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Abstract
A diffeomorphic image registration model with a vectorial fractional-order regularizer is introduced to handle displacement
fields with varying smoothness and to avoid mesh folding. Furthermore, we combine the damped Newton method with the
Armijo line search and apply a multilevel strategy to solve the discretized version of the new model. Furthermore, both the
existence of solutions to the model and the convergence of the algorithm have been established. Numerical experiments on
synthetic and real images confirm the superiority of the proposed model and the effectiveness of the algorithm.
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1 Introduction

Image registration plays a vital role in image processing and
presents significant challenges in digital imaging technolo-
gies. The application of this technique spans several fields,
including medical imaging, image analysis, remote sensing,
and computer vision [1–3]. It has been proven that variational
methods and PDE-based techniques are highly effective in
numerous applications [4, 5].

Mathematically, variational image registration is defined
as follows: For two images of the same object, the refer-
ence image F is kept fixed, while the template image M
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is deformed. The two images are treated as compactly sup-
ported functions within a bounded convex domain � ⊂ R

d ,
with d indicating the spatial dimension. This paper specifi-
cally addresses the case where d = 2.

The target of image registration is to identify an appropri-
ate geometric transformation y(x) : � → � that ensures
the deformed template image M( y(x)) closely matches the
reference image F(x). To enable visual evaluation of the dis-
placement of points in the transformed template image from
their original locations, the transformation y canbe expressed
as follows:

y(x) = x + u(x),

here, u : x �→ u(x) = (u1(x), u2(x))� represents the dis-
placement field. Therefore, determining the transformation
y and the displacement field u is equivalent. Common met-
rics for measuring the similarity between the transformed
template image M(x + u(x)) and the reference image F(x)

include normalized cross-correlation (NCC), mutual infor-
mation (MI), and the sum of squared intensity differences
(SSD). For further details, refer to [4, 5]. In this study, we
focus on using SSD metrics for single-modality image reg-
istration, assuming that the density values of the images are
comparable. Consequently, the image registration problem
can be formulated as an optimization task:

min
u

{J (u) = 1

2

∫
�

(M(x + u(x)) − F(x))2dx}, (1)
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as is well known, model (1) is considered an ill-posed prob-
lem. A common approach to regularizing this model (1) is
to impose constraints on the displacement field u by adding
an appropriate regularizer S(u) to eliminate unrealistic solu-
tions. Therefore, finding the displacement field u requires
solving the following optimization problem:

min
u

{J (u) = D(u) + λR(u)}, (2)

the regularization parameter λ > 0 controls the trade-off
between the data fitting term and the smoothness of the dis-
placement field u.

It is widely acknowledged that the choice of regularizer
significantly influences the resulting image registrationmod-
els, affecting the solution and its properties [4, 5]. A variety of
regularizers involving integer derivatives of the displacement
field u have been proposed in the literature [6–10]. In the
last twenty years, research has demonstrated that fractional-
order derivatives, as opposed to integer-order derivatives,
provide a more precise modeling approach for a range of
scientific and engineering applications [11–19]. Inspired by
these findings, this article explores the use of fractional-
order derivatives in image registration. Several models for
fractional-order image registration have been proposed [20–
23]. However, these models have not taken mesh folding into
consideration. In image registration, mesh folding can lead
to the following several adverse effects: mesh folding may
cause certain pixels to be covered or suppressed, leading to
the loss of important information, which in turn affects the
results of image analysis and processing; on the other hand,
the folded grid may introduce artifacts or discontinuities
in edge features, degrading image quality and resulting in
unreliable analysis outcomes. Nowadays, several new image
registration models [10, 24–35] have been proposed as far as
the elimination of mesh folding is concerned. While certain
models achieve satisfactory registration results without mesh
folding, they tend tobemore computationally intensivedue to
the complexity of their objective functions. Moreover, some
models are only effective for smooth displacement fields,
resulting in relatively poor performance when applied to dis-
continuous displacement fields.

Given the difficulty of directly assessing the smoothness
or discontinuity of the displacement field u in real-world
applications, it is impractical to assume smoothness a priori.
To overcome the limitations of existing variational models,
we introduce a diffeomorphic image registration model that
employs a vectorial fractional-order regularizer. This model
is designed to handle displacement fieldswith different levels
of smoothness while effectively preventing mesh folding.

This paper is organized in the following way: Sect. 2
reviews the definitions related to fractional-order derivatives.
In Sect. 3, we develop a differential diffeomorphic image reg-
istration model using a vectorial fractional-order regularizer

and demonstrate the existence of solutions for this model.
Section 4 presents an efficient numerical method to address
the new registrationmodel and analyzes its convergence. Sec-
tion 5 showcases numerical experiments that illustrate the
advantages of the proposed model and the effectiveness of
the algorithm. Finally, Sect. 6 presents the conclusions and
discusses future work.

2 Fractional-Order Derivatives

In this section, we present a brief overview of the definitions
of the three most commonly used fractional derivatives.

1. Grünwald-Letnikov (GL) definitions [36]. Let g(x) be
a function defined on the interval [a, b], where α is a
positive real number, then the following two formulas

GLDα[a,x]g(x) = lim
h→0

1

hα

[ x−a
h ]∑

i=0

(−1)i
(

α

i

)
g(x − ih) ,

GLDα[x,b]g(x) = lim
h→0

1

hα

[ b−x
h ]∑

i=0

(−1)i
(

α

i

)
g(x + ih) .

are called α-order Grünwald-Letnikov left derivative and
right derivative of g(x), respectively, where [.] represents
a round-down operator.

(
α

i

)
= α(α−1)···(α−i+1)

i ! repre-

sents the binomial coefficient.
2. Riemann-Liouville (RL) definitions [36]. Let n be a

positive integer, where n − 1≤α < n and �(·) repre-
sents Gamma function. The α-order Riemann-Liouville
left derivative and right derivative of g(x) are then defined
as follows:

Dα[a,x]g(x) = 1

�(n − α)

dn

dxn

∫ x

a

g(τ )

(x − τ)α−n+1 dτ ,

Dα[x,b]g(x) = 1

�(n − α)
(−1)n

dn

dxn

∫ b

x

g(τ )

(τ − x)α−n+1 dτ .

3. Caputo (C) definitions [36]. The α-order Caputo left
derivative and right derivative of the function g(x) are
given by

C Dα[a,x] = 1

�(n − α)

∫ x

a

g(n)(τ )

(x − τ)α−n+1 dτ ,

C Dα[x,b] = (−1)n

�(n − α)

∫ b

x

g(n)(τ )

(τ − x)α−n+1 dτ .

