
set in interval [0.005,0.8].

\bfS \bft \bfa \bfg \bfe \bfthree . The parameters in Stage 3 contain \xi n, \varepsilon n (n= 0,1,2, . . .), \Upsilon , \Theta , \upsilon , and \varpi . Here
\varepsilon n is only used in theoretical analysis to rule out the deformation whose Jacobian determinant
is too small. In practice, some larger \Theta may also help to achieve this goal. Note that \Upsilon , \Theta ,
\upsilon are all coefficients of the penalty term. The selection for these three parameters depends
on whether the corresponding term plays a dominant role. For \xi n, it is necessary to satisfy

the greedy matching condition (sufficient and not necessary condition limn\rightarrow +\infty B4n - 3 \~M4n

\xi n
= 0)

in Theorem 3.2. Here we recommend to set these parameters around \xi n = 2020 \times 3.2n,
\upsilon = 1.25\times 10 - 5, \Theta = 2.3\times 107, \Upsilon = 2.3\times 105, \varpi = 10 - 3.

Remark 4.2. Two factors (parameter and accuracy) may affect the registration result. For
the parameters, to ensure the efficiency of the registration algorithm, suitable parameters for
Stage 1 and Stage 2 should be selected. Otherwise, it will affect the result of the next stage.
For example, in these three stages, the most sensitive parameter is B-Z model (2.34). When
\varepsilon is too small, the features extracted by the B-Z model are all dark images (intensity is all
zeros in the image). This will lead to the wrong deformation in Stage 3 (\bfu = \bfzero everywhere).
For accuracy, to ensure the efficiency of the registration algorithm, the tolerance for accuracy
of Stage 1 and Stage 2 should be less than 10 - 2, which ensures the model in Stage 1and Stage
2 will extract the right feature.

4.2. Test for the noise, weak boundary, and texture control. In this subsection, we
perform several numerical tests to validate that the proposed Algorithm 3.1 has an advantage
in addressing the registration with intensity inhomogeneity (i.e., noise, weak boundary) and
textural structure in multimodality image registration. The test contains three parts---noise,
weak boundary, and texture---which will be introduced later, respectively.

\bfN \bfo \bfi \bfs \bfe . NGF [17] and NNGF [42] are two famous geometric feature based multimodality
image registration models. As we know, these two works are sensitive to noise. To validate
the fact that the proposed model addresses the registration with noise, we perform two groups
of numerical tests. First, to show the fact that the noise has little effect on registration in the
proposed algorithm, in Group I, we keep the target image R(\cdot ) unchanged and add different
levels of Gaussian white noise on the floating image T (\cdot ). Second, to validate that the proposed
algorithm has the ability to overcome the noise, in Group II, we add different levels of noise
on both T (\cdot ) and R(\cdot ). By using the proposed Algorithm 3.1 to match the image pair with
different levels of noise, we give the final results in Figures 5 and 6 and Table 1. By the
quantitative comparison result of Group I in Table 1, we see indeed the noise has little effect
on the registration result. Furthermore, from the comparison result of Group II in Table 1,
we see that the proposed Algorithm 3.1 addresses the multimodality image registration with
strong noise. This shows the robustness of the proposed similarity measure \scrD (\bfu ) in model
(2.39).
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(a) T (\cdot ) (b) T (\cdot ) (c) T (\cdot ) (d) R(\cdot )

(e) T \circ \~\bfitvarphi N (\cdot ) (f) T \circ \~\bfitvarphi N (\cdot ) (g) T \circ \~\bfitvarphi N (\cdot )

Figure 5. Test result for Noise-A-A (Group I): (a)--(c) are obtained by adding white Gaussian noise on clean
image with standard variance \sigma = 80,36,25, respectively. (d) is the target image. (e)--(g) are the registration
results produced by Algorithm 3.1 for (a)--(c), respectively.

\bfW \bfe \bfa \bfk \bfb \bfo \bfu \bfn \bfd \bfa \bfr \bfy . To validate that the proposed Algorithm 3.1 addresses the multimodal-
ity intensity inhomogeneity, the image pairs ``square"" (Figure 7) and ``bone"" (Figure 8) are
selected for the test data. Weak boundary appears in floating image T (\cdot ) and target image
R(\cdot ) for ``square"" and only appears in target image R(\cdot ) for ``bone."" For these two image
pairs, Algorithm 3.1 is compared with the NGF [17] and NNGF [42] for multimodality image
registration. The final results for the comparison are listed in Figures 7 and 8 and Table 2.
From Table 2, we see that the proposed Algorithm 3.1 performs the best among the three
multimodality image registration algorithms. In addition, from the aspect of computer vision,
we see that Algorithm 3.1 matches the weak boundary well in data ``square"" and ``bone"" and
produces diffeomorphic deformation, while for NGF [17] and NNGF [42], the failure to detect
the weak boundary (see Figure 2(d) for details) leads to the phenomenon that the final results
nearly keep unchanged compared with the floating image. Though NNGF [42] improves the
NGF [17], it is still not able to match the weak boundary in test data. These results show the
competitiveness of the proposed Algorithm 3.1.

