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A B S T R A C T

The level set method has played a critical role among many image segmentation approaches. Several edge de-
tectors, such as the gradient, have been applied to its regularisation term. However, traditional edge detectors
lack high-order information and are sensitive to image noise. To tackle this problem, we introduce a method to
calculate the Ricci curvature, a vital curvature in three-dimensional Riemannian geometry. In addition, we
propose incorporating the curvature into the regularisation term. Experiments suggest that our method out-
performs the state-of-the-art level set methods and achieves a comparable result with the Swin UNETR and
Segment Anything.

1. Introduction

Image segmentation is an important aspect of image processing and
has seen significant advancements [1–3]. From Otsu’s thresholding
method [4] and energy-based techniques like level set [5] and GrabCut
[6], segmentation techniques have now evolved towards deep learning
methods [7–10], including the well-known U-Net [11] and the
transformer-based model UNETR [12], which have achieved state-of-
the-art results in a variety of medical segmentation tasks [13–15].
Despite their remarkable advantages, deep learning-based methods

present several non-negligible issues. Firstly, numerous annotations are
required, particularly for 3D medical image segmentation where several
hundreds of slices [16,17] of a single image should be interpreted [18].
Secondly, deep learning lacks interoperability [19,20], leading to the
“black box” nature, while traditional models can offer insights into
geometric properties. Therefore, traditional methods remain relevant
and require further improvement.
Among the traditional methods, the level set method is recognised as

highly effective, falling under edge-based and region-based models.
Through the region-based term, the model can group similar pixels in

the foreground and background, respectively. This is evident in the
renowned Chan-Vase model [21], which uses the global region term to

cluster different classes. The global region term assumes the foreground
and background have homogeneous intensity, which is, however, not
the case in real datasets. Several models have used the local region term
instead of the global one to deal with heterogeneous intensity. For
example, the local statistical information used in [22], the weighted
region information [23] calculated using a Gaussian kernel-based
convolution, the geodesic distance between two distinct spectral den-
sity functions [24], and the geodesic distance [25] between two fitted
Gaussian distributions. Nevertheless, the local region term might be
sensitive to initialization.
The edge-based term ensures that the energy takes a low value when

the contour lies on the edge of the image with a significant gradient,
which forces the contour to stop at image boundaries. A seminal model is
the geodesic active contours [26], which encourages the contour to pass
through edges and remain smooth by using image gradient built into the
level set. In a follow-up study, the DRLSE model [27] introduced a
refreshing energy term to eliminate the need for initialization. Addi-
tionally, Su et al. [28] utilised various gradient information by varying
the scale of images. To extend the gradient operator, several researchers
have attempted to fuse the gradient information with other forms of
information. For example, Yu et al. [29] used the diffusion rate to
describe edges. Liu et al. [30] incorporated the local regional fitting
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variances into the gradient information. Furthermore, the multi-local
statistical information [31] was employed in noisy image segmentation.
In contrast to extending the gradient operator, recent studies have

shown that curvature-based terms [32–35] can facilitate segmentation.
Existing curvature in image segmentation can be classified into one-

dimensional curvature and two-dimensional curvature. Euler’s elastica
is a famous representative of 1D curvature, representing the squared
contour curvature of the 2D level set function. Several studies
[32,36,37] have shown that Euler’s elastica can integrate missing
boundaries due to low contrast. Other forms of 1D curvature can be
defined using different norms, such as the ℓ1 norm [38]. In the case of
two dimensions, several types of curvature have been investigated,
including mean curvature [39] and Gaussian curvature [40–42]. For
example, Arif et al. [42] adopted the Gaussian curvature for haze or fog
removal.
However, 3D image segmentation requires 3D curvature. Since there

are numerous forms and definitions of 3D curvature, the best way to
search for a proper one probably relies on certain conditions it may
satisfy.
Noise [7,31–33,43] has proved to significantly downgrade the reg-

ularisation term, which might cause broken or unnecessary segmenta-
tion results. From a geometric perspective, being sensitive to noise
implies being sensitive to coordinate transformations. We now provide
an example to illustrate this. The curvature of a circle is a constant
uniquely determined by its radius, such that a smaller circle has a higher
curvature. By contrast, its gradient may vary with coordinate systems.
For example, we can change the relationship of the three derivatives at
the point p of Fig. 2 by changing the coordinate system. They can
become 0 simultaneously, which might be linked to a low contrast re-
gion; if we take the derivative with respect to y, the three circles’ gra-
dients at p will simultaneously become + ∞, which could be considered
noise in image processing.
To avoid the sensitivity to coordinate transformations, we desire an

operator that satisfies the following conditions: 1) it remains invariant
under the transformation of coordinates, such as from spherical co-
ordinates to cylindrical coordinates; 2) it remains invariant under the
transformation of the ambient space, such as from the Euclidean space to
the Minkowski space; 3) it can capture the edge. To satisfy condition 1, it
suffices to conduct calculations on the manifold, independent of the
coordinates that describe it. To meet condition 2, we shall only utilise
the intrinsic quantities determined by the manifold’s intrinsic metric
tensor, rather than certain forms related to the ambient space, including
the normal vector and the second fundamental form. In condition 3,
traditional edge descriptors, such as gradient, typically compare a
function with the smoothest possible function, the constant function. In
terms of coordinate-free expression, the quantities to be found shall
compare a manifold with the smoothest possible manifold, the Euclidean
space, which naturally leads to curvature.
Therefore, to satisfy the three conditions, we shall employ a curva-

ture uniquely dependent on the metric tensor. In fact, all these curva-
tures have proved to depend linearly on the Riemann curvature tensor, a
3× 3× 3× 3× H×W × D tensor for a H×W × D 3D image. In the
particular case of the three-dimensional continuous Riemannian mani-
fold, the Riemann curvature tensor can be completely described [44] by
the Ricci curvature tensor in shape 3× 3× H× W× D.
A classical approach to discrete Ricci curvature, particularly of net-

works, was due to Ollivier [45], which is based on the optimal transport
theory. However, by its very definition, for an image of size H× W× D,
it requires solving a separate optimal transport problem for each edge,
that is, (H − 1) ×W × D+ H× (W − 1) × D+ H×W × (D − 1) linear
programmings, which is a computationally prohibitive task in 3D image
processing. Another viewpoint towards the discretization of the Ricci
curvature, based on the connection between curvature and the Laplacian
on the manifold, was adopted by Forman [46], which is of linear
complexity to be proved. However, all the weights used in the abstract
framework of [46] were not specified, and consequently, no experiments

were performed.1

In this paper, we investigate a level set model that integrates the
Ricci curvature for 3D image segmentation. Specifically, we first
consider the 3D image f(x, y, z) as a 3D parametric hyper-surface
(x, y, z, f(x, y, z) ) embedded in the 4D Euclidean space, and use the
induced metric tensor to make measurements (i.e., volume, area and
length) on the Riemannian geometry. The three forms of measurement
can then serve as the weight function of [46] to derive the discrete Ricci
curvature. Finally, we introduce a level set model where the trace of the
Ricci curvature acts as the edge descriptor. Fig. 3 compares our proposed
pipeline with prior 3D models, where we replace the length of the
gradient with the trace of the Ricci curvature. The proposed discrete
Ricci curvature and its absolute value prohibit disproportionate fine
details and noise, which stands out in Fig. 1. By contrast, the gradient in
Fig. 1(d) shows noticeable noise.
In summary, our contributions are as follows:

• This is the first study to propose a novel 3D level set method with
Ricci curvature in the edge term.

• We introduce a formula for calculating the Ricci curvature for 3D
images.

• Our experiments demonstrate that our method outperforms
commonly used gradient-based level sets and is comparable to deep
learning models.

The remainder of the paper is organised as follows: Section 2 briefly
reviews related 3D segmentation models. Section 3 is devoted to the 3D

Fig. 1. A region in a real 3D CT image. It can be seen that the Ricci curvature
has a continuous change from positive to negative on the boundary of the
image, and the absolute value of the curvature is close to 0 in the region where
the gradient produces recognisable noise.

1 However, Forman clearly states in his paper [46] that the motivation of the
weights comes from the natural geometric ones, namely length, area, volume,
etc. Also, such weights were considered in imaging applications of Forman-
Ricci curvature [47–49]
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level set model with Ricci curvature as the edge term. Section 4 describes
our experiments on real datasets, including the colon, brain, vessel, the
necrotic tumour core from the BraTS dataset, and the right kidney from
the BTCV dataset. We discuss our limitations and future work in Section
5, followed by a conclusion in Section 6.

