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Abstract
To capture local complex shape information and fine-grained features from irregular point
cloud, this paper proposes a novel local feature encoder-based network named
context-awareness (CA)-Net which is used to solve the challenge of 3D object classification and
segmentation. The core of the CA-Net is CA-Encoder, which is based on CA and cross-channel
multi-head self-attention (CC-MSA). CA-Encoder uses contextual information awareness to
aggregate local features from two levels: point cloud 3D coordinate information and
high-dimensional implicitly encoded information, leveraging CC-MSA to learn channel-related
information. For different point cloud benchmark tasks, CA-Net uses the local feature
enhancement module (classification) and the Up-Transformer (segmentation) which includes a
cascaded set of CA-Encoders to solve the problem of feature loss at non-edge points in edge
sampling, so that the sampled results can both preserve the shape of the point cloud edges and
reconstruct the full internal shape structure of the point cloud. The CA-Net has superior
performance in experiments on ModelNet and ShapeNetPart datasets with a classification
accuracy of 93.8% and a segmentation accuracy of 85.9%.

Keywords: point cloud, context awareness, attention mechanism, cascade encoder,
edge sampling

1. Introduction

Point cloud are digitized representation on the surface of real
3D objects, and with their rich geometry, shape and structural
details, they are extensively used in in several domains, includ-
ing autonomous driving, intelligent welding [1, 2] and vir-
tual reality. In practical applications, the raw point cloud data
which is acquired by devices such as LIDAR or depth cameras

∗
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is typically large and noisy with sparse and uneven distribu-
tion that poses a great challenge to high-level vision, includ-
ing the point cloud classification, semantic segmentation, and
target detection. How to downscale the point cloud while pre-
serving its distribution and original geometric features across
arbitrary scales is a basic and important task in 3D computer
vision.

For the downsampling of point cloud, the classical
sampling methods which are based on mathematical stat-
istics include grid sampling [3], inverse density importance
sampling [4], random sampling [5], uniform sampling (US)
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[6] and farthest point sampling (FPS) [7]. FPS now is extens-
ively used in point cloud processing tasks. Nevertheless, FPS
only considers the point positions in Euclidean space, dis-
regarding the geometric relationships among adjacent points.
With the rapid advancement of deep learning technology,
neural network-based point cloud sampling methods have
emerged, which can overcome the limitations of traditional
statistical sampling methods and further enhance the perform-
ance of downstream point cloud processing tasks. S-Net [8]
generates a new small point cloud for a specific task, but
there is no guarantee that the generated point cloud is a sub-
set of the original point cloud. Over the foundation of S-
Net, SampleNet [6] introduces a soft projection module to
the matching step during the training process, i.e. a nearest-
neighbor selection operation that makes the generated points
closer to the original point cloud. CP-Net [9] proposes crit-
ical point layer, an adaptive global downsampling method
with permutation-invariance and determinism, which samples
points based on the importance of each point. DA-Net [10]
proposes a density-adaptive downsampling method for point
cloud classification tasks and improves the noise immunity
of the model through local adjustment at the initial sampling
points. MOPS-Net [11] generates a new sampling transform
matrix as a sampled point cloud by learning a sampling trans-
form matrix and multiplying it with the original point cloud.
To summarize, the traditional sampling method lacks the
adaptability to the distribution of point cloud data and can-
not fully retain the key points. Deep learning methods do
not consider the shape outlines of the point cloud as spe-
cial features, and the local features of the point cloud are
underutilized. The sampling method adopted in this paper
builds upon edge sampling [12] by incorporating local fea-
ture enhancement (LFE) module. This approach effectively
leverages the shape contour features of the point cloud while
enhancing the local features during downsampling. As a result,
the sampling outcome simultaneously can preserve both the
internal structure features and the shape outlines of the point
cloud.