The three fractional derivatives described above are essen-
tially equivalent, provided that the function g(x) meets the

123



Journal of Mathematical Imaging and Vision            (2025) 67:38 Page 3 of 27    38 

appropriate continuity and boundary conditions [20]. There-
fore, we will omit the superscript of the fractional derivative
symbol in the following sections. We will use Dα to denote
the fractional-order derivative operator defined on the closed
interval [a, b]. Similarly, ∇α = ( ∂α

∂xα
1
, ∂α

∂xα
2
, · · · , ∂α

∂xα
d
)� and

divα = ∇α· can be expressed as operators for gradient and
divergence, respectively. Thus, the fractional α-order deriva-
tive Dα[a,b]g(x) of the function g(x) in the x-direction can be
denoted by ∂αg(x)

∂xα
i

.

3 A New Variational Image Registration
Model

The optimal regularizers ought to be competent in adapting to
displacement fields featuring varying degrees of smoothness.
Recent studies have shown that specific regularization meth-
ods are particularly effective for optical flow computation,
image restoration, and image reconstruction [37]. The core
idea behind these methods is to substitute |∇u|with a poten-
tial function ϕ(|∇u|). This approach allows for isotropic
smoothing of u in homogeneous (or flat) regions while pre-
serving discontinuities in inhomogeneous areas. Moreover,
the literature [14–17, 20–23] clearly demonstrates that mod-
els using fractional-order regularizers achieve better results
than those that utilize integer-order ones. Drawing inspira-
tion from these findings and the concept of vectorization in
color image denoising [38–40], we propose a new regularizer
for image registration, defined as follows:

Rnew(u) =
∫

�

(√
1 + |∇αu|2 − 1

)
dx . (3)

Thus, the variational model (2) is given by:

min
u

{
J (u) = 1

2

∫
�

(M(x + u(x)) − F(x))2dx

+λ

∫
�

(
√
1 + |∇αu|2 − 1)dx

}
, (4)

where n − 1 < α < n, and ∇αu = (∇αu1,∇αu2)�,
|∇αu| =

√
|∇αu1|2 + |∇αu2|2, here and in what follows,

n = 2. The Euler-Lagrange equation associated with the
registration model (4) can be formulated as a system of two
coupled partial differential equations:

⎧⎨
⎩

f1(u)−λ∇α · ∇αu1√
1+|∇αu|2 = 0

f2(u)−λ∇α · ∇αu2√
1+|∇αu|2 = 0

, (5)

subjects to Dα−n+ jW i ·n = 0, j = 0, 1 on ∂�, and W i =
∇αui√
1+|∇αu|2 , i=1,2; n = (n1, n2) represents the outer unit

normal vector of the boundary ∂�. Here fk(u) = (M(u) −
F(x))∂uk M(u), k = 1, 2.

The use ofD(u) as a similaritymeasure inmodel (2) leads
to non-convex image registration models, making it difficult
to guarantee a unique solution for model (2). This non-
convexitymay result inmesh foldingwithin the displacement
field u, an occurrence that is not acceptable in practical
applications.During image registration, the deformationfield
must retain physical meaning, avoiding excessive stretching,
compression, or folding. The volume of discrete cells (in 3D)
or the area of pixels (in 2D) directly measures local defor-
mation magnitude and direction. Constraining the volume or
area helps prevent grid structures from self-intersecting, fold-
ing, or experiencing extreme distortion. This is essential for
ensuring the deformation remains physically plausible. To
avoid the occurrence of mesh folding phenomenon, inspired
by the model in literature [10, 24], we have constructed the
following diffeomorphic image registration model based on
the vectorized fractional-order regularizer:

min
u∈BVα

2

{
J (u) = 1

2

∫
�

(M(x + u(x)) − F)2dx

+λRnew(u) + μR1(u)

}
, (6)

where

R1(u) =
∫

�

ϕ(det∇ y)dx,

ϕ(det∇ y) = ((det∇ y − 1)2/det∇ y)2,

∇ y = I2 + ∇u,

and

det∇ y = det(I2 + ∇u)

=
∣∣∣∣∣
1 + ∂u1

∂x1
∂u1
∂x2

∂u2
∂x1

1 + ∂u2
∂x2

∣∣∣∣∣
= (1 + ∂u1

∂x1
)(1 + ∂u2

∂x2
) − ∂u1

∂x2
∂u2
∂x1

,

(7)

and BVα
2 represents the Banach space.

The advantages of our proposed newmodel are as follows.
Firstly, the coupling between the main elements u1 and u2 of
the displacementfield u is ensured through thediffusion coef-
ficient D(u) = 1√

1+|∇αu|2 which locally adjusts the level of

the regularizer, thus further improving registration quality
by observing the partial differential equations (5). Secondly,
(a) :

√
1 + |∇αu|2 − 1 ≈ 1

2 |∇αu|2, as |∇αu| → 0; (b):√
1 + |∇αu|2 − 1 ≈ |∇αu|, as |∇αu| → +∞, which means

that the fractional-order diffusion-like regularizer is used in
uniform (flat) regions, and the fractional-order TV-like regu-
larizer is used in non-uniform regions. This suggests that our
novel model is capable of producing satisfactory registration
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results for problems with varying degrees of smoothness.
Furthermore, our new model effectively prevents mesh fold-
ing. Concerning the existence of a solution for model (6), we
propose the following arguments.

Definition 3.1 [41] Let f : X→R be a measurable function
(where X is a measure space); the essential supremum is then
defined as:

ess sup f = inf {K ∈ R |γ ({x ∈ X | f (x) > K }) = 0 } .

Lemma 3.1 For ∀x ≥ 0, the function f (x) = √
1 + x2 −

1 ≤ x.

Proof For ∀x ≥ 0, it is obvious that we can obtain:

1 + x2 ≤ 1 + 2x + x2 = (1 + x)2,

∴
√
1 + x2 ≤ 1 + x,

Furthermore, it can be obtained that:

√
1 + x2 − 1 ≤ x .

Lemma 3.2 If the function f (x) = √
1 + x2 −1 is bounded,

then x must be bounded.

Proof It is known that the function f (x) = √
1 + x2 − 1 is

bounded, which means that there exists a constant M > 0
such that for all x , we have

f (x) = |
√
1 + x2 − 1| ≤ M .

