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Abstract
Existing level set models employ regularization based only on gradient information, 1D curvature or 2D curvature. For 3D
image segmentation, however, an appropriate curvature-based regularization should involve a well-defined 3D curvature
energy. This is the first paper to introduce a regularization energy that incorporates 3D scalar curvature for 3D image
segmentation, inspired by the Einstein-Hilbert functional. To derive its Euler-Lagrange equation, we employ a two-step
gradient descent strategy, alternately updating the level set function and its gradient. The paper also establishes the existence
and uniqueness of the viscosity solution for the proposed model. Experimental results demonstrate that our proposed model
outperforms other state-of-the-art models in 3D image segmentation.

Keywords Riemannian geometry · Ricci curvature tensor · Image segmentation · Variational model

1 Introduction

Image segmentation is an essential task in image processing
that aims at partitioning an image into semantically mean-
ingful classes. It facilitates a subsequent image analysis and
has found various applications, e.g., in object identification
and recognition, volume rendering, and lesion localization
(Lei & Nandi, 2022).
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Among the various segmentation techniques, level set
methods (Wang et al., 2021; Yu et al., 2020; Biswas &Hazra,
2022; Kang et al., 2019) have gained considerable attention
due to their robustness and versatility. These methods, based
on curve evolution theory, provide a powerful framework for
outlining complex structures within images. Typically, level
setmethods employ a cost function that consists of two terms:
a region term and an edge term.

The region term guides data fidelity by approximation,
splitting the image into homogeneous groups of voxels. A
prominent example is given by the renowned Chan-Vese
model (Chan & Vese, 2001), which assumes the foreground
and the background have respectively uniform intensities.
To adapt to complex real datasets, the model was extended
to images with heterogeneous regions using local regional
information. Examples include local statistical information
(Wang et al., 2010), weighted region information (Li et al.,
2007) calculated using a Gaussian kernel-based convolution,
geodesic distance between two distinct spectral density func-
tions (Li et al., 2017), and geodesic distance between two
fitted Gaussian distributions (Lenglet et al., 2005).

Region terms, however, can be sensitive to initialization.
An effective approach to overcome this problem is to incor-
porate prior information into the region term by employing
a selective model. In the selective model, contour evolution
is driven by the force generated from user-specified points.
Nguyen et al. (2012) introduced an additional force to the
level set originating from points in- and outside the object
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of interest. Gout et al. (2005) employed the prior boundary
information to encourage the level set to pass along these
pre-defined points. Spencer and Chen (2015) replaced the
distance term in the edge term of the Gout et al. model by
a stand-alone term. Additionally, the authors introduced a
numerically stable, convex relaxation of theirmodel (we refer
to it as relaxed level set) by replacing the discrete values of
0 and 1 from the Heaviside function by a smooth function
which gradually increases from 0 to 1. However, their model,
employing theEuclidean distance tomarker voxels as the dis-
tancemeasure, cannot incorporate image color (or grayscale)
information. To address this, Roberts et al. (2019) replaced
the Euclidean distance by the geodesic distance, which does
not only take spatial variances but also grayscale variances
into account.

The edge term, on the other hand, encourages the level
set to stop at image boundaries. A fundamental edge-based
level set model is the geodesic active contour (Caselles et
al., 1997), which integrates the gradients of the level set
and image. The contour, therefore, balances between passing
along edges and remaining smooth. To improve the effi-
ciency, the DRLSE model (Li et al., 2010) introduced a new
energy term to eliminate the need for reinitialization. Su et al.
(2020) extracted different gradient-based edge information
from images of various resolutions. To mitigate the adverse
effect of noise, several works combined gradient informa-
tion with other forms of information. For example, Yu et al.
(2019) incorporated the diffusion rate to the edge term. Liu
et al. (2017) incorporated the local regional fitting variances
to the gradient information, which was then developed into
the multi-local statistical information (Liu et al., 2019).

Edge descriptors based on gradients, however, are less
effective for imageswith high noise or lowcontrast. Recently,
a rapidly growing body of literature has emerged in which
some notion of curvature is incorporated into the edge term.
Based on the dimension, one can classify these approaches
into 1D and 2D curvature approaches. A well-known 1D
curvature is the Euler’s Elastica. Zhu et al. (2013) proposed
a model that uses Euler’s Elastica, a function of the mean
curvature, as a regularizer. As the resulting Euler-Lagrange
equation is a complex fourth-order equation, the authors
introduced a variety of auxiliary variables to break down
the original problem into different subproblems. In He et al.
(2019), the �1 norm of Euler’s Elastica is discussed. Zhong
et al. (2020) proposed a different function of the mean cur-
vature as the regularization. 2D curvature is also widely used
in image processing. Liu et al. (2022) proposed a Gaus-
sian curvature-based regularization for image denoising and
surface smoothing. Zhu and Chan (2012) used the mean cur-
vature of the surface determined by the image to implement
image denoising.

However, rather than being functions implicitly represent-
ing 2D surfaces, relaxed level set functions are genuinely 3D

functions. It would be more powerful to directly optimize the
3D manifold itself rather than optimizing 2D submanifolds.
To the best of our knowledge, the use of 3D curvature as
a regularization has not been investigated. Three challenges
need to be overcome. The first is to define a proper energy
function that can smooth the 3D manifold determined by the
3D level set. The second is to derive a compact formula of
the curvature energy. The third is to derive its Euler-Lagrange
equation, which is perhaps the most essential and technically
most complex of the three.

In this paper, we present a novel model that utilizes
curvature as regularization. Drawing inspiration from the
Einstein-Hilbert functional (Feynman, 2018), we propose the
regularization

∫
R(u(x, y, z)) dμ, (1)

where u(x, y, z) represents a 3D function (e.g., a 3D
medical image or a user-defined 3D function), R denotes
the scalar curvature of the three-dimensional manifold
(x, y, z, u(x, y, z)), and dμ denotes the volume element
of this manifold. The scalar curvature R and the volume
element dμ are uniquely determined by the metric ten-
sor g, a 3 × 3 positive definite matrix assigned to each
point of the manifold. The metric tensor, which can be
used, e.g., to define the pairwise geodesic distances between
points on the manifold, is uniquely determined by the intrin-
sic nature of the manifold (Do Carmo & Flaherty Francis,
1992). Specifically, g is invariant to transformations (includ-
ing rotations and translations) of the coordinate system, and
it is invariant to its embedding into an ambient space (e.g.,
an Euclidean or hyperbolic space). This property allows
to define an intrinsic Eulerian-Lagrangian equation with
respect to, instead of the original 3D parametric surface
(x, y, z, u(x, y, z)), the metric tensor g, as is often the
case in variational calculus in Riemannian geometry. Con-
sequently, the Eulerian-Lagrangian of the Einstein-Hilbert
functional is also a function of the metric tensor g, known as
the Einstein tensor (Einstein et al., 1916).

However, this appealing intrinsic property limits its broad
application to image processing. The independence of coor-
dinate systems and ambient space implies that we cannot
determine how to embed the new manifold with the updated
metric tensor g into the Euclidean space, or even the dimen-
sion inwhich the newmanifold should reside. In other words,
although we derive the metric tensor of the specific paramet-
ric hypersurface (x, y, z, u(x, y, z)) in the 4D Euclidean
space, the new parametric surface may not be parameteriz-
able in the same form, or the new surface might only exist in
a 5D space.

A potential way to deal with this is to restrict the metric’s
transformation to a particular form. In 2D cases, the discrete
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Fig. 1 Overall notation (left) and pipeline (right) of our model. The
first two columns show names and formulas, including the, for our
approach, relevant 3D intrinsic curvatures; here I and D denote the
identity matrix and the Jacobian matrix of the map v, respectively. The
third column provides their respective shapes with H ,W , and D denot-
ing the image height, width, and depth, respectively. What prevents a
wide application of some curvature flow is known to lie in a dilemma:
is it possible to embed a manifold into the Euclidean space using metric
tensor g (3), which has proved to be independent of ambient space? This

paper attempts to avoid this problem by incorporating the embedding
information into the Euler-Lagrange equation by performing variational
calculus with respect to the gradient rather than the metric tensor. For
an arbitrary 3D function (e.g., a 3D image or a relaxed level set), we
alternately update the original function and its gradient, as shown graph-
ically on the right-hand side of this figure. An implication of this new
approach is the prospect of applying a wide range of intrinsic curvature
flows, such as the renowned Ricci flow, to the field of image processing

Ricci flow (Gu&Yau, 2016) only allows the metric tensor to
undergo a conformal transformation. According to the uni-
formization theorem (Abikoff, 1981), a mesh with a genus
greater than one is conformally equivalent to the Poincaré
Hyperbolic Disk. Thus, after updating the metric tensor, we
can combine a variety of triangles with known lengths into a
unit disk using the law of cosines (Gu & Yau, 2016). How-
ever, it is not understood whether or not this can be extended
to 3D cases.

To address this, we restrict the manifold to a particular
form, namely, the hypersurface in a 4D Euclidean space,
which is a natural setting for 3D image processing. At this
point, the metric tensor can be determined by the image
gradient, which allows us to directly derive the variational
calculus with respect to the image gradient, rather than the

metric tensor, in Euclidean coordinates. Before proceeding
with segmentation, we first lay some foundation work. We
derive the explicit formulas for the metric tensor g, the Ricci
curvature tensor Ric, and the scalar curvature R of the 3D
manifold (x, y, z, u(x, y, z)), as shown in Figure 1. Next,
we derive the variational calculus with respect to the gradi-
ent ∇u, leading to a two-stage strategy to update our model.
We alternately update u and ∇u, in contrast to the numerous
additional auxiliary variables introduced by variable split-
ting, as used by Zhong et al. (2020) to optimize the energy
involving Euler’s Elastica.