For the point cloud upsampling, most of the earlier meth-
ods were based on optimization strategies with high com-
putational complexity and often struggled to recover fine-
grained structures. In recent years, deep neural network-based
upsampling methods have emerged. PU-Net [13], a pioneer-
ing work in point cloud upsampling, introduces a hierarchical
structure based on PointNet++[14] and employs Multi-Layer
Perceptron (MLP) to expand the point set. EC-Net [15] min-
imizes the point-to-edge distance by defining an edge-aware
joint loss function, which achieves edge-aware point cloud
upsampling. MPU [16] proposes a multi-step progressive
upsampling network that preserves local geometric features
during point cloud upsampling. PU-generative adversarial net-
work (GAN) [17] leverages a GAN to synthesize points in
the latent space, but its results around fine details tend to be
noise-laden. PU-CRN [18] proposes a cascaded refinement
network that is both straightforward and efficient for point
cloud upsampling. PU-graph convolutional network (GCN)

[19] proposes a novel module named NodeShuffle which is
based on GCN and further designs a feature extractor called
Inception DenseGCN for multi-scale feature extraction task.
In brief, early optimization-based methods have high com-
putational complexity and lack global awareness. Although
deep neural network-based methods can improve point cloud
reconstruction accuracy, they are prone to lose local geomet-
ric structure features during the reconstruction process. This
paper adopts a multi-encoder cascaded upsampling approach,
in which the encoder leverages contextual awareness and
attention mechanisms to enhance the learning capability of
refined local features in point clouds.Meanwhile, the cascaded
structure progressively refines the fine-grained features of the
reconstructed point cloud, achieving a balance between effi-
ciency and accuracy.

Deep learning-based methods are capable of handling more
complex 3D object geometry structures and can extract depth
features from point cloud data more efficiently. PointNet [20],
a seminal work in point-based methods, takes raw point cloud
as input and uses a series of MLPs and symmetric func-
tions to extract features for classification. However, PointNet
relies on global pooling, which limits its ability to capture
local structural information. To address this problem, sub-
sequent work has proposed various approaches based on local
feature aggregation. PointNet++ gradually aggregates global
and local features by introducing a hierarchical feature aggreg-
ation structure. DGCNN [21] introduces EdgeConv, a dynamic
graph convolution operator that captures local geometric rela-
tionships. These methods use FPS to partition the point cloud
into different local subsets and construct local aggregation
operators to learn local shape representations, ultimately con-
structing hierarchical structures to learn shape perception from
local to global. Point Transformer [22] is the first to apply
self-attention mechanism to point cloud processing andfully
leveraging the capability of Transformer to capture long-range
dependencies. Point cloud transformer (PCT) [23] proposes
an implicit Laplace operator and an offset attention mod-
ule to capture global contextual features. According to the
above development history, it can be observed that most early
methods relied on hierarchical structures to aggregate local
and global features. However, these methods struggled to
capture long-range dependencies between points. Subsequent
attention-based methods [24–27] not only effectively solve
this problem but also provide continuous momentum for the
advancement of the point cloud processing field. The fea-
ture encoder context-awareness (CA)-Encode used in this
paper achieves multi-level feature aggregation by simultan-
eously capturing geometric structural information and high-
dimensional encoded features. Meanwhile, it enhances the
ability to capture long-range relationships between points by
improving the attention mechanism.

In this paper, a point cloud processing network CA-Net is
proposed based on local feature encoder CA-Encoder to cap-
ture local complex shape information and fine-grained fea-
tures from the point cloud. CA-Encoder, the core component
of CA-Net, comprises two components: CA and cross-channel
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Figure 1. The network architecture for CA-Net.

multi-head self-attention (CC-MSA). CA initially aggregates
local features by grouping and querying operations on the geo-
metric coordinates and contextual features. Next, this mod-
ule further utilizes the CC-MSA for local feature extraction.
Based on the traditional attention mechanism, it enhances
inter-channel information fusion by shifting attention chan-
nels. For the classification branch of point cloud processing,
drawing inspiration from Edge-Conv [21], a local convolu-
tion with coordinate-based nearest neighbors is introduced as
a LFE module. It performs feature enhancement on the res-
ults of edge downsampling to perceive local contextual fea-
ture information over a larger field of view. For the seg-
mentation branch, an upsampling module (Up-Transformer) is
devised based on the Transformer architecture. This module is
designed to recover and reconstruct features at non-edge points
leveraging the capacity of the Transformer to learn long-range
dependencies.