That is,

−M ≤
√
1 + x2 − 1 ≤ M,

furthermore, it can be obtained that:

1 − M ≤
√
1 + x2 ≤ 1 + M ,

squaring both sides and further simplifying, we obtain:

M2 − 2M ≤ x2 ≤ M2 + 2M,

since x2 ≥ 0, it follows that:

|x | ≤
√
M2 + 2M .

Theorem 3.1 If ess sup
x∈�

|M(x)| < K < +∞, ess sup
x∈�

|F(x)|
< K < +∞, let �M�{x : M(x) is discontinuous at x} be
a zero measure set, then the solution to model (6) exists.

Proof Assume that {un} is a minimizing sequence for J (u),
then

J (un) ≤ J (0) = D(0) < +∞,

in combination with the conclusions of Lemma 3.1 and
Lemma3.2, it can be known that there exists a constantM1>0
for which the following expression holds:

‖
√
1 + |∇αun|2 − 1‖[L2(�)]2 ≤ ‖∇αun‖[L2(�)]2

=
(∫

�

|∇αun|2dx
) 1

2 ≤ M1.

On the other hand, according to Lemma 3.3 in [22], it can
be learned that for ∀un ∈ [Hα

0 (�)]2, let C0>0 be a constant,
and the following inequality holds:

‖un‖[L2(�)]2 ≤ C0‖∇αun‖[L2(�)]2 . (8)

Therefore, for a certain constantM2, the following expres-
sion holds:

‖un‖[Hα
0 (�)]2 = (‖un‖[L2(�)]2 + ‖∇αun‖[L2(�)]2)

1
2

≤ M2 < +∞. (9)

By formulas (8) and (9), it can be deduced that the

semi-norm defined by |u|[Hα
0 (�)]2 = (

∫
�

|∇αu|2dx)
1
2 is

equivalent to the norm ‖u‖[Hα
0 (�)]2 on space [Hα

0 (�)]2. i.e.,
|u|[Hα

0 (�)]2 ≤ ‖u‖[Hα
0 (�)]2 ≤ M3|u|[Hα

0 (�)]2 . This conclusion
can be found in Proposition 1.5 in the literature [42].

According to Theorem 4.58 (see [43] for details), Hα
0 (�)

is compactly embedded in C1(�). Therefore, there exists a
subsequence un still marked by n, and u∈[C1(�)]2, thereby
making,

lim
n→+∞ ‖un − u‖[C1(�)]2 = 0 (10)

Using this framework, we can now derive the weak lower
continuity of the functional J (u).

Firstly, based on the lower semi-continuity of the norm
(Refer to section D4 on page 639 in [44].) and (9), given
that | · |[Hα

0 (�)]2 is the norm in the space [Hα
0 (�)]2, we then

deduce that

∫
�

|
√
1 + |∇αu|2 − 1|dx

≤ lim
n→+∞ inf

∫
�

|
√
1 + |∇αun|2 − 1|dx.

This fully indicates that

Rnew(u) ≤ lim
n→+∞ infRnew(un). (11)
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Additionally, according to (10), it follows that

|D(un) − D(u)|
≤ K

∫
�

|M(x + un(x)) − M(x + u(x))|dx

= K
∫
�\�M |M(x + un(x)) − M(x + u(x))|dx.

Since �M � {x : M(x) is discontinuous at x} is a set of
measure zero; therefore,M(x) is continuous on�\�M . Fur-
ther, according to equation (10):

lim
n→+∞ ‖un − u‖[C1(�)]2 = 0,

thus, we can obtain:

lim
n→+∞

∫
�\�M

|M(x + un(x)) − M(x + u(x))|dx = 0.

So it can be deduced that:

lim
n→+∞D(un) = D(u). (12)

Furthermore, it can be inferred from (10) lim
n→+∞

∂(un)i
∂x j

=
∂ui
∂x j

, i, j = 1, 2. This consequently leads to the conclusion
that

lim
n→+∞R1(un) = R1(u). (13)

Based on (11), (12), and (13), it is evident that

lim
n→+∞ inf J (un) ≥ J (u).

This confirms the lower weak continuity of the functional
J (u) and indicates the existence of a solution to (6)(refer to
Section 2.1.2 in [37]). ��

4 Numerical Solution for the Novel Model
Proposed in (6)

Obtaining an analytical solution for model (6) is often chal-
lenging, necessitating appropriate discretization to derive a
numerical solution. In this study, we first discretize Model
(6) and then apply standard optimization techniques to solve
the discretized system. We begin by introducing the dis-
cretization method, followed by a detailed presentation of
the numerical algorithm used for the solution.

4.1 Finite Difference Discretization

We assume that the number of pixels in the discrete image is
m1×m2 and that each pixel is a rectangle with side lengths

Fig. 1 a Nodal � and cell-centered •; b A pixel is divided into four
triangles

h1 and h2. In this description, half-step indexing is allowed.
Consistent with common practices in the field of image pro-
cessing, we associate the pixels with grid points centered
at xi1+0.5,i2+0.5. For the rectangle centered at xi1+0.5,i2+0.5,
the indices of its four vertices are determined by the integer
index ik, ik + 1, k = 1, 2. The displacement u = (u1, u2)�
is discretized on the node grid (i.e., at the vertices of each
rectangle; see Fig. 1a).

We use a nodal grid to define a spatial partition �h =
{xi1,i2 | xi1,i2 = (x1i1, x2i2)

� = (i1h1, i2h2), i1 = 1, 2, 3,
· · · ,m1 + 1; i2 = 1, 2, 3, · · · , m2 + 1}, where hi = 1

mi
,

and the discrete domain �h consists of m1×m2 cells, each
of size h1×h2.