\bfT \bfe \bfx \bft \bfu \bfr \bfe . To explain the reason why the textural control is added for registration, we
select Pineapple-Pepper (Figure 9) as test data. By observation of Figure 9, one can notice
that the texture appears inside the boundary. Obviously, this kind of texture cannot be
detected by the first-order and the second-order geometric feature (see Figure 3), let alone
NGF and NNGF. Therefore, the final registration results for this image pair provide strong
evidence on whether the textural control is helpful for multimodality image registration. In
fact, from the quantitative comparison between Algorithm 3.1, NGF [17], and NNGF [42]
in Table 2, we see that Algorithm 3.1 outperforms MI [29], NGF [17], and NNGF [42] for
image registration with textural structure. In addition, even in Algorithm 3.1, setting \delta W = 1
(textural control, MI = 2.36, NGFer = 0.87, Dice = 0.98) still performs better than the case
\delta W = 0 (without textural control, MI = 2.29, NGFer = 0.90, Dice = 0.97). This validates the
importance of introducing textural control in multimodality image registration.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THREE-STAGE MULTIMODALITY REGISTRATION 1715

Figure 6. Test result for Noise-A-A (Group II): The first row is the image T (\cdot ), R(\cdot ) with Gaussian noise
\sigma = 80 and the registration result of Algorithm 3.1, respectively; the second row is the image T (\cdot ), R(\cdot ) with
Gaussian noise \sigma = 36 and the registration result of Algorithm 3.1, respectively; the third row is the image T (\cdot ),
R(\cdot ) with Gaussian noise \sigma = 25 and the registration result of Algorithm 3.1, respectively.

Table 1
Test for Algorithm 3.1 on antinoise.

Group I Group II

Standard variance MI MFN NGFer MI MFN NGFer

80 0.1449 0 0.9985 0.6858 0 0.9283
36 0.1598 0 0.9916 0.5391 0 0.9188
25 0.1506 0 0.9937 0.4421 0 0.9314

4.3. Test for 2D/3D image registration. To test the performance of Algorithm 3.1 on
2D/3D image registration, we select five different 2D/3D image pairs as test data in this
test. For 2D image registration, we select two T1-T2 image pairs (Figure 10(a)--(b) and
Figure 11(a)--(b)) as test data. To show the competitiveness of the proposed Algorithm 3.1, we
use Algorithm 3.1 and the other state-of-the-art multimodality image registration algorithms

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THREE-STAGE MULTI-MODALITY REGISTRATION 29

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot ) (d) \~\bfitvarphi N

(e) NGF [18] (f) MI [29] (g) NNGF [42]

Figure 7. Test result for ``square"" with weak boundary.

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot ) (d) \~\bfitvarphi N

(e) NGF [18] (f) MI [29] (g) NNGF [42]

Figure 8. Test result for ``bone"" with intensity inhomogeneity.

Table 3
Comparison of four different registration algorithms for T1--T2 brain images.

Algorithm MI MFN NGFer Dice CPU/s

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bfone .\bfseven \bftwo \bfzero \bfzero .\bfnine \bfone \bfzero .\bfnine \bfeight \bftwo \bfone .\bfnine 
Brain 1 NGF [18] 1.66 0 0.98 0.98 55.3

NNGF [42] 1.52 0 1.02 0.93 83.2
MI [29] 1.55 0 1.01 0.96 196.2

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bfone .\bffour \bfseven \bfzero \bfzero .\bfeight \bfnine \bfzero .\bfnine \bfeight \bftwo \bffour .\bffour 
Brain 2 NGF [18] 1.41 0 0.97 0.95 60.1

NNGF [42] 1.28 0 1.02 0.92 97.0
MI [29] 1.35 0 0.93 0.93 176.1

Figure 7. Test result for ``square"" with weak boundary.
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(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot ) (d) \~\bfitvarphi N

(e) NGF [18] (f) MI [29] (g) NNGF [42]

Figure 7. Test result for ``square"" with weak boundary.

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot ) (d) \~\bfitvarphi N

(e) NGF [18] (f) MI [29] (g) NNGF [42]

Figure 8. Test result for ``bone"" with intensity inhomogeneity.

Table 3
Comparison of four different registration algorithms for T1--T2 brain images.

Algorithm MI MFN NGFer Dice CPU/s

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bfone .\bfseven \bftwo \bfzero \bfzero .\bfnine \bfone \bfzero .\bfnine \bfeight \bftwo \bfone .\bfnine 
Brain 1 NGF [18] 1.66 0 0.98 0.98 55.3

NNGF [42] 1.52 0 1.02 0.93 83.2
MI [29] 1.55 0 1.01 0.96 196.2

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bfone .\bffour \bfseven \bfzero \bfzero .\bfeight \bfnine \bfzero .\bfnine \bfeight \bftwo \bffour .\bffour 
Brain 2 NGF [18] 1.41 0 0.97 0.95 60.1

NNGF [42] 1.28 0 1.02 0.92 97.0
MI [29] 1.35 0 0.93 0.93 176.1

Figure 8. Test result for ``bone"" with intensity inhomogeneity.

(i.e., NGF [17], NNGF [42], MI [29]) to match these two test image pairs, respectively. The
registration results and quantitative comparisons are given in Figures 10 and 11 and Table 3.
By Figures 10 and 11, the proposed Algorithm 3.1 matches the test data well and produces
diffeomorphic deformation. Besides, the coarse-to-fine approach in Algorithm 3.1 obviously
improves the efficiency of the proposed Algorithm 3.1 compared with NGF [17], NNGF [42],
and MI [29]. This validates the competitiveness of the proposed Algorithm 3.1.

For 3D image registration, we select one synthetic image pair (Ball-Ellipsoid, 3D; B-E for
short), one 3D brain image pair, and one 3D liver image pair as test data. The synthetic
image pair is defined as

T (\bfx ) = 255\chi \Omega \setminus \Omega 1
(\bfx ),R(\bfx ) = 255\chi \Omega 2

(\bfx ),

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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THREE-STAGE MULTIMODALITY REGISTRATION 1717

Table 2
Test results for image registration with intensity inhomogeneity and textural structure. P-P = Pineapple-

Pepper.