Our contributions can be summarized as follows:

1. This is the first study to introduce a regularization incor-
porating 3D scalar curvature into 3D image segmentation.
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2. We implement a two-step update strategy to update the
level set function and its gradient alternately.

3. We prove the existence and uniqueness of the viscosity
solution.

4. Experiments show that our model can outperform other
state-of-the-art models.

The paper is structured as follows. In Section 2, we briefly
review some prior selective variational models. In Section
3, we introduce our proposed level set model that incorpo-
rates the Einstein-Hilbert action, including the definition of
the Einstein-Hilbert action for the 3D Riemannian manifold
determined by a 3D image, and the derivation of its Euler-
Lagrange equation. In Section 4,we discuss the existence and
uniqueness of the viscosity solution. In Section 5,we conduct
a comprehensive evaluation on real datasets and compare our
method with the state-of-the-art model. Finally, we conclude
in Section 6.

2 Review of Selective Variational Models

Given a 3D image f (x, y, z), a level set model aims to find
a level set function u(x, y, z) that minimizes a prescribed
functional. Variational models can be classified into global
variational models and selective variational models, depend-
ing on whether or not user interaction is required. In this
paper, we focus on the selective model, and thus, we first
briefly review some related selective variational models.

2.1 NguyenModel

The Nguyen model (Nguyen et al., 2012) identifies a relaxed
function u(x, y, z) by exploiting the following energy

γ

∫
βh (PF (x, y, z)) |∇u| d�

+ γ

∫
(1 − β) h ( f ) |∇u| d�

+ λ

∫
α (PB (x, y, z) − PF (x, y, z)) u d�

+ λ

∫
(1 − α) (1 − 2P (x, y, z)) u d�,

where h ( f ) = 1
1+|∇ f |2 is the edge descriptor, which encour-

ages the level set to follow along edges. As usual, α, β, γ ,
and λ are regularization parameters. The model combines
two aspects. On the one hand, a Gaussian mixture model
estimated from the foreground and background seeds is used
to derive the likelihoods PF (x, y, z) and PB(x, y, z), that
a voxel belongs to the foreground and background, respec-
tively. On the other hand, a normalized geodesic distance

function P (x, y, z) is incorporated,whichmeasures the dis-
tance of a voxel to an already segmented foreground region.

2.2 Spencer-ChenModel

The Spencer-Chen model (Spencer & Chen, 2015) employs
the energy functional

∫ (
λ1( f − c1)

2 − λ2( f − c2)
2
)
u d�

+
∫

γ h ( f ) |∇u| d� + θDE (x, y, z) u d�

+ α

∫
ν (u) d�,

whereDE (x, y, z)measures theEuclideandistancebetween
the point (x, y, z) and user-specified foreground seeds,
ν : R �→ R denotes a well-designed function enforcing
u(x, y, z) to lie in the range [0, 1], and α, γ, λ1, λ2, θ, c1,
c2, are scalar parameters. Among these parameters, c1 and
c2 can be modified during each iteration, while the others
remain constant. When fixing u(x, y, z), we can derive the
optimized c1 and c2:

c1 =
∫
u(x, y, z) f (x, y, z) d�∫

u(x, y, z) d�

c2 =
∫

(1 − u (x, y, z)) f (x, y, z) d�∫
(1 − u(x, y, z)) d�

.

2.3 Roberts-ChenModel

The Roberts-Chen model (Roberts et al., 2019), originally
formulated in two-dimensional space, employs a similar
energy as the Spencer-Chenmodel. The difference is thatDE

is replaced byDG ,withDG(x, y, z)measuring the geodesic
distance between the point (x, y, z) and user-specified fore-
ground seeds.

2.4 Other Models

Some models do not directly use level sets for segmenting a
given image. For example, the weighted variational model in
Liu et al. (2018) focuses on the level set function fitting the
original image as accurately as possible, followed by image
thresholding.

Duan et al. (2014) utilize two convex variational mod-
els: one is a smoothed image, and the other one performs
clustering. However, these models feature a common term∫
h|∇u|d�, which is a weighted form of the gradient-based

regularization
∫ |∇u| d�. As shown in the 2D image segmen-

tation, existing 1D and 2D curvature-based regularization,
such as Euler’s Elastica (Duan et al., 2014), can outperform
the traditional gradient-based term.
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3 Ricci Curvature BasedModel

In this section, we introduce our proposed selective varia-
tional model for 3D image segmentation, which incorporates
the Einstein-Hilbert action as an additional regularization
term. To formulate the Einstein-Hilbert action, we first pro-
vide explicit formulas for various curvatures of the 3D
Riemannian manifold (x, y, z, u(x, y, z)), corresponding
to a 3D function u(x, y, z). These include the Riemann
curvature tensor, the Ricci curvature tensor, and the scalar
curvature, as will be detailed in Section 3.1. Utilizing the
explicit formulas, we present our selective variational model
in Section 3.2. The regularization in this model encourages
the level set function to resemble the smoothest possibleman-
ifold, namely, the Euclidean space. However, in Riemannian
geometry, curvature tensors are functions of themetric tensor,
which poses a challenge in possible updating strategies for u.

To address this, we reformulate the Einstein-Hilbert action as
a function of the gradient. Consequently, our proposed level
set model has two arguments: the original level set and its
gradient. In Section 3.3, we derive the Euler-Lagrange equa-
tion with respect to these two variables separately, followed
by a discussion of implementation details in Section 3.4.

3.1 Einstein-Hilbert Action

In this section, we shall show that the Einstein-Hilbert
action (1), a functional mapping the 3D function u(x, y, z)
to a scalar, can be expressed as

∫
R(u(x, y, z)) dμ

=
∫ (

tr
(
g−1H

))2 − tr
(
g−1Hg−1H

)
√
1 + |∇u|2

dxdydz.

(2)

To this end, we consider u(x, y, z) being represented
as the three-dimensional parametric surface r (x, y, z) =
(x, y, z, u(x, y, z)) in four-dimensional Euclidean space.
Recall that R denotes the scalar curvature of the manifold
r (x, y, z), and dμ denotes its volume element. In the fol-
lowing,wewill derive the right-hand side of (2) by combining
formulas for the metric tensor, the Riemann curvature tensor,
and the Ricci curvature tensor.We will introduce the relevant
notation as we proceed.

For each point of r (x, y, z) , we have the tangents r1 =
(1, 0, 0, ux ), r2 = (0, 1, 0, uy), and r3 = (0, 0, 1, uz).
Themetric tensor g,which is a 3×3matrix with components
gi j given by the pair-wise inner products gi j =< ri , r j >,

can therefore be expressed as

g = I + ∇u∇uT, (3)

where I denotes the identity matrix.

The Riemann curvature tensor Ri jkl , a 3×3×3×3 tensor,
can be expressed (see (A3)) as

Rik jl = ui j ukl − uilu jk

1 + |∇u|2 , (4)

with ui j denoting the components of the Hessian matrix H
of u.

The Ricci curvature tensor Ric, a 3 × 3 tensor with com-
ponents denoted by Ri j , and the Riemann curvature tensor
are related (see, e.g., Petersen (2016a)) by

Ri j = gkl Rik jl; (5)

here gkl denotes the kth row and lth column entry of the
inverse matrix g−1, and we are following the Einstein sum-
mation convention, wherewe automatically sum over indices
that are repeated as both subscripts and superscripts.

As tr(g−1H) = gklukl andHg−1H = uil glkuk j , we there-
fore obtain in matrix notation

Ric = H tr
(
g−1H

) − Hg−1H

1 + |∇u|2 . (6)

The Ricci curvature tensor and the scalar curvature R are
related via

R = tr
(
g−1Ric

)
; (7)

see, e.g., Petersen (2016a). Hence, by substituting (6) into
(7), we obtain

R =
(
tr

(
g−1H

))2 − tr
(
g−1Hg−1H

)
1 + |∇u|2 . (8)

This, together with the definition of the volume element
(see e.g., Petersen (2016b)),

dμ = √
det (g) dxdydz

and the well-known matrix identity

det
(
I + uvT

)
= 1 + uTv

yields (2).
An interesting property of the Einstein-Hilbert func-

tional is its invariance under coordinate transformations (see
Appendix B). In addition, it has been proved that the func-
tional is invariant under local isometries, which, originally
for 2Dmanifolds, is due to K. F. Gauss (Pressley, 2010). This
invariance implies that if the solution u of the variational cal-
culus of the functional undergoes an isometric transformation
(e.g., a translation or rotation), it remains to be a solution.
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3.2 The ProposedModel

Drawing inspiration from the Roberts-Chen model (Sec-
tion 2.3), we introduce our proposed selective variational
model for a given three-dimensional image f (x, y, z) as
follows:

min
u

∫
λ1( f (x, y, z) − c1)

2u (x, y, z) d�

−
∫

λ2( f (x, y, z) − c2)
2u (x, y, z) d�

+ θ

∫
DG (x, y, z) u (x, y, z) d�

+ α

∫
νε (u (x, y, z)) d�

+
∫

R (u (x, y, z)) dμ;

(9)

here,
∫
R(u(x, y, z)) dμ is defined in (2); the function vε(u)

is a bell-shaped function defined as

vε(u)

=
(√

(2u − 1)2 + ε − 1
)
Hε

(√
(2u − 1)2 + ε − 1

)
,

where Hε(u) is the smoothed Heaviside function of the form

Hε(u) = 1

2
+ 1

π
arctan (u/ε),

effectively constraining the range of u to lie in [0, 1]; the
functionDG (x, y, z) is the geodesic distance function from
the Roberts-Chen model, allowing users to specify fore-
ground and background seeds, respectively, to guide the
contour evolution. For example, if a single foreground point
(x0, y0, z0) is specified, the geodesic distance function D
satisfies:

|D (x, y, z) | = h(∇ f (x, y, z)),

D (x0, y0, z0) = 0,

where h(∇ f (x, y, z)) is a functionwith respect to the image
gradient. For example, if h = 1, this reduces to the Euclidean
distance.