4.1.1 Discretization of Displacement Field u and Proposed
RegularizerRNew(u)

The displacement field u is discretized on the nodal grid, rep-
resented in discrete form as uh = (uh1, u

h
2)

�, where uhl (l =
1, 2) denotes the grid functions defined on �h . To simplify

notation, we define (uhl )i1,i2

= uhl (x1i1, x2i2), l = 1, 2. To

simplify calculations, the grid functions uh1 and uh2 defined
on the discrete domain �h will be converted into column
vectors uh1 and uh2 in lexicographical order, respectively,

uh1 = {(uh1)1,1, (uh1)2,1, · · · , (uh1)m1+1,1, (u
h
1)1,2, · · · ,

(uh1)m1+1,2, · · · , (uh1)1,m2
, · · · , (uh1)m1+1,m2+1}�,

uh2 = {(uh2)1,1, (uh2)2,1, · · · , (uh2)m1+1,1, (u
h
2)1,2, · · · ,

(uh2)m1+1,2, · · · , (uh2)1,m2
, · · · , (uh2)m1+1,m2+1}�,

here uhl ∈ R
N1 , l = 1, 2, N1 = (m1 + 1)×(m2 + 1), and set

Uh = (uh1, u
h
2)

�.
In solvingmodel (6), when addressing the first-order vari-

ation of the new regularizer RNew(u), which involves the
fractional α-order gradient operator ∇α and the fractional α-
order divergence operator ∇α·, we introduce discrete forms
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for both operators. Let

(∇α)
h
(Uh)i1,i2 = ((∇α)

h
(uh1)i1,i2 , (∇α)

h
(uh2)i1,i2)

�

denote the discrete from of the fractional α-order gradient
operator ∇α at every pixel (x1i1 , x2i2), where

(∇α)
h
(uhl )i1,i2 =

(
(∂α)h(uhl )i1,i2

∂xα
1

,
(∂α)h(uhl )i1,i2

∂xα
2

)�
.

Let’s first consider the discretization of α−order fractional
derivatives along the x1-direction on �h by using the shifted
Grünwald approximation method [16, 45–47]

Dα[a,b]g(x1i1 , x2i2)

= δα
0 g(x1i1 , x2i2)

hα
+ o(h)

= 1

2

(
δα−g(x1i1 , x2i2)

hα
+ δα+g(x1i1 , x2i2)

hα

)
+ o(h)

= 1

2
(h−α

i1+1∑
m=0

ρ(α)
m gi2i1−m+1

+h−α

m1−i1+2∑
m=0

ρ(α)
m gi2i1+m−1) + o(h), (14)

where gi2s := gs,i2 , ρ
(α)
m = (−1)m

(
α

m

)
, m = 1, 2, · · ·,m1,

m1 + 1 and ρ
(α)
0 = 1; ρ(α)

m = (1− 1+α
m )ρ

(α)
m−1. Here, the zero

boundary value condition is applied to ∂� as in previous stud-
ies [20, 45]. Therefore, based on formula (14), the discrete
form of the α-order fractional derivative at (x1i1 , x2i2) with
a fixed point x2i2 along the x1-direction can be expressed as
follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

δα
0 g(x11, x2i2)

δα
0 g(x12, x2i2)

...

δα
0 g(x1m1−1, x2i2)
δα
0 g(x1m1 , x2i2)

δα
0 g(x1m1+1, x2i2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 1

2
h−α

⎡
⎢⎢⎢⎢⎢⎢⎣

2ρ(α)
1 ρ

(α)
0 + ρ

(α)
2 ρ

(α)
3 · · · ρ

(α)
m1+1

ρ
(α)
0 + ρ

(α)
2 2ρ(α)

1 ρ
(α)
0 + ρ

(α)
2 · · · ρ

(α)
m1

...
...

. . .
. . .

...

ρ
(α)
m1 ρ

(α)
m1−1 · · · 2ρ(α)

1 ρ
(α)
0 + ρ

(α)
2

ρ
(α)
m1+1 ρ

(α)
m1 · · · ρ

(α)
0 + ρ

(α)
2 2ρ(α)

1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

gi21
gi22
...

gi2m1−1

gi2m1

gi2m1+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦


= Am1+1,αG, (15)

where G = [gi21 , gi22 , · · · , gi2m1−1, g
i2
m1, g

i2
m1+1]�.

In this way, the discrete form of the α-order fractional

derivative
(∂α)huhl

∂xα
1

along the x1-direction at the nodes uhl i, j
(i = 1, 2, · · · ,m1 + 1; j = 1, 2, · · · ,m2 + 1) can be
expressed as the product of the matrix and vector as follows:

(∂α)huhl
∂xα

1
= (Im2+1 ⊗ Am1+1,α)uhl � A(α)

x1 uhl ;

where the symbol ⊗ represents the Kronecker product. Sim-
ilarly, the discrete form of the α-order fractional derivative
(∂α)huhl

∂xα
2

along the x2-direction can be written as follows:

(∂α)huhl
∂xα

2
= (Am2+1,α ⊗ Im1+1)uhl � A(α)

x2 uhl .

Thus, we can get

(∇α)
huhl =

⎡
⎣

(∂α)huhl
∂xα

1
(∂α)huhl

∂xα
2

⎤
⎦ =

[
A(α)
x1

A(α)
x2

]
uhl � Buhl .

Furthermore, we have

(∇α)
hUh =

[
(∇α)h 0
0 (∇α)h

] [
uh1
uh2

]
=

[
B 0
0 B

] [
uh1
uh2

]
� CUh

Next the proposed regularizer (3) is considered

Rnew(u) =
∫

�

R[u]dx ,

where

R[u] =
√
1 + |∇αu|2 − 1 .

According to the discrete form of the α-order fractional gra-
dient operator∇α derived above, the discrete version ofR[u]
can be written as:

Rh[Uh] =
√
1 + (Uh)

�C�CUh − 1 .

Additionally, by applying the midpoint quadrature rule to
approximate the integral, we can discretize the proposed reg-

123



Journal of Mathematical Imaging and Vision            (2025) 67:38 Page 7 of 27    38 

ularizer as follows:

Rhnew(Uh) = hd(

√
1 + (Uh)

�C�CUh − 1) , (16)

where hd = h1h2. We can further derive the discrete form
dRhnew(Uh) for the first-order variation of the regularizer
Rnew(u)

dRhnew(Uh) = hd
C�CUh√

1 + (Uh)
�C�CUh

. (17)

To fully leverage standard optimization methods, it is essen-
tial to compute the second-order variations of the proposed
regularizer. To enhance computational efficiency, we employ
the "frozen coefficients" method, which is commonly used
in variational approaches involving TV operators [48–50].
The main idea is to linearize dRhnew(Uh) using the known

iteration value Uh (k)
from the previous step. Consequently,

the second-order variation d2Rhnew(Uh) of the proposed dis-
crete regularizer Rhnew(Uh) can be expressed as follows:

d2Rhnew(Uh) = hd
C�C√

1 + (Uh (k)
)
�
C�CUh (k)

. (18)

