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A novel few-shot learning framework for
supervised diffeomorphic image registration
network

Ke Chen, Huan Han, Junping Wei and Yimin Zhang

Abstract— Image registration is a key technique in image
processing and analysis. Due to its high complexity, the
traditional registration frameworks often fail to meet real-
time demands in practice. To address the real-time demand,
several deep learning networks for registration have been
proposed, including the supervised and the unsupervised
networks. Unsupervised networks rely on large amounts of
training data to minimize specific loss functions, but the
lack of physical information constraints results in the lower
accuracy compared with the supervised networks. How-
ever, the supervised networks in medical image registration
face two major challenges: physical mesh folding and the
scarcity of labeled training data. To address these two chal-
lenges, we propose a nhovel few-shot learning framework
for image registration. The framework contains two parts:
random diffeomorphism generator (RDG) and a supervised
few-shot learning network for image registration. By ran-
domly generating a complex vector field, the RDG produces
a series of diffeomorphism. With the help of diffeomor-
phism generated by RDG, one can use only a few image
data (theoretically, one image data is enough) to generate a
series of labels for training the supervised few-shot learn-
ing network. Concerning the elimination of the physical
mesh folding phenomenon, in the proposed network, the
loss function is only required to ensure the smoothness of
deformation (no other control for mesh folding elimination
is necessary). The experimental results indicate that the
proposed method demonstrates superior performance in
eliminating physical mesh folding when compared to other
existing learning-based methods. Our code is available at
this link https://github.com/weijunping111/RDG-TMI.git

Index Terms—image registration, Beltrami coefficient,
diffeomorphism, few-shot learning
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MAGE registration is a challenging task in image process-
ing and analysis. Generally speaking, the goal of image
registration is to establish a spatial relationship between the
images acquired in different time, from different spaces or
with different devices. Specifically, for some bounded domain
Q C Rd(d = 2,3) and two images T, R : Q@ — R, the
goal of image registration is to find a spatial transformation
@ : Q — Q such that the deformed floating image T o (")
looks like the target image R(-) as much as possible. It is
an ill-posed problem, and to overcome the ill-poseness, one
classical way is to add some regularization or constraints on
. Therefore, the variational framework for image registration
is formulated as follows:
min D(T o ¢, R) + S(p), (1)
pek
where K is some proper function space, D(T o ¢, R) is the
fitting term measuring the similarity between T o ¢ and R,
S(¢p) is regularization to eliminate unexpected solutions.

p: Q-0

Fig. 1: Physical mesh folding phenomenon caused by the un-
expected deformation ¢. The left image illustrates the location
of three features along with four pixels before transformation,
where the green, white, red colors denote the features. The
right image denotes the new locations of the features after
being wrapped by the specific transformation ¢ : Q — €,
where the blue part denotes the physical mesh folding region.

Without loss of generality, we mainly focus on the dis-
cussion of 2D (d = 2) image registration in this paper.
Within the framework (1), several pioneering models are
proposed, for instance, Demons model [1], Vectorical total
variation (VTV) model [2] and Bounded deformation (BD)
model [3]. However, physical mesh folding is not taken into
consideration in these models. Taking Fig 1 as an example,
with an assumption that the green and red region denote two
different organs, respectively, and ¢ transforms the left part
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to the right part, then one can notice that two different organs
are mixed together (blue region) by the given transformation.
This is so called physical mesh folding phenomenon, which
is not allowed in medical image registration. To eliminate
mesh folding, several diffeomorphic registration frameworks
which search for a C'* continuous and invertible mapping ¢
are proposed, for example, the Inverse-consistent model [4],
Quasi conformal/conformal models [5]-[7], Positive Jacobian
determinant constrained model [8], the Ogden material stored
energy model [9] and the LDDMM framework [10]. These
models are all based on the traditional variational framework,
which provides more interpretable solutions and does not rely
on the large amount of training data. However, due to its high
complexity, the traditional variational registration frameworks
could not satisfy the real-time demand in practice. To address
the real-time demand, several deep learning networks [11]-
[15] for registration are proposed, including unsupervised
networks and supervised networks. In unsupervised learning
network [11], [13], [14], the training of the network is driven
by the similarity D(7T o ¢, R) between T o ¢ and R, and the
general form of the loss function is formulated as

LZOSS(‘P) = D(T op, R)+ )‘LTSQ(SO)> (2)

where L,.4(¢) is regularization on ¢, and A is a positive
number to balance these two terms. The issue to be addressed
is how to obtain a non-folding transformation ¢ as effectively
as the above-mentioned diffeomorphic registration models.

Following from the structure of L;,ss(¢) in Eq. (2), one
can notice that the training of the unsupervised network is
driven by a large amount of data automatically without setting
any prior information on the solution. This may produce
some unexpected solutions because there is no uniqueness
of solution for the registration framework. To ensure that
the solutions satisfy some specific demand in application,
several supervised networks [12] are trained by minimizing
the following loss function:

Lioss(p) = D(T o p, R) + Lim(p, r) + )‘Lreg(‘P)a 3

where ¢, is the deformation field, and the minimization of
Lsim(p, @) drives the network to be trained to produce a
solution ¢ similar to ¢,..

The overview of supervised and unsupervised networks is
presented in Section 2. Evidently, there is a strong need for
new methods to address the mesh folding problem. For the
supervised networks in medical image registration, they face
two challenges: physical mesh folding elimination and no
labels ¢, for training. To address these two challenges, in
this paper, we propose a novel few-shot learning framework
for diffeomorphic image registration. The framework contains
two parts: random diffeomorphism generator (RDG) and a
supervised few-shot learning network for diffeomorphic image
registration. By randomly generating the Beltrami coefficients
(complex vertor field), the RDG produces a series of dif-
feomorphsim. With the help of diffeomorphsim generated by
RDG, one can use only a few image (theoretically, one image
is enough) to generate a series of diffeomorphic labels for
training the supervised few-shot learning network.