The following is a summary of our contributions:

• This paper proposed a point cloud processing network CA-
Net, which is based on a local feature encoder CA-Encoder.
The objective of CA-Net is to learn rich context information
and accurate shape perception from disordered and irregular
point cloud.

• The core component of CA-Net is the CA-Encoder, which is
based on CA andCC-MSA. In addition, the LFEmodule and
Up-Transformer module are integrated to CA-Net to fulfill
the requirements of different point cloud benchmark tasks.

• CA-Net achieved impressive results in classification
and segmentation experiments on the ModelNet and
ShapeNetPart datasets, with a classification accuracy of
93.8% and a segmentation accuracy of 85.9%.

2. Method

2.1. Network architecture

Figure 1(a) illustrates the network architecture for classific-
ation. First, the 3D coordinates of the original point cloud
are converted into higher-dimensional implicitly encoded fea-
tures through the processing of multiple convolution blocks in
the embedding layer. Then, an attention mechanism is applied
to aggregate local features, resulting in an initial feature rep-
resentation of the point cloud. Subsequently, two rounds of
downsampling (2048 → 1024 → 512) are performed using
edge sampling methods. For each downsampled result, the
CA-Encoder is employed to further aggregate local features,
and the LFE module is used to enhance the feature map after
downsampling. Finally, the feature maps are concatenated for
subsequent classification tasks.

Figure 1(b) illustrates the network architecture for segment-
ation. First, the 3D coordinates of the original point cloud
are converted into higher-dimensional implicitly encoded fea-
tures through the processing of multiple convolution blocks in
the embedding layer. These features are subsequently fed into
the CA-Encoder to obtain an initial feature map. Following
this, the point cloud undergoes two rounds of downsampling
(2048 → 1024 → 512) using the edge sampling method
and the 3D coordinated information from the second down-
sampling stage is passed into the Up-Transformer. On this
basis, the coordinate and contextual feature of the original
point cloud are residually connected with the upsampling res-
ults to recover the point feature information discarded dur-
ing the downsampling of the point cloud. Eventually, the
aggregated features are used for subsequent segmentation
tasks.
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2.2. CA-encoder

In general, a point cloud has two important types of contextual
information: (1) the geometric structure in 3D space, refer-
ring to the position coordinates of each point in the original
point set; (2) high-dimensional implicit encoding information,
which are obtained after the original point cloud undergoes
multi-layer convolution processing in the embedding module,
representing the latent feature information of each point. Most
of the early local feature extraction methods rely on multi-
convolutional layer processing, which are limited in capturing
both local geometric features and high dimensional latent fea-
tures at multiple scales. Moreover, directly aggregating local
features from the point cloud often fails to capture meaningful
shape information. To address the aforementioned issues, this
paper proposes the CA-Encoder, a local feature encoder based
on attention mechanisms, which comprises two components:
CA and CC-MSA.

2.2.1. CA. For CA of the original coordinates of the point
cloud, each point pi ∈ R3 (i = 1,2,3 · · ·n) in the original
point set P ∈ Rn×3 is treated as a center point, the K-Nearest
Neighbors (KNN) algorithm is then used to find its neighbor-
ing points. Based on the retrieved index information, a group-
ing operation is performed to generate a matrix Pj ∈ Rn×k×3,
which consists of the 3D coordinates of the k nearest neigh-
bors for each point. Next, expand the point set P ∈ Rn×3 and
reshape it into Pj ∈ Rn×1×3.The relative positions ∆P can be
calculated as:

∆P= Pj−P,∆P ∈ Rn×k×3. (1)