2. Related work

2.1. ALF model

Given a 3D image f , the adaptive local fitting model (ALF) [50] finds
the optimal surface implicitly represented by the level set ϕ = 0,
satisfying

min
Γ

E(Γ) = EG(Γ)+EF(Γ), (1)

where EG(Γ) = α
∫
g(x)d(x)dx, g(x) is the commonly used gradient

operator

g(x) =
1

1+ a|∇f(x) |2
, a > 0, (2)

and

d(x) =
∏np

i=1

(

1 − exp

(

−
|x − xi|2

2σ2

))

(3)

represents a distance penalty term. Another term EF(Γ) is defined as

λ1
∫

b1(ϕ(x) , γin)(f(x) − C1 )2 dx

+λ2
∫

b2(ϕ(x) , γout)(f(x) − C2 )2 dx,
(4)

where b1(ϕ(x) , γin) = B(ϕ(x) , γin, 0) and b2(ϕ(x) , γout) = B(ϕ(x) ,0, γout)
with

B(ϕ, γin, γout) = H(ϕ(x)+ γin )(1 − H(ϕ(x) − γout ) ) (5)

depicting the narrow band around the level set surface −

γin ≤ ϕ(x) ≤ γout. Therefore, the level set method can be written as

min
ϕ

α
∫

Ω
g(x)d(x)∣∇H(ϕ)∣dx

+

∫

Ω
λ1B(ϕ(x) , γin, 0)(f(x) − C1)2

+λ2B(ϕ(x) ,0, γout)(f(x) − C2)2dx.

(6)

2.2. LRFI model

The local regional fitting information based level set (LRFI) [30]
relies on two key terms. The first term is

v(x) = αe− β|fin(x)− fout(x) | + k, (7)

where fin(x) and fout(x) are the local regional fitting means in foreground
and background

fin(x) =
G(x − y)*[f(y)H(ϕ(y) ) ]

Ain

fout(x) =
G(x − y)*[f(y)(1 − H(ϕ(y) ) ) ]

Aout
,

(8)

respectively, Ain and Aout are their respective weighted area

Ain = G(x − y)*H(ϕ(y) )
Aout = G(x − y)*(1 − H(ϕ(y) ) ), (9)

and G(x) is the Gaussian kernel used for the convolution operator. The
second term is the improved edge stop function,

g(x) =
1

1+
⃒
⃒∇f
⃒
⃒
/(

σ2in(x) + σ2out(x) + 1
), (10)

where σ2in(x) and σ2out(x) are weighted variance

σ2in(x) = G(x − y)*
[
(f(y) − fin(x) )2H(ϕ(y) )

]

σ2out(x) = G(x − y)*
[
(f(y) − fout(x) )2(1 − H(ϕ(y) ) )

]
.

(11)

It can be observed that the edge stop function g(x) is still based on the
gradient information ∣∇f ∣. The final level set energy has the following
form

E(ϕ) = μ
∫

Ω
p(|∇ϕ(x) |)dx+ λ

∫

Ω
g(x)δ(ϕ(x) )∣∇ϕ(x)∣ dx

+υ(x)
∫

Ω
g(x)H( − ϕ(x) ) dx,

(12)

where the p(x) function is an additional penalty term that can force the
level set function to be close to a distance function as soon as possible.

2.3. MLSI model

The multi-local statistical information based level set (MLSI) [31]
utilises the entropy E(x) of the neighbourhood of each pixel x. The first
term used is the weighted regional coefficient,

v(x) ≡
α + β(1 − Enor(x) )
1+ |fin(x) − fout(x) |2

+ k, (13)

where Enor(x) is a normalised entropy such that all scaled entropy is
within [0, 1], and fin(x) and fout(x) are the same as the LRFI model. The
second term is

g(x) =
1

1+ Enor(x)
⃒
⃒
⃒
⃒∇f
⃒
⃒
⃒
⃒

/(
σin(x)
Ain

+
σout (x)
Aout

+ 1
), (14)

where σin(x) and σout(x) are the root of the σ2in(x) and σ2out(x) in the LRFI
model. We can see that this edge stop function g(x) is also based on the
gradient information ∣∇f ∣. Based on the two terms, the final level set
method can be described as

E(ϕ) = μ
∫

Ω
p(|∇ϕ(x) |)dx

+(λEnor(x) + l )
∫

Ω
g(x)δ(ϕ(x) )∣∇ϕ(x)∣ dx

+ν(x)
∫

Ω
g(x)H( − ϕ(x) ) dx.

(15)

3. Ricci curvature based level set model

Given a 3D image f(x, y, z), the key point in this section is to calculate
the Ricci curvature of the 3D hyper-surface (x, y, z, f(x, y, z) ) using the
metric tensor induced from the 4D Euclidean space. This allows for an
application to the proposed level set model. We first reformulate For-
man’s Ricci curvature based on the 3D array in Section 3.1. Next, we
provide a coordinate-free weight function in the curvature formula in
Section 3.2. Finally, we integrate the discrete Ricci curvature into the
level set for 3D image segmentation in Section 3.3, followed by a dis-
cussion of the complexity of our model in Section 3.4.

3.1. Discrete Ricci curvature

Based on the continuous setting of [44] (cf. Appendix A), the discrete
approach to the Ricci curvature lies in the discrete analogue of certain
differential operators on the manifold, which poses a considerable
challenge. Forman [46] studies the discrete Ricci curvature through a

N. Lei et al.
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discrete Laplacian, which can be related to the Ricci curvature by
Bochner’s formula [51].
We describe Forman’s original formula in Appendix B in terms of cell

complex. More precisely, the discrete Ricci curvature tensor Ric at a
point is represented by the values associated with its adjacent edges,
where the value of an edge is an analogue of the continuous Ricci cur-
vature in that direction. It is easy to see from (B.1) that the discrete
curvature is uniquely determined by three different weight functions w,
that is, three forms of value associated with a point, edge, and face
respectively, which are, however, not specified in Forman’s discrete
Ricci curvature. In this chapter, we propose using a measure, i.e., length,
area and volume, on a Riemann manifold (again, see also [47–49]) to
represent the weight functions w, which is invariant under coordinate
transformations.
In the particular case of the 3D image, a natural setting of the cell

complex is the hexahedral mesh, where each hexahedron has 1 volume,
6 faces, 12 edges, and 8 points. At this point, a natural question is
whether a voxel in a 3D image should be considered a point or a volume.
In consideration of the fact that a point cannot be assigned a meaningful
measure since it is dimensional 0, a voxel should correspond to a vol-
ume. Therefore, the original Ricci curvature tensor defined on 6 adjacent
edges of a point can now be identified with the Ricci curvature tensor
defined on 6 adjacent faces of a volume. In other words, when calcu-
lating discrete Ricci curvature, if, for instance, a point’s weight is
required, we just need to provide the weight of the corresponding
volume.
Based on our setting of the hexahedral mesh, we shall now give an

array version of the Forman curvature which is adapted to 3D images.
The hexahedral mesh corresponding to a H×W × D image can be

completely represented by an up-sampled array in shape (2H+ 1)×
(2W + 1)× (2D+ 1). To see this, it suffices to observe that a hexahedron
is composed of 27 cells: 1 volume, 6 faces, 12 edges, and 8 points, which
can exactly fit in a 3× 3× 3 array. Hence, if putting a volume, corre-
sponding to a voxel as mentioned, at index (1, 1, 1) of the up-sampled
array, all volumes will have subscript indexing composed of three odd
numbers, the subscript indexing of each face will have exactly 2 odd
numbers and each edge will have array indexing with only one odd
number.
Having defined the one-to-one map from the hexahedral mesh to an

up-sampled array, the discrete Ricci curvature can be explained using
two up-sampled arrays w and Ric both in shape (2H+ 1)× (2W + 1)×
(2D+ 1), where w can quantify weights (i.e., length, area and volume)
and Ric can store the Ricci curvature of faces, as follows. Assume the
face under consideration has subscript index x in the up-sampled array,
then its Ricci curvature Ric(x) is

Ric(x) = f1(x, ei) + f1(x, − ei)
+f2
(
x, e(i+1)%3

)
+ f2

(
x, − e(i+1)%3

)

+f2
(
x, e(i+2)%3

)
+ f2

(
x, − e(i+2)%3

)
,

(16)

where e0 = (1,0, 0), e1 = (0, 1,0) and e2 = (0, 0,1) are three displace-
ments relative to the index considered, i = 0,1, 2 is an integer indicating
the position of the even number in x, a%b means the remainder after
division of a by b,

f1(x, e) =
w(x)

w(x+ e)
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
w(x)w(x+ e+ e)

√

w(x+ e)
,

and

f2(x, e) =
w(x+ e)
w(x)

−
w(x+ e)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
w(x)w(x+ e+ e)

√ .

For example, given a face located at position x = (1, 2,3) of the up-
sampled array, ei = e1 since the even number 2 is the second index,
giving rise to Ric(x) = f1(x, e1)+ f1(x, − e1)+ f2(x, e2)+ f2(x, − e2)+
f3(x, e0)+ f3(x, − e0).
After obtaining the Ricci curvature tensor defined on each face, we

calculate its trace to obtain a scalar at each voxel, which serves as an
edge descriptor in Section 3.3. Specifically, a voxel has the scalar
curvature

S(x) =
∑

i=0,1,2
Ric(2x+ 1 − ei)+Ric(2x+1+ ei), (17)

where S is a 3D array with the shape H× W× D, and 2x+ 1 is the po-
sition of the corresponding volume in the Ric array (16). Eq. (17) im-
plies that to compute the scalar curvature of a voxel located at array
index x, we sum up the Ricci curvature tensor of its six adjacent faces.