The contribution of this paper contains:

o Propose a novel variational model (RDG (10)) to generate
diffeomorphism via randomly generated complex field y :
Q- C;

o Propose a fast multi-grid (MG) method for the numerical
implementation of the proposed model;

o Design a few shot learning network for supervised dif-
feomorphic image registration, using the labels generated
by RDG (10).

The paper’s overall framework is presented in Figure 2.

RDG (10)

Labels for diffeomorphism

Supervised RDG-Net

Fig. 2: Flowchart of the proposed few-shot learning framework
for supervised diffeomorphic image registration network: Step
1. RDG (10) generates a large amount of labels ¢/ using
randomly generated complex vector field f; Step 2. Using
the input image 7; to produce R;; = Ti(¢’) and labels
(Ti, Rij, 7). Step 3. Using the labels (T}, R;j, ¢?) to train
the supervised RDG-Net.

The remaining sections are organized as follows: In Section
II, the related work of diffeomorphic image registration is
reviewed. In Section III, we propose a novel variational model
to generate diffeomorphism via randomly generated complex
fields. Based on the labels generated by RDG (10), we propose
a supervised few-shot learning framework for diffeomorphic
image registration. In Section IV, several numerical tests are
performed to validate the results. In Section V, we conclude
our work and list some problems for future research.

[1. RELATED WORK
A. Traditional image registration methods

Traditional image registration formulates the registration as
a variational model, for example, the framework (1). In the
pioneering work, many classical models [1]-[3] are proposed.
In these early works, physical mesh folding phenomenon has
not drawn much attention. As it is stated in Fig 1 in Section
1, mesh folding elimination is a key and challenging task in
medical image registration. From Fig 1, one can notice that
the essential reason for the appearance of mesh folding (Blue
region) is attributed to the fact that the transformation ¢ : 2 —
Q) is not a one-to-one mapping. This observation motivates the
need for constraints to ensure that the final solution ¢ of Eq.
(1) is a one-to-one mapping. For this purpose, Zeng and Chen
[4] introduced the inverse-consistent model by simultaneously
using two different variational models which produce two
mappings (one is just the inverse of the other). In another
view, the Inverse Function Theorem [16] provides a sufficient
condition to ensure that ¢ is a one-to-one mapping. In this
framework, the Jacobian determinant of ¢ is necessary to
be greater than zero. Based on this condition, Zhang et al.
reformulated the framework (1) by restricting ¢ to the set
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whose Jacobian determinant is greater than O everywhere.
Analternative, Lui et at [5], [7], [17], [18] used the Quasi-
conformal theory to transform the conditions to its equivalent
form which restrict ¢ to the set whose infinite norm of
Beltrami coefficient (see subsection B in Section III for details)
is less than 1. As a simplification, Han et al [6], [19]-[21]
proposed a relaxed conformal framework, which provides a
much simple structure for numerical implementation. Further-
more, Debroux et al. [9] introduced a penalty term to penalize
the voxel whose Jacobian determinant is less than 0. Though
these models achieve satisfactory results in mesh folding
elimination and get accurate results, the high complexity of
their algorithms limit real-time applicability in scenarios like
surgical guidance.

B. Deep learning-based image registration methods

To reduce the complexity of traditional registration frame-
work, several deep learning networks [11]-[14] for registration
are proposed in recent years. These networks can be classified
into unsupervised networks [11], [13], [14] and supervised
networks [11], [13], [14] determined by whether the training
of the network needs data labels ¢,. As it is stated in
Section 1, the training of the unsupervised network is driven
by a large amount of data to minimize the loss function
(2), and the quality of the output solution is determined by
some specific structures in the network. For example, the
Convolutional Neural Networks (CNNs). Among the CNNs,
the most famous is the U-Net architecture which incorpo-
rates down-sampling and symmetric up-sampling modules to
capture information across different scales of receptive fields.
Taking U-Net as one part of the structure of the network, the
Spatial Transformer Network (STN) [14], [22] is a network
architecture that performs transformations across the entire
image by predicting transformation parameters. This includes
operations such as translation, rotation, stretching, scaling, and
non-rigid deformations. The core of STN is a localization
network that takes the images as input and outputs the param-
eters for spatial transformations, such as six parameters for
affine transformations or eight parameters for plane projective
transformations. In contrast to STN, VoxelMorph (VM) [11]
is an unsupervised network that achieves registration at the
pixel level. Following VM, several variants of it have emerged,
further enhancing its capabilities in image registration tasks.
Combing STN and VM, Huang [13] proposed an unsupervised
coarse-to-fine registration framework and introduced dual con-
sistency constraint to eliminate the physical mesh folding.
Chen, Li and Lui [12] also proposed a learning framework
for diffeomorphic image registration based on quasi-conformal
theory (QCRegNet). This is a two-stage neural network that
includes an estimator network and a Beltrami solver network.
The estimator network takes an image pair as input and
outputs the Beltrami coefficient. Subsequently, the Beltrami
solver network utilizes the Beltrami coefficient obtained from
the estimator to reconstruct the corresponding quasiconformal
mapping. In addition, there are also some diffusion models
[24] based registration networks, for example, DiffuseReg
network [25] and FSDiffReg network [26]. For an overview

of deep learning based medical image registration, the readers
are refer to [27].

These models are all unsupervised, which implies that
during the training process, we are unaware of the labels.
Therefore, if the actual deformation fields were known, the
network could be trained more effectively in supervised learn-
ing network for image registration. For the supervised learning
network, the main difficulty is the lack of labels ¢,.. To address
this difficulty, there are two kinds of approaches reported.
One is to obtain the real labels ¢, by iteratively solving
the traditional registration models, which needs too much
CPU consumption. The other way is to randomly generate
six parameters (3 parameters for rotation, and 3 parameters
for translation) to produce a series of affine transformations,
for example, the AIRNet in [28]. Note that here the output
of AIRNet [28] is an affine transformation, which can be
simulated by six parameters. For the supervised network of
diffeomorphic image registration, it is necessary to output
a C' continuous one-to-one mapping, which belongs to an
infinite dimensional space. Due to this fact, infinite parameters
are needed to simulate some specific diffeomorphism. This
leads a challenge in generation of diffeomorphism. How to
address this challenge in supervised learning network for
diffeomorphic image registration, is a problem to be addressed
in this paper.