In addition to representing the local geometric contextual
information of each point through its relative position ∆P,
the reshaped P ∈ Rn×1×3 is replicated k times in the extended
dimension to obtain P ∈ Rn×k×3,which represents the global
geometric contextual information. Finally,∆P and P are con-
catenated in the feature dimension to obtain the geometric con-
textual information Lgeo:

Lgeo = concat [∆P,P] ,Lgeo ∈ Rn×k×6. (2)

For the high-dimensional implicitly encoded information
obtained after being processed by the embedding module,
a processing method similar to the one used for processing
coordinate information is applied. First, the feature matrix
Fj ∈ Rn×k×c of all neighboring points is constructed through
nearest neighbor search and grouping operation (C is the
feature dimension of implicitly encoded information). Then,
expand the point feature set F ∈ Rn×c and reshape it into F ∈
Rn×1×c. The local feature contextual information ∆F can be
calculated as:

∆F= Fj−F,∆F ∈ Rn×k×c. (3)

Next, F ∈ Rn×1×c is replicated k times in the extended
dimension to F ∈ Rn×k×3,which represents the global feature
contextual information. Finally,∆F and F are concatenated in

the feature dimension to obtain the feature contextual inform-
ation Lfeat:

Lfeat = concat [∆F,F] ,Lfeat ∈ Rn×k×2c. (4)

On this basis, Lgeo and Lfeat are subjected to a convolution
operation, and then concatenating the convolved results along
the feature dimension to achieve comprehensive awareness of
local contextual information at each point. Figure 2(a) illus-
trates the structure of the CA module.

2.2.2. Cross-Channel Multi-head Self-Attention. As one
of the core operations in Transformer, MSA[28] mechanism
facilitates the capture of capturing the dependencies between
points during computation, while also segmenting independ-
ent feature channels for self-attention calculations in the cor-
responding heads. However, to denote the local features of the
point cloud more comprehensively, the correlations between
multiple segmented feature channels also needs to be con-
sidered. To achieve this objective, a new approach, namely
CC-MSA is developed based on the regular MSA. First, the
query matrixQ, key matrixK and value matrix V are encoded
by using a simple convolution operation. Then, splitting the
corresponding submatrices Qm, km, vm from the initial matrix
Q, K, V for each attention head. Specifically, as illustrated in
figure 2(b), CC-MSA generates low-dimensional submatrices
using a segmentation parameter φ , and the width of each seg-
mentation channel can be expressed as w= C/φ (C is the
dimension of the feature channel). Here, the offset of channel
is set as s= w/2< w. This ensures that there is a cross-over
region between any two adjacent channels after segmentation.
The number of attention heads can be denoted as h= 2φ − 1.
On this basis, self-attention is applied to calculate the out-
put Om of each head. Due to the overlapping common areas
between adjacent channels, the output Om of each head con-
tains contextual information from both its associated feature
channel and neighboring feature channels, enabling the fusion
of information across multiple segmentation channels. Finally,
the outputsOm from each head are concatenated along the fea-
ture dimension to obtain a more representative set of local fea-
tures for the point cloud.

2.3. Up-Transformer for point upsampling

The attention-based edge samplingmethod proposed byAPES
is more focused on the preservation of edge points than
the downsampling method FPS used in most neural net-
work papers. Additionally, edge sampling can achieve down-
sampling at arbitrary scales, but the sampled results can-
not maintain the same data distribution as the original point
cloud. Therefore, after the cross attention-based upsampling
layer, APES still has difficulty in reconstructing the fea-
ture information of non-edge points discarded during down-
sampling. Unlike previous works which achieved point cloud
upsampling through complex network design and dedic-
ated up-sampling strategies, this paper proposes a cascaded
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Figure 2. The core components of CA-encoder.