3.2. Discrete Ricci curvature with coordinate-free weights

From (16) and (17), it is evident that the Ricci curvature of a H×

W × D image is uniquely determined by the weight function w defined
on edges, faces, and volumes, respectively, of the corresponding hex-
ahedral mesh. These have been shown to be equivalent to an upsampled
array in shape (2H+ 1) × (2W + 1) × (2D+ 1) in the previous section.
In this section, we will define a suitable weight function and discuss its
invariant property under coordinate transformations.
A natural coordinate-free weight is a measure (i.e., volume, area, or

length) associated with a Riemannian manifold. To assign a measure to
the Riemannian manifold determined by a 3D image, we assign a 3× 3
positive definite matrix to each voxel. We propose using a metric tensor
that is widely studied and used, instead of a manually specified matrix,
at each point. Several metric tensors can be employed for 3D images.
One way is to use classical three-dimensional metric tensors, including
Euclidean and Hyperbolic metrics [52,53]. However, when applying the
naive Euclidean metric, the Ricci curvature of each voxel becomes 0.
Similarly, if using the Hyperbolic metric, the sectional curvature is − 1
everywhere. Another way is to lift the 3D image to a higher dimensional
space, such as the 4D Euclidean and Minkowski spaces. Unfortunately,
due to its special metric tensor, Minkowski space can lead to an unde-
sired restriction on the magnitude of the gradient, analogous to the
observation that no object has a faster speed than light. Therefore, a
proper metric tensor of 3D images f(x, y, z) is induced by the metric
tensor of the 4D Euclidean space (x, y, z, f(x, y, z) ) that the image is lifted
into.
Specifically, since a 3D image f(x, y, z) is a parametric hyper-surface

r(x, y, z) = (x, y, z, f(x, y, z) ), it has three tangents at each point: rx =
(
1,0, 0, fx

)
, ry =

(
0,1, 0, fy

)
and rz =

(
0,0, 1, fz

)
. Recall that the metric

tensor is a 3× 3 matrix at each point whose elements represent pairwise
inner products of the three tangents, yielding the following positive
definite matrix at each voxel

g =

⎡

⎢
⎢
⎢
⎣

1+ f2x fxfy fxfz
fyfx 1+ f2y fyfz
fzfx fzfy 1+ f2z

⎤

⎥
⎥
⎥
⎦
, (18)

where 1+ f2x , for instance, describes the inner product of rx and rx at the
point considered.
The metric tensor g allows us to measure a volume on the manifold

which will not vary with coordinates
∫

̅̅̅̅̅̅̅̅̅̅̅̅̅
det(g)

√
dxdydz.

It follows from the linear algebra identity

det
(
I+uvT

)
= 1+uTv,

where u and v are column vectors, that the volume of a volume on the
3D manifold reads
∫ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ f2x + f2y + f2z
√

dxdydz. (19)
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Here the derivatives fx, fy, and fz represent the gradient of volumes,
which we have identified with voxels of the 3D image, and thus can be
directly calculated by applying the centre difference to the original 3D
image.
Regarding faces, their 2× 2 metric tensor will vary with their di-

rection as follows
⎡

⎣
1+ f2x fxfy
fxfy 1+ f2y

⎤

⎦,

⎡

⎣
1+ f2y fyfz
fyfz 1+ f2z

⎤

⎦,

⎡

⎣
1+ f2x fxfz
fxfz 1+ f2z

⎤

⎦.

Consequently, their areas can be analogously represented as:
∫ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ f2x + f2y
√

dxdy,
∫ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ f2y + f2z
√

dydz,
∫ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ f2x + f2z
√

dxdz.

(20)

The unknown derivatives fx, fy, and fz, defined on faces, can be
interpolated from two adjacent volumes (i.e., correspond to the voxels of
the original image) using interpolation coefficients equal to the dis-
tances to the two volumes’ centres. For instance, a face perpendicular to

the x axis has two interpolation coefficients,
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ f2x(a)
√

dx and

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ f2x(b)
√

dx, where a and b are its two adjacent volumes, as depicted in
Fig. 4.
Regarding edges, they possess three possible metric tensors:

[
1+ f2x

]
,

[
1+ f2y

]
,

[
1+ f2z

]
.

Consequently, their lengths are given by
∫ ̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ f2x
√

dx,
∫ ̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ f2y
√

dy,
∫ ̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ f2z
√

dz. (21)

Similarly, since an edge divides the rectangle bounded by the centres
of the four adjacent volumes (i.e., correspond to the voxels of the orig-
inal image) of the edge into four smaller rectangles, we can apply
bilinear interpolation to estimate its gradient. The interpolation co-
efficients are the areas of the four smaller rectangles, as shown in Fig. 5.
To provide some insight into the weight setting, we conclude this

section by investigating its coordinate-free property. Specifically, we
will demonstrate that the following equality holds for any arbitrary
transformation:
∫ ̅̅̅̅̅̅̅̅̅̅̅̅̅

det(g̃)
√

dx̃dỹdz̃ =
∫

̅̅̅̅̅̅̅̅̅̅̅̅̅
det(g)

√
dxdydz,

where (x̃, ỹ, z̃) is the image under an arbitrary transformation of the
coordinates (x, y, z), and g̃(x̃, ỹ, z̃) is the 3× 3 metric tensor of the new
coordinates.
Recall the formula for change of variables in multiple integrals:

∫

f(x̃, ỹ, z̃) dx̃dỹdz̃ =

∫

f(x̃(x, y, z) , ỹ(x, y, z) , z̃(x, y, z) )
∂(x̃, ỹ, z̃)
∂(x, y, z) dxdydz,

where

∂(x̃, ỹ, z̃)
∂(x, y, z) =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∂x̃
∂x

∂x̃
∂y

∂x̃
∂z

∂ỹ
∂x

∂ỹ
∂y

∂ỹ
∂z

∂z̃
∂x

∂z̃
∂y

∂z̃
∂z

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

is the Jacobian of this transformation, which we will denote by J for
simplicity of notation.
To apply the change of variables, it suffices to derive the new metric

tensor g̃ in terms of (x, y, z). By applying the chain rule to the function
r = (x(x̃, ỹ, z̃) , y(x̃, ỹ, z̃) , z(x̃, ỹ, z̃) , f(x̃, ỹ, z̃) ) where f is a 3D image, we
have:

⎡

⎣
rx̃
rỹ
rz̃

⎤

⎦ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂x
∂x̃rx +

∂y
∂x̃ry +

∂z
∂x̃rz

∂x
∂ỹrx +

∂y
∂ỹry +

∂z
∂ỹrz

∂x
∂z̃rx +

∂y
∂z̃ry +

∂z
∂z̃rz

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= J− T
⎡

⎣
rx
ry
rz

⎤

⎦.

Since the metric tensor is the pairwise inner products of rx̃, rỹ and rz̃,
the metric tensor g̃ can be expressed in terms of g as:

g=̃

⎡

⎣
rx̃
rỹ
rz̃

⎤

⎦
[
rx̃ rỹ rz̃

]
= J− T

⎡

⎣
rx̃
rỹ
rz̃

⎤

⎦
[
rx̃ rỹ rz̃

]
J− 1 = J− TgJ− 1.

Therefore,
̅̅̅̅̅̅̅̅̅̅̅̅̅

det(g̃)
√

dx̃dỹdz̃ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

det
(
J− TgJ− 1

)√

det(J) dxdydz

=
̅̅̅̅̅̅̅̅̅̅̅̅̅
det(g)

√
dxdydz,

Fig. 2. Geometrical perspective of noise. Many traditional edge operators, such
as gradient, are sensitive to noise. For example, the gradients of the three circles
at point p may have an arbitrary relationship in a designed coordinate system.
They can simultaneously reach 0, which might be identified with the low
contrast region, if we take the derivative with respect to x. They can also take
the value + ∞, which might emerge from the high noise region, if we take the
derivative with respect to y. However, it is not essential to describe a quantity
on a curve (or surface) with the assistance of a coordinate system. Manifold is
an abstract surface on which certain quantities are independent of the choice of
coordinate systems, although it is typically described using different functions,
such as a parametric function or an implicit function (e.g., a level set), or using
different coordinate systems, such as the polar coordinates, the cylindrical co-
ordinates or a user-specified coordinate system. For example, although we
typically use different forms of function to describe a circle, the curvature of a
circle is dependent only on its radius rather than the function itself. In this
paper, we propose using the 3D Ricci curvature of 3D images to serve as an edge
descriptor of the level set model for 3D image segmentation.
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as desired.