[1l. METHOD

In this section, we propose a novel few-shot learning
framework for diffeomorphic image registration. The proposed
framework contains three parts:

o The random diffeomorphism generator (RDG). The
proposed variational model inverts the real labels 7
via the information provided by the randomly generated
complex vector fields 7 : Q@ — C with [|p/]|e < 1
(Note that here ||y’ = max |7 (x)));

« Network training data generator. Using the labels
(j = 1,2,--+) provided by RDG, and the image T;
(i = 1,2,---) from the image dataset to generate the
training labels (7}, R; j, 1) (where R; ; = T;(41)) for
the diffeomorphic registration network;

o Supervised learning network for diffeomorphic image
registration. Using the labels (T}, R; ;, ¢?) provided by
the RDG, design a few-shot learning network for medical
image registration.

A. The random diffeomorphism generator

As stated at the end of Section II, the key to randomly
generate the diffeomorphism lies in establishing the rela-
tionship between the randomly generated numbers and the
diffeomorphism. Motivated by the Quasi-conformal theory
[5] in traditional registration framework, by modeling the
transformation ¢ = (u,v)? as a complex function ¢(x) =
u(x)+4v(x) (4 is imaginary unit), a complex field . : @ — C
is generated by

L(p(x)) = (Ozu — Oyv) +i(0yv + Oyu)

(Opu + Oyv) — i(Opu — Oyv)’

“4)
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where p is the so called Beltrami coefficient of ¢.

Through straightforward computation, it is concluded that
[5] ||ptleo < 1 is equivalent to det(Vep) > 0 (a sufficient
condition to ensure that ¢ is a one-to-one mapping). There-
fore, the combination of Eq. (4) with the condition ||pt]/cc < 1
establishes the relationship between the complex vector field
w1 Q — C and diffeomorphism ¢ : Q@ — .

Obviously, the direct problem (computing p via the in-
formation provided by ¢) is easy. However, the goal of
this section is to generate diffeomorphism ¢ by using the
information of u (the so-called inverse problem). Motivated
by the modeling of inverse problem, we propose the following
variational framework for generating diffeomorphism:

¢ =argmin \F () + aG(p), 5)

here and in what follows, p,7: Q — R, fi(x) = p(x) + i7(x)
is a given complex field with ||ji]|s < 1, A, > 0, the fitting
term

= /Q | — u(p)|dx, ©6)
and the regularization
001 Opa.o  Op1  Opa,
G(p) = B azg) (&62 aIl) dx. (7

Remark 1: In [12], a partial differential equation (PDE)
solver for network is proposed by minimizing the fitting
term F(¢). This is an ill-posed problem, which may have
two shortages: many unexpected solutions and the solution
is not smooth (see Fig 5 for later comparison in Section
IV). To address the above problems, the Cauchy-Riemann
regularization [6] on G(¢) is used to overcome the ill-poseness
of the original minimization problem. It has two advantages:
(D restricting ¢ to a diffeomorphism to eliminate mesh folding
phenomenon; (II) providing smoothness prior to the solution
. We further note that directly generating random ¢ (without
() is impractical, as it is inherently difficult to satisfy both
diffeomorphism and smoothness requirements simultaneously.

Substitute Eq. (4) into Eq. (6), there holds

- s |(p+ir)-(A+iB)— (C+iD)|
i —p(ep)|” = o :
3
where
A= (Ug, +Vs,), B= Vg, — Us,),
C = (Uy, —Vzp), D = (Ug, + Vs, ).

Note that the denominator A 4+ iB in Eq. (8) has the pos-
sibility to be 0, which may lead the singularity in variational
framework (5). To address the singularity, we reformulate the
fitting term to the following equivalent form:

:/ |(p+i7)(A+iB) — (C +iD)|%dx

/| p= 1z, = (p+ o, — 78]
— 1Dvg, — (p+ Dug, + 7A] |2dx. )

A S T R W p R P
L e O R A N
B SRRy AN RN
= 7 NN\ = AN N N
N oy 7z 7 N Nk N A
A AN O A
Randomly generated complex vector Rescale p such that
filed: p:Q— C lIpll.<1

" <

NEEFgEEam
L
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Fig. 3: Flowchart of the RDG contains four steps: (a) Ran-
domly generating a complex vector field i : 2 — C; (b)
Rescaling the complex vector field i : €@ — C such that
l2]]co < 1; (c) Solving the solution of Eq. (10); (d) Generating
the diffeomorphism ¢ : 2 — Q.

Using these equivalent forms, we solve the following vari-
ational model for generating the diffeomorphism in numerical
implementation:

¢ = argmin A\F(p) + aG(p). (10)

That is, by randomly generating a complex field i : Q@ — C
with ||fi]lcc < 1, one can use the solution of Eq. (10) to invert
diffeomorphism ¢. The flow of this process is listed on Fig
3.

Remark 2: RDG synthesize diffeomorphic labels via quais-
conformal theory maintaining architecture independence. In
contrast, the architecture-based methods [29], [30] inherently
integrate deformation modeling into network pipelines, risking
topology violations, for example, the physical mesh folding
still exists in unsupervised networks [29], [30] though specific
structures are designed to embed the stationary velocity field
(SVF). Therefore, the RDG based registration network is more
flexible and robust for diffeomorphic image registration.

B. Numerical solver of RDG framework (10)

The existence of solution of variational framework (10) can
be obtained by proving the lower weak semi-continuity of the
functional F(p) + aG(p). The technique is similar to [6].
Here we do not repeat it.