4.1.2 Discretizing Distance MeasureD

To find the gray value at any spatial location not on the grid
points, image interpolation must be applied to the given dis-
crete images. To effectively utilize the optimization method,
cubic B-spline interpolation is employed during the registra-
tion process. The continuous smooth approximations of F
and M are denoted as F and M, respectively. Let

xh1 = {x11,1, x12,1, · · · , x1m1+1,1, x11,2, · · · , x1m1+1,2, · · · ,

x11,m2+1, · · · , x1m1+1,m2+1}�,

xh2 = {x21,1, x22,1, · · · , x2m1+1,1, x21,2, · · · , x2m1+1,2, · · · ,

x21,m2+1, · · · , x2m1+1,m2+1}�,

and Xh = [xh1; xh2]∈R2N1×1. Using the cell-centered par-
tition shown in Fig. 1a and the midpoint rule, we obtain:

D(u) = 1

2

∫
�

(M(x + u(x)) − F(x))2dx

= h1h2
2

m1∑
i1=1

m2∑
i2=1

(M(xi1+1/2,i2+1/2+u(xi1+1/2,i2+1/2))

−F(xi1+1/2,i2+1/2))
2,

Let
→
F = F(PXh) ∈ R

N×1 represent the discretized ref-

erence image, and
→
M(Uh) = M(PXh + PUh) ∈ R

N×1

represents the discrete form of the transformed template.
Here, P ∈ R

2N×2N1 as a matrix for averaging operations,
is used to enable the conversion from the nodal grid to the
cell-centered grid. Therefore, the discretized version ofD(u)

can be expressed as:

Dh(Uh) = 1

2
h1h2(

→
M(Uh) − →

F )�(
→
M(Uh) − →

F ), (19)

Additionally, the first-order variation of Dh(Uh) regarding
Uh can be written as:

dDh(Uh) = h1h2P
�(

→
MUh )

�(
→
M(Uh) − →

F ), (20)

where

→
MUh = ∂

→
M(Uh)

∂Uh
= ∂M(PXh + PUh)

∂(PXh + PUh)
.

Moreover, we can directly compute the second-order varia-
tion of Dh(Uh) as follows:

d2Dh(Uh) = h1h2P
�[(→

MUh )
�→
MUh

+
N∑
i=1

ri (U
h)∇2ri (U

h)]P , (21)

where r(Uh) = →
M(Uh) − →

F ∈ R
N . To enhance compu-

tational efficiency, we will disregard the high-order term in
formula (21), and approximate the second-order variation
d2Dh(Uh) of Dh(Uh) as follows:

d2Dh(Uh) = h1h2P
�(

→
MUh )�

→
MUh P. (22)

4.1.3 Discretization of the Constrained RegularizerR1(u).

To preserve local details and ensure that registration results
accurately reflect local deformations, we control the area
change of the smallest measurable unit(i.e., a pixel) under
the discrete transformation y. As is well known, controlling
pixel area changes is a challenging task. To ensure that the
transformation y remains diffeomorphic, we employ a par-
titioning method similar to that described in references [10,
24]. After applying the transformation y, the area of the set
A can be expressed using the following formula:

area( y(A)) =
∫
y(A)

dx =
∫
A
det∇ ydx.

It should be pointed out that the latter equation assumes that y
possesses sufficient regularity,which is a crucial prerequisite.
Thus, the discretization approach we use is directly based on
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∫
y(A)

dx and measures the area covered through the trans-
formed vertices. A rectangle formed by four nodes is called
a pixel (see Fig. 1b). This pixel is subdivided into four trian-
gles, and our discrete transformation model is a continuous
vector field that remains linear on each triangle. In the yel-
low area of Fig. 1b, the nodes are labeled B1, B2, B3, B4,
with the center point B5 := (B1 + B2 + B3 + B4)/4.
The four triangles are represented as follows: F(1, 2, 5) :=
�(B1, B2, B5), F(1, 4, 5) := �(B1, B4, B5), F(3, 4, 5) :=
�(B3, B4, B5), F(2, 3, 5) := �(B2, B3, B5). Using the tri-
angle F(1, 2, 5) from Fig. 1b as an example, we discuss the
discretization of the area term. The computation for the other
three triangles follows a similar method. To measure the area
of the triangle F(1, 2, 5), we use the projector Fk to extract
the vertex positions, i.e., Fk y := y(Bk), where k∈{1, 2, 5},
compute the difference vectors, and determine the area using
the rule of Sarrus:

F(1,2,5) y = [ p1, p2] = [F1 y − F5 y, F2 y − F5 y],

Let p1 = (p11, p
1
2), p

2 = (p21, p
2
2), then

A � A(F(1,2,5) y) = 1

2
det([ p1, p2])

= 1

2

∣∣∣∣p
1
1 p12

p21 p22

∣∣∣∣ = 1

2
(p11 p

2
2 − p12 p

2
1),

ϕ(x) = ((x − 1)2/x)2, therefore, the discrete form of the
constrained regularizer R1(u) on the triangle F(1, 2, 5) is:

Rh,i
1,1(u) � Rh,i

1,1(x + u) = Rh,i
1,F(1,2,5)( y) = ϕ(A(F(1,2,5) y)).

Therefore, the discrete constrained regularization term can
be expressed as:

Rh
1(u) = h1h2

N1∑
i=1

4∑
j=1

Rh,i
1, j . (23)

Furthermore, the first-order variation of the discrete con-
strained regularizer can be obtained:

dRh
1(u) = h1h2

N1∑
i=1

4∑
j=1

dRh,i
1, j , (24)

where

dRh,i
1,1 = dϕ(A) d A F(1,2,5),

dϕ(A) = 2(A + 1)((A − 1)/A)3,

d A = 1

2

[
p22 −p21

−p12 p11

]
.

To improve computational efficiency, we approximate the
Hessian matrix of the discrete constrained regularizer using
the following method:

d2Rh
1(u) = h1h2

N1∑
i=1

4∑
j=1

d2Rh,i
1, j , (25)

where

d2Rh,i
1,1 = F�

(1,2,5) d A d2ϕ(A) d A F(1,2,5),

and

d2ϕ(A) = 2(A − 1)2(A2 + 2A + 3)/A4.

4.2 Solving Discrete RegistrationModel

Based on the previously derived formula, the discrete form
of the new model (6) is as follows:

min
Uh

{
J (Uh) = Dh(Uh) + λRhnew(Uh) + μRh

1(U
h)

}
.