Figure 3. The diagrammatic picture of upsampling layer Up-Transformer.

transformer-based upsampling method. Specifically, as shown
in figure 3, the 3D coordinates of the downsampled point cloud
are first encoded to generate a feature map of size n× 16.
Subsequently, a local feature encoder CA-Encoder, is applied
in a cascaded manner. It consists of two parts: CA and CC-
MSA. This process gradually expands the feature dimensions
of the initial feature map, with the output feature channels
increasing as follows: 32→ 64→ 128→ 256→ 512. Finally,
by employing a periodic shuffling operation known as Pixel
Shuffle [29], which does not require additional parameters, a
dense point cloud feature map is generated with n= 512× r
and feature dimensions C= 512/r, where r is the upsampling
scale. On this basis, the 3D coordinate information of a dense
point cloud are estimated using a simple MLP. Ultimately, the
estimated dense 3D coordinates are fused with the original
3D coordinates through a residual link. Meanwhile, the multi-
dimensional features of the dense point cloud are integrated
with the preliminary local feature information, extracted from
the original point cloud via the attention mechanism, serving
as the final output of the 3D coordinates and local features of
the point cloud.

2.4. LFE

At present, most deep learning-based point-and-process meth-
ods use FPS for downsampling operations. Although the edge
sampling method can preserve the edge point features of the
object in downsampling results at arbitrary scales, it cannot
prevent the loss of non-edge point features within the object,
which destroys the internal structure of the 3D object. Drawing

inspiration from Edge-Conv, this paper introduces a local con-
volution with coordinate-based nearest neighbors as a LFE
module. This module aims to compensate for the loss of fea-
tures at non-edge points in edge sampling, and to perceive fine-
grained local context on a larger scale. As stated in figure 4, the
3D coordinate points obtained after downsampling are treated
as centroids. For each centroid, the KNN algorithm is used to
search for the indices of its neighboring points. According to
the index information, LFE extracts the feature of the neigh-
boring points within the neighborhood of each point and com-
pute the difference feature tensor between each point and its k
neighbors. Then, connect the initial feature tensor and the dif-
ference feature tensor along the feature dimension. Based on
this, the splicing tensor is dimensionally reduced by a single
layer of MLP and aggregated local features using maximum
pooling. Finally, the feature tensor with the desired dimension
is produced through an MLP.

3. Experimental design and results analysis

3.1. Evaluation metrics

To evaluate the classification and segmentation performance
of the CA-Net, this paper adopts the main evaluation met-
rics commonly used in most existing point cloud benchmark
tasks, including overall accuracy (OA), instance mean inter-
section over union (Ins. mIoU) and category mean intersection
over union (Cat. mIoU), which are computed by the following
formulas:
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Figure 4. The structure of local feature enhancement (LFE).

OA=

c∑
i=1

TPi

c∑
i=1

(TPi+FPi+TNi+FNi)
(5)

Ins.mIoU=

c∑
i=1

n∑
j=1

TPj

c∑
i=1

n∑
j=1

TPj+
c∑

i=1

n∑
j=1

FPj+
c∑

i=1

n∑
j=1

FNj

(6)

Cat.mIoU=
1
c

c∑
i=1

n∑
j=1

TPj

n∑
j=1

TPj+
n∑

j=1
FPj+

n∑
j=1

FNj

. (7)

Among them, c is the number of divided categories, n is the
number of points in each category. TP is a positive sample that
is predicted to be a positive category, FP is a negative sample
that is predicted to be a positive category, TN is a negative
sample predicted to be a negative category and FN is a positive
sample predicted to be a negative category.

3.2. Classification

Dataset. ModelNet40 [30] is a widely used benchmark data-
set in the field of 3D object shape recognition and classific-
ation. During the experiments, this dataset is split into two
parts according to the official splittingmethod. AUSmethod is
applied to extract 2048 points from the surface of each object,
which are then used as the original input to the classification

Table 1. Classification results on ModelNet40.

Modle OA (%)

PointNet [20] 89.2
PointNet++ [14] 91.9
SpiderCNN [31] 92.4
DGCNN [21] 92.9
PointCNN [32] 92.2
PointConv [33] 92.5
KPConv [34] 92.9
APES [12] 93.2
PCT [23] 93.2
CurveNet [35] 93.8
DeltaConv [36] 93.8
Ours 93.8

network. For evaluation, the experiments use OA as a measure
to compare with the previous work.