By variational theory [16], the solution of Eq. (10) satisfies
the following PDE:

fl(uav) —Au= 07
{fg(u,v)AUO, (b
where fl (u7 U) = Uz, [Pﬂﬂl +(_27—)5L’2]+u1’2 [sz +(_2T)I1]+

Vay ZZQ _vJ?szl ’ f2(u’ U) = Uz, [Pllil +(_2T)$2]+U$2 [chz +
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(_27—)@’1] + ux2Z-'Kl = U,y Z’ﬁz and P = (p - 1)2 + T27Q =
(p+1)2+72,Z2=1-p*>—7%

Eq. (11) is a nonlinear PDE, whose numerical implementa-
tion is faced with stringent conditions for the convergence of
the algorithm. To ensure the robustness of the algorithm and
make it gradually converge to the final solution, we introduce
a time variable ¢ and reformulate v and v to be functions
of x and ¢. That is, u = u(x,t) and v = v(x,t). Based on
this reformulation and gradient flow approach [19], Eq. (11)
becomes:

@ = Au— fi(u,v),
a
i Av — fo(u,v),

It is easy to show that the steady state solution (t — +00)
of Eq. (12) is also the solution of original problem (11).

Next, we focus on the numerical implementation of Eq. (12).
The image grid is

Q={x:x=(i,j), 1<i<M, 1<j<N}, (13

where (M, N) denote the number of rows and columns,
respectively, and the time grid is

0,7 ={t:tn =n, 1<n< P}, (14)

with § = Lz

With these notations, g; ; = g(4, j) denotes the intensity of
g (here g = T or R) at position x. In discretization settings,
it is involved with the numerical approximation of differential
operator % and A. For function g (g = u, v), there holds,

(89) _ o -l

(Ag)(x’tn) =041, T 9im1; T 9541+ 951 — 491 ;. (16)

5)

and

Using Eq. (15)-(16), Eq. (12) is discretized into an algebraic
system. The two PDEs in Eq. (12) are of the same type, here
we take the first PDE on w as an example to illustrate the
computation process. Note that the numerical implementation
is performed in two dimensional region 2. To reduce the
complexity of the algorithm, motivated by the alternative
direction impilicit (ADI) scheme [19], we add a time node
n+ % between n and n + 1, and split the computation process
from n to n + 1 into two 1D problems:

un—&-% — )
M = s ),

a7)

1

n+1 _ n+i

5/2

With the notations in Eq. (15)-(16), Eq. (17) is reformulated
into the algebraic systems of the following type:

+3
{Llu” 2 = ;l,

n+l _ n+i
LQ’U, —h2 2,

(18)

where L; and Lo are two 1D difference operators, and hY,

h;”r% are functions of u™ and u"*2, respectively.

In this paper, we use the multi-grid method [19], [31] to
solve each equation in Eq. (18). It is essentially an iteration
scheme of several V-Cycles. For each V-cycle, the computation
process is listed as the following four Steps (taking the
numerical implementation of Liuts = hT as an example):

By down-sampling the region () at different levels, we
obtain a series of grids {Q,,} (m =10,1,---,Q). Qo =Q is
the finest grid and ) is the coarsest grid (smallest amount of
voxel).

Step 1. Smooth relaxation. Start with some initial value
on {2, from Eq. (18), we have the following linear system:

Ly qug = hiq- (19)

Relaxing Eq. (19) v times using the Jacobi method [19], we
obtain the smooth approximation @g. Using g, the residual
error is computed by :

rQ = hi,qg — L1,Qlq. (20

Step 2. Restriction. Restrict 7; on €; to 7,1 on ;1 by
restriction (t = Q,Q —1,--- ;1) :

t—1
re—1 =11y,

where Iffl is a restriction operator from €2; to Q;_;.
Similar to Step 1, we solve the following equation on €2;_1:

Ly 1us—1 =11, 21

by relaxing Eq. (21) v times to obtain %;—1, and update the
residual error on €2;_; by:

i1 =Tp—1 — L1 —1Up—1.

Repeat Step 2 until the V-cycle reaches the coarsest grid €2
t=1).

Step 3. Solution on coarsest grid €. On coarsest grid
Qp, the system contains only a small number of unknown
variables, making it straightforward to compute an accurate
solution ug by the following equations:

L1,0u0 =To-

Step 4. Extension and correction. Following from the
above process, we obtain different levels of approximation
Up, Up—1, ---, U1, Ug ON different grids.

Start with 7,1 on Q;_1 (49 =
interpolate ;1 onto ) by:

1o on £)g), we can

iy = K{_ i1, (22)

where Ktt_1 is interpolation operator from 2,1 to ;. Then
the approximation on §); is updated by 4; = Uy + Us.

Similar to Step 1, we use u; as initial value to relax Eq.
(21) v times to obtain a more accurate u;, and Repeat Step 4
until it reaches to the finest grid {g.

At last, taking ¢ as initial guess to relax Eq. (19) to obtain
the approximation of V-cycle. The computation process of the
V-cycle is listed on Fig 4.
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Fig. 4: V-cycle of Liunts = hT'. This algorithm transfers er-
ror correction information across multigrid hierarchy through
restriction (the blue arrow), coarse-grid solver Liug = 7o,
and interpolation (the red arrow), enabling efficient solutions
to linear systems Liu™tz = h7, where Q:(i=0,1,---,Q)
denotes different levels of the regions (the larger ¢, the finer
region) for solving the linear equations.

To validate the accuracy of RDG (10), we collect some
deformations ¢,.q; (see the first column of Fig 5) and use
Eq. (4) to compute the Beltrami coefficient of p(¢rcar) (see
the second column of Fig 5). By using the above multi-
grid method to solve the inverse problem (10), we obtain the
predicted deformation @preqic: (see the third column of Fig
5). From Fig 5, one can notice that the RDG has the ability
to recovery the deformation by setting specific complex vector
field i : 2 — C. This provides theoretical support for the latter
application of RDG in few-shot learning network in subsection
C.

C. Label generation for the few-shot learning network

To make the diffeomorphic labels generated by RDG com-
patible with the applications in practice, we collect several
diffeomorphism ¢, from the real data and compute the
corresponding ji(@yeq;). For each fi(@,cq1), set a global small
perturbation 1 and local large perturbation po, then a series
of complex field i : 2 — C is obtained by

A= [+ pr+ po. (23)

Remark 3: The random fields i, po are sampled in the
following way (Fig 6):
(i). Setting pq = p1 + @71, where p; :  — [—0.5,0.5] and
71 : Q — [—0.5,0.5] are generated by two random matrices
whose elements are restricted into the interval [—0.5,0.5],
respectively, then we use Gaussian filter to convolute p; and
71 to achieve a smooth version of the field p; and 71;
(ii). Setting po = po + 79, then po : Q@ > Rand 75 : Q@ - R
are generated by restricting p, and 75 into a 2D Gaussian filter
distribution with randomly generated expectation and variance.