Algorithm MI MFN NGFer Dice CPU/s

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bftwo .\bffour \bfone \bfzero \bfzero .\bfeight \bfthree \bfzero .\bfnine \bfnine \bfone \bfone \bfseven .\bffive 
Square NGF [17] 1.95 0 0.95 0.92 56.8

NNGF [42] 2.10 0 1.01 0.94 101.9
MI [29] 1.92 0 0.94 0.92 325.1

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bfone .\bfeight \bfone \bfzero \bfzero .\bfeight \bfone \bfzero .\bfnine \bfseven \bfeight \bftwo .\bftwo 
Bone NGF [17] 1.59 0 0.99 0.93 42.3

NNGF [42] 1.61 0 0.94 0.90 103.9
MI [29] 1.52 0 0.93 0.92 192.1

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bftwo .\bfthree \bfsix \bfzero \bfzero .\bfeight \bffive \bfzero .\bfnine \bfeight \bffive \bfnine .\bfsix 
P-P NGF [17] 1.79 0 1.12 0.90 60.2

NNGF [42] 2.01 0 1.01 0.95 103.2
MI [29] 2.05 0 1.01 0.97 200.6

30 KE CHEN AND HUAN HAN

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot ) (d) \~\bfitvarphi N

(e) NGF [18] (f) MI [29] (g) NNGF [42]

Figure 9. Test result for ``Pineapple-Pepper"" with textural structure.

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot ) (d) \~\bfitvarphi N

(e) NGF [18] (f) MI [29] (g) NNGF [42]

Figure 10. Test result for ``Brain1"".

in quantitative comparison include Algorithm 3.1, NCC [31], NFG [18] and MI [29]. Note
that here the algorithms for NCC [31] and NFG [18] are the algorithms for model (57) in [49]
by replacing the fidelity SSD with NCC and NFG, respectively. The main parameters for the
comparison is \alpha 1 = 2.6\times 10 - 11, \alpha 2 = 2.6\times 10 - 10, \beta = 6.2\times 10 - 4. Concerning the algorithm
for MI [29], the test code is to use the package ""imregister"" in MATLAB. Besides, the main
parameters in Algorithm 3.1 is set as \xi n = 2020 \times 3.2n, \upsilon = 1.25 \times 10 - 5, \Theta = 2.3 \times 107,
\Upsilon = 2.3 \times 105, \varpi = 10 - 3, \varepsilon = 5 \times 10 - 3, \sigma = 6.5, \beta = 10 - 5,\alpha 1 = \alpha 2 = 1, \mu = 2 \times 10 - 5,
\lambda = 20,\tau i = \theta i = 150(i = 1, 2, 3), \delta Z = \delta \omega = \delta W = 1. The comparison results for the test
image pairs are listed on Table 6, where the compared indexes are represented by the mean
value \pm standard deviation,respectively.

By Table 6, one can notice that the proposed Algorithm 3.1 achieves the best MI, NGFer

Figure 9. Test result for Pineapple-Pepper with textural structure.

where \Omega = (1,129)3, \Omega 1 = \{ \bfx = (x1, x2, x3)
T : (x1 - 65

35 )2 + (x2 - 65
35 )2 + (x3 - 65

35 )2 \leq 1\} , \Omega 2 = \{ \bfx =
(x1, x2, x3)

T : (x1 - 65
40 )2+(x2 - 65

35 )2+(x3 - 65
35 )2 \leq 1\} . Note that \chi \Omega (\bfx ) = 1 if \bfx \in \Omega and \chi \Omega (\bfx ) = 0

if \bfx is not in \Omega .
The floating images T (\cdot ) for 3D brain and 3D liver are downloaded from the websites

[54, 55], respectively. Note here for the convenience of the numerical implementation, we
resize all the images into the size 129 \times 129 \times 129. In addition, the target images R(\cdot ) are
generated by R(\bfx ) = T \circ \bfitvarphi (\bfx ) for any \bfx = (x1, x2, x3)

T \in \Omega , where \bfitvarphi (\bfx ) is defined by

\bfitvarphi (\bfx ) = (x1+u1(\bfx ), x2+u2(\bfx ), x3+u3(\bfx ))
T and u1(\bfx ) = 3sin(2\pi (x1 - 1)

128 ), u2(\bfx ) = 3sin(2\pi (x2 - 1)
128 ),

u3(\bfx ) = sin(2\pi (x3 - 1)
128 ).

For 3D multimodality image registration, the compared algorithms include Algorithm 3.1,
NGF [17], NCC [31], and MI [29]. The final results for the 3D registration are given in
Figures 12 to 14 and the quantitative comparison is listed in Table 4. By the quantita-
tive comparison, though it costs much CPU, the proposed Algorithm 3.1 achieves the best

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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30 KE CHEN AND HUAN HAN

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot ) (d) \~\bfitvarphi N

(e) NGF [18] (f) MI [29] (g) NNGF [42]

Figure 9. Test result for ``Pineapple-Pepper"" with textural structure.

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot ) (d) \~\bfitvarphi N

(e) NGF [18] (f) MI [29] (g) NNGF [42]

Figure 10. Test result for ``Brain1"".

in quantitative comparison include Algorithm 3.1, NCC [31], NFG [18] and MI [29]. Note
that here the algorithms for NCC [31] and NFG [18] are the algorithms for model (57) in [49]
by replacing the fidelity SSD with NCC and NFG, respectively. The main parameters for the
comparison is \alpha 1 = 2.6\times 10 - 11, \alpha 2 = 2.6\times 10 - 10, \beta = 6.2\times 10 - 4. Concerning the algorithm
for MI [29], the test code is to use the package ""imregister"" in MATLAB. Besides, the main
parameters in Algorithm 3.1 is set as \xi n = 2020 \times 3.2n, \upsilon = 1.25 \times 10 - 5, \Theta = 2.3 \times 107,
\Upsilon = 2.3 \times 105, \varpi = 10 - 3, \varepsilon = 5 \times 10 - 3, \sigma = 6.5, \beta = 10 - 5,\alpha 1 = \alpha 2 = 1, \mu = 2 \times 10 - 5,
\lambda = 20,\tau i = \theta i = 150(i = 1, 2, 3), \delta Z = \delta \omega = \delta W = 1. The comparison results for the test
image pairs are listed on Table 6, where the compared indexes are represented by the mean
value \pm standard deviation,respectively.