To optimize the above energy, we focus on the regular-
ization

∫
R (u (x, y, z)) dμ (see (1)). A direct approach to

minimize (1) is to numerically solve the fourth-order partial
differential equation derived from the Euler-Lagrange equa-

tion δ
∫
R(u) dμ
δu . Such an approach has been widely adapted to

energies involving 1D curvature, for instance, Euler’s Elas-
tica. In practice, most studies (Zhu et al., 2013; Deng et al.,
2019) routinely introduce appropriate auxiliary variables,
splitting the problem into manageable subproblems. How-
ever, this numerical strategy typically places more emphasis

on specific machinery and implementation details, which
could eventually obscure the geometric nature of the problem
and its solution at hand.

From the perspective of Riemannian geometry, it seems
natural to replace the argument u of the energy by the met-
ric tensor g. Then, calculus of variations can be employed

with respect to the 3 × 3 metric tensor δ
∫
R(g) dμ
δg , which is

known as the Einstein tensor (Einstein et al., 1916). However,
recovering a parametric surface u from a metric tensor g is
generally an ill-posed problem due to the fact that different
surfaces may share the same metric tensor. The Euclidean
plane and cylinder, for example, share the same metric ten-
sor (they are locally isometric) as cutting the cylinder along
a generator and unrolling it onto the plane does not change
pairwise geodesic distances between points.

Thus, it would be beneficial to explore other ways to han-
dle this optimization. Note that due to the particular form
of the parametric surface (x, y, z, u(x, y, z)), the metric
tensor g (3) is uniquely determined by the gradient ∇u.
Reconstructing images or surfaces from gradient fields is
a well-studied problem in computer vision (see, e.g., Pérez
et al. (2003)). However, recovering from g poses a greater
challenge as it might be impossible to solve for the gradient
∇u using the matrix g even in the sense of least squares as
in Borg and Groenen (2007). More precisely, given a known
g, the system I + ∇u∇uT ≈ g of six quadratic equations in
the three unknown components of ∇u might not be solvable
since, for example, the sign of ∇u cannot be determined, or
the diagonal entries of gmight become smaller than 1. How-
ever, it is possible to avoid the challenging task of having
to solve for the unknown gradient ∇u from a known metric
tensor g. We can directly derive the variational calculus with
respect to the gradient ∇u. That is, (9) can be reformulated
as

min
u,v

∫
λ1( f (x, y, z) − c1)

2u (x, y, z) d�

−
∫

λ2( f (x, y, z) − c2)
2u (x, y, z) d�

+ θ

∫
DG (x, y, z) u (x, y, z) d�

+ α

∫
νε (u (x, y, z)) d�

+
∫

|∇u − v|2 d� +
∫

R (v (x, y, z)) dμ,

(10)

following the idea that v will resemble ∇u in the optimum.
Note that, for the purpose of not overloading the notation,
we do not introduce a new notation for R here. The notation
R (v (x, y, z)) , i.e., for a vector valued function v, denotes
the scalar curvature of the manifolds whose gradient field
is v.
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3.3 Euler-Lagrange Equation

This section is dedicated to the Euler-Lagrange equation of
(10) with respect to the two variables, u and its gradient v,
whose components are denoted by vi in the following section.

The variational calculus with respect to u has been com-
prehensively described in Roberts et al. (2019), and we refer
interested readers to the in-depth derivation. The resulting
equation is the following:

� u − ∇ · v − θDG (x, y, z) − αν′
ε (u)

− λ1 ( f (x, y, z) − c1) + λ2 ( f (x, y, z) − c2) = 0.
(11)

As for v, the Euler-Lagrange equation is

2 (v − ∇u) + δ
∫
R (v) dμ
δv

= 0, (12)

where δ
∫
R(v)dμ
δv is theEuler-Lagrange equationof

∫
R (v) dμ

with respect to v to be discussed next.
We now focus on the variational calculus of v. To do this,

we first express thematrix g and the HessianH in (2) in terms
of the gradient v rather than u. It is straightforward to see that
g now takes the form

g = I + vvT,

and the Hessian matrix H takes the form

H = D v,

where the notation D means generating the Jacobian matrix
H of the differentiable mapping v. We use the notation vi j
to represent H’s components just for notational consistency
with the previous notation vi . That is, we use vi to represent
the i-th element of v and naturally use vi j to represent the
partial derivative of vi relative to the j-th variable.

Observe that we do not develop a new formula for any of
the above curvatures, but instead, we provide an interpreta-
tion in terms of the gradient v. From the gradient perspective,
we see that the Einstein-Hilbert action (1) is now uniquely
determined by the vector-valued function v. Based on this
observation, it is sufficient to derive theEuler-Lagrange equa-
tion with respect to v, namely, investigating how

∫
R(v)dμ

varies with v.
In calculus, this can be accomplished by finding a

point v at which all directional derivatives are zero, i.e.,
limt→0

E(v+tw)−E(v)
t = 0 for all w, where E represents our

loss function (1) for convenience, w is an arbitrary vector-
valued function with the same size as v, and t is a small real
value. This limit involves two steps: first, we move the point
v at the velocity ∂v

∂t = w to reach a new point v + tw after a
short time t ; then we calculate the deviation of energy from

the initial energy. In variational calculus, we can consider the
gradient field a function v(t) of time t , and thus the energy
can also be expressed as a function E(v(t)) of t . At this point,
variational calculus analyzes the derivative Et with v having
velocity vt = w. In the following section, for notational con-
venience, we omit the symbol w and simply use vt to refer
to it.

Assuming that v varies with a time t , we can calculate
∂

∫
R(v)dμ
∂t as

∂
∫
R (v) dμ
∂t

= ∂
∫
tr

(
g−1Ric

) √
det (g) dxdydz

∂t

=
∫

R
∂
√
det (g)
∂t

dxdydz

+
∫

tr

(
Ric

∂
(
g−1

)
∂t

)√
det (g) dxdydz

+
∫

tr

(
g−1 ∂Ric

∂t

) √
det (g) dxdydz.

(13)

The first term of the right-hand side of (13) can be written as

∫
R

∂
√
det (g)
∂t

dxdydz

=
∫

R tr

(
g−1v

(
∂v
∂t

)T
) √

det (g) dxdydz,

and the second term can be written as

∫
tr

(
Ric

∂
(
g−1

)
∂t

)√
det (g) dxdydz

=
∫

tr

(
−2g−1v

(
∂v
∂t

)T

g−1Ric

)

√
det (g) dxdydz

=
∫

tr

(
−2g−1Ricg−1v

(
∂v
∂t

)T
)

√
det (g) dxdydz.
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By summing these two terms, we rewrite the right-hand side
of (13), without its third term, as,

∫
R

∂
√
det (g)
∂t

dxdydz

+
∫

tr

(
Ric

∂
(
g−1

)
∂t

) √
det (g) dxdydz

=
∫

tr

((
RI − 2g−1Ric

)
g−1v

(
∂v
∂t

)T
)

√
det (g) dxdydz

=
∫

tr

(
g−1 (Rg − 2Ric) g−1v

(
∂v
∂t

)T
)

√
det (g) dxdydz.

(14)

Next, we will demonstrate that the third term on the right-
hand side of (13) vanishes:

∫
tr

(
g−1 ∂Ric

∂t

) √
det (g) dxdydz = 0. (15)

We should mention that the following exposition contains
essentially introductory material (e.g., Christoffel symbols
and Levi-Civita connection), which will probably be known
fromRiemannian geometry.We include it here for complete-
ness.

The above equation (15) is equivalent to

∫
gql

∂Rql

∂t

√
det (g) dxdydz = 0.

To see this, we observe the following equation holds for
the Ricci curvature tensor (6) and the proof can be found
in Appendix C:

Rql = ∂gskvsvql
∂k

+ vsvql g
sagkbvakvb

− ∂gskvsvqk
∂l

− vsvqkg
sagkbvalvb.

(16)

With this representation, we have

gql
∂Rql

∂t
= gql

∂2gskvsvql
∂k∂t

+ gql
∂vsvql gsagkbvakvb

∂t

− gql
∂2gskvsvqk

∂l∂t
− gql

∂vsvqkgsagkbvalvb
∂t

.

Thus, recalling that f ∂g
∂k = ∂ f g

∂k − ∂ f
∂k g, we obtain

gql
∂Rql

∂t
= ∂gql

(
gskvsvql

)
t

∂k
− ∂gskvsvql

∂t

∂gql

∂k

+ gql
∂vsvql gsa

∂t
gkbvakvb + gqlvsvql g

sa ∂gkbvakvb
∂t

− ∂gql
(
gskvsvqk

)
t

∂l
+ ∂gskvsvqk

∂t

∂gql

∂l

− gql
∂vsvqkgsa

∂t
gkbvalvb − gqlvsvqkg

sa ∂gkbvalvb
∂t

.