Quantitative and qualitative results. Table 1 displays
the classification quantitative comparison results (Please be
advised that the voting strategy is not considered in the res-
ults). It is noteworthy that our method has obtained super-
ior accuracy in comparison to APES global-based and local-
based classification and is comparable to the SOTA classi-
fication methods. Figure 5 shows a qualitative comparison
of the downsampled results for APES and CA-Net. It can
be observed that the APES network overly emphasizes the
sampling of edge points. Although it preserves the local sharp
edge details of the object, it results in the loss of geometric fea-
tures of non-edge points inside the object and fails to maintain
the integrity of the edge boundaries. The downsampled res-
ults obtained by CA-Net can not only show the geometrically
detailed features of the object edges excellently and ensure the
integrity of the object edge lines, but also retain the structural
features inside the object, which effectively improves the per-
formance of the classification task.

3.3. Part segmentation

Dataset. The ShapeNetPart [37] dataset is a subset of
ShapeNet, mainly used for segmentation task of objects on
component level. ShapeNetPart comprises a total of 16 881
models in 16 categories (e.g. aircraft, cars, chairs, etc.). Each
object is subdivided into different parts. For example, an air-
plane may be divided into different parts such as wings, fusel-
age and tail, and a chair may be divided into chair back, chair
seat and chair legs. During the experiments, this dataset is split
into two parts according to the official splitting method. For
evaluation, the experiments mainly use instance mIoU as a
measure to compare with the previous work.

Quantitative and qualitative results. Table 2 displays the
segmentation quantitative comparison results. It is noteworthy
that our method has superior performance in the segmenta-
tion task and improves 1% in comparison with APES. This
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Figure 5. Visualization results of sampling on CA-Nets and APES in different shapes.

Table 2. Segmentation results on shapenetpart.

Modle

Segmentation

Cat. mIoU (%) Ins. mIoU (%)

PointNet [20] 80.4 83.7
PointNet++ [14] 81.9 85.1
SpiderCNN [31] 82.4 85.3
DGCNN [21] 82.3 85.2
PointCNN [32] 84.6 86.1
PointConv [33] 82.8 85.7
KPConv [34] 85.0 86.2
APES [12] 83.1 84.9
PCT [23] — 86.2
CurveNet [35] — 86.5
StratifiedTransformer [38] 85.1 86.6
Ours 83.7 85.9

demonstrates Up-Transformer can effectively solve the prob-
lem that the upsampling layer inAPES is not able to effectively
reconstruct the dropped non-edge features. Specifically, CA-
Net aggregates local features through multiple CA-Encoders,
so that downsampled results obtained after two edge samplings
are reconstructed to a certain extent to the same structure as
the original point cloud data distribution. The downsampled
point cloud reconstructed segmentation results are shown in
figure 6.

3.4. Computational efficiency analysis

This section compares CA-Net with five other classic point
cloud networks and analyzes computational efficiency based
on the comparison results. The comparison includes network

parameters, training and testing time for classification and
segmentation tasks. All experiments in this section were con-
ducted in an Ubuntu 20.04 (64-bit) environment with Python
3.7, PyTorch 1.13.1, and a GeForce RTX 4090 Ti GPU.
Training Parameters: epoch = 200, batch size = 8.

According to table 3, compared to other networks, espe-
cially APES, CA-Net achieves higher classification and seg-
mentation accuracy without significantly increasing training
and testing time, demonstrating competitive computational
efficiency. Additionally, the smaller number of parameters
reflects the lightweight nature of the network architecture.
Although KPConv has higher computational efficiency and
segmentation accuracy, it requires a longer training period
(max epoch = 500) to reach peak performance in both clas-
sification and segmentation tasks. Overall, CA-Net achieves a
well-balanced trade-off between computational efficiency and
processing performance.

4. Ablation study

In this section, multiple ablation studies are conducted to
explore the design choices of the point cloud processing net-
work architectures.