3.3. Level set model

In this section, we will present our proposed level set model that
integrates Ricci curvature.
Inspired by the model in [50], we solve for the function ϕ(x, y, z)

through minimising the functional

min
ϕ
E(ϕ) = EG(ϕ)+EF(ϕ), (22)

where the level set function ϕ(x, y, z) partitions the 3D image f(x, y, z)
into the foreground ϕ(x, y, z) > 0 and the background ϕ(x, y, z) < 0.

EG is the edge term expressed as

EG(ϕ) =
∫

αg(x, y, z)∣∇H(ϕ)∣ dxdydz, (23)

where α > 0 is a hyperparameter, and H(x) is the smoothed Heaviside
step function, defined as

Hϵ(x) =
1
2
+
1
πarctan

(πx
ϵ

)
.

The key function g(x, y, z) is capable of terminating the contour
evolution at the image boundary, typically described by the image
gradient as in (2). However, gradients are known to be sensitive to noise.
As indicated in Fig. 2, a noise point may have a gradient of 0 in another
coordinate system, suggesting that the appearance of noise might be due
to an over-reliance on coordinates. To mitigate this effect, we propose
the function g(x, y, z) in the form

Fig. 3. Comparison of our model with prior models. The gradient operator is commonly used in prior models and is recognised as noise-sensitive. To address this, we
propose a 3D level set model with the substitution of the Ricci curvature for the traditional gradient operator in the 3D level set model. Specifically, given a 3D image
f(x, y, z), we derive the Ricci curvature of the 3D parametric hyper-surface (x, y, z, f(x, y, z) ) whose metric tensor is induced by the 4D Euclidean space. Thus, the
coordinate-free operator can supersede the gradient, which is sensitive to coordinate transformations.

Fig. 4. Calculation of the weight of a face, which is perpendicular to the
x-direction and is the boundary of volume a and volume b. The face’s fy and fz
are the weighted average of the corresponding values of its adjacent volumes.
The smaller the length la of volume a than the length lb of volume b in the
x-direction, the closer the fy and fz of the face to fy(a) and fz(a).

Fig. 5. Calculation of edge e’s weight, given the fx, fy, and fz of the four vol-
umes adjacent to it. If e is along the x-direction, seen from the yz plane, this is
equivalent to a bilinear interpolation: given the known fx of four corners (a, b, c,
d), find the unknown fx of a point inside the rectangle. The unknown point
divides the rectangle into four small rectangles with areas s1, s2, s3, and s4,

respectively, calculated by the formula
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+ f2y + f2z
√

dydz.
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g(x, y, z) =
1

1+ |S(x, y, z)|
, (24)

where S(x, y, z) (17) is the trace of the Ricci curvature tensor.
EF(ϕ) represents the data fidelity term, defined as

EF(ϕ) = λ1
∫

Sin
(f − Cin)2 dxdydz+ λ2

∫

Sout
(f − Cout)2 dxdydz, (25)

where λ1 and λ2 are coefficients. Sin is a band region with the width γin
inside the isosurface ϕ = 0, and Sout is a band region with the width γout
outside the isosurface ϕ = 0. Both Sin and Sout control the image region
that introduces statistical information into the region term. We assume
that ϕ takes positive values at the voxels interior to ϕ = 0, so Sin satisfies
0 < ϕ(Sin) < γin, and analogously, 0 > ϕ(Sout) > − γout.
The remaining parameters Cin and Cout are determined as follows. If

ϕ(x, y, z) is fixed, EF will attain the minimum value when

Cin =
∫
H(ϕ)H(γin − ϕ)f dxdydz
∫
H(ϕ)H(γin − ϕ)dxdydz

, (26)

and

Cout =
∫
H( − ϕ)H(ϕ + γout)f dxdydz∫
H( − ϕ)H(ϕ + γout)dxdydz

. (27)

Ultimately, the optimal ϕ can be obtained from the Euler–Lagrange
equation:

ϕt = δ(ϕ)α∇⋅
(
g∇ϕ
|∇ϕ|

)

+ δ(ϕ)λ2H(ϕ)H(γin − ϕ)(f − Cout)

− δ(ϕ)λ1H( − ϕ)H(ϕ + γout)(f − Cin).
(28)

Here, δ(x) represents the derivative of the Heaviside step function
H(x), which is the Dirac delta function. To solve Eq. (28) in a 3D image,
we discretize it using central differences and apply gradient descent for
the numerical solution [50]. The segmentation algorithm is illustrated in
Algorithm 1.

Algorithm 1. Ricci curvature based segmentation.

Algorithm 2. Computation of scalar curvature.

3.4. Complexity

In this section, we present the complexity of our model. We shall
mention that the calculation of discrete Ricci curvature (17) and the
evolution of the level set are independent. In other words, the Ricci
curvature can be calculated only once before starting the level set and
remains unchanged during iteration. Therefore, we discuss their
complexity separately.
Firstly, the Ricci curvature introduces a linear computational

complexity. To see this, it suffices to observe that if the two functions f1
and f2 in (16) depend linearly on the arrayw(x, y, z), the Eq. (16) reduces
to a 3D convolution on the image w(x, y, z) with the receptive field 5×
5× 5. Although f1 and f2 are nonlinear functions, this does not increase
the order of its complexity. Furthermore, Algorithm 2 shows that the
eventual edge descriptor S(x, y, z) requires five for loops, which implies
it is five times slower than the gradient operator ∣∇f ∣, assuming the cost
of the gradient operator is one for loop. Thus, precisely, the computa-
tional complexity is O(5N), where N is the number of voxels in the 3D
image, compared to the O(N) for the gradient operator.
Next, we discuss the complexity of the level set model. Due to the fact

that the Dirac delta function δ(ϕ) in (28) takes nonzero values only
around ϕ = 0, the gradient descent (28) is essentially conducted on a
region around the voxels corresponding to zero level set values ϕ = 0. In
application, we make this region coincide with the parameters γin and
γout. That is, in this region γin > ϕ > − γout, we employ all computations,
including the calculation of the region information (26) and (27) to be
used in gradient descent, gradient descent restricted to the zero level set
ϕ = 0 as in Algorithm 1.6, recognising a new narrow band after each
gradient descent as in Algorithm 1.7, and tracking a new zero level set
within the new narrow band as in Algorithm 1.8.
Among these operations, the primary computational burden is

introduced by the reinitialization of the signed distance function (SDF)
[27,54], by which we mean the process to propagate the gradient
descent result to a new narrow band as in Algorithm 1.7. To make our
process more computationally attractive, we make use of two Breadth-
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first searches (BFS) separately, one starting at the updated zero level set
and proceeding inward, and the other starting at the same voxels but
moving outward. We terminate the process when the new narrow band
γin > ϕ > − γout has been recognised. During BFS, each voxel inherits
SDF value from its unique parent voxel, and then we add to it 1 or − 1,
depending on whether the voxel is located in the interior or exterior,
respectively. It is necessary to mention that although the BFS only adds
an integer to the distance, the updated zero level set is a continuous
floating point, thus leading to a floating point propagation, a practical
yet good approximation to the SDF.
Therefore, in each iteration, the level set model brings computational

complexity O(Nband) where Nband indicates the voxel number within
γin > ϕ > − γout. In practice, a satisfactory segmentation result routinely
favours a small narrow band (e.g. γin, γout = 1 or 2), which implies our
method can offer a respectable computational advantage.

4. Experimental results

In this section, we conduct a comprehensive evaluation of our pro-
posed segmentation model on five diverse datasets: brain, vessel, colon,
Brain Tumour Segmentation (BraTS), and Beyond the Cranial Vault
(BTCV) dataset. The brain and vessel datasets are provided by The
Beijing Friendship Hospital. The colon dataset [17,55,56], BraTS
[16,57,58], and BTCV dataset [59,60] are publicly available online.
Before delving into the segmentation results, we highlight the ad-

vantages of Ricci curvature over the traditional gradient in terms of
resistance to noise and low contrast regions in Section 4.1. Subse-
quently, we compare our method with traditional 3D level set segmen-
tation models across brain, vessel, and colon datasets, followed by a
comparison of our model with specific deep learning models on BTCV
and BraTS datasets. The traditional 3D level sets include Adaptive Local
Fitting (ALF) [50], Local Regional Fitting Information based Level Set
(LRFI) [30], Multi-local Statistical Information based Level Set (MLSI)
[31], Wasserstein Distance based Level Set (WDLS) [61], Relative En-
tropy based Level Set (RELS) [62], and GrabCut [6]. ALF uses the
traditional gradient in the edge term, while LRFI and MLSI employ an
improved gradient. RELS and WDLS use improved global region terms
without resorting to edge descriptors. GrabCut is another classical seg-
mentation model using the maximum flow model. The deep learning
models involved are Swin UNETR [63] and Segment Anything [64].
Swin UNETR is a transformer-based model that achieved state-of-the-art
results on the BraTS dataset. Segment Anything is a well-known seg-
mentation model developed by Meta AI, recognised as one of the most
fundamental models in the field of computer vision.