By Table 6, one can notice that the proposed Algorithm 3.1 achieves the best MI, NGFer

Figure 10. Test result for Brain1.THREE-STAGE MULTI-MODALITY REGISTRATION 31

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot ) (d) \~\bfitvarphi N

(e) NGF [18] (f) MI [29] (g) NNGF [42]

Figure 11. Test result for ``Brain2"".

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot )

(d) NCC [31] (e) NGF [18] (f) MI [29]

Figure 12. Test result for ``3D-B-E"".

and Dice, though it costs much more CPU time. Therefore, we conclude that the proposed
three-stage multi-modality image registration outperforms the other three algorithms in the
multi-modality image registration with intensity inhomogeneity.

5. Conclusion. In this paper, addressing the challenging problem of registering two tex-
tured and noisy images in multi-modality, the proposed approach solves three variational
problems: image decomposition, B-Z homogenization and image registration. The existence

Figure 11. Test result for Brain2.

registration result for the 3D multimodality image. This validates further the competitiveness
of the proposed Algorithm 3.1 in addressing the 3D multimodality image registration with
intensity inhomogeneity.

4.4. Test for real data on public database. Based on the numerical results in subsec-
tions 4.1 and 4.2, there is enough evidence to show that Algorithm 3.1 is competitive. To
further validate this conclusion, we select the T1-T2 images in a public database, https://www.
kaggle.com/datasets/awsaf49/brats20-dataset-training-validation, for test data. In this public
database, the 3D brain images with four different modalities (T1, T1ce, T2, and FLAIR) of
369 subjects are provided. In order to test the advantage for Algorithm 3.1 on addressing the
intensity inhomogeneity, we select T1-T2 as test modality, because intensity inhomogeneity is

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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Table 3
Comparison of four different registration algorithms for T1-T2 brain images.

Algorithm MI MFN NGFer Dice CPU/s

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bfone .\bfseven \bftwo \bfzero \bfzero .\bfnine \bfone \bfzero .\bfnine \bfeight \bftwo \bfone .\bfnine 
Brain 1 NGF [17] 1.66 0 0.98 0.98 55.3

NNGF [42] 1.52 0 1.02 0.93 83.2
MI [29] 1.55 0 1.01 0.96 196.2

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bfone .\bffour \bfseven \bfzero \bfzero .\bfeight \bfnine \bfzero .\bfnine \bfeight \bftwo \bffour .\bffour 
Brain 2 NGF [17] 1.41 0 0.97 0.95 60.1

NNGF [42] 1.28 0 1.02 0.92 97.0
MI [29] 1.35 0 0.93 0.93 176.1

THREE-STAGE MULTI-MODALITY REGISTRATION 31

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot ) (d) \~\bfitvarphi N

(e) NGF [18] (f) MI [29] (g) NNGF [42]

Figure 11. Test result for ``Brain2"".

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot )

(d) NCC [31] (e) NGF [18] (f) MI [29]

Figure 12. Test result for ``3D-B-E"".

and Dice, though it costs much more CPU time. Therefore, we conclude that the proposed
three-stage multi-modality image registration outperforms the other three algorithms in the
multi-modality image registration with intensity inhomogeneity.

5. Conclusion. In this paper, addressing the challenging problem of registering two tex-
tured and noisy images in multi-modality, the proposed approach solves three variational
problems: image decomposition, B-Z homogenization and image registration. The existence

Figure 12. Test result for 3D-B-E.

common in the T2 image. Besides, to simplify the test, only 20 different T1-T2 image pairs
(the brain structure of 40 different subjects looks most similar) are organized and resized into
129\times 129\times 129 for numerical comparison (the IDs for each image pair are listed in Table 5).
The algorithms in quantitative comparison include Algorithm 3.1, NCC [31], NFG [17], and
MI [29]. Note that here the algorithms for NCC [31] and NFG [17] are the algorithms for
model (57) in [49] by replacing the fidelity SSD with NCC and NFG, respectively. The main
parameters for the comparison are \alpha 1 = 2.6\times 10 - 11, \alpha 2 = 2.6\times 10 - 10, \beta = 6.2\times 10 - 4. Con-
cerning the algorithm for MI [29], the test code uses the package ``imregister"" in MATLAB.
Besides, the main parameters in Algorithm 3.1 are set as \xi n = 2020\times 3.2n, \upsilon = 1.25\times 10 - 5,
\Theta = 2.3 \times 107, \Upsilon = 2.3 \times 105, \varpi = 10 - 3, \varepsilon = 5 \times 10 - 3, \sigma = 6.5, \beta = 10 - 5, \alpha 1 = \alpha 2 = 1,
\mu = 2\times 10 - 5, \lambda = 20,\tau i = \theta i = 150 (i= 1,2,3), \delta Z = \delta \omega = \delta W = 1. The comparison results for
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32 KE CHEN AND HUAN HAN

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot )

(d) NCC [31] (e) NGF [18] (f) MI [29]

Figure 13. Test result for ``3D-brain"".

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot )

(d) NCC [31] (e) NGF [18] (f) MI [29]

Figure 14. Test result for ``3D-liver"".

Figure 13. Test result for 3D-brain.

the test image pairs are listed in Table 6, where the compared indexes are represented by the
mean value \pm standard deviation, respectively.

From Table 6, one can notice that the proposed Algorithm 3.1 achieves the best MI, NGFer,
and Dice, though it costs much more CPU time. Therefore, we conclude that the proposed
three-stage multimodality image registration outperforms the other three algorithms in the
multimodality image registration with intensity inhomogeneity.