(26)

To solve the discrete new model (26), we adopted a damped
Newtonmethod combinedwith theArmijo line search,which
combines the fast convergence of Newton’s method with the
flexibility of line search, thus improving the stability and
effectiveness of the optimization process. The basic idea of
this method is to calculate the optimal search direction using
the gradient and Hessian matrix of the objective function,
in order to quickly approach a local optimal solution. To
prevent instability caused by excessive step size in unfavor-
able conditions, a damping factor is added to adjust the step
size and control the iterative process. Meanwhile, the step
size is dynamically adjusted to meet specific descent condi-
tions, ensuring that the objective function value is effectively
reduced at each step. The following are the specific steps.

Starting with the previous iteration valueUh (k)
as the ini-

tial value, let

J (Uh (k) + δUh ) ≈ J̃ (δUh )

= J (Uh (k)
) + (dJ (Uh (k)

))�δUh

+1

2
δUh

�H(Uh (k)
)δUh , (27)

here, based on formulas (17), (18), (20), (22), (24) and (25),
the Jacobian matrix dJ (Uh (k)

) and the approximate Hes-

sian matrix H(Uh (k)
) of the objective function J (Uh) at the

iteration value Uh (k)
are expressed as follows:

dJ (Uh (k)
) = dDh(Uh (k)

) + λdRhnew(Uh (k)
)
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+μdRh
1(U

h (k)
), (28)

H(Uh (k)
) = d2Dh(Uh (k)

) + λd2Rhnew(Uh (k)
)

+μd2Rh
1(U

h (k)
). (29)

Assuming the first variation of the quadratic functional
J̃ (δUh ) is zero, we can obtain:

H(Uh (k)
)δUh = −dJ (Uh (k)

). (30)

Typically, the approximatedHessianmatrix H(Uh (k)
) is pos-

itive definite, and the quasi-Newton equation (30) can be
solved using the preconditioned conjugate gradient method.
Furthermore, the Newton direction δUh can be obtained:

δUh = −H(Uh (k)
)
−1

dJ (Uh (k)
). (31)

The search direction calculated from equation (31) may
lead to an excessively large step size in some cases, caus-
ing the iteration point to overshoot the optimal solution or
diverge. When far from the optimal point, Newton’s method
may exhibit instability or even fail to converge. Additionally,
when the Hessian matrix is not positive definite, the Newton
direction may not be a descent direction. In such cases, intro-
ducing a damping factor to control the step size can improve
the global stability and robustness of Newton’s method,
enhancing its adaptability to complex optimization problems.
To enhance the robustness and global convergence of the
damped Newton method, and to ensure that each iteration
effectively reduces the value of the objective function while
avoiding divergence or oscillation, we introduced the Armijo
line searchmethodwith dynamic step size control. This com-
bination allows the algorithm to maintain convergence speed
while effectively dealing with potential numerical instabil-
ity issues when solving complex optimization problems. The
specific steps of the algorithm are summarized in Algorithm
1:

The choice of the initial point has a significant impact
on the convergence, convergence rate, and the likelihood of
finding the global optimal solution in the Newton method.
A well-chosen initial point can accelerate convergence and
improve the reliability of the algorithm, while a poor choice
may cause the algorithm to diverge or converge to a local
minimum. To reduce the sensitivity of the Newton method
to the initial point, we combine the multilevel method with
Algorithm 1 to solve the discrete functional model (26). The
multilevel method is a key technique in image registration,
aimed at accelerating convergence and improving the sta-
bility of the registration process. By progressively aligning
images at different resolutions or scales, this method reduces
alignment errors step by step, avoids getting trapped in local
minima, and ultimately enhances the accuracy of global reg-

Algorithm 1: Damped Newton Method with Armijo
Line Search
1. Initialization:

• Choose the initial point u0;
• Set the damping factor σ0(usually between (0, 1));
• Determine the parameter c(e.g., 1e − 4);
• Set the maximum number of iterations kmax and the

convergence threshold ε;

2. Iteration Process:
For each step k = 0, 1, 2, · · · , kmax:

• Utilize equations (28) and (29) to compute the gradient dJ (uk)
and Hessian matrix H(uk);

• Calculate the Newton direction δuk using formula (31);
• Set the initial step size: σ = σ0;

3. Armijo Line Search:

• Check the Armijo condition:

J (uk + σkδuk )≤J (uk) + cσk(dJ (uk))�δuk ;
• If the condition is not satisfied, reduce σ (e.g., σk+1 = γ σk ,

where 0 < γ < 1), and retry until a suitable step size is found
or the minimum step size is reached;

4. Update:

• Update the iteration value:

uk+1 = uk + σδuk ;
5. Convergence Check:

• If ‖dJ (uk+1)‖<ε, then stop;
• If the maximum iteration count is reached, terminate the

process;

6. Output:

• Return the optimal solution uk+1 and its corresponding
objective function value J (uk+1).

istration. First, Algorithm 1 is applied at the coarsest level to
solve the discrete functional (26); at each level, the solution
obtained from the coarse grid serves as the initial value for
the next finer grid using the interpolation operator I Hh , and
the procedure is repeated until the termination conditions are
met. The specific procedures of the multilevel method are
outlined in Algorithm 2.

4.3 Convergence Analysis of Algorithm 1

The global convergence proof for Algorithm 1 is presented
below.

Theorem 4.1 Let {uk} be the sequence generated by Algo-
rithm 1. Suppose that the function J (u) has a lower bound
and that for ∀u0 ∈ R

n, ∇J (u) exists and is uniformly con-
tinuous on the following level set

L(u0) = {u ∈ R
n|J (u) ≤ J (u0)}.
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Algorithm 2: The multilevel approach used for solving
model (26).
Step 1. Initialization: Given the coarsest level L1 = 3; the finest
level L2 = ceil(log2(min(m1,m2))); Construct the multiscale
representations for both F and M ;
Step 2. Registration at the coarse level: If l = L1, given the
initial value u0 at the coarsest level, solve model (26) using
Algorithm 1 to obtain the displacement field uk ;
Step 3. Registration at a finer level: At the finer level, the initial
solution U0 is obtained by applying an interpolation operator I Hh
to the solution from the previous level, specifically U0 = I Hh uk .
Following this, Algorithm 1 is used to solve model (26) at this
level;
Step 4: Update l to l + 1, and return to Step 2.

If the descent direction δuk satisfies the following condition:

0 ≤ θk ≤ π

2
− μ, μ ∈ (0,

π

2
),

where θk represents the angle between the descent direction
δuk and −∇J (uk), then when the Armijo rule is used to
determine the step size σk , any accumulation point u∗ of
{uk} satisfies ∇J (u∗) = 0.