4.1. Comparison of Ricci curvature and gradient

Traditional gradient-based edge terms of level set models have been
shown to be susceptible to low contrast and noise, which could degrade
segmentation results. In this section, we demonstrate the benefits of
Ricci curvature in addressing these issues.
First, we show that our discrete Ricci curvature can capture intrinsic

edge information while the gradient recognises it as low contrast,
namely the 0 gradient. Fig. 6(b) shows a 3D function f = x2 + y2 + z2

whose value is described by the image intensity. Following the defini-

tion of continuous Ricci curvature, its trace is 8(4x
2+4y2+4 z2+3)

(4x2+4 y2+4 z2+1)2
, indicating

that it reaches a maximum value at the origin (0, 0, 0). Fig. 6(c) shows its
discrete counterparts (17), revealing that its value at the origin is the
maximum of discrete Ricci curvature, coinciding with the continuous
setting. Fig. 6(d) shows the norm of its gradient (2x,2y,2z), which
reaches a minimum 0 at the origin. However, as mentioned before, a
zero gradient represents the particular xyz coordinates that agree with
the tangent plane of the surface, which heavily relies on choices of co-
ordinates rather than the intrinsic edge information.
Next, we demonstrate the advantage of Ricci curvature in terms of its

insensitivity to noise in a real image. Fig. 7 shows a slice of a CT image,
along with its curvature (17) and the length of its gradient. It is worth
mentioning that the curvature may have positive or negative values, so
Fig. 7(c) also displays its absolute value. To see it clearly, we focus on a
subregion of it in Fig. 1. It can be observed that the Ricci curvature does
not show discernible noise, while the gradient displays noticeable noise.
The two important features of Ricci curvature can significantly

benefit our proposed level set model. While the level set function is

Fig. 6. The function f = x2 + y2 + z2, its discrete Ricci curvature, and gradient.
It is easy to see that the curvature reaches the maximum value at the origin.

According to the Riemannian geometry, its Ricci curvature is 8(4x
2+4y2+4 z2+3)

(4x2+4y2+4 z2+1)2
,

also having a maximum at the origin. So, the discrete curvature can capture the
intrinsic curving information which does not only rely on the intensity change.
By contrast, based on the intensity change, the gradient (2x, 2y, 2z) reaches its
minimum length at the origin. However, as mentioned, the gradient only re-
flects the coordinates we use to describe the image rather than the image itself.

Fig. 7. One slice of a 3D image, its 3D curvature, and gradient. Since the
curvature can be positive or negative, its absolute value is also displayed. It can
be observed that using curvature can avoid undesired noise. This means
applying the intrinsic information can mitigate the noise problem.
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evolving, the edge descriptor in the edge term of the level set plays a
vital role in stopping the contour when it lies in the image boundary. A
regularisation term with intrinsic edge information, produced by the
Ricci curvature, can be expected to drive the contour properly. By
contrast, the gradient routinely produces a biased curvature estimate,
which may generate spurious inward regularisation force.

4.2. Vessel

When dealing with the vessel data, we manually selected some initial
points for all methods. Because LRFI and MLSI methods rely solely on
edge information, we used the ground truth morphologically eroded by
a kernel of size 7× 7× 7 for initial points. For the GrabCut method, we
used the same foreground seeds as that of the LRFI model, and the
background seeds were all air voxels obtained using a thresholding
method. For the remaining methods, which all possess region terms, we
chose a significantly small region inside the vessel area to make the
segmentation task challenging.
Our Ricci curvature-based model and the gradient-based model (the

ALF model) utilised a completely identical framework except for the
edge descriptor, and thus we used the same parameter configuration.
Since making the region information as local as possible [22] used in the
region term has been recognised as one of the most efficient approaches
to the heterogeneous region, we should make the two parameters γin and
γout related to the region term as small as possible by setting γout = 2,
γin = 2. Nowwe give the other three parameters α, λ1, and λ2, where α >

0 and λ1 > 0 allow the control of the internal force, and λ2 > 0 forces the
contour to evolve outward. In practice, to keep the region force and the

regularisation force on the same order, we normalised the region force
generated by λ1 and λ2. Therefore, the ratio λ2

λ1 in fact controlled the level
of dilation which was expected to be relatively high to grow the contour
outward from a small initial region. On the other hand, our parameters
should remain unchanged during contour evolution, so the dilation force
should not be too high to expand excessively. After experimenting with
varied parameters, we choose the most proper parameters: α = 0.8 and
λ2
λ1 = 1.05.
However, 3D images usually have too many voxels to run the

GrabCut completely. In the actual implementation, we divided the 3D
image into 5,000,000 3D superpixels [65] and ran the GrabCut based on
the graph of these superpixel nodes, as implemented in Matlab.
Fig. 8 is an example of the contour evolution, whose initial points are

shown in the first image. Fig. 9 shows the result of three different
methods in this example: Our method (dubbed as Ricci in the picture),
ALF (dubbed as gradient) and GrabCut. Our method is shown to
outperform the gradient in accurately identifying delicate vessel
branches. This can be attributed to the low contrast regions between
certain vessel branches, where the regularisation force yielded by the
gradient-based edge term becomes relatively large and thus prohibits
further contour dilation.
A natural problem arises as to whether it is possible to tune the pa-

rameters of the gradient-based model to improve its performance. To
demonstrate this, it would be instructive to enumerate all possible pa-
rameters. As mentioned before, since we should make the region in-
formation as local as possible, we do not intend to increase γout and γin.
Thus, Fig. 20 compares the best Dice’s coefficient (DSC) of our model

Fig. 8. The contour evolution of our algorithm in the vessel data, where the first iteration refers to the initial area. The contour starts from two small initial areas on
the two narrow ends of the vessel, gradually expanding outward and eventually segmenting the whole vessel.
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during 2000 iterations with the gradient-based model across varied λ2
λ1

(dubbed as dilation) and α (dubbed as regularisation), both ranging from
0.5 to 1.5. This indicates that the maximum of our model and gradient
model are 91 and 84, respectively, which implies that it is impossible to
improve the gradient result by simply “fine-tuning” parameters.
Although it is possible to obtain a narrow branch by growing the contour
through, for instance, increasing λ2

λ1 or decreasing α, we should mention
that the price paid for the local improvement is a global outward
movement of the contour, which will give rise to much unnecessary
region and decrease the DSC.
It can also be observed that GrabCut’s segmentation approach can

mistakenly classify a portion of vessels as the background, resulting in
fragmented vessels. This problemmay stem from using 3D superpixels in
GrabCut’s processing rather than using the original image’s voxels. If
some superpixels contain a small part of blood vessels and a large part of
the background by mistake, GrabCut might regard it as the background.
We summarise the comparison of all models in Table 1 across 50

images using three metrics: precision, recall and dice. While LRFI and
MLSI models enhance the gradient, they cannot show favourable results
due to the absence of region terms in their energy function. The real CT
data poses a challenge as it comprises various objects, including organs,
tissues, air, and bone, making it difficult to isolate specific objects using
edge information alone. Although WDLS and RELS have well-designed
global region terms, they only assume the image has two regions,
which is usually not satisfied in the real datasets. By contrast, our
method is based on the ALF model, which boasts an edge term and local
region term, which can deal with inhomogeneous images as well as
weak boundaries.

4.3. Colon

For the colon dataset, the ground truth was eroded by a 7× 7× 7
kernel and then served as the foreground seeds of LRFI, MLSI, and
GrabCut. We selected all air around the body and lungs as background
seeds for GrabCut. We chose a small region inside the colon as the initial
contour for the other models, expecting it to evolve outward gradually.
For our model and the gradient-based model, we set γout = 2, γin = 1
because the two parameters controlling the “receptive field” of the re-
gion term should be sufficiently small to handle inhomogeneous region
distribution. Additionally, we set λ2

λ1 = 1.2 to ensure that the contour
started with a larger outward region force than the inward region force.
Accordingly, we set α = 1.

Fig. 11 presents the comparison results for a sample colon, while
Fig. 10 shows our initial points (iteration 1) and detailed contour evo-
lution. Negligible differences can be observed in Fig. 11 because, for a
normal colon, more straightforward methods, such as region growing
[66], can effectively separate the colon from the image. However, dif-
ficulties arise when the small intestine adheres to the colon [67–69],

Fig. 9. The comparison of our model with the other two methods for the vessel dataset. It can be observed that our method can recognise smaller vessel branches
than the gradient method.

Table 1
Average metrics for different models.