(17)

According to the Einstein summation convention, we can
rename an index if it appears twice, such as aibi = a jb j

or ai j bi j = a ji b ji . Thus, the seventh term of the right-hand
side of (17) reads

−gql
∂vsvqkgsa

∂t
gkbvalvb = −∂gskvsvql

∂t
gqaglbvakvb,

and the last term can be written as

−gqlvsvqkg
sa ∂gkbvalvb

∂t
= −∂gskvsvql

∂t
gqaglbvavbk .

The virtue of interchanging indices is that, at this point, three

terms of (17) share a common factor,
∂gskvsvql

∂t . Additionally,
by observing that the following equation holds

∂gql

∂k
+ gqaglbvakvb + gqaglbvavbk = 0,

or in matrix form (Petersen & Pedersen, 2008)

∂g−1

∂k
= −g−1 ∂g

∂k
g−1,

we can conclude that the sum of the second, seventh, and
eighth terms is zero. Analogously, the sum of the fourth and
sixth terms is

−∂gskvsvqk
∂t

gqaglbvalvb.

Therefore, the eight terms of (17) reduce to four terms:

gql
∂Rql

∂t
= ∂gql

(
gskvsvql

)
t

∂k
+ ∂gskvsvql

∂t
gql gabvakvb

− ∂gql
(
gskvsvqk

)
t

∂l
− ∂gskvsvqk

∂t
gqaglbvalvb.

Sincewe aim tomake the term
∫
gql

∂Rql
∂t

√
det (g) dxdydz

vanish, this can be achieved if gql
∂Rql
∂t

√
det (g) can emerge

from a divergence. To see this, we first denote the vector
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gql
∂gskvsvql

∂t by a with components ak and gql
∂gskvsvqk

∂t by b
with components bl . From the linear algebra identity

∂ det (g)
∂k

= det (g) gab
∂gab
∂k

= 2 det (g) gabvakvb,

we have

gql
∂Rql

∂t

= ∂ak

∂k
+ akgabvakvb − ∂bl

∂l
− baglbvalvb

= ∇ · a + a · ∇ det (g)
2 det (g)

− ∇ · b − b · ∇ det (g)
2 det (g)

= 1√
det (g)

(√
det (g)∇ · a + a · ∇√

det (g)
)

− 1√
det (g)

(√
det (g)∇ · b + b · ∇√

det (g)
)

= ∇ · √
det (g)a√
det (g)

− ∇ · √
det (g)b√
det (g)

.

Thus,

∫
gql

∂Rql

∂t

√
det (g) dxdydz

=
∫ (∇ · √

det (g)a√
det (g)

− ∇ · √
det (g)b√
det (g)

)

√
det (g) dxdydz

=
∫ (

∇ · √
det (g)a − ∇ · √

det (g)b
)
dxdydz

= 0,

where ∂v
∂t assumes a Dirichlet boundary condition, ∂v

∂t = 0,
to make the above integral vanish.

Hence indeed the third term of the right-hand side of (13)
vanishes, and from (14), we have

∂
∫
R (v) dμ
∂t

=
∫ √

det (g)

tr

(
g−1 (Rg − 2Ric) g−1v

(
∂v
∂t

)T
)

dxdydz.

The stationary point v of the energy satisfies ∂
∫
R(v)dμ
∂t = 0,

i.e., ∫
tr

(
g−1 (Rg − 2Ric) g−1v

(
∂v
∂t

)T
)

√
det (g) dxdydz = 0.

Observing that themetric tensor g is a positive definitematrix
assigned to each voxel, the following conditions hold: (g)−1

is a positive definite matrix,
√
det (g) > 0, and for any vector

a, aT (g)−1 a ≥ 0. Thus, if ∂v
∂t = (Rg − 2Ric) g−1v, the

energy will increase.

This implies that the Euler-Lagrange equation δ
∫
R(v)dμ
δv

with respect to v is

(Rg − 2Ric) g−1v = 0. (18)

For 3D manifold, Rg − 2Ric, namely the Einstein tensor
(Einstein et al., 1916), being equal to 0 is locally equivalent
to the 3D Euclidean space, the smoothest possible space.

At this point, the Euler-Lagrange equation (12) relative to
v becomes

2 (v − ∇u) + (Rg − 2Ric) g−1v = 0. (19)

3.4 Numerical Implementation

We have described the Euler-Lagrange equation of u in (11)
and v (i.e., ∇u) in (19). In this section, we shall describe a
numerical scheme for solving it.

We follow the additive operator splitting (AOS) strategy
(see, e.g., Roberts et al. (2019)) for the subproblem (11) of
u,

∂u

∂t
= �u − f ,

where, from (11), f reads

∇ · v + θDG (x, y, z) + αν′ (u)

+ λ1( f (x, y, z) − c1)
2 − λ2( f (x, y, z) − c2)

2.

The semi-implicit form is

uk+1 = (I − τ�)−1
(
uk − τ f

)
.

Since the Laplacian is the sum of three convolutions (linear
maps or matrices), namely, ∂2

∂x2
, ∂2

∂ y2
, and ∂2

∂z2
, by Taylor’s

expansion 1
1−x = 1 + x + x2 + · · · , we obtain

(I − τ�)−1

≈ I + τ
∂2

∂x2
+ τ

∂2

∂ y2
+ τ

∂2

∂z2

=
I + 3τ ∂2

∂x2
+ I + 3τ ∂2

∂ y2
+ I + 3τ ∂2

∂z2

3

≈
(I − 3τ ∂2

∂x2
)
−1 + (I − 3τ ∂2

∂ y2
)
−1 + (I − 3τ ∂2

∂z2
)
−1

3
.
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The original 3D equation is thus decomposed into three sep-
arate 1D equations:

uk+1 = 1

3

2∑
l=0

(
I − 3τ

∂2

∂l2

)−1 (
uk − τ f

)
, (20)

where each 1D equation becomes a tridiagonal system of
equations which can be solved with linear computational
complexity.

An important force guiding u is DG (x, y, z), composed
of two distinct distances. They are denoted by DM (x, y, z)
and DAM (x, y, z), representing the distances from the cur-
rent voxel (x, y, z) to the foreground and background
seeds, respectively. We employ Dijkstra’s algorithm (Dijk-
stra, 1959) to calculate them, set DG (x, y, z) = DAMDM+DAM
and scale it to the range [−1, 1] such that it can drive the
contour according to its sign. Since the Matlab framework
of the Spencer-Chen model is available on GitHub, we adapt
the original Matlab code to update u.

For the v-subproblem, we update v according to (19) as

∂v
∂t

= 2 (v − ∇u) + (Rg − 2Ric) g−1v.

Its semi-implicit form involves solving a general linear
system for a large 3D function,which is computationally pro-
hibitive. In practice, we interpret the corresponding energy∫ |∇u − v|2 d� + R (v (x, y, z)) dμ in (10) as a homoge-
neous system of differential equations,

{
∂v
∂t = (Rg − 2Ric) g−1v

v(0) = ∇u,

whose solution is given by

v (t) = e(Rg−2Ric)g−1t∇u,

yielding the following update strategy for v

vk+1 = e(Rg−2Ric)g−1t∇uk, (21)

where t > 0 is a parameter, and the metric tensor g (3), Ricci
curvature tensor Ric (6) and the scalar curvature R (8) can
be computed using uk . Here, t controls the distance between
the new gradient v and the preceding gradient ∇u,

We employ the finite difference method to calculate all
derivatives, PyTorch’s einsum function to perform tensor
operations, and PyTorch’s matrix_exp function to com-
pute the matrix exponential (21).

4 Existence and Uniqueness of the Viscosity
Solution

Based on Crandall et al. (1992); Ishii and Sato (2004), we
can investigate the solution of the partial differential equation
F(x, u, Du, D2u) = 0, where x denotes the point in R

n ,
u ∈ R represents the (relaxed) level set function, Du ∈ R

n is
the gradient of u, D2u represents the n × n Hessian matrix,
and F is a map from these values to a scalar. In addition,
we denote n × n symmetrical matrices by M n . We follow
the same notation convention as in Roberts et al. (2019) to
describe the following theorem.

Theorem 1 (Theorem 2 in Roberts et al. (2019)) Assuming
that conditions (C1)-(C2) and (I1)-(I7) are satisfied, then
for each u0 ∈ C(�̄), there exists a unique viscosity solution
u ∈ C([0, T ) × �̄) of (22) and (23) that satisfies (24).

∂u

∂t
+ F

(
t, x, u, Du, D2u

)
= 0 in Q = (0, T ) × � (22)

B(x, Du) = 0 in S = (0, T ) × ∂� (23)

u(0, x) = u0(x) for x ∈ �̄ (24)

Conditions (C1)-(C2)

(C1) F(t, x, u, p, X) ≤ F(t, x, v, p, X) for u ≤ v.
(C2) F(t, x, u, p, X) ≤ F(t, x, u, p,Y ) for X ,Y ∈ M n

and Y ≤ X .

Conditions (I1)-(I7)
Assume � is a bounded domain in Rn with C1 boundary.

(I1) F ∈ C
([0, T ] × �̄ × R × (Rn\{0}) × M n

)
.

(I2) There exists a constant γ ∈ R such that for each
(t, x, p, X) ∈ [0, T ] × �̄ × (Rn\{0}) ×M n , the func-
tion u �→ F(t, x, u, p, X) − γ u is non-decreasing on
R.