Proof: Using the method of contradiction, suppose that
u∗ is an accumulation point of the sequence {uk} and that
∇J (u∗) �= 0. According to the conditions of the theorem,
we obtain:

lim
k→+∞J (uk) = J (u∗), lim

k→+∞ (J (uk)−J (uk+1)) = 0.

Furthermore, according to theArmijo rule condition inAlgo-
rithm1,we obtain: lim

k→+∞ c(∇J (uk))�sk = 0,which further

implies

lim
k→+∞ (∇J (uk))�sk = 0, (32)

where sk = σkδuk . If lim
k→+∞ ∇J (uk) �= 0, then it follows

from equation (32) that: lim
k→+∞ ‖sk‖ = 0. Suppose the step

size σk satisfies the Armijo rule condition in Algorithm 1.
Then, when σk−1 = σk

γ
, the inequality in Algorithm 1 can be

rewritten as:

J (uk + σk−1δuk ) − J (uk) > cσk−1(∇J (uk))�δuk . (33)

Note that: σk−1δuk = σk
γ

δuk = sk
γ
, the inequality (33) can

thus be rewritten as:

J (uk + 1

γ
sk) − J (uk) > c(∇J (uk))�

sk
γ

. (34)

If we set pk = sk‖sk‖ , then
sk
γ

= ‖sk‖
γ

pk . Further, letωk = ‖sk‖
γ

,
since lim

k→+∞ ‖sk‖ = 0, we can obtain lim
k→+∞ ωk = 0 and the

inequality (34) can be rewritten as:

J (uk + ωk pk) − J (uk)
ωk

> c(∇J (uk))� pk . (35)

Since ‖pk‖ = 1, the sequence {pk} is bounded. Therefore,
there exists a convergent subsequence, which is still denoted
as {pk}. Let lim

k→+∞ pk = p∗, where ‖p∗‖ = 1. Taking the

limit on both sides of inequality (35) simultaneously, we can
obtain the following result:

(∇J (u∗))� p∗ ≥ c(∇J (u∗))� p∗

Furthermore, it can be obtained that:

(1 − c)(∇J (u∗))� p∗ ≥ 0,

since 0 < c < 1, combining the above inequality, it can be
further deduced that:

(∇J (u∗))� p∗ ≥ 0, (36)

On the other hand, noting that: pk = sk‖sk‖ = δuk‖δuk ‖ ,
(∇J (uk))�δuk < 0, it can be further deduced that:

(∇J (uk))
� pk = (∇J (uk))

� sk
‖sk‖ = (∇J (uk))

� δuk
‖δuk ‖

< 0,

therefore,

−(∇J (uk))
� pk = −(∇J (uk))

� δuk
‖δuk ‖

= ‖(∇J (uk))‖cosθk
≥ ‖(∇J (uk))‖sinμ,

Taking the limit on both sides of the above inequality simul-
taneously, we can obtain:

−(∇J (u∗))� p∗ ≥ ‖(∇J (u∗))‖sinμ > 0,

that is,

(∇J (u∗))� p∗ < 0,

which contradicts inequality (36). The assumption is wrong,
therefore, ∇J (u∗) = 0. This indicates that Algorithm 1 has
convergence.

Regarding Theorem 4.1, we present twelve sets of data
from numerical experiments. Figure 2 illustrates the trend
of the energy functional J̃ (u) with respect to the number
of iterations. Figure 2 shows that as the number of iterations
increases, the energy functional gradually decreases, indicat-
ing that Algorithm 1 is convergent.
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Fig. 2 The relationship between the energy functional and the number of iterations
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Fig. 3 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Fig. 4 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Fig. 5 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Fig. 6 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Table 1 Comparison of quantitative results for Example 1. T represents the total execution time in seconds, including the time for image generation

Model/Test images A-A A-R C-C C-E

ε(%) MFN T (s) ε(%) MFN T (s) ε(%) MFN T (s) ε(%) MFN T (s)

NEW 0.0373 0 78 0.2512 0 75 1.1807 0 34.2 0.0020 0 33.1

MADIR [30] 0.058 0 681.3 0.091 0 587.6 3.12 0 863.3 0.0231 0 223.1

TFIR [20] 0.6530 0 19.6 1.1346 0 14.5 62.2716 0 7.2 0.3174 0 10.3

FIRMCC [29] 3.8 0 597.3 7.13 0 569.2 13.38 0 617.7 2.5 0 323.5

MGIR [55] 3.02 0 69.4 4.38 0 62.3 18.61 0 391.2 2.84 0 24.6

DLDM [51, 52] 1.4578 0 18.2 28.5086 0 11.5 67.5583 0 11.5 0.1623 0 18.4

MNDM [53, 54] 13.1615 0 42.8 55.2736 0 42.8 92.0491 0 41.3 16.8136 0 40.5

5 Numerical Experiments

We conducted three numerical tests on different image pair
types-synthetic, natural, and medical images to demon-
strate the performance of the proposed model. In these
three tests, we compared the proposed model(NEW) with
the following models: diffeomorphic log demons model
(DLDM) [51, 52]; multimodality nonrigid demon model
(MNDM) [53, 54]; a total fractional-order model(TFIR)
[20]; fractional-order model with Cauchy–Riemann con-
straint(FIRMCC) [29]; multi-grid algorithm for 2D diffeo-
morphic model(MGIR) [55]; multiscale approach for 2D
diffeomorphic model(MADIR) [30]. We evaluate the effec-
tiveness of image registration using three common standards:

• From a visual perspective, it presents the registered
template image and the differences between it and the
reference image;

• The dissimilarity rate provided in references [4, 5, 20,
29] can be articulated as follows:

ε = D(u∗)
D(u0)

×100%,

In this context,D(u) is defined by equation (1), where u∗
represents the optimal value determined by Algorithm 2,
and u0 is set to 0.

• Themesh folding numberMFNof the determinant det(J )

of the Jacobian matrix J of the transformation ϕ(x)

described in references [20, 29, 30], where

J = dϕ(x + u(x)) =
[
1 + (u1)x1 (u1)x2

(u2)x1 1 + (u2)x2

]
,

and det(J ) = (1 + (u1)x1)(1 + (u2)x2) − (u1)x2(u2)x1 ,
MFN= #(det(J )≤0).