5. Conclusion. In this paper, addressing the challenging problem of registering two tex-
tured and noisy images in multimodality, the proposed approach solves three variational prob-
lems: image decomposition, B-Z homogenization, and image registration. The existence of
solutions for these three problems is proved (uniqueness for image decomposition and B-Z ho-
mogenization). Moreover, the greedy matching problem is also discussed and a coarse-to-fine
algorithm is proposed to search for the global minimizer for the fidelity on a 2D/3D conformal
set. Numerical tests are also performed to validate the advantage of the proposed three-stage
image registration approach in addressing the intensity inhomogeneity for multimodality image
registration. For future research, we hope to address the correction of intensity inhomogene-
ity in multimodality image registration and give some research on machine learning based
registration for multimodality image.

Appendix A. Equivalence between \bfscrN \bfitM 
\bftwo ,\bfitvarepsilon (\bfOmega ) and Cauchy--Riemann constraint (2.41).

It is obvious that any \bfu satisfies Cauchy--Riemann constraint (2.41) with \| \nabla \varphi 1(\bfx )\| 2 = \cdot \cdot \cdot =
\| \nabla \varphi d(\bfx )\| 2 \leq M2 and det(\nabla \bfitvarphi ) \geq \varepsilon belongs to the conformal set \scrN M

2,\varepsilon (\Omega ), where \bfitvarphi (\bfx ) =

(\varphi 1,\varphi 2) = \bfx + \bfu (\bfx ) = (x1 + u1(\bfx ), x2 + u2(\bfx )). In this section, for any \bfu \in \scrN M
2,\varepsilon (\Omega ), we claim

that \bfu satisfies Cauchy--Riemann constraint (2.41). The proof is shown as follows.
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(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot )

(d) NCC [31] (e) NGF [18] (f) MI [29]

Figure 13. Test result for ``3D-brain"".

(a) T (\cdot ) (b) R(\cdot ) (c) T \circ \~\bfitvarphi N (\cdot )

(d) NCC [31] (e) NGF [18] (f) MI [29]

Figure 14. Test result for ``3D-liver"".Figure 14. Test result for 3D-liver.

Table 4
Comparison of four different registration algorithms for 3D image pairs.

Algorithm MI MFN NGFer Dice CPU/s

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bfzero .\bffour \bfnine \bfzero \bfzero .\bfnine \bfsix \bfzero .\bfnine \bfnine 896.1
3D B-E NGF [17] 0.32 0 0.99 0.79 7.6

MI [29] 0.21 0 0.99 0.66 12.3
NCC [31] 0.13 0 1.01 0.25 13.7

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bftwo .\bffour \bfnine \bfzero \bfzero .\bffive \bfone \bfzero .\bfnine \bfseven 1974.5
3D Brain NGF [17] 1.11 0 0.99 0.93 7.9

MI [29] 1.31 0 0.94 0.95 12.8
NCC [31] 2.43 0 0.55 0.97 53.6

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bftwo .\bfthree \bffive \bfzero \bfzero .\bfseven \bfnine \bfzero .\bfnine \bfeight 1776.2
3D Liver NGF [17] 1.69 0 0.99 0.91 7.8

MI [29] 1.60 0 0.97 0.91 12.7
NCC [31] 2.12 0 0.92 0.83 24.1

First, define \nabla \varphi 1(\bfx ) = (a1, b1) and \nabla \varphi 2(\bfx ) = (a2, b2), where we denote a1 = 1 + \partial u1

\partial x1
,

b1 = \partial u1

\partial x2
, a2 = \partial u2

\partial x1
, and b2 = 1 + \partial u2

\partial x2
for the convenience of description. By the fact

that \bfu \in \scrN M
2,\varepsilon (\Omega ), we have that

(A.1)

\left\{     
\| \nabla \varphi 1\| 2 = a21 + b21 = \| \nabla \varphi 2\| 2 = a22 + b22,

\nabla \varphi 1 \cdot \nabla \varphi 2 = a1a2 + b1b2 = 0,

det(\nabla \bfitvarphi ) = a1b2  - a2b1 > 0.
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1722 KE CHEN AND HUAN HAN

Table 5
Image pair ID.

Pairs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T1 14 14 103 53 70 95 116 14 114 89 12 14 28 53 99 70 99 12 14 111
T2 114 53 111 114 116 111 120 70 120 114 14 89 111 99 114 114 117 120 116 112

Table 6
Comparison of four different registration algorithms for 3D public database.

Algorithm MI MFN NGFer Dice CPU/s

\bfA \bfl \bfg \bfo \bfr \bfi \bft \bfh \bfm \bfthree .\bfone \bfzero .\bfnine \bffour \pm \bfzero .\bfzero \bftwo \bfzero \pm \bfzero \bfzero .\bfnine \bfeight \pm \bfzero .\bfzero \bfone \bfzero .\bfnine \bfnine \pm \bfzero .\bfzero \bfone 1000.4\pm 24.5
NGF [17] 0.67\pm 0.01 \bfzero \pm \bfzero \bfzero .\bfnine \bfnine \pm \bfzero .\bfzero \bfone \bfzero .\bfnine \bffour \pm \bfzero .\bfzero \bfone \bfseven .\bftwo \pm \bfzero .\bffour 
MI [29] 0.64\pm 0.02 \bfzero \pm \bfzero \bfzero .\bfnine \bfnine \pm \bfzero .\bfzero \bfzero \bfzero .\bfnine \bffour \pm \bfzero .\bfzero \bfone 12.8\pm 0.2
NCC [31] 0.74\pm 0.02 \bfzero \pm \bfzero \bfzero .\bfnine \bfeight \pm \bfzero .\bfzero \bfone \bfzero .\bfnine \bffive \pm \bfzero .\bfzero \bfone 87.7\pm 16.4

By the second equation in (A.1), we have that

a1
b2

=
 - b1
a2

= k(A.2)

for some k : \Omega \rightarrow \BbbR . Note that here k is a function of \bfx \in \Omega , and we write it as k for the
convenience of description.