Precision Recall Dice

Vessel
OURS 90.45± 1.42 88.68± 1.86 89.55± 1.71
ALF 85.96± 2.18 84.64± 2.42 85.29± 2.33
LRFI 83.96± 3.05 67.62± 7.40 74.90± 5.35
MLSI 85.97± 2.45 71.81± 6.24 78.25± 4.31
WDLS 83.81± 2.85 72.98± 5.66 78.02± 4.60
RELS 77.67± 4.45 76.08± 5.08 76.86± 4.77
GrabCut 80.41± 3.49 65.03± 8.68 71.90± 6.35

Colon
OURS 98.22± 1.23 98.77± 1.43 98.49± 1.40
ALF 96.71± 1.61 93.17± 2.42 94.90± 1.81
LRFI 90.11± 2.90 87.02± 3.74 88.53± 3.47
MLSI 95.61± 1.68 93.86± 2.19 94.72± 1.73
WDLS 87.59± 3.72 85.92± 3.92 86.74± 3.85
RELS 82.46± 4.99 85.67± 4.39 84.03± 4.55
GrabCut 94.95± 2.08 87.50± 3.88 91.07± 2.62

Brain
OURS 89.90± 1.37 98.23± 0.41 93.88± 1.01
ALF 77.78± 13.96 98.15± 0.11 86.78± 7.92
LRFI 63.89± 8.72 98.08± 0.14 77.37± 4.78
MLSI 75.52± 5.14 99.99± 0.03 86.04± 2.35
WDLS 68.14± 7.42 99.51± 0.27 80.89± 3.50
RELS 60.44± 10.30 99.27± 0.35 75.13± 5.01
GrabCut 83.00± 11.23 99.10± 0.23 90.34± 5.86

BraTS Necrotic Tumour Core
OURS 86.77± 5.19 89.76± 6.68 87.32± 5.72
Swin UNETR 86.61± 5.89 82.71± 7.67 83.97± 5.55
SAM 80.03± 11.38 89.97± 4.27 82.59± 9.06

BTCV Kidney
OURS 89.63± 7.64 97.02± 3.55 92.02± 4.32
Swin UNETR 90.09± 7.23 93.29± 2.41 91.55± 4.22
SAM 83.85± 12.86 97.15± 6.95 90.60± 9.27
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primarily due to poor CT image quality (rather than colon lesions). In
Fig. 12, we present a segmentation result for an abnormal colon where
distinguishing between the colon and the small intestine is challenging.
Our method outperforms the other methods by achieving the best re-
sults, while the other methods wrongly consider some small intestines as
colon.
This results from noise between the colon and the small intestine,

where the regularisation force yielded by the gradient-based term is
smaller than that of our model, which fails to be balanced against the
outward force. Fig. 21 shows their respective best Dice’s coefficient on
this sample during 2000 iterations, where our model reaches the
maximum 99 and the gradient model reaches the maximum 94. This
implies that increasing regularisation will not improve the gradient-
based model, since a high inward force generated from the regularisa-
tion term in combination with the internal region term will obscure the

contour dilation. Similarly, decreasing the dilation parameter λ2
λ1 might

also contract some parts of the contour, although the other parts of the
contour still expand. A trick is to distribute the initial points over the
center-line of the colon and use a high regularisation force, namely,
increasing α.
Table 1 compares all models across 50 cases using three metrics. It

appears that many models can reach a DSC higher than 0.9. We should
mention that in colon segmentation, a high Dice’s coefficient (e.g., 0.9)
does not reflect a reasonable segmentation result. This is because the
colon is similar in appearance to a cylinder, whose radius is routinely
much larger than the small intestine, which means the introduction of
the small intestine cannot result in a significant decrease in the Dice’s
coefficient. Table 1 indicates that LRFI and MLSI perform better than the
previous dataset. The rationale behind this is that the colon only consists

Fig. 10. The contour evolution of our algorithm in the colon data, where the first iteration refers to the initial area. The initial area is a small connected component
within the colon.

Fig. 11. The comparison for a normal colon. It can be observed that the differences between various methods are minor.
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of air and is surrounded by tissue, which possesses grayscale values
distinct from those of the air. Thus, using an edge descriptor to identify
the colon is a more appropriate approach than a global region-based
method such as WDLS and RELS. The global region-based method

does not show a promising result because some objects having the same
intensity as the colon (e.g., the small intestine) and the significant in-
tensity variance beyond the colon (e.g., the lung, tissue, water, and air),
cannot fulfil the assumption of the global region term. As for the

Fig. 12. The comparison for an abnormal colon where some undesired small intestine is attached to the colon. While the gradient-based model can’t distinguish
between the colon and small intestine, our method can achieve the best result.

Fig. 13. The contour evolution of our algorithm in the brain data, where the first iteration refers to the initial area. The contour starts from a small part of the left
brain and gradually expands to the entire brain.
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GrabCut, the main reason for its unsatisfactory result is that the small
intestine and colon have the same intensity, which leads to an identical
superpixel.

4.4. Brain

We now turn to the segmentation of the brain. The processes for
generating the foreground seeds of LRFI, MLSI, and GrabCut were
identical to those of the preceding datasets. The background seeds of
GrabCut were the air areas outside the brain. We chose a small initial
region located in the interior of the brain for the other models. For our
model and the gradient-based model, we set α = 1, λ2

λ1 = 1.05, γout = 2,
and γin = 1.
The contour evolution of the Ricci method is illustrated in Fig. 13,

where the model begins from a small area of the left brain and gradually
proceeds outward from left to right until it reaches an area close to the
ground truth. The results of a comparative analysis between the Ricci,
gradient, and GrabCut methods for this case are shown in Fig. 14.
Additionally, Fig. 22 compares the best DSC of our model on this case
during 1000 iterations with the gradient-based model, where the
maximum of our model and the gradient model are 96 and 68,
respectively.
It is evident that the Ricci method outperforms the gradient-based

model. Initially, due to λ2
λ1 = 1.05, the level set evolution is dominated

by the outward region term, which allows the contour to grow gradu-
ally. Upon reaching the vicinity of the brain boundary, the outward
region force is approximately balanced against the inward region force.
Once the contour proceeds to move beyond the boundary, the edge term
integrating Ricci curvature will smooth the level set, pulling it back.
However, the relatively high gradient cannot produce enough force to
pull the level set back due to noise. Although the Gaussian filter is widely
used to smooth noise, the trade-off is a smoothed gradient, which also
leads to a high gradient around the boundary. Decreasing the dilation
force, namely, λ2

λ1, will not serve our purpose, as shown in Fig. 22. A small
dilation force may not ensure that the contour grows globally. In other
words, some parts of the contour might stop growing and instead fluc-
tuate. A trick is to give the gradient model a low dilation force or high
regularisation and start the contour from Fig. 14, rather than our spec-
ified initial points. However, adjusting parameters during the iteration
process is not allowed in our comparison.
Table 1 compares all models across 50 cases using three metrics. It

demonstrates that using an improved gradient alone, like MLSI, can
achieve reasonable performance since the grayscale is similar within the
brain area and gradually transitions from light to dark at the boundary.
Therefore, utilising an efficient edge descriptor can aid in brain seg-
mentation. For the global region-based level set, the grayscale outside
the brain is much more inhomogeneous than the intensity of the brain,
which will always produce an outward force. Thus, the contour will
always grow, leading to a large recall and small precision. Analogous to
the preceding dataset, the failure of GrabCut lies in the superpixel’s

inability to recognise fine detail around the brain boundary.

4.5. Necrotic tumour core from BraTS 2021

Our approach, similar to other classical methods, can be freely used
in various situations without the need for an extensive amount of ground
truths for fitting. This is exemplified in ITK-SNAP, a medical software
that uses active contour to segment medical images, and 3D Slicer, a
renowned software using Growcut to interactively separate a 3Dmedical
image into the foreground and background. However, deep learning has
become increasingly important in medical image segmentation. There-
fore, we present a comparison of our method with Swin UNETR [63] and
Segment Anything (SAM) [64] on the BraTS 2021 Task1 dataset.
The BraTS dataset consists of various multi-parametric MRI scans,

which use four different parameters: T1, weighted T1, weighted T2, and
T2 fluid attenuated inverse recovery. The annotation comprises three
labels: necrotic tumour core (label 1), peritumoral oedematous/invaded
tissue (label 2), and GD-enhancing tumour (label 4). The Swin UNETR
models pre-trained on BraTS were available online at MONAI Research
Contributions [70], where the model was validated through 5-fold cross-
validation. Here, we utilised the model trained from the first fold and
compared the three models on 50 cases of the first fold.
MONAI’s specialised Swin UNETR class maintained the same default

setting as in [63]. Its default input was of size B× 4× 128× 128× 128,
and it can perform sliding window inference. We first normalised the
non-zero value on each channel separately of the original image of size
4× 240× 240× 155, cropped it to size 4× 128× 128× 128, and
finally, the output of the network was a tensor of size B× 3× 128×
128× 128. Here, the first channel of the output was the union of Label 1
and Label 4, the second channel represented all foreground, and the last
channel indicated Label 4, which implied Label 1 corresponded to (1, 1,
0). Thus, we applied the sigmoid function to the output tensor and
generated a binary tensor using the threshold 0.5. We then converted all
points with (1, 1, 0) to 1, representing Label 1, and other points to 0,
representing anything else.
Segment Anything [64] provided a more convenient Python function

powerful enough to predict foreground and background using a few
seeds from them, respectively. The Meta AI Research released three
settings of model checkpoints: vit_h (2.4 GB), vit_l (1,2 GB), and vit_b
(358 MB). In our experiment, we applied the vit_h configuration. Its
input was only restricted to a 3 channel unsigned char 8 bit 2D image.
Therefore, for each slice, i.e., with size 4× 240× 240× 1, we first
normalised the image to [0, 1] globally and converted it to [0, 255]. We
found the segmentation result primarily lies in the selection of initial
points, especially the background seeds, rather than which 3 channels
are used. Therefore, we chose the first 3 channels as input and randomly
selected 3 points within Label 1 as the foreground seeds. As for the
background seeds, since putting them around the boundary of Label 1
can significantly improve the segmentation, we randomly selected 20
points within the other two labels.
We now turn to the parameter setting of our model. Following the