5.1 Test Synthetic Images

In this numerical test, four synthetic image pairs with a res-
olution of 129×129, namely A-A, A-R, C-C, and C-E, are
taken as Example 1. Figures 3, 4, 5 and 6, respectively, show
the test image pairs, pre-registration image differences, the
transformation generated by the new model, as well as the
transformed template images and post-registration image dif-
ferences produced by both the new model and other models.
The quantitative results of our new model and other mod-
els for Example 1 are summarized in Table 1. For the image
pair A-A, a careful examination of Fig. 3 reveals that, except
for the MNDM [53, 54] model, our new model and several
other models visually show relatively satisfactory registra-
tion results. Based on the differences in the registered images
and the results recorded in Table 1, both our new model and
the MADIR [30] model achieved better registration perfor-
mance, but the MADIR [30] model took more time. For the
image pair A-R with significant deformation, a close inspec-
tion of Fig. 4 reveals that, except for the DLDM [51, 52]
model and MNDM [53, 54] model, both the new model and
the other four models exhibit generally satisfactory registra-
tion results. From the differences in the registered images
and the data in Table 1, it is observable that both proposed
newmodel and theMADIR [30] model achieve superior reg-
istration performance without mesh folding. Although the
MADIR [30] model delivers the best registration result, it
takes the longest registration time. For the image pair C-C
with greater deformation, a careful examination of Fig. 5,
along with the registration results in Table 1, shows that our
new model achieved the best registration performance in a
shorter timewithout anymesh folding.Although theMADIR
[30] model also produced relatively satisfactory registration
results, it takes a longer time. For C-E image pairs, as shown
in Fig. 6, except for the MNDM [53, 54] model, our new
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Fig. 7 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Fig. 8 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Fig. 9 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Fig. 10 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Table 2 Comparison of quantitative results for Example 2. T represents the total execution time in seconds, including the time for image generation

Model/Test images Pineapple Watermelon Dual-Triangle Book

ε(%) MFN T (s) ε(%) MFN T (s) ε(%) MFN T (s) ε(%) MFN T (s)

NEW 0.1272 0 60.8 0.1123 0 54.8 0.0078 0 39.6 1.7112 0 77.6

MADIR [30] 2.26 0 363.8 3.41 0 365.1 0.1739 0 249.1 4.1233 0 371.25

TFIR [20] 0.2923 0 8.6 0.4314 0 7.9 0.3551 0 7.8 6.8922 0 11.1

FIRMCC [29] 2.64 0 80.5 3.58 0 81.3 1.5097 0 326.2 12.0538 0 469.8

MGIR [55] 6.99 0 38.3 12.33 0 38.1 0.4619 0 186.4 6.7169 0 139.9

DLDM [51, 52] 2.9409 0 13.9 2.9998 0 12.0 1.1921 0 30.5 7.1640 0 38.4

MNDM [53, 54] 5.9107 0 41.8 4.2063 0 44.6 2.0662 0 42.3 44.7230 0 40.4

model, aswell as the othermodels, achieves favorable results.
Without any folding, our new model delivers the best regis-
tration results in less time.

5.2 Test Natural Images

Four pairs of natural images with a resolution of 129×129,
namely pineapple, watermelon, dual triangles, and book, are
used as Example 2 in the experiment. The test image pairs,
pre-registration image differences, transformations gener-
ated by the newmodel, template images produced by both the
new model and other alternative models, as well as the post-
transformation image differences, are shown in Figs. 7, 8,
9, and 10, respectively. The quantitative results for Exam-
ple 2, obtained from both the new model and other models,
are presented in Table 2. Among these four pairs of natu-
ral images, whether it is the pineapple and watermelon with
smooth displacement fields or the dual triangles and book
with non-smooth displacement fields, a detailed analysis of
Figs. 7, 8, 9, and 10, and the data in Table 2 reveal that,
compared to other models, our new model ensures satisfac-
tory registration results consistently, successfully avoiding
folding.

5.3 Test medical images

This test uses four pairs of medical images having a resolu-
tion of 129×129 Hand, Chest, Brain, and Liver as Example

4. The test image pairs, the differences of pre-registration
images, the transformation produced by the new model
and the resulting transformed template images produced by
both the new and other models, as well as the differences
of post-registration images are, respectively, presented in
Figs. 11, 12, 13, and 14. Table 3 summarizes the quanti-
tative results produced by the new model and other models.
A detailed analysis of Figs. 11, 12, 13, and 14 reveals that,
without any folding, the new model demonstrates excellent
registration performance in terms of visual quality, post-
registration image differences, and the data presented in
Table 3.

6 Conclusion

This study introduces a diffeomorphic image registration
model incorporating a vectorized fractional-order regular-
izer, alongwith its associated numerical approach. Themodel
successfully avoids mesh folding and ensures visually sat-
isfactory image registration, accommodating both smooth
and non-smooth displacement fields. We have established
the existence of solutions for the model and examined the
algorithm’s convergence. Comparative studies on registra-
tion results from 12 datasets with other competitive models
indicate that our new model demonstrates superior perfor-
mance. In future, we plan to expand this model for use in
multimodal or 3D image registration applications.
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Fig. 11 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Fig. 12 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Fig. 13 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Fig. 14 The test image pairs, pre-registration differences, transformations from the new model, template images transformed using our new model
and other competitive models, and post-registration differences
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Table 3 Comparison of quantitative results for Example 3. T represents the total execution time in seconds, including the time for image generation

Model/Test images Hand Chest Brain Liver

ε(%) MFN T ε(%) MFN T ε(%) MFN T ε(%) MFN T

NEW 1.8645 0 74.2 1.0685 0 70.8 1.1712 0 75.6 0.0305 0 58.1

MADIR [30] 3.47 0 241.1 1.44 0 172.1 2.87 0 225.1 2.44 0 311.3

TFIR [20] 4.2186 0 6.3 1.6606 0 9.4 1.3606 0 7.8 0.4186 0 8.2

FIRMCC [29] 5.42 0 75.3 2.01 0 180.3 3.45 0 113.1 3.70 0 264.8

MGIR [55] 7.9 0 24.8 3.2 0 18.2 5.39 0 25.1 4.1 0 61.1

DLDM [51, 52] 4.3156 0 12.4 9.8078 0 11.1 1.3360 0 23.4 3.2238 0 10.6

MNDM [53, 54] 8.1282 0 40.4 6.1336 0 40.2 6.6405 0 48.2 3.6457 0 42.1
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