(I3) F is continuous at (t, x, u, 0, 0) for any (t, x, u) ∈
[0, T ] × �̄ × R in the sense that

−∞ < F∗(t, x, u, 0, 0) = F∗(t, x, u, 0, 0) < ∞

holds. Here, F∗ and F∗ denote, respectively, the upper
and lower semi-continuous envelopes of F , which are
defined on [0, T ] × �̄ × R × R

n × M n .
(I4) B ∈ C (Rn × R

n)∩C1,1 (Rn × (Rn\{0})), where C1,1

is the Hölder functional space.
(I5) For each x ∈ R

n , the function p �→ B(x, p) is posi-
tively homogeneous of degree one in p, i.e. B(x, λp) =
λB(x, p) for all λ ≥ 0 and p ∈ R

n\{0}.
(I6) There exists a positive constant � such that 〈n(x), Dp

B(x, p)〉 ≥ � for all x ∈ ∂� and p ∈ R
n\{0}. Here,
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n(x) denotes the unit outward normal vector of � at
x ∈ ∂�.

(I7) For each R > 0, there exists a non-decreasing con-
tinuous function ωR : [0,∞) → [0,∞) satisfying
ωR(0) = 0 such that if X ,Y ∈ M n and μ1, μ2 ∈
[0,∞) satisfy

[
X 0
0 Y

]
≤ μ1

[
I −I

−I I

]
+ μ2

[
I 0
0 I

]
(25)

then

F(t, x, u, p, X) − F(t, y, u, q,−Y ) ≥
− ωR

(
μ1

(
|x − y|2 + ρ(p, q)2

)
+ μ2 + |p − q|

+ |x − y|(max(|p|, |q|) + 1))

for all t ∈ [0, T ], x, y ∈ �̄, u ∈ R, with |u| ≤ R, p, q ∈
R
n\{0} and ρ(p, q) = min

( |p−q|
min(|p|,|q|) , 1

)
.

We now turn to the uniqueness of the solution of (11).
Prior to applying Theorem 1, we first rewrite (11) as

F(x, u, p, X) = − tr (X) + k(u) + f (x) (26)

where k(u) = αv′
ε(u) and f (x) = λ1( f (x) − c1)2 −

λ2( f (x) − c2)2 + θDG (x) + ∇ · v (x).

Theorem 2 TheparabolicPDE ∂u
∂t +F

(
t, x, u, Du, D2u

) =
0 with u0 = u(0, x) ∈ C(�̄), F as defined in (26) and Neu-
mann boundary conditions has a unique solution u = u(t, x)
in C([0, T ) × �̄).

Proof To apply Theorem 1, we need to show that F satisfies
(C1)-(C2) and (I1)-(I7).

(C1): To satisfy (C1), we need to show that k (u) is non-
decreasing, which can be easily verified through a plot
of function k of u.

(C2): If Y ≤ X , tr (Y ) − tr (X) = tr (Y − X) ≤ 0, which
satisfies C2.

(I1): F does not have singularities, and thus it is continuous
and satisfies this condition.

(I2): In F , the only term which depends on u is k(u) =
αv′

ε(u). This condition requires αv′
ε − γ u to be non-

decreasing. Since in (C1) it has been shown that k(u)

is non-decreasing, we can choose an arbitrary γ < 0
to satisfy this condition.

(I3): F is continuous so the upper and lower semi-
continuous envelopes are equal. Because a contin-
uous function from a compact space into a metric
space is bounded, f (x) defined on the 3D image
is bounded, and k (u) defined on the compact inter-
val [0, 1] is bounded. Beyond [0, 1], observing

lim
u→+∞ k(u) = 2 and lim

u→−∞ k(u) = −2, k (u) is

also bounded. So its upper and lower semi-continuous
envelopes are bounded.

(I4): The Euler-Lagrange equations giveNeumann bound-
ary conditions

B(x,∇u) = 〈n,∇u − v〉 = 0

on ∂�, where n is the outward unit normal vector.
In each iteration, we can set the Neumann bound-
ary condition for ∇u and thus v in fact also satisfies
the Neumann boundary condition 〈n, v〉 because we
assume ∂v

∂t = 0 on ∂�. At this time, the above equa-
tions become

B(x,∇u) = 〈n,∇u〉 = 0.

Since the function B is a differentiable function,
and its derivatives are defined on a compact set,
∇u is also bounded. Thus, we see that B(x,∇u) ∈
C1,1 (Rn × R

n\{0}) and therefore this condition is
satisfied.

(I5): By the definition above, B(x, λ∇u) = 〈n, λ∇u〉 =
λ〈n,∇u〉 = λB(x,∇u). So this condition is satisfied.

(I6): As before, we can use the definition, 〈n(x), Dp

B(x, p)〉 = 〈n(x), n(x)〉 = |n(x)|2. So we can
choose � = 1 and the condition is satisfied.

(I7): (25) implies, for each vector r and s, we have

rT Xr + sT Y s

≤ μ1
[
rT sT

] [
I −I

−I I

] [
r
s

]

+ μ2
[
rT sT

] [
I 0
0 I

] [
r
s

]

= μ1|r − s|2 + μ2

(
|r |2 + |s|2

)
.

and the trace can be represented as

tr (X) + tr (Y ) =
2∑

i=0

(
eTi Xei + eTi Y ei

)
≤ 6μ2.

Therefore,

− (F(t, x, u, p, X) − F(t, y, u, q,−Y ))

= tr (X) + tr (Y ) − f (x) + f (y)

≤ 6μ2 + C |x − y|

where f ′(x) on the compact set � is bounded by a
constant C , | f ′(x)| < C . To satisfy (I7), we can set

ωR = max
(
6, C

max(|p|,|q|)+1

)
. ��
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5 Experimental Results

In this section, we compare our model with relevant models
on three public datasets, then we demonstrate an ablation
study to discuss how to select the best t parameter in (21).

The models under comparison are:

• RC: the 3D version of the Roberts-Chen Model (Section
2.3),

• SUNETR: Swin UNETR (Hatamizadeh et al., 2021),
• SAM: Segment Anything (Kirillov et al., 2023),
• ZC: 3D Zhang-Chen model (Zhang et al., 2015),
• GrabCut: 3D GrabCut model (Rother et al., 2004),
• Ricci: our proposed model based on the Ricci curvature
tensor.

The SUNETR is a 3D transformer-based network for 3D
medical image segmentation, which employs locally shifted
windows (Swin) to mitigate the computational complexity
introduced by the preceding global transformer. It ranks
among the top-performingmodels for various datasets. SAM,
recognized as a fundamental segmentation network by Meta
AI, can segment "anything", requiring a few foreground and
background seeds but no additional training data. The ZC
model is a 3D variational model that utilizes markers near
the object boundary to guide contour evolution. The Grab-
Cut model is a classical graph-based approach. In principle,
it can segment images of any dimension, as the number of
dimensions only affects the number of edges adjacent to
graph nodes. Our model, Ricci, is based on the RC model,
replacing the traditional gradient-based regularization with
the proposed Ricci curvature tensor-based regularization.We
assigned the same seeds to both models to facilitate a fair
comparison.

We employed three metrics: intersection over union (IoU)
(Jaccard, 1912), Hausdorff distance (HD) (Rockafellar &
Wets, 2009), and Dice score (DSC) (Dice, 1945); recall that
the latter compares two sets X andY of voxels by settingDSC
(X ,Y ) = 2|X∩Y |/(|X |+|Y |).As implementations we used
MONAI’s MeanIoU, HausdorffDistanceMetric,
and DiceMetric.

We evaluated our model on the following three tasks and
data sets: the brain tumour core segmentation on the Brain
TumorSegmentation (BraTS)Challenge2021dataset (Bakas
et al., 2018), the oesophagus and stomach segmentation on
the Beyond the Cranial Vault (BTCV) Segmentation Chal-
lenge dataset (Landman et al., 2015), and the post-resection
cavity segmentation on the REtroSpective Evaluation of
Cerebral Tumors (RESECT) dataset (Xiao et al., 2017).
These data sets consist of MRI, CT, and Ultrasound images
(US), respectively. Each dataset is described in detail in its
corresponding section below.

5.1 BraTS Dataset

This section evaluates the brain tumour core segmentation on
the BraTS dataset. We randomly selected 50 cases for eval-
uation from a total number of 1252 cases of this dataset. We
first describe our implementation settings, then visualize the
segmentation results on two representative cases, and finally
summarise the results using the three metrics.

The Brain Tumor Segmentation (BraTS) Challenge 2021
dataset (Bakas et al., 2018), a collection ofmulti-institutional
pre-operative baseline multi-parametric magnetic resonance
imaging (mpMRI) scans, is set up to test state-of-the-
art methods for the segmentation of heterogeneous brain
glioblastoma sub-regions in mpMRI scans. Each batch of the
dataset is a 4-channel 3D image: the t1-weighted scans (t1)
are particularly useful for visualizing areas where the blood-
brain barrier is intact; the t1-weighted scans with contrast
enhancement (t1c) help highlight areaswhere the blood-brain
barrier is disrupted; the t2-weighted scans (t2) are sensitive to
fluid content and can help to visualize edema (swelling); the
fluid attenuated inversion recovery scans (flair) are a type of
T2 scan that suppresses the signal from free fluid, particularly
useful for visualizing lesions surrounded by cerebrospinal
fluid. Each annotation of the dataset comprises four differ-
ent labels: background (label 0), necrotic and non-enhancing
tumour core (label 1), peritumoral oedema (label 2), and
enhancing tumour (label 4). Thus, the tumour core that we
segment corresponds to label 1.

The PyTorch implementation of the SUNETR model
and its weights on the BraTS dataset are available online
on the MONAI Research Contributions (Cardoso et al.,
2022). According to the original paper, the authors evaluated
SUNETR’s performance through five-fold cross-validation.
Here, we used the network weights corresponding to the first
fold and compared all models on 50 cases of this fold.