Fig. 14. The comparison for the brain data. For the gradient-based model, the unsatisfactory result is partly due to the small initial region, which dictates a high
initial dilation force. In application, a larger initial region can mitigate this problem.
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preceding convention, we set α = 0.8, λ2
λ1 = 1.1, γout = 2, γin = 2. A

concern with our model was the channel of the image because we only
developed our model based on a 1 channel 3D image. However, it was
convenient to adjust our code to compensate for increased channels of
the 3D image. In application, this meant looping through each channel
using (26) and (27) within the narrow band γin > ϕ > − γout per loop
iteration. When the curvature (17) was required, we could also take
their mean. Our C++ code was packaged using Matlab’s mexFunction
and was compiled into a mexw64 file, which could directly run on
Matlab script and handle sufficiently many channels of the input image.
Fig. 15 shows the contour evolution of our model and Fig. 16 com-

pares our model with the other models on the case BraTS2021_01001.
Although Swin UNETR reaches the DSC 91.48, it brings numerous small
broken parts. Segment Anything features only one connected compo-
nent, but it does not show a promising result on the first slice of the 3D
image because it is a 2D model, and the difference between foreground
and background on the first slice is indiscernible. By contrast, our model
does not show additional spurious parts and can handle the first slice.
However, this does not mean our model cannot handle complex topol-
ogy. Our model can merge two different connected components, such as
Fig. 8, but also can split one, such as Fig. 15, during iteration. This re-
sults from our way of gradient descent: we track the contour as shown in
Algorithm 1 rather than update the level set globally.
Table 1 shows the comparison result on the 50 cases. It is essential to

mention that most deep learning models, including Swin UNETR, are
evaluated on the tumour core, which refers to the union of Label 1
(necrotic tumour core) and Label 4, rather than only the necrotic tumour
core, which we use in this table. We evaluated the pre-trained model
across all 251 cases of the first fold, and found that the DSC of the
tumour core is 89.33, which is consistent with the original paper.
However, the DSC of the necrotic tumour core is only 75.82, which
might result from its small volume.

4.6. Right kidney from BTCV

The Beyond the Cranial Vault (BTCV) abdomen dataset, an important
benchmark for abdominal organ segmentation tasks, comprises 30
training CT scans and 20 test scans. It includes labels for 13 anatomical
structures, such as the spleen, kidneys, liver, gallbladder, and more. In

this section, we compare our model’s segmentation of the right kidney
with Swin UNETR and Segment Anything.
Compared to BraTS, the scale of the BTCV dataset was not large.

Therefore, [71] suggested fine-tuning the Swin UNETR, which was
extensively self-supervised trained on other 5 varied datasets where the
ground truth was not required. To train Swin UNETR, the 30 scans with
ground truth were split into 24 training scans and 6 validation scans. The
model was trained using the AdamW optimiser for 30,000 epochs with
the loss function as the weighted sum of the dice loss and cross-entropy
loss, as detailed in [70]. The final model was available online at MONAI
Model Zoo [72].
For Segment Anything, which only supported an 8-bit unsigned char

data type, we converted the 3D image into a 3 channel 3D image. Spe-
cifically, noting that the kidney was within the intensity range [0, 255],
we replaced values less than 0 with 0 and values larger than 255 with
255, followed by repeating the array 3 times. When constructing the
foreground and background seeds, we found that the background seeds
played a more critical role in the segmentation. For example, a back-
ground point far from the foreground could barely contribute to the
segmentation result. Therefore, for each slice, we randomly chose 20
points within the kidney and 20 points outside the kidney but with a
distance less than 10.
Our model followed a similar strategy to that of the preceding

dataset. We still used the local regional information, which meant we set
γin = 2 and γout = − 2, and the dilation strategy, requiring a larger λ2

λ1
than 1 which, on the other hand, should not be too large to grow
excessively. Therefore, we set λ2

λ1 = 1.1 and α = 1 after experimenting
with varied configurations.
We compared our model with the other two models on the 6 vali-

dation cases of Swin UNETR since the test set’s ground truth was un-
available. Table 1 shows the three models’ precision, recall, and DSC.
For one case, Fig. 17 shows our contour iteration, which starts from the
initial points and expands gradually until it reaches the kidney bound-
ary. Fig. 18 visualises the three segmentation results and the ground
truth. The Swin UNETR demonstrate jagged edges and protruding and
concave regions. The first feature in fact makes it closer in appearance to
the ground truth. The last two features, on the other hand, degrade the
overall performance (DSC 93.11). By contrast, our model can address
the last two issues yielding the DSC 93.71. The conclusion can be further

Fig. 15. The contour evolution of our algorithm in the BraTS 2021 dataset, where the first iteration refers to the initial area. The algorithm starts from a small part of
label 1, and then gradually achieves a promising result.
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Fig. 16. The comparison on one case of the BraTS 2021 dataset. The DSC from left to right are 92.84, 91.48, and 91.00. The example is in the folder
BraTS2021_01001, which is in the first fold of the 5-fold validation set of the officially pre-trained Swin UNETR model. It can be observed that although Swin UNETR
can achieve a DSC of 91.48, it introduces additional broken and spurious parts. By contrast, our result has a single connected component leading to the DSC of 92.84.
In addition, since Segment Anything is a 2D model, it cannot deal with some slices where the foreground and background are hard to discern, as shown in the
uppermost part of its result.

Fig. 17. The contour evolution of our algorithm for the right kidney of the case imagesTr/img0035 from the BTCV dataset, where the first iteration refers to the
initial area. The algorithm starts from a small part of label 2, and then gradually achieves a promising result.
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confirmed in Fig. 19, which shows the interior of the kidney. This is not
totally unexpected. The local regional information of our model only
assumes the region around the boundary 2 > ϕ > − 2 is homogeneous.
The Ricci curvature-based regularisation can segment the organ if it is
not substantially connected to the other organ whose intensity is almost
the same as the ground truth. However, although Segment Anything can
reach the dice 90.01, it has fragments. This is because we randomly
select the foreground seeds and background seeds using Python, and
some background seeds do not lie in the region corresponding to the
fragments.

5. Discussion

This paper explores an intrinsic quantity, namely the Ricci curvature,
that can function as an edge operator. The intrinsic property is the
ability to remain invariant under coordinate and ambient trans-
formations, which prevents a biased estimate of curvature. In contrast,
the gradient might overestimate or underestimate the measure, as
shown in Figs. 1 and 6.
Such inaccurate curvature estimate can lead to significant issues in

image segmentation. For instance, a high EG(ϕ), resulting from a small
gradient typically found in low contrast regions, can generate a higher
inward regularisation force than expected, obscuring critical details
such as the elongated vessel in Fig. 9. Conversely, a small EG(ϕ), caused
by a high gradient or noise, might result in unnecessary segmentation
results, as seen in Figs. 12 and 14. In contrast, the Ricci curvature-based
model shows promising results, even when compared to the Swin