4.1. Classification on ModelNet

Feature learning layer. In this paper, the feature learning
layer which is used CA-Net is CA-Encoder, a local feature
encoder combining local CA and CC-MSA. APES uses the
feature learning layer N2PAttention in a branch which is local
classification. CA-Net can also use other layers designed for
similar purposes in literature, e.g. EdgeConv, KpConv. The
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Figure 6. Visualization results of part segmentation after point cloud sampling.

Table 3. Computational efficiency of different networks on classification and segmentation tasks.

Model Parameters (M)

Classification on ModelNet40

OA (%)

Segmentation on ShapeNet

Ins. mIoU (%)Train (s) Test (s) Train (s) Test (s)

PointNet 3.48 37 6 89.2 49 12 83.7
PointNet++ 1.48 80 19 91.9 184 28 85.1
DGCNN 1.84 84 11 92.9 115 17 85.2
KPConv 1.73 32 11 92.9 — — 86.2
APES 1.67 88 12 93.4 160 20 84.9
Ours 1.67 92 12 93.8 163 21 85.9

Table 4. Ablation study on the use of different feature learning
layers.

Method Feature learning layer OA (%)

APES [12] N2PAttention 93.4
DGCNN [21] EdgeConv 92.5
KPConv [34] KpConv 93.1
CA-Net CA-Encoder 93.8

results obtained by using different feature learning layers for
classification experiments are shown in table 4. It can be
observed that the best performance of the point cloud pro-
cessing network is achieved by using CA encoder as the fea-
ture learning layer.

Embedding dimension. The raw data in the experimental
dataset consists of point sets with three-dimensional coordin-
ate information, characterized by sparsity and disorder. To
facilitate more effective feature extraction and learning in
subsequent network layers, the raw point cloud data is usu-
ally mapped to a high-dimensional feature space through an
embedding module to generate a preliminary point cloud fea-
ture map. Therefore, the choice of embedding dimensions is a
key factor affecting subsequent performance. Currently, most

Table 5. Ablation study of using a different number of embedding
dimensions.

Embedding dimension OA (%)

64 92.3
128 93.8
192 93.2

point cloud processing networks achieve better performance
when using larger embedding dimensions. Table 5 compares
the classification results with embedding dimensions of 64,
128, and 192. Based on the comparison, it can be observed
that the classification performance of the proposed CA-Net is
optimal when the embedding dimension is set to the default
value of 128.

Network architecture. Comparing CA-Net with the classific-
ation network architecture of APES, CA-Net has twomain dif-
ferences: (1) feature learning layer. The feature learning layer
applied on local classification of APES is N2PAttention. The
feature learning layer used in this paper is CA-Encoder, a local
feature encoder which combines local CA and cross-channel
multicast self-attention. (2)Network architecture. CA-Net

8
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Figure 7. Four different network architectures for the classification task.

Table 6. Ablation study of using the different network architectures.

CA-Encoder LFE OA (%)

Network
Architecture Design

× × 93.1
× √ 93.4
√ × 93.5
√ √ 93.8

Table 7. Ablation study of using a different number of neighbors for
local-based feature encoder.

k 16 20 30 32 40

OA (%) 93.2 93.4 93.8 93.6 93.1

adds LFE after using an attention mechanism for preliminary
feature aggregation of the edge sampling results.

There are four different network structures which are
designed to explore the effect of LFE and CA-Encoder on
the classification results. The network structures are shown in
figure 7. The classification results which are obtained from dif-
ferent network structures are shown in table 6. Comparing the
classification results, it is revealed that the combination of LFE
and CA-Encoder can effectively improve the performance of
the network.

Choice of k in nearest neighbor search. The local feature
encoder which is proposed in this paper needs to use the KNN
algorithm to search the neighbors for each point pi ∈ R3(i =
1,2,3 · · ·n) in the original point set P when performing CA.
The number of neighbors k, as a critical parameter, determ-
ines the size of the local feature awareness region for a point.
A comparison of the results obtained for setting different num-
bers of neighbors k is shown in table 7.