That is,

a1 = kb2, b1 = - ka2.(A.3)

Substituting (A.3) into the first equation in (A.1), we obtain that

(k2  - 1)(b22 + a22) = 0(A.4)

for any \bfx \in \Omega .
This yields k\equiv \pm 1.
In addition, substituting (A.3) into the third equation in (A.1), we obtain that

det(\nabla \bfitvarphi ) = k(b22 + a22)> 0.(A.5)

This implies k\equiv 1.
At last, substituting k\equiv 1 into (A.3), there holds

\partial u1
\partial x1

=
\partial u2
\partial x2

,
\partial u1
\partial x2

= - \partial u2
\partial x1

.(A.6)

This concludes the claim.

Appendix B. Derivation of \bfpartial \bfu \bfitM \bfitI (\bfitT \circ \bfitvarphi ,\bfitR ). Define E(\bfitvarphi ) =MI(T \circ \bfitvarphi ,R) and let \bfh be
a small perturbation along \bfitvarphi . Then there holds

\partial E(\bfitvarphi + \varepsilon \bfh )

\partial \varepsilon 
| \varepsilon =0 =

\int +\infty 

 - \infty 

\int +\infty 

 - \infty 

\Biggl( 
1 + log

pT,R\bfitvarphi (i1, i2)

pD(i2)pT\bfitvarphi (i1)

\Biggr) 
\partial pT,R\bfitvarphi +\varepsilon \bfh (i1, i2)

\partial \varepsilon 
| \varepsilon =0di1di2

 - 
\int +\infty 

 - \infty 

\int +\infty 

 - \infty 

1

pT\bfitvarphi (i1)
pT,R\bfitvarphi (i1, i2)

\partial pT\bfitvarphi +\varepsilon \bfh (i1)

\partial \varepsilon 
| \varepsilon =0di1di2.(B.1)
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THREE-STAGE MULTIMODALITY REGISTRATION 1723

In addition, by the property of joint probability and marginal probability, there holds\int +\infty 

 - \infty 
pT,R\bfitvarphi (i1, i2)di2 = pT\bfitvarphi (i1)(B.2)

and \int +\infty 

 - \infty 
pT\bfitvarphi (i1)di1 = 1(B.3)

for any \bfitvarphi \in \scrN M
d (\Omega ).

Using (B.2) and (B.3), we know that the last term in (B.1) can be rewritten as\int +\infty 

 - \infty 

\int +\infty 

 - \infty 

1

pT\bfitvarphi (i1)
pT,R\bfitvarphi (i1, i2)

\partial pT\bfitvarphi +\varepsilon \bfh (i1)

\partial \varepsilon 
| \varepsilon =0di1di2

=
\partial 

\partial \varepsilon 

\int +\infty 

 - \infty 
pT\bfitvarphi +\varepsilon \bfh (i1)di1 = 0.(B.4)

By (B.1) and (B.4), we have that

\partial E(\bfitvarphi + \varepsilon \bfh )

\partial \varepsilon 
| \varepsilon =0 =

\int +\infty 

 - \infty 

\int +\infty 

 - \infty 

\Biggl( 
1 + log

pT,R\bfitvarphi (i1, i2)

pR(i2)pT\bfitvarphi (i1)

\Biggr) 
\partial pT,R\bfitvarphi +\varepsilon \bfh (i1, i2)

\partial \varepsilon 
| \varepsilon =0di1di2.(B.5)

On the other hand, there holds

\partial pT,R\bfitvarphi +\varepsilon \bfh (i1, i2)

\partial \varepsilon 
| \varepsilon =0 = - 1

| \Omega | 

\int 
\Omega 

\partial G\sigma 

\partial i1
(i1  - T \circ \bfitvarphi (\bfx ), i2  - R(\bfx ))\nabla \bfu T \circ \bfitvarphi (\bfx ) \cdot \bfh (\bfx )d\bfx .(B.6)

By (B.5) and (B.6), we obtain that

\nabla \bfitvarphi E = - 1

| \Omega | 

\biggl( 
\partial G\sigma 

\partial i1
\ast L\bfitvarphi 

\biggr) 
(T \circ \bfitvarphi (\bfx ),R(\bfx ))\nabla \bfu T \circ \bfitvarphi ,(B.7)

where L\bfitvarphi (i1, i2) = 1+ log
pT,R
\bfitvarphi (i1,i2)

pT
\bfitvarphi (i1)p

R(i2)
.

Appendix C. Multigrid method for  - \bfitgamma \bfDelta \bfitU (\bfx ) + \bfite (\bfx )\bfitU (\bfx ) = \bfitf (\bfx ). \Omega is discretized
in the following way. For N \in \BbbN +, we define h = a

N , xi,p = ph(i = 1, . . . , d) and \bfx p,\cdot ,r =
(x1,p, . . . , xd,r) for p, r= 0,1, . . . ,N . Using the finite difference method,  - \gamma \Delta U(\bfx )+e(\bfx )U(\bfx ) =
f(\bfx ) is approximated by the following algebraic equations:

\scrL U = F,(C.1)

where for d = 2, \scrL U =  - m(Ui+1,j + Ui - 1,j + Ui,j+1 + Ui,j - 1  - 4Ui,j) + ei,jUi,j , F = fi,j ; for
d= 3, \scrL U = - m(Ui+1,j,k+Ui - 1,j,k+Ui,j+1,k+Ui,j - 1,k+Ui,j,k+1+Ui,j,k - 1 - 6Ui,j,k)+ei,j,kUi,j,k,
F = fi,j,k, and m= \gamma 

h2 .
In the multigrid method, one round of V-cycle for finding the solution of (C.1) contains

the following four steps:
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1724 KE CHEN AND HUAN HAN