UNETR, as shown in Fig. 16 and Fig. 18.
Our model requires two steps for implementation. First, we calculate

two auxiliary arrays, Ric and w, both in shape (2H+ 1)× (2W + 1)×
(2D+ 1). Here, the Ricci curvature tensor (16) Ric takes values only on
elements corresponding to faces, and w stores measures on the 3D
manifold (x, y, z, f(x, y, z) ) intended for the weight function of (16).
Second, we apply our proposed level set model that integrates scalar
curvature (17), a function defined on each voxel, to 3D image
segmentation.
In practice, we tend to dilate the level set rather than erode it. This is

because the initial points can provide the level set model with the
location of the object to be segmented. Otherwise, if we select an initial
region much larger than the organ of interest, the model might not be
able to distinguish the organ of interest from other organs that have the
same intensity. In other words, the model itself cannot identify whether
we need only one of them or all of them. To address this, a potential
solution is to introduce prior information. For example, in the software
ITK-SNAP, the contour can be driven by the force generated from a
function, which is generated from user-specified labels using random
forest or Gaussianmixture models. Therefore, across all datasets, we first
choose a small part of the ground truth, as shown in Figs. 8, 10, 13, 15,
and 17, and then make the outward region force larger than the inward
region force. The model will then achieve a balance between the inner
regularisation force and the outer region force when it lies on the ob-
ject’s edge.
A comparable segmentation result cannot be achieved by simply

fine-tuning the parameters of the gradient-based model, as shown in

Fig. 18. The comparison on the right kidney of the case imagesTr/img0035 from the BTCV dataset. The DSC from left to right are 93.71, 93.11, and 90.01. The Swin
UNETR model is fine-tuned from a self-supervised pre-trained model on 5 other datasets and is available online at the MONAI Model Zoo. The Swin UNETR produces
jagged edges, which, interestingly, makes it resemble in appearance the ground truth. It also has noticeable convex(protruding) and concave regions. By contrast, our
model exhibits smoothness resulting from the regularisation term. Segment Anything also shows some fragments which result from, by an analogous argument to the
preceding dataset, the first as well as the last slice. The kidney differs from the preceding organs by a huge concave in the ground truth and the view of it is blocked.
Thus, we partition the kidney and visualise the lower part in Fig. 19.

Fig. 19. Investigation of the cavity of the kidney. We notice in Fig. 18 that the view of the concave part of the kidney is blocked. To visualise it, we partition the
kidney into two parts and this is the lower part. The camera position and rotation of the camera around the viewing axis are identical to the preceding figure. It can be
seen that the ground truth has a hole, which is only apparent in our segmentation result.
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Figs. 22, 21, and 20. This is primarily due to our small initial region and
fixed hyperparameters. However, this does not mean the gradient-based
model cannot be further improved. In fact, a graphical user interface
(GUI) can bring significant improvement. For example, when dealing
with missing delicate branches, experienced radiologists would split the
whole 3D image into several regions of interest (ROIs), and use a
separate set of parameters to segment each ROI independently using the
gradient-based level set model in ITK-SNAP software. When removing
the small intestine, one of the best approaches is through post-
processing techniques. The user can specify one point of a triangle

known to be located at the small intestine, and then remove the con-
nected component containing the point, adjusting the threshold or
morphology erosion if necessary, as with the Colon VCAR software by
GE HealthCare. As for brain segmentation, we can specify a larger initial
region closer to the ground truth than ours.
In addition to its application to the level set model, the proposed

Ricci curvature has considerable potential to act as a more general edge
descriptor in the field of image processing. Its traditional counterparts,
including the famous Canny and Sobel operators, have been frequently
used in image software. Our proposed Ricci curvature can not only

Fig. 20. The DSC of the Ricci curvature-based model and the gradient-based model for the vessel. The maximum DSC of the left hand and right image are 90.55 and
84.21, respectively.

Fig. 21. The DSC of the Ricci curvature-based model and the gradient-based model for the colon. The maximum DSC of the left and right images are 98.97 and 94.32,
respectively.

Fig. 22. The DSC of the Ricci curvature-based model and the gradient-based model for the brain dataset. The maximum DSC of the left and right images are 95.96
and 68.47, respectively.
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preserve the same order of linear computational complexity but also
remain independent of the choices of coordinates and space used to
describe the image.
However, the Ricci curvature as an edge descriptor is not its most

powerful application. A natural way to introduce Ricci curvature is to
emerge from a gradient of a form of designed energy (loss function or
action). For example, the gradient of the Einstein–Hilbert action
∫
R

̅̅̅̅̅̅̅̅̅̅̅̅̅
det(g)

√
dxdydz, where R (17) is the trace of the Ricci curvature Ric

(16), which we have used to replace the length of the gradient in (24),
and g is the metric tensor as in (18), has proved to boast the gradient ∂g

∂t =

− Ric+ 1
2Rg. Another example is Hamilton’s Ricci flow, probably the

most renowned curvature flow across a variety of fields, which possesses
another gradient configuration ∂g

∂t = − Ric, and leads to a successful
practical application in Computational Conformal Geometry [73]. In
other words, if we intend to introduce the energy into, for instance, deep
learning, we shall update the matrix g (18) in this way, and recover the
original 3D image f(x, y, z) from the new metric tensor. Note that,
discrete Forman-Ricci curvature has already been employed to this end
[74].
Unfortunately, recovering a surface from the metric tensor is

generally ill-posed, which can be evident in the fact that, if we cut a
cylinder along a generator, we may unroll it onto a plane without
changing the pairwise geodesic distances between points.
One way to deal with this is to recover certain predefined surfaces

from the metric. For example, from the uniformization theorem [75]
that any 2D surface with genus greater than 1 is equivalent to a unit disk,
it follows that recovering a surface from a given metric is equivalent to
constructing a unit disk from numerous triangles with given lengths, as
shown in the discrete Ricci flow in [73].
However, this does not seem to extend to a general 3D image

application, and thus our future work aims to adopt an alternative
approach. We find it seems feasible to derive the Euler–Lagrange
equation with respect to, instead of the metric g (18), another variable,
followed by a reconstruction of the 3D image f(x, y, z) from this variable.

6. Conclusion

The paper presents two notable contributions. Firstly, we introduce
an energy function that incorporates the Ricci curvature term. This
addition enhances the performance of the level set model used for
medical image segmentation. Secondly, we propose a novel method for
computing the Ricci curvature tensor. This method effectively detects
intrinsic edges in 3D images independent of the choice of coordinates.
Our experimental results demonstrate that the Ricci curvature-based
level set model surpasses the previous gradient-based level set model
in terms of segmentation accuracy and robustness.
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Appendix A. Continuous Ricci curvature

Given a manifoldM of n dimension, the Ricci curvature tensorRic is an extension of the Gaussian curvature [52,53], namely, a n× nmatrix at each
point, defined as the contraction of the Riemann curvature tensor

Ric(X,Y) = trace(Z↦R(X, Z)Y ) (A.1)

where X, Y and Z are three tangent vectors in M. Here, R(X, Z)Y represents the renowned Riemann curvature tensor, a n× n× n× n tensor at each
point, possessing the form

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z (A.2)

with the ∇XY representing the “directional derivative” of Y with respect to X.
For the most widely used manifold, namely, Euclidean space, the Riemann curvature tensor (A.2) becomes 0 identically, which lies in the fact that

different directional derivatives can be arbitrarily interchanged, such as ∂x∂y = ∂y∂x. Therefore, (A.2) measures the degree to which the image differs
locally from the Euclidean space. Since the Euclidean space is flat, the difference from Euclidean space prohibits smooth space, which implies the
emergence of edges. Therefore, edges in images are intrinsically associated with curvature.
Riemann curvature tensor, in fact, unifies all operators that measure the degree of curving independent of coordinate transformations, including

the typical translation and rotation, and ambient space transformations, compared to other widely used operators, such as gradient, which could be
determined by the choice of coordinates considered.
In the particular 3D image application, it has been shown that the Riemann curvature tensor depends linearly on the Ricci curvature tensor. Thus,

the discrete Ricci curvature should suffice for the 3D image processing.

Appendix B. Formal curvature function

The Forman curvature function is designated for the cell complex, in which, for example, a point is a 0-cell, and an edge is a 1-cell.
Before illustrating the curvature function, the relationships of various cells are required to comprehend the formulation. we write α < β or β > α if
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α is contained in β’s boundaries. If α1, α2 are p-cells, α1 and α2 are neighbours if

1. α1 and α2 share a (p+ 1)-cell. That is, there is a (p+ 1)-cell β with β > α1 and β > α2, or
2. α1 and α2 share a (p − 1)-cell. That is, there is a (p − 1)-cell γ with γ < α1 and γ < α2.

We say that α1 and α2 are parallel neighbours, or α1 ‖ α2, if either 1) or 2) is true but not both.
Based on these relationships, the curvature function F : {1 − cells}↦ℝ for a 1-cell α is defined as

F (α) = wα

⎡

⎣

⎛

⎝
∑

β(p+1)

wα

wβ
+
∑

γ(p− 1)

wγ

wα

⎞

⎠ −

∑

α̃p∕=α
α̃p‖α

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑

β(p+1)>α
β(p+1)>α̃

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
wαwα̃

)√

wβ
−

∑

γ(p− 1)<α
γ(p− 1)<α̃

wγ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
wαwα̃

)√
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⃒
⃒
⃒
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⎤
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⎥
⎥
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⎦

(B.1)

where ‖ denotes parallel relationship,
∑

β(p+1)>α
β(p+1)>α̃

denotes the sum over all 2-cells β containing both boundaries α and α̃, and
∑

γ(p− 1)<α
γ(p− 1)<α̃

denotes all 0-cells

γ, which are boundaries of both α and α̃.
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