According to the comparison, it can be observed that as the
value of k increases from 16 to 30, the receptive field of the CA
module continues to expand, enabling the network to extract

more comprehensive local features, leading to improved clas-
sification accuracy. However, when k is increased beyond
30, the receptive field becomes excessively large, introdu-
cing noise and redundant information that interferes with the
extraction of fine-grained local features, ultimately degrading
performance. Therefore, setting k= 30 achieves the optimal
balance between receptive field size and local feature extrac-
tion in our experiments.

4.2. Segmentation on ShapeNetPart

Selection of segmentation parameter φ . The local feature
encoder which is proposed in this paper needs to select an
appropriate segmentation parameter φ to segment the feature
channels when enhancing features based on CC-MSA with
contextual information. Then, the offset s of the channel is set
by using φ as a reference and compute the number of atten-
tion heads h. As φ increases, the segmentation channel width
ω decreases and the number of attention heads h increases.
Therefore, it can help the model in accurately capturing fea-
tures and improve the ability of the model to learn fine-grained
features. However, when φ is set to an excessively large value,
the features obtained by each attention head are limited and
the model is difficult to effectively capture the global features
and cross-channel dependencies of the input data. At the same
time, the computational complexity of themodel increases sig-
nificantly. So, the selection of φ is not the larger the better.
The segmentation results obtained by using different sizes of
the segmentation parameter φ are shown in table 8. Where C
is the number of feature channels of the point cloud.

Upsampling layer. In addition to the feature learning layer,
the difference between the segmentation networks of CA-Net
and APES is that the two segmentation networks use differ-
ent upsampling layers. APES uses an upsampling layer which
is based on cross-attention, CA-Net uses an upsampling layer
Up-Transformer. Specifically, Up-Transformer progressively

9
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Table 8. Ablation study on the effect of different segmentation
parameters in cross-channel multi-head self-attention.

φ ω h Ins. mIoU(%)

2 w= C/φ h= 2φ − 1 85.5
4 85.9
6 85.4

Table 9. Ablation study of using different upsampling layers.

Method Ins. mIoU (%)

APES [12] 84.9
iPUNet [39] 84.3
CRNet [19] 83.7
Up-Transformer 85.9

expands the feature dimension of the initial feature map via the
cascaded CA-Encoders and aggregates a more comprehensive
feature map. Similarly, the network can use other upsampling
methods in the literature to reconstruct the features of down-
sampled point cloud. A comparison of the instance mIoU
that are obtained by using different up-sampling methods for
point cloud segmentation is shown in table 9. The comparison
reveals that the best performance is achieved by the point cloud
segmentation network which uses the Up-Transformer as the
upsampling layer.

5. Conclusion

This paper proposes a novel point cloud understanding net-
work CA-Net, based on a local feature encoder called CA-
Encoder. As the core component of the network, CA-Encoder
consists of two components: CA and CC-MSA. CA can cap-
ture both the geometric structure and the encoded feature of
the point cloud, enabling the network to aggregate fine-grained
local features more effectively. Built upon the conventional
attention mechanism, CC-MSA introduces offsets to the fea-
ture channels, adding correlation information among multiple
channels into attention output. It further enhances the feature
learning capability of the network.

For the point cloud classification task, the network intro-
duces an LFE module to enhance the features of the down-
sampled results, compensating for the loss of non-edge point
features during the sampling process. For the segmentation
network, a cascaded upsampling module (Up-Transformer)
with multiple feature encoders is employed to achieve fine-
grained point cloud feature reconstruction.

In summary, the network fully considers the balance
between edge point and non-edge point feature information
during the sampling process, achieving significant perform-
ance improvements in both point cloud classification and seg-
mentation tasks. In future work, it would be worthwhile to
further investigate upsampling strategies tailored to the edge-
sampled points, whose distribution differs from that of the ori-
ginal point cloud, to achieve better segmentation performance.
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