TheZCmodel employsmarkers near the object to penalize
contours that are far from object boundaries. The Matlab
code for this model is available online. We first calculated a
signed distance function to the ground truth boundary using
Matlab’s bwdist and randomly sampled markers within a
distance of less than 5. The x , y, and z coordinates of the
selected prompts were then fed into the algorithm. We noted
that the original code only worked with single-channel 3D
images. Therefore, we adapted the region term to the �2 norm
of vectors of length 4, representing four-channel images.

The GraphCut model has several variants in different
packages. We used Matlab’s grabcut function, which
took four inputs: the original image, the 3D superpixel, and
the foreground and background markers. Since the original
image was assumed to be a single-channel grayscale image,
we only employed the first channel of the image. Throughout
the experiments,we set the superpixel number to a fixed value
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of 100, 000. We used the same foreground and background
markers as the RC and Ricci models.

SAM does not require a training set to train a model
but restricts the input image to a 3-channel 8-bit 2D image.
Among the fourmodalities of theBraTSdataset,we found the
T1c display visible contrast, so we chose it as input. From the
other threemodalities, we chose flair and t1.We then cropped
the 3-channel image to size 3 × 128 × 128 × 128 and nor-
malized intensities to lie in the interval [0, 255]. We looped
through each slice and randomly sampled three foreground
seeds in label 1 and 20 background seeds in label 4 per loop
iteration. However, the background seeds appear to encour-
age, rather than force, themodel to recognize the background
leading to an overestimation of the foreground and hence to
a high recall with low precision. To deal with this, we used
simple yet powerful post-processing for this and the follow-
ing dataset. We performed a morphological opening on the
binary result using a sphere kernel with radius 2 and then
extracted its largest connected component.

We now turn to the proposed Ricci model and the
RC model. For each of the four channels, we calculated
the regional statistical information, ( f (x, y, z) − c1)2 and
( f (x, y, z) − c2)2, separately and then fed their mean into
the region term. The corresponding coefficients were set to
λ1 = 0.1 and λ2 = 0.1, since, in general, the foreground
and background were not homogeneous. When executing
Dijkstra’s algorithm to calculate the geodesic distance to two
groups of seeds, the edge weight was set to equal the sum of
absolute differences of adjacent voxels over the four chan-
nels. The Ricci model exhibits a parameter t in (21), which
can be interpreted as controlling the step length of the gra-
dient descent. When t = 0, the updated gradient remains
unchanged; the corresponding manifold will move toward a
flat manifold as t increases. On the other hand, due to the
existence of the exponential function in (21), the time incre-
ment should be limited to a specific range. In practice, we
found the interval [0, 20] applicable. The remaining parame-
ter is the iteration number of themodel, which approximately
depends on the foreground size. For this dataset, we assigned
a constant value of 15 to the iteration number.

Figure 2 demonstrates the seed configuration and interme-
diate contour evolution of theRiccimodel for a representative
3Dbrain image. In the first figure (from the left), the red curve
represents the foreground seeds, and the blue curve represents
the background seeds. These foreground seeds are located in
label 1 of a particular slice, and the background seeds lie in
label 4 of the same slice. From the second to the last figure,
the symbol, such as #1(0.03), denotes that the Ricci model
reaches a DSC of 0.03 in the first iteration. It can be seen that
the initial contour starts from the foreground seeds and then
gradually grows outward. The contour expands rapidly ini-
tially, primarily due to the prior information that users fed into
the geodesic distance termDG through the foreground seeds

and background seeds. In this case, the region with DG > 0
has a DSC of 0.7063, which is surpassed in the sixth iteration
(DSC: 0.84), mainly attributed to the regularization.

Figure 3 shows the segmentation results of all models
and the ground truth for the above case from Figure 2. The
proposed Ricci model reaches the highest DSC of 0.9214,
demonstrating its effectiveness. Although SAM is a 2D
model, it shows comparable performance (DSC: 0.8504) to
the second-best, SUNETR (DSC: 0.8977). Notably, although
the RC model was originally intended for 2D segmentation,
it also gives a respectable result (DSC: 0.8394).

Figure 4 shows the foreground seeds, background seeds,
initial contour, contour evolution, and corresponding DSC
for another challenging case. Analogous to the preceding
case, we define a curve in label 1 and, respectively, label 4
as the foreground and background seeds. The initial contour
resembles the foreground seeds and gradually expands until
it achieves a satisfactory result.

Figure 5 shows the segmentation results of all models and
the ground truth for the same case as in Figure 4. It can be
seen that SAM produces some broken and spurious parts,
mainly due to the fact that SAM is a 2D model not utilizing
information across different slices. Since the contrast around
the boundary of Label 1 and 4 is lower compared to the
preceding case (Figure 3), the gradient-based regularization
in the RC model can not perform as well as before, leading
to a DSC of 0.7843.

Table 1 summarizes the performance of the models
employing the metrics: IoU, HD, and DSC. The Ricci model
achieves the highest scores in IoU and DSC, with values of
0.8176 and 0.8989, respectively. Our model demonstrates a
significant DSC improvement of 0.0304 over the SUNETR
model and 0.0791 over the third-ranked 3D GrabCut, under-
scoring its efficiency. Compared to the RC model, the Ricci
model demonstrates improvements of 0.1715, 0.7734, and
0.1145 across the three metrics, respectively. Although the
RCmodel reaches a DSC (0.7844) similar to SAM (0.7833),
the RC model’s HD is low. This may be attributed to its reg-
ularization, which is designed to eliminate noise from the
segmentation. However, the RC model’s gradient-based reg-
ularization cannot reliably recognize lowcontrast boundaries
between Labels 1 and 4, and is therefore outperformed by the
Ricci curvature-based regularization.

5.2 BTCV Dataset

This section validates the proposed Ricci model for the
oesophagus and stomach segmentation on six cases of the
Beyond the Cranial Vault (BTCV) Segmentation Challenge
dataset (Landman et al., 2015). For each organ, we visualize
one representative segmentation result and give a quantitative
summary in Table 1.

123



International Journal of Computer Vision

Fig. 2 Intermediate contour evolution of the Ricci model for the
necrotic tumour core segmentation on a representative image of the
BraTS dataset. The foreground and background seeds (left figure) are
shown in red and blue, respectively. They are located in two separate

slices of the 3D image. The subcaptions of the form #α(β) indicate the
iteration number (α) and the corresponding DSC (β). The final result
is shown in Figure 3

Fig. 3 Segmentation results of all models and the ground truth for the case from Figure 2 (numbers representing the respective DSC). All models
show good performances as there is high contrast between the necrotic tumour core (label 1) and GD-enhancing tumour (label 4) in the image

Fig. 4 Intermediate contour evolution of the Ricci model for the necrotic tumour core segmentation on a more challenging image of the BraTS
dataset. The foreground and background seeds reside in the same slice of the 3D image. The final result is shown in Figure 5

Fig. 5 Segmentation results of all models and the ground truth for the case from Figure 4

The BTCV Segmentation Challenge focuses on segment-
ing abdomen organs across 50 abdomen CT images, each
containing 13 organs. Of the 50 CT scans, 30 form the train-
ing sets with annotation, and the remaining scans form a
test set without annotation. The CT scans have a fixed width
and height of 512 × 512, but the number of slices varies
between 85 and 198.

The BTCV dataset is much smaller than the BraTS dataset
(1252 scans). Therefore, SUNETR was initialized with self-
supervised weights and then fine-tuned on the BTCV dataset
(Tang et al., 2022; Cardoso et al., 2022). The PyTorch imple-
mentation of the network and the self-supervised weights
were downloaded from the MONAI Research Contributions

platform (Project-MONAI), and the final trained weights
were downloaded from the MONAI Model Zoo (Cardoso et
al., 2022). Since we trained on 24 scans, we used the remain-
ing six validation scans to compare our model with the other
models.

For SAM, we first cropped the 3D image to size 96 ×
96×96, then normalized the input data to the grayscale range
[0, 255], and repeated this for the other two channels to form
a tensor of size 3 × 96 × 96 × 96. Since the oesophagus is
larger than the above brain tumour, we randomly sampled,
for each slice, the foreground to form 20 foreground seeds
and randomly selected 20 background seeds from the back-
ground. It should be noted that the seed setting of the SAM
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Table 1 Comparison of different models across four organs using three
metrics, intersection over union (IoU), Hausdorff distance (HD), and
Dice score (DSC)

IoU HD DSC
Brain Tumor Core

Ricci 0.8176 5.7077 0.8989

SUNETR 0.7686 5.4127 0.8685

SAM 0.6524 13.6864 0.7833

RC 0.6461 6.4811 0.7844

ZC 0.6239 9.6484 0.7639

GrabCut 0.7004 7.1424 0.8198

Esophagus

Ricci 0.6813 4.9998 0.8097

SUNETR 0.5710 20.7295 0.7245

SAM 0.4224 13.3435 0.5878

RC 0.5775 7.8754 0.7315

ZC 0.5786 6.0854 0.7293

GrabCut 0.3400 13.3435 0.5030

Stomach

Ricci 0.8059 7.8748 0.8918

SUNETR 0.6366 67.4389 0.7562

SAM 0.7882 16.4916 0.8726

RC 0.6891 12.6888 0.8153

ZC 0.7002 17.4619 0.8211

GrabCut 0.7017 17.8386 0.8185

Post-resection Cavity

Ricci 0.8304 15.5260 0.9067

SUNETR 0.7947 34.4419 0.8848

SAM 0.5769 23.0178 0.7220

RC 0.6909 24.5955 0.8164

ZC 0.6736 16.0370 0.8016

GrabCut 0.6077 48.0842 0.7519

model differs from our model because the former is a 2D
model requiring a slice-by-slice seed selection.