By rescaling fi to ensure that ||fi]c < 1, and setting [
as input of the RDG framework (10), we obtain a series of
diffeomorphism ¢? (j =1,2,---).

Using the diffeomorphism ¢ (j = 1,2,---) provided by
RDG framework, we wrap each image 7; (i = 1,2,---)
from the dataset to create labeled tuples (7}, R; ;, 7) (where

(W) ‘F‘(‘Preal ) ‘

(@) @real () Ppredcit

Fig. 5: The first column is some real deformations ,.cqi;
The second column is the |p(@reqr)| ; The third column is
deformations predcir through solving the inverse problem
(10) by replacing i = p + i7 in Eq. (10) with p(@reqr) =
Preal + 1Treqi- Taking the first row as an example, the first
image is the mesh of a diffeomorphism ¢,.,; coming from
real data. By Eq. (4), we can compute the complex vector field
1(@rear). The second image shows the modulus |u(@rear)l-
The third image is the mesh of the deformation @, cqcit
via solving the RDG (10) by replacing i = p + 47 with
N(‘-Preal) = Preal + 1Treal-

R;; = Ti(g?)) . Fig 7 shows the complete flowchart for
generating these diffeomorphic labels for the few-shot learning
network.

D. Supervised few-shot learning framework for
diffeomorphic image registration

In this paper, we mainly focus on establishing a few-shot
learning framework. Therefore, a simple structure is designed
in our network. In fact, for the specific applications, special
structures of the network can also be embedded into the
proposed framework (for example, the Decoder-only image
registration network [23]). The structure of the proposed few-
shot learning framework is listed on Fig 8.

The loss function of the framework contains the following
three parts:

Sum of squared difference (SSD): This paper mainly dis-
cusses the mono-modality image registration which indicates
that 7" and R are captured by the same sensors (i.e., CT-CT,
MRI-MRI). For mono-modality image registration, the most
robust similarity is the sum of squared intensity difference
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(d) 7

(©) 7

Fig. 6: Example of randomly generated vector fields
P1,T1,P2,T2. P1: Q— [705,05] and T1 : Q— [705,05]
are generated by two random matrices whose elements are
restricted into the interval [—0.5,0.5], respectively. ps : Q —
R and 5 : 2 — R are generated by restricting po and 7
into a 2D Gaussian filter distribution with randomly generated
expectation and variance.

between image T o ¢ and R defined by

SSD(T, R, ) = /(R — T o p)%dx,
Q

where here and in what follows, ¢ denotes the predicted
deformation produced by the network. By minimizing the
SSD(T, R, ), it drives the network to learn the right param-
eters to ensure that 7" o o looks like R as much as possible.

Ground truth difference (GTD): To guarantee that the
deformation ¢ produced by the network to get close to the
real labels .., we add a loss function to evaluate the sum of
squared difference between these two deformations, which is
defined by

GTD(¢p, ) =/|sor — p[?dx.
Q

To ensure the diffeomorphism, some smoothness constraints
should be added to the network. For this purpose, the regular-
ization of the loss function is set by:

S@) = [ |awl ax
Q

Combing these three parts, the total loss function is formu-
lated as follows:

Lioss(p) = MSSD(T, R, p) + X2GTD(pr, ) + A35(¢).

One can notice that the loss function £, () includes three
different hyper-parameters in the following experiment. The
flowchart of the few-shot learning is referred to Fig 2.

\
RDG(10)>

{5

N

A B E

R, =T(¢")

Fig. 7: The generation of diffeomorphic labels via RDG (10).
First, we use the randomly number generator to generate the
real component p and imaginary component 7 (Three sets of p
and 7 are shown on the 2-3th column). Secondly, set i = p+iT
as input of the RDG (10) and generate the diffeomorphism 7.
Thirdly, we use the input image 7; to produce R;; = T;(4?).

T(q’pre)

a

—> Forward

Fig. 8: The network processes input (7}, R;;) with labels ¢?
to predict . The loss combines: (1) SSD(T, R, ¢) for image
alignment, (2) GT D(¢., o) for label matching, and (3) S(¢)
for smoothness. Solid/dashed arrows denote forward/backward
passes respectively.

Remark 4: The registration network’s robustness could be
further improved by: (i) Incorporating global anatomical guid-
ance (e.g., organ segmentation [30]); (ii)) Using randomly
generated diffeomorphic labels for local deformation control.
This hybrid approach could leverage both prior knowledge and
learned deformation constraints.

[V. NUMERICAL EXPERIMENTS

In this section, several numerical experiments are performed
to show the efficiency of the proposed network. The experi-
ment contains five parts: In Section A and B, the datasets, im-
plementation setup and evaluation metrics for comparison are
introduced. In Section C, the comparison between supervised
RDG-Unet, unsupervised RDG-Unet and Affine Generator-
Uet are performed to show the advantage of the proposed
supervised RDG-Unet. In Secttion D, numerical comparison
between the proposed supervised RDG-Unet and other State-
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of-the-Arts algorithms are performed to demonstrate the su-
periority of the proposed algorithms. Lastly, in Section E, we
conducted few-shot learning experiment to further evaluate its
performance under limited data set conditions.

A. Datasets and implementation setup

1) OASIS MRI dataset [32]: OASIS is a 3D MRI dataset,
including 3D MR scans from 416 patients aged 18 to 96.
For each subject, 3 or 4 individual T1-weighted MRI scans
obtained in single scan sessions are included. In our numerical
experiments, we evaluate the framework using test image pairs
(T, R) collected from cross-patient data. Specifically: all test
pairs consist of slices from different patients, and this inter-
patient configuration helps evaluate generalization capability.