\bfS \bft \bfe \bfp \bfone . \bfS \bfm \bfo \bfo \bft \bfh \bfi \bfn \bfg . Assume that \Omega h and \Omega H(H = 2h) are the fine grid and coarse grid,
respectively. By starting from some initial guess on the finest grid \Omega h and using the 2D/3D
solvers

U
(\nu +1)
\bfx =

E
(\nu )
m,\bfx 

F
(\nu )
m,\bfx 

(C.2)

to relax \nu 0 times(\nu = 0,1,2, . . . , \nu 0  - 1), we obtain a smooth approximation \=Uk+1. Note

that here for d = 2, U
(\nu +1)
\bfx = U

(\nu +1)
i,j , E

(\nu )
m,\bfx = fi,j + m(U

(\nu )
i+1,j + U

(\nu )
i - 1,j + U

(\nu )
i,j+1 + U

(\nu )
i,j - 1),

F
(\nu )
m,\bfx = 4m+ ei,j ; for d = 3, U

(\nu +1)
\bfx = U

(\nu +1)
i,j,k , E

(\nu )
m,\bfx = fi,j,k +m(U

(\nu )
i+1,j,k + U

(\nu )
i - 1,j,k + U

(\nu )
i,j+1,k +

U
(\nu )
i,j - 1,k +U

(\nu )
i,j,k+1 +U

(\nu )
i,j,k - 1), F

(\nu )
m,\bfx = 6m+ ei,j,k.

At the end of Step 1, we compute the residual error \bfr h\bfx on \Omega h by

\bfr h\bfx =E
(\nu 0 - 1)
m,\bfx  - F

(\nu 0 - 1)
m,\bfx U

(\nu 0)
\bfx .(C.3)

\bfS \bft \bfe \bfp \bftwo . \bfR \bfe \bfs \bft \bfr \bfi \bfc \bft \bfi \bfo \bfn . Compute the residual error on \Omega H by \scrR H
h : \Omega h \rightarrow \Omega H

\bfr H\bfx =\scrR H
h \bfr h\bfx ,(C.4)

where the definition for \scrR H
h is given in [23, 24] in detail.

Next, we relax the equation

U
(\nu +1)
\bfx =

\=E
(\nu )
m,\bfx 

\=F
(\nu )
m,\bfx 

(C.5)

with initial guess U (0) = \bfzero to obtain \=UH . Note that here for d= 2, U
(\nu +1)
\bfx = U

(\nu +1)
i,j , \=E

(\nu )
m,\bfx =

fi,j + m(U
(\nu )
i+1,j + U

(\nu )
i - 1,j + U

(\nu )
i,j+1 + U

(\nu )
i,j - 1),

\=F
(\nu )
m,\bfx = 4mH + ei,j ; for d = 3, U

(\nu +1)
\bfx = U

(\nu +1)
i,j,k ,

\=E
(\nu )
m,\bfx = fi,j,k+mH(U

(\nu )
i+1,j,k+U

(\nu )
i - 1,j,k+U

(\nu )
i,j+1,k+U

(\nu )
i,j - 1,k+U

(\nu )
i,j,k+1+U

(\nu )
i,j,k - 1),

\=F
(\nu )
m,\bfx = 6mH+ei,j,k,

and mH = \gamma 
H2 .

At the end of Step 1, we compute the residual error \bfr h\bfx on \Omega h by

\bfr h\bfx = \=E
(\nu 0 - 1)
m,\bfx  - \=F

(\nu 0 - 1)
m,\bfx 

\=UH
\bfx .(C.6)

\bfS \bft \bfe \bfp \bfthree . \bfC \bfo \bfa \bfr \bfs \bfe \bfs \bft \bfg \bfr \bfi \bfd \bfs \bfo \bfl \bfu \bft \bfi \bfo \bfn . On coarsest grid \Omega H , the linear system

\scrL U = F(C.7)

is accurately solved.
By solving the linear equations (C.7), UH is updated.
\bfS \bft \bfe \bfp \bffour . \bfI \bfn \bft \bfe \bfr \bfp \bfo \bfl \bfa \bft \bfi \bfo \bfn . Now we use UH to correct the approximations on the finer grid

\Omega h by the following 2D/3D interpolation operator \scrI h
H : \Omega H \rightarrow \Omega h, which is defined by

Uh = \scrI h
HU

H ,(C.8)

where the definition for \scrI h
H is given in [23, 24] in detail.

Using Uh as an initial guess, we relax (C.2) \nu times and repeat the interpolation, correction,
and smoothing process until the algorithm reaches the finest grid \Omega h. Finally, relax (C.2) with
initial guess Uh to obtain the solution Uh for this round of the V-cycle.

Iterating several times using the V-cycle, one can obtain the solution of  - \gamma \Delta U(\bfx ) +
e(\bfx )U(\bfx ) = f(\bfx ).
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Appendix D. Uniform convergence of (\bfitvarphi \bfitk ) - \bfone \rightarrow \bfitvarphi  - \bfone on [\bfitC \bfone (\bfOmega )]\bfitd . First, for any
\bfu \in \scrN M

d,\varepsilon (\Omega ) and \bfitvarphi (\bfx ) = \bfx + \bfu (\bfx ), there holds

m\triangleq d\varepsilon 
d

2 \leq d[det(\nabla \bfitvarphi )]
d

2 \leq \| \nabla \bfitvarphi \| 2F \leq 3M2 \triangleq \=M(D.1)

and

\nabla \bfitvarphi \nabla T\bfitvarphi = \| \nabla \bfitvarphi \| 2F \bfI .(D.2)

Note that here we use the property \| \nabla \bfitvarphi \| 2F \geq d[det(\nabla \bfitvarphi )]
d

2 of \scrN M
d,\varepsilon (\Omega ) in [49].