The ZC, GrabCut, and our models used the same con-
figuration as for the BraTS dataset, with some exceptions.
Since BTCV has one channel, we used the original ZC
code designed for single-channel 3D images. The number
of Ricci’s iterations was set to 25 for this dataset due to its
relatively large volume compared to brain tumours.

Figure 6 shows the foreground seeds, background seeds,
initial contour, contour evolution, and corresponding DSC
for a representative case of the oesophagus segmentation.
It can be seen that the seeds are composed of two red fore-
ground curves and three blue background curves. In the sixth
iteration, the Ricci model reaches a DSC of 0.73.

Figure 7 visualizes all segmentation results for the case
shown in Figure 6. The SUNETR model introduces a pro-
truding branch at the top of the mesh. The SAM andGrabCut

models produce two artificial branches at the top and bot-
tom. RC and ZCmodels share a similar DSC of around 0.72,
with RC displaying a smoother appearance. This is because
the region of DG > 0 has a DSC of only 0.1812, covering
many irrelevant organs and tissues. Therefore, we increase
the regularization effect by using a large γ to excessively
smooth the segmentation result, which reduces its DSC. In
contrast, our proposed Ricci model achieves the highest DSC
of 0.8269, with an improvement of 0.0235 over the second-
best SUNETR.

Figure 8 illustrates the seed points of the Ricci model and
the corresponding contour evolution for the stomach seg-
mentation. As the stomach volume is much larger than the
previous two organs, the resulting evolution speed is slightly
slower than for the previous two organs reaching a DSC
of 0.83 at the 12th iteration.

Figure 9 visualizes the results of all models for the above
case from Figure 8. Deep learning methods aim at optimiz-
ing a loss function (e.g., Dice loss) to impose geometric
constraints. However, these constraints may not always be
enforced, as highlighted by the presence of some unneces-
sary parts introduced by SUNETR (DSC: 0.8950) and SAM
models (DSC: 0.8640). Traditional models aim to improve
metrics through extensive geometric regularization, which
is also challenging to achieve, as confirmed by the DSC of
0.8366, 0.8398 and 0.8100 for the RC, ZC, and GrabCut
models. The result of our model (DSC: 0.9031) suggests
that the introduction of the 3D curvature has the potential
to maintain a proper balance between metric and geometric
constraints.

Table 1 presents the metrics for these two organs on six
scans. Our model achieves the highest IoU, HD, and DSC.
Notably, SUNETR reaches a high HD of 67.4389 for the
stomach segmentation because HD is sensitive to noise. For
example, if a single additional voxel near the image bound-
ary is added to the segmentation result, the DSC and IoUwill
barely change, but the HD will increase significantly. Due to
the regularization, our model, RC, ZC, and GrabCut models
can somewhatmitigate noise. SUNETR does not show a high
DSCand IoU.Thismight be explained by the fact that, in con-
trast to the original paper that uses five-fold cross-validation
to train the model, we only use the first fold, hence the model
is trained only once.

The Ricci model exhibits considerable advantages across
all metrics compared to the RC model, with 0.1038 IoU,
2.8756 HD, 0.0782 DSC improvement for the Esopha-
gus segmentation and 0.1168 IoU, 4.814 HD, 0.0765 DSC
improvement for the stomach segmentation. This might be
due to the fact that the gradient relates curvature to inten-
sity contrast. A high contrast, however, may not indicate a
large intrinsic curvature. For example, at (x, y) = (0, 1),
the unit circle’s derivative with respect to x is 0, and ∞ with
respect to y. The curvature of a circle is, however, constant.
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Fig. 6 Intermediate contour evolution of the Ricci model for the oesophagus segmentation on a representative image of the BTCV dataset. The
final result is shown in Figure 7

Fig. 7 Segmentation results of all models and the ground truth for the
case from Figure 6. SUNETR finds an additional component, which is
not depicted here as it is far beyond the viewport. The SAM result was

post-processed by amorphological opening followed by an extracting of
the largest connected component resulting in a smoothed segmentation
with improved DSC

Fig. 8 Intermediate contour evolution of the Ricci model on the stomach segmentation of the BTCV dataset. The final result is shown in Figure 9

Fig. 9 Segmentation results of all models and the ground truth for the case from Figure 8. (The SAM result was post-processed as before.)
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Fig. 10 Intermediate contour evolution of the Ricci model for the post-resection cavity segmentation on the RESECT dataset. The final result is
shown in Figure 11

This example demonstrates that the gradient depends on the
choice of the coordinate system. By contrast, Ricci curvature
is invariant under coordinate transformations, as discussed in
Section 3.1.

5.3 RESECT Dataset

We now focus on the post-resection cavity segmentation
on four cases of the REtroSpective Evaluation of Cerebral
Tumors (RESECT) dataset.

The RESECT dataset is used in the MICCAI CuRIOUS
2022 Segmentation Challenge (Xiao et al., 2017) aiming to
track the intra-operative tissue shift and surgical tools for
brain tumours and resection cavity at three surgical stages:
pre-resection, during-resection, and post-resection. The three
3DUS images comewith annotations: the pre-resection brain
tumour, the during-resection cavity, and the post-resection
cavity. In addition, the three images reveal distinct brain
anatomies and thus have different settings of shape (size),
origin, and spacing. We only utilize the post-resection US
image to segment the post-resection cavity. This is a common
procedure as many studies consider the three segmentation
tasks independently (Carton et al., 2020).

The RESECT dataset comprises only 23 cases, and thus,
we also fine-tuned a self-supervised pre-trained SUNETR
model, which was identical to that of the BTCV dataset.
We split the scans into 19 training scans and four valida-
tion scans. We first applied a sequence of data augmentation
on the training images. Each 3D image was resampled with
a voxel spacing of 0.2× 0.2× 0.2 and randomly cropped to
the size 96 × 96 × 96, which also underwent random flips,
rotations by 90 degrees, scalings, and intensity shifts. During
training, we worked with a batch size of four. For optimiza-
tion, we used Adamwith decoupled weight decay employing
a weighted sum of the Dice and cross-entropy loss. Finally,
we validated all the models on the four validation scans. Dur-
ingvalidation,weonlymade an inferenceon the image region

whose intensity was greater than zero. This can be viewed as
a form of data augmentation cropping the foreground.

For the SAM model, we cropped all four scans to 128 ×
128 × 128 and did not scale intensities as they were already
in the [0, 255] range. We segmented the whole 3D image
slice by slice; that is, for each slice, we fed three consecutive
slices into the SAM model: the previous slice, the current
slice, and the next slice. We randomly selected three points
in the foreground and 20 points in the background. Finally,
we adopted the post-processing as mentioned before.

The configurations of the ZC and RC models remained
the same as for the BTCV model since they are both single-
channel 3D images. The iteration number for our model was
set to 35, slightly higher than for the BTCV dataset, because
the region of interest approximately spans half of the entire
3D image.

Figure 10 shows, for one example, the seed setting and
the contour evolution of our proposed Ricci model. The
two seed curves in the left-hand side figure are located
in one slice. It is worth mentioning that it is not essen-
tial to enforce the foreground/background seeds to reside
in the foreground/background of the ground truth because
the distance term essentially provides a considerably rough
segmentation. For example, the corresponding distance term
DG > 0, in this case, reaches a DSC of 0.2301.

Figure 11 shows the results of all models and their respec-
tive DSC. Our proposed model exhibits the best DSC of
0.9159, with an improvement of 0.005, 0.092, and 0.0114
over the SUNETR, RC, and ZC models, respectively. The
SAM and GrabCut models achieve a similar DSC of around
0.74, possibly due to the limited intensity information of
the image, which is approximately concentrated in the range
[0, 60].

Table 1 summarizes the results across the three metrics.
Our model reaches the highest values in IoU (0.8304), HD
(15.5260), and DSC (0.9067). Remarkably, most models
show high HD compared to the previous datasets. This is
likely because the post-resection cavity sometimes accounts
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Fig. 11 Segmentation results of all models and the ground truth for the case from Figure 10. (The SAM result was post-processed as before.)

Fig. 12 Ablation study to select the optimal t parameter in (21). The
plot shows the average DSC metric for t ranging from 0 to 30 across
three datasets. It can be seen that setting t to around 10 provides the
highest DSC. The model fails to segment the image when t = 30
because some intermediate functions reach infinity at that value, likely
due to the exponential explosion in (21)

for about half of the whole 3D image, and a small displace-
ment from the ground truth may produce a large HD.

The Ricci model demonstrates an improvement over the
RC model of 0.1395 in IoU, 9.0695 in HD and 0.0903 in
DSC. This might be explained by the low image contrast,
which ismainly in the range of [0, 60].Asmentioned before,
this is hard to achieve using only the first-order gradient
information. In addition, the relaxed level set’s histogram
is mainly concentrated on the two ends of the interval [0, 1],
implying that the preimage of 0 and 1 are 3D manifolds,
which should be optimized through 3D geometric quantities,
such as our proposed 3DRicci curvature. By contrast, the tra-
ditional regularization assumes that all contours are 2D. For
example, the variational calculus of

∫ |∇u| d� is ∇ · ( ∇u
|∇u| ),

whichmay result in a division by zero in regionswhere u = 0
or u = 1.