2) ACDC cardiac MRI dataset [33]: The ACDC is a 3D
fully annotated cardiac MRI dataset containing scans from 150
patients. It includes both diastole and systole images, covering
a series of left ventricle slices from the base to the apex.
Each slice has labels for the myocardium and both ventricles.
Fifty-four selected pairs of slices were normalized and resized
to 128 x 128 resolution. Since both the training dataset and
ACDC dataset consist of MRI scans, evaluating on this dataset
demonstrates the generalization performance of the proposed
method on datasets with similar structures. This dataset serves
specifically for generalization testing.

3) CAMUS ultrasonic cardiogram dataset [34]: CAMUS is
a 2D fully annotated ultrasonic cardiogram dataset, consists
of apical four-chamber and two-chamber images from 500
patients. For each type of image, diastole and systole images
with corresponding labels of the left ventricle endocardium,
myocardium, and left atrium are included. We select 100
images pairs from two-chamber images as test data. To match
the image size with the network input, all these images are
normalized and resized to 128 x128. In common sense, the
registration of ultrasonic images is more difficult due to the
low quality and resolution. Moreover, ultrasonic images have
huge difference in structure and modality compared to the
training dataset, MRI. Thus, it is a great challenge for the
generalization and robustness of the proposed registration
model.

4) Implementation details: The proposed network is imple-
mented in Python with PyTorch backend on a Intel(R) Xeon(R)
Platinum 8255C CPU, 40GB memory and a NVIDIA RTX
3080 GPU(10GB). The training batch size is set to be 32, and
the learning rate is set to be 0.01 with an Adam optimizer.
The three weights in the loss function, A1, A2, A3, were set to
1, 0.002, 1000 empirically.

Remark 5: As stated in the above description in this sub-
section, the images are down-sampled/up-sampled to the size
128 x128, which makes a uniform mode for the computation of
RDG (10). In fact, for the image with any size, one could also
keep the size of the image unchanged and down-sampled/up-
sampled the deformation ¢/ (Note that ¢ € C1(Q2)) to the
same size of the image and produce the labels (T}, R; j, p7)
(where R; ;j = T;(¢?1)) for the registration network.

B. Evaluation metrics

To show the efficiency of the proposed framework, we select
the following three metrics for evaluation:
o Relative Sum of Squared Differences (Re-SSD): A
metric to evaluate the difference between the registered
image 7T o ¢ and target image R, defined by

SSD(T o ¢, R)
-SSD(T = —GorTT o
Re-SSDT- R 0) ==gspir )
where SSD(T, R) = 3, ;(T;; — Rij)*

« Dice coefficient (DC): A metric to evaluate local align-
ment accuracy (i.e., specific tissues or lesion regions,
which are so called regions of interest (ROIs) ), defined
by

. 2|AN B|
Dice(A,B) = ———,
|A] + | B
where | - | denotes the area of the specific set, and A =

Top, B=R.
e« MFN: A metric to evaluate the physcial mesh folding of
the algorithm, defined by

MFN(¢p) =#(det(Vp(x))),

where det(Vp(x)) = (1 + ggi )(1+ g%;) — ggi g% and

#A denotes the numbers of non-positive elements in A.

Remark 6: Concerning the above metrics, we have the
following remarks:
(i). Re-SSD evaluates the difference between T o ¢p and target
image R. The smaller Re-SSD, the better quality of the the
registered results;
(ii). Dice evaluates the overlap of the specific area. Sometimes,
doctors are more concerned with local alignment accuracy,
such as specific tissues or lesion regions, so we use the Dice
coefficient to evaluate our results when testing generalization
performance with real data.
(iii). MFN evaluates the number of points in transformation
field whose Jacobian determinant is less than O (physical mesh
folding occurs). MFN=0 implies there is no mesh folding.
In this view, the smaller MFN, the better quality of the
transformation .

C. Validation experiments

The proposed framework introduces diversity of the training
data via RDG and generates diffeomorphic labels (ground
truth) for the supervised network. To show the efficiency
of the proposed network on controlling the physical mesh
folding phenomenon, we compare the proposed RDG-UNet
(supervisied) with RDG-UNet (unsupervisied) and AGUNet.
Before the comparison, the three networks are trained by the
following way:

RDG-UNet (supervised): Train the U-Net architecture by
image pairs and corresponding transformations generated from
RDG (10).

RDG-UNet (unsupervised): Train the U-Net architecture only
by image pairs generated by RDG (10) without any labels on
deformation ¢.

Authorized licensed use limited to: University of Liverpool. Downloaded on August 04,2025 at 09:17:11 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOl 10.1109/TMI.2025.3585199

AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS ON MEDICAL IMAGING 9

TABLE [: Performance comparison of seven registration networks on OASIS MRI dataset [32], evaluated by Re-SSD and MFN
metrics (mean+std) under different training sample sizes (5/10/80/150). Set-up : we have M (M = 5,10, 80, 150) raw training
images T, N pairs of testing image (7', R), and W pairs of training labels (7', R, ¢), where ¢ are generated transforms; and

use these IV pairs to test to compare Re-SSD and MFN.

Method Metric 5 data 10 data 80 data 150 data
VM [11] Re-SSD 0.1699 4+ 0.0207 0.1546 4+ 0.0290 0.1318 +0.0198 0.1042 4+ 0.0165
MFN 542.52 4+ 184.35 657.14 4+ 214.47 464.7 + 152.27 411.16 4+ 148.46
CTF [13] Re-SSD 0.1342 4+ 0.0278 0.1307 £ 0.0239 0.0768 £+ 0.0144 0.0755 + 0.0137
MFN 206.72 4 83.08 227.12 +£106.10 132.04 £+ 85.71 122.12 £+ 95.99
Re-SSD 0.1875 4+ 0.0372 0.1676 4 0.0463 0.1451 4+ 0.0357 0.1358 4-0.0448
QCRegNet [12]
MFN 12.28 + 20.48 11.96 £ 29.41 2.98 + 8.02 0.16 + 0.99
Re-SSD 0.3253 £+ 0.0622 0.2744 4+ 0.0547 0.2315 £ 0.0493 0.2075 4+ 0.0347
MetaRegNet [37]
MFN 7.56 £ 10.11 7.34 £ 10.26 4.72 + 6.26 2.92+£5.75
Re-SSD 0.1867 £ 0.0455 0.1254 4+ 0.0244 0.1119 £ 0.0194 0.1046 4+ 0.0157
AGUNet [28]
MFN 84.1 +61.01 92.98 + 66.13 92.60 4+ 60.87 102.24 + 59.77
. Re-SSD 0.1354 £+ 0.0611 0.0825 £+ 0.0146 0.07925 £+ 0.0161 0.0638 4 0.0152
RDG-UNet (unsupervised)
MFN 55.76 4+ 56.33 23.62 + 37.55 5.2+ 14.22 7.0 £ 10.29
. Re-SSD 0.1053 +0.0512 0.0656 +£0.0126 0.0476 + 0.0146 0.0400 + 0.0085
RDG-UNet (supervised)
MFN 1.50+5.64 0.20£+0.10 0.16 £0.70 0.68 £1.90