Based on the fact that \bfu k \in \scrN M
d,\varepsilon (\Omega ) and (D.1)--(D.2), there holds

m\leq \| \nabla \bfitvarphi k\| 2F \leq \=M \forall k(D.3)

and

\nabla \bfitvarphi k\nabla T\bfitvarphi k = \| \nabla \bfitvarphi k\| 2F \bfI .(D.4)

By the fact \bfitvarphi k : \Omega \rightarrow \Omega and \bfitvarphi : \Omega \rightarrow \Omega are bijections, for any \bfy \in \Omega , there exists unique
\bfx ,\bfx k such that \bfy =\bfitvarphi (\bfx ) =\bfitvarphi k(\bfx k). Then

| \bfitvarphi k(\bfx k) - \bfitvarphi k(\bfx )| = | \bfitvarphi (\bfx ) - \bfitvarphi k(\bfx )| \rightarrow 0 \forall \bfx \in \Omega ,(D.5)

as k\rightarrow +\infty , because \bfitvarphi k \rightarrow \bfitvarphi in [C1(\Omega )]d.
By (D.5) and the fact that (\bfitvarphi k) - 1 \in [C1(\Omega )]d, we have that, for any \bfy \in \Omega ,

| (\bfitvarphi k) - 1(\bfy ) - \bfitvarphi  - 1(\bfy )| = | \bfx k  - \bfx | = | (\bfitvarphi k) - 1(\bfitvarphi k(\bfx k)) - (\bfitvarphi k) - 1(\bfitvarphi k(\bfx ))| \rightarrow 0,(D.6)

as k goes to infinity.
Furthermore, by the fact \bfx =\bfitvarphi  - 1(\bfitvarphi (\bfx )), we have \bfI =\nabla \bfy \bfitvarphi 

 - 1(\bfy ) \cdot \nabla \bfx \bfitvarphi (\bfx ).
Therefore, by (D.2), we obtain that

\nabla \bfy \bfitvarphi 
 - 1(\bfy ) = [\nabla \bfx \bfitvarphi (\bfx )]

 - 1 =
1

\| \nabla \bfitvarphi \| 2F
\nabla T

\bfx \bfitvarphi (\bfx ).(D.7)

Similarly, there holds

\nabla \bfy (\bfitvarphi 
k) - 1(\bfy ) =

1

\| \nabla \bfitvarphi k\| 2F
\nabla T

\bfx k\bfitvarphi \bfitk (\bfx k).(D.8)

Combining (D.7)--(D.8), we obtain that

| \nabla \bfy (\bfitvarphi 
k) - 1(\bfy ) - \nabla \bfy \bfitvarphi 

 - 1(\bfy )| =
\bigm| \bigm| \bigm| \bigm| 1

\| \nabla \bfitvarphi k\| 2F
\nabla T

\bfx k\bfitvarphi k(\bfx k) - 1

\| \nabla \bfitvarphi \| 2F
\nabla T

\bfx \bfitvarphi (\bfx )

\bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \| \nabla \bfitvarphi \| 2F\nabla T
\bfx k\bfitvarphi k(\bfx k) - \| \nabla \bfitvarphi k\| 2F\nabla T

\bfx \bfitvarphi (\bfx )

\| \nabla \bfitvarphi k\| 2F \| \nabla \bfitvarphi \| 2F

\bigm| \bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \| \nabla \bfitvarphi \| 2F\nabla T
\bfx k\bfitvarphi (\bfx ) - \| \nabla \bfitvarphi k\| 2F\nabla T

\bfx \bfitvarphi (\bfx )

\| \nabla \bfitvarphi k\| 2F \| \nabla \bfitvarphi \| 2F

\bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \bigm| \| \nabla \bfitvarphi \| 2F [\nabla T

\bfx k\bfitvarphi (\bfx ) - \nabla T
\bfx \bfitvarphi (\bfx )]

\| \nabla \bfitvarphi k\| 2F \| \nabla \bfitvarphi \| 2F

\bigm| \bigm| \bigm| \bigm| + \bigm| \bigm| \bigm| \bigm| [\| \nabla \bfitvarphi \| 2F  - \| \nabla \bfitvarphi k\| 2F ]\nabla T
\bfx \bfitvarphi (\bfx )

\| \nabla \bfitvarphi k\| 2F \| \nabla \bfitvarphi \| 2F

\bigm| \bigm| \bigm| \bigm| (D.9)

\leq 1

m2
[ \=M | \nabla T

\bfx k\bfitvarphi (\bfx ) - \nabla T
\bfx \bfitvarphi (\bfx )| + \| \bfitvarphi \| C1(\Omega )| \| \nabla \bfitvarphi \| 2F  - \| \nabla \bfitvarphi k\| 2F | ]\rightarrow 0,
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1726 KE CHEN AND HUAN HAN

as k goes to infinity. Note that here we use the fact | \bfx  - \bfx k| k - \rightarrow 0 (see (D.6) for details),

\bfitvarphi k k - \rightarrow \bfitvarphi in [C1(\Omega )]d, and H\alpha 
0 (\Omega ) \lhook \rightarrow C1(\Omega ) [12, 18] to ensure \| \bfitvarphi \| 2[C1(\Omega )]d \leq (\| \bfx \| [C1(\Omega )]d +

\| \bfu (\cdot )\| [C1(\Omega )]d)
2 \leq \^M , where \| \bfu (\cdot )\| 2[C1(\Omega )]d \leq C\| \bfu (\cdot )\| 2[H\alpha 

0 (\Omega )]d \leq C\scrK (\bfzero ).

Based on (D.6) and (D.9), we conclude that (\bfitvarphi k) - 1 uniformly converges to \bfitvarphi  - 1 on \Omega with
\| (\bfitvarphi k) - 1  - \bfitvarphi  - 1\| [C1(\Omega )]d \rightarrow 0 as k goes to infinity.

Acknowledgment. The authors of this paper would like to thank two referees for their
very helpful remarks.
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