5.4 Optimal t Parameter

We conclude the experiment by demonstrating the optimal
time parameter t in (21). The x axis shows different values

of t in the range [0, 30], while the y axis represents the aver-
age DSC metric for the four organs across the three datasets.
When t = 0, the model does not smooth the gradient field,
resulting in a similar overall outcome to the RC model. As t
increases, segmentation performance benefits from the Ricci
curvature tensor derived from the metric tensor of the cur-
rent manifold, leading to a rise in the DSC curve. It can be
observed that the four curves peak at around t = 10 and then
show a faster DSC decrease compared to smaller t values. A
possible reason is that the only parameter in (21) is t , while
the scalar curvature tensor, metric tensor, and Ricci curvature
tensor are fixed functions obtained from the last iteration. If
t increases significantly, the exponential function may reach
a very high value at some voxels, resulting in model insta-
bility. This phenomenon is observed in the DSC of 0 when
t = 30, where some infinity values appear in our Matlab
implementation.

6 Discussion and Conclusion

This paper introduces the 3D Ricci curvature tensor as
regularization. Since the 3D image is considered a 3D
hypersurface in Euclidean 4D space, we can derive the Euler-
Lagrange equation with respect to the gradient instead of the
routinely used metric tensor. Subsequently, we recover the
original 3D function from the updated gradient.

Compared to the traditional models, the proposed model
has two conceptually major virtues. First, as discussed in
Section 3.1, our proposed functional (2) is invariant under
coordinate transformations. That is, althoughwe express it in
a particular coordinate system, it is, in fact, independent of the
choice of coordinates. By contrast, the traditional gradient-
based regularization

∫ |∇u| d� may vary with the choice
of the coordinate system. Second, as the relaxed level set
is intended to approximate the Heaviside function, a step-
shaped binary function whose isosurfaces are typically not
2D surfaces, it seemsmore natural to consider 3Dmanifolds,
as in our approach, instead of sequences of 2D manifolds.

Moreover, curvature-based regularization may be benefi-
cial in cases where gradient-based regularization runs into
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numerical problems, for instance, due to division by zero in
the variational calculus.

We believe that 3D intrinsic curvatures as regularization
is a fruitful area for further research. In practice, the man-
ifold structure in specific applications is not arbitrary. For
instance, in the present paper, we havemodelled themanifold
as a hypersurface. In more specific cases, it may be possible
to directly derive the variational calculus of the regulariza-
tion relative to its gradient. If the structure can be further
restricted to a low-dimensional parameter space (e.g., the
radius for a sphere), it may be possible to directly derive
the updating strategy with respect to these parameters. In
other words, although the form of variational calculus may
vary with the specific setting of the 3D manifold structure,
it may be possible to derive the exclusive updating strategy
tailored to the assumed specific configuration. An analogous
approach may be applicable to a wider range of curvature
flows of the form ∂g

∂t = κ , where κ is an intrinsic curvature,
such as the renowned Ricci flow (Milnor, 2003).

Another interesting direction for further research may be
to incorporate curvature flow into a deep learning framework.
Wenote that Euler’s Elastica has been introduced into the loss
function, such as in Chen et al. (2021), to improve image
segmentation. We plan to incorporate 3D curvature into the
loss function to enhance 3D image segmentation. However,
the straightforward use of the high-order loss function may
not show promising results because some boundary terms
(e.g., the divergence appearing in (15)) involved in the vari-
ational calculus may vanish. Thus, the backpropagation for
the curvature-based loss function needs to be adapted.

Appendix A Riemann Curvature Tensor of 3D
Images

In this section, we derive the Riemann curvature tensor Ri jkl ,
a 3 × 3 × 3 × 3 matrix, for the 3D parametric surface
r (x, y, z) = (x, y, z, u(x, y, z)).

For each point (x, y, z) on r, in addition to the three tan-
gents, r1 = (1, 0, 0, ux ), r2 = (0, 1, 0, uy), and r3 =
(0, 0, 1, uz), there exists a unit vector n = (ux , uy , uz ,−1)√

1+u2x+u2y+u2z

that is perpendicular to the three vectors.
With these four vectors, the Riemann curvature tensor

Ri jkl can be defined according to theGauss equation (Dajczer
& Tojeiro, 2019) as follows:

Ri jkl =II(ri , rk)II(r j , rl) − II(ri , rl)II(r j , rk), (A1)

where II(ri , r j ) denotes the second fundamental form,
defined by the projection of the second-order partial deriva-

tive ri j onto the normal vector n of the surface:

II(ri , r j ) =< ri j ,n > .

By the usual second-order partial derivative ri j = (0, 0, 0,
ui j ), the second fundamental is given by:

II(ri , r j ) = −ui j√
1 + u2x + u2y + u2z

. (A2)

Substituting the above formula into (A1), we obtain:

Ri jkl = uiku jl − uilu jk

1 + |∇u|2 . (A3)

Appendix B Transformation Invariance of
the Einstein-Hilbert Action

Assume theoriginal point (x, y, z)has themetric tensorg (3)
and the second fundamental form denoted by II (A2). Under
a coordinate transformation with the Jacobian matrix J , the
new point with coordinates (x̃(x, y, z), ỹ(x, y, z), z̃(x, y,
z)) has the metric tensor g̃ and the second fundamental form
ĨI. Recall that the metric tensor and the second fundamental
form are bilinear forms that map two tangent vectors into a
real number. Since the Jacobianmatrix J is a linearmap from
the original tangent space to the transformed tangent space, it
follows from linear algebra that the two bilinear forms have
the following relationships:

g = JTg̃J

II = JTĨIJ.

It is easy to see that det(g) = 1 + |∇u|2, and according to
the definition of the Einstein-Hilbert Action (2), we have

(
tr

(
g−1H

))2 − tr
(
g−1Hg−1H

)
√
1 + |∇u|2

dxdydz

=
(
tr

(
g−1H

))2 − tr
(
g−1Hg−1H

)
det g√

det g dxdydz

=
((

tr

(
g−1 H√

det g

))2

− tr

(
g−1 H√

det(g)
g−1 H√

det(g)

))

√
det g dxdydz

=
((

tr
(
g−1II

))2 − tr
(
g−1IIg−1II

)) √
det g dxdydz
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Then we express the above formula using g̃ and ĨI as:

((
tr

(
g−1II

))2 − tr
(
g−1IIg−1II

)) √
det g dxdydz

=
((

tr
(
J−1g̃−1J−TJTĨIJ

))2

−
(
tr

(
J−1g̃−1J−TJTĨIJJ−1g̃−1J−TJTĨIJ

))
√
det

(
JTg̃J

)
det(J−1) dx̃d ỹdz̃

=
((

tr
(
J−1g̃−1ĨIJ

))2 − tr
(
J−1g̃−1ĨIg̃−1ĨIJ

))

√
det

(
JTg̃J

)
det(J−1) dx̃d ỹdz̃.

Since tr(ABC) = tr(BCA) and det(AB) = det(A) det(B),
we obtain

((
tr

(
g−1II

))2 − tr
(
g−1IIg−1II

)) √
det g dxdydz

=
((

tr
(
g̃−1ĨI

))2 − tr
(
g̃−1ĨIg̃−1ĨI

))√
det g̃ dx̃d ỹdz̃.

Appendix C Derivation of (16)

Following the convention in Section 3.3, all tensors are func-
tions of the gradient. From (A3) and (5), we see that

Rql = gsk Rsqkl = gsk
(
vskvql − vslvqk

)
1 + |v|2 (C4)

From the Sherman-Morrison formula (Petersen & Pedersen,
2008), it is straightforward to see that the inverse matrix g−1

is

g−1 = I − vvT

1 + |v|2 ,

and thus,

vTg−1v = |v|2 − |v|4
1 + |v|2 = |v|2

1 + |v|2 ,

yielding

1

1 + |v|2 = 1 − vTg−1v = 1 − gabvavb.

After displacing the term 1
1+|v|2 , (C4) is written as

Rql = gsk
(
vskvql − vslvqk

) (
1 − gabvavb

)

Observe that vskvql − vslvqk = ∂vsvql
∂k − ∂vsvqk

∂l , and we sub-
stitute into the above equation

Rql = gsk
(
vskvql − vslvqk

)
− gsk

(
vskvql − vslvqk

)
gabvavb

= gsk
(

∂vsvql

∂k
− ∂vsvqk

∂l

)

− gsk
(
vskvql − vslvqk

)
gabvavb

= gsk
∂vsvql

∂k
− gskvskvql g

abvavb

− gsk
∂vsvqk

∂l
+ gskvslvqkg

abvavb

= ∂gskvsvql
∂k

− vsvql
∂gsk

∂k
− gskvskvql g

abvavb

− ∂gskvsvqk
∂l

+ vsvqk
∂gsk

∂l
+ gskvslvqkg

abvavb

From the fact that ∂gsk

∂k = −gsagkbvakvb − gsagkbvavbk and
∂gsk

∂l = −gsagkbvalvb − gsagkbvavbl , it follows that

Rql = ∂gskvsvql
∂k

+ vsvql g
sagkbvakvb

vsvql g
sagkbvavbk − gskvskvql g

abvavb

− ∂gskvsvqk
∂l

− vsvqkg
sagkbvalvb

− vsvqkg
sagkbvavbl + gskvslvqkg

abvavb

According to the Einstein summation convention, if both
indices i and j appear twice, they can be interchanged. Thus,
vsvql gsagkbvavbk = gskvskvql gabvavb and vsvqkgsagkbva
vbl = gskvslvqkgabvavb. At this point, four of the six terms
from the above formula vanish, yielding

Rql = ∂gskvsvql
∂k

+ vsvql g
sagkbvakvb

− ∂gskvsvqk
∂l

− vsvqkg
sagkbvalvb
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