AGUNet: Train the U-Net architecture only by image pairs
generated from Affine Generator [28], [35].

For the training data generation in numerical tests, we
use the following strategy: (1) Collecting real deformations
(limited-data). To make the generated labels more close to
reality, we collect a few diffeomorphic deformations @;(j =
1,2,---, N) (limited-data) between real medical image pairs,
and compute the corresponding Beltrami coefficients fi;(i =
1,2,---,N) via Eq. (4). (2) Global and local perturbation
generation. Using the strategy in Remark 3 to generate a series
of global perturbations ] (j =1,2,---, M) and local pertur-
bations u5(k = 1,2,---, P). This leads to the generation of
randomly generated complex fields fi = fi; + p) + pk. (3)
Generating the diffeomorphism via RDG (10). Rescaling
ii such that ||fi]lc < 1 and generating the diffeomorphism
@’ via Eq. (10). 150 selected images T are used for training
and 50 selected images are used for testing for validation and
comparison. The image pair for training the network is set by
(T3, Rij, ¢l), where R;; = T;(o7). In numerical test, 4414
image labels (T}, R;;, ¢?) are used for network training. Note
that the original labels come from the real image pairs between
different patients, and then are randomly perturbed to generate
a large amount of labels via RDG (10).

Remark 7: There are two comments on the generation of
diffeomorphism:
(1). To ensure the anatomical plausibility of the randomly
generated diffeomorphism, we set two positive numbers 0 <
K7 <1 < Ky and drop out the generated diffeomorphisms ¢
which satisfy 21618 det(Ve(x)) < Ky or max det(Vep(x)) >
K, (avoid excessive shrinkage or expansion); (2). To elimi-
nate the effect of some generated diffeomorphims which are

not representative of real applicative scenarios in network
training, the real data labels are also added in the training
set.

After training the above three networks by using four
different levels of train data (5, 10, 80, 150) selected in OASIS
MRI dataset [32], we select the other 50 images (not included
in training set) as test images to compare the accuracy (Re-
SSD and MFN) of these network. The quantitative comparison
are listed on last six columns of Table I.

Following from the comparison between RDG-UNet (unsu-
pervised) and RDG-UNet (supervised), one can notice that the
RDG-UNet (supervised) achieves better registration accuracy
on Re-SSD (with value of 0.0400£0.0085) and nearly O value
of MFN at all levels of training data set. The superiority for
controlling the mesh folding is especially obvious when the
amount of training data is small. This shows the advantage
of supervised RDG-UNet, and it is also the main motivation
for us to propose the RDG for supervised few-shot learning.
Besides, in some view, this comparison can also be viewed as
an ablation experiment which shows the necessity to introduce
the RDG to generate diffeomorphic labels for supervised
learning network.

In another view, the comparison between AGUNet and
RDG-UNet (supervised) shows that the finite dimensional
space (the solution of AGUNet [28], [35] is determined by
six parameters) is not enough to simulate the deformable
deformations. This is another motivation for us to introduce
RDG to generate infinite dimensional diffeomorphisms.

In addition, to show the proposed model’s ability to consis-
tently perform over multiple slices, we select the 3D images
of three patients in OASIS dataset [32] and use the proposed

Authorized licensed use limited to: University of Liverpool. Downloaded on August 04,2025 at 09:17:11 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Medical Imaging. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOl 10.1109/TMI.2025.3585199

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

;

(a) T (registered im- (b) R (target image) (c) Ours: The registration result and
age) the  physical mesh. Dice=0.9321,
0.8734,0.9357

(f) VM [11]: The registration result (g) CTF [13]: The registration result
and the physical mesh. Dice=0.9293, and the physical mesh. Dice=0.9292,

0.8684,0.9273 0.8288,0.8652

Fig. 9: Few-shot tests based on 5 original data. The registration

EEE
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(d) Ours (unsupervised): The regis- (¢) AGUNet [28]: The registration re-

tration result and the physical mesh. sult and the physical mesh. Dice=0.9374,
0.8819,0.9234

Dice=0.9426, 0.8697,0.9151

(h) QCRegNet [12]: The registration re-

(i) MetaReg [37]: The registration re-
sult and the physical mesh. Dice=0.9321, sult and the physical mesh. Dice=0.9284,

0.8821,0.9060 0.7949,0.8573

result of our method and other state-of-art which are all trained

on 5 original data. (a) and (b) are 7" and R of three different image pairs. (c)-(h) are the registration results of 7 different
networks. The places where the mesh of deformation intersects represent mesh folding.

T R T(¢)

Fig. 10: Registration result of the proposed few-shot learning
network between 2D slices from the 3D data of one patient,
where T and R are floating image and target image, T'(¢p) is
the registration result and ¢ is the output deformation of the
proposed network.

network to perform registration between the 2D slices pairs, it
shows a satisfactory performance for the proposed network
with Re-SSD=0.2369 £ 0.0266, MFN=10.20 £+ 7.33 (One

registration result is listed on Fig 10).

Based on the above comparison, we conclude that the
proposed framework, which brings more various and stronger
physical information to the network, can greatly enhance the
capability of the network. This provides evidence to show the
efficiency of the proposed few-shot learning framework for
supervised diffeomorphic image registration.

D. Comparison with State-of-Arts registration algorithms

Followed the comparison in Subsection C, in this subsec-
tion, we compare the proposed few-shot learning network with
other State-of-Arts registration algorithms including:

SyN: a classical traditional method, using the SyNOnly setting
in ANTS [36].
VoxelMorph (VM)
work [11].

CTF: a coarse to fine unpervised registration network com-

: a popular single-stage registration net-
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posed of a affine transformation and deformable transforma-
tion [13].

QCRegNet (QC): a diffemorphic registration network based
on quasi-conformal theory [12].

MetaRegNet (MR): a deep metamorphic image registration
network [37], who has the ability to address few-shot learning
for image registration.

The quantitative comparison results are shown on Table I
and Table IT (Comparison on OASIS MRI dataset [32] is listed
on Table I, and real data comparison on ACDC cardiac MRI
dataset [33], CAMUS ultrasonic cardiogram dataset [34] are
listed on Table II), and some slice comparison results of the
test image are also listed on Fig 9.

As it is shown on Table I and Table II, the proposed
framework achieves best performance on Re-SSD and MFN.
It is worth to notice that even if the results of QCRegNet [12]
on Re-SSD falls short of expectations, the performance on
MFN is comparable to our model. This is because of the fact
that QCRegNet [12] also introduces a mechanism to learn dif-
feomorphism, though it may rely on large data set for training
the network. Concerning the other two networks, there is still
a big gap for VM and CTF in avoiding physical mesh folding
(MFN is much bigger than the proposed network). In addition,
from Fig 9, one can notice that the deformation produced
by the proposed framework is of high smoothness while the
deformation in QCRegNet [12] is lack of smoothness. This
is because of the fact that the proposed framework minimizes
AF (¢)+aG(p) and the solution is regularized by G(¢), while
the network in QCRegNet [12] only minimizes the fitting term
F(¢) without any regularization. This is the main motivation
to add the Cauchy-Riemann constraint G(¢) in RDG model
(10).

E. Few-shot learning test and generalization test

In this subsection, we reduce the number of image in
training data sets to simulate few-shot learning scenarios where
the training data is not enough. For this purpose, we conducted
numerical tests by limiting the training dataset size to 5,10, 80
and 150 samples, respectively. After training the corresponding
networks, different test image pairs are set as input of these
networks to get the Re-SSD and MFN. The comparison results
for different levels of training data are listed on Table I and
Fig 12. From Table I and Fig 12, one can notice that the
proposed framework has the ability to achieve a very accurate
nearly without mesh folding under conditions of limited data
availability. This shows the good performance of the proposed
few-shot learning framework. For the dataset with 5 original
images, we manually delineated the labels of the central cavity
of the brain and calculated the corresponding Dice metrics
after registration (see Fig 9). This shows that the proposed
framework also has good performance on the aspect on Dice
metric.

Remark 8: We also tested the registration efficiency in
the extreme case (with only one original image), and the
experimental results on the same test set reached Re-SSD=
0.1574 +0.0391, MFN= 5.22 + 0.90. An example is listed in
Fig 11.

T R

() P

Fig. 11: One registration result of the test set for the proposed
few-shot learning network with only one original image in
training set, where 7' and R are floating image and target
image, T(¢p) is the registration result and ¢ is the output
deformation of the proposed network
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Fig. 12: Boxplot (Re-SSD) of 5 different registration algo-
rithms on different levels (5,10, 80, 150) of original training
sets, where the vertical ordinate denotes the Re-SSD of
registration of 5 different algorithms on different levels. Note
that here the average self structural similarity (SSIM) of the
training set of for 5-original image is 0.65, and the SSIM
between 5-original training set and 150-original training set is
0.52.

In addition, to show the robustness of the proposed frame-
work, we perform the generalization tests on ACDC cardiac
MRI dataset [33] and CAMUS ultrasonic cardiogram dataset
[34]. In this two datasets, segmented labels of ROIs are
provided for each image. To assess the performance, we use
the proposed few-shot learning network to register each image
pair. Another five deep learning networks are also performed
on these two datasets. Based on the registration results of these
six networks, the Dice between the labels of each registered
image pair (T o ¢, R) is reported. After training six different
networks with 150 samples, we use the 2D slices in ACDC
cardiac MRI dataset [33] and CAMUS ultrasonic cardiogram
dataset [34] to test the performance of these six networks. The
comparisons are listed on Table II and Fig 13-14. From the
comparison, we conclude that the proposed few-shot learning
framework for supervised diffeomorphic image registration
network has the ability to achieve accurate registration with
a few training data, and has the ability to adapt to different
kinds of dataset.

V. SENSITIVITY TEST FOR HYPER-PARAMETERS

In previous section, we empirically set the loss function
parameters (A1, A2, A3) to be (1,0.002,1000). This section
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age)
Fig. 13: Generalization tests on ACDC dataset [33]: The first column presents two different registered images 7'; The second
column presents two different target images R; The 3rd-8th column presents the registration results 7" o ¢ of the proposed
network, VM [11], SyN [36], CTF [13], QC [12] and MR [37] (The second row and fourth row denote the label of ROI of

corresponding image, respectively).

(d) VM [11] (e) SyN [36] (f) CTF [13] (g) QC [12] (h) MR [37]

(a) T (registered im- (b) R (target image) (c) Ours
age)
Fig. 14: Generalization tests on CAMUS dataset [34]: The first column presents two different registered images 7'; The second
column presents two different target images R; The 3rd-8th column presents the registration results 7" o ¢ of the proposed
network, VM [11], SyN [36], CTF [13],QC [12] and MR [37] (The second row and fourth row denote the label of ROI of

corresponding image, respectively).
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TABLE II: Comparison between the proposed framework and
some State-of-Arts registration algorithms on ACDC cardiac
MRI dataset [33] (2D slices are selected from the 3D dataset)
and CAMUS ultrasonic cardiogram dataset [34] (2D dataset).
All methods use our new set: train on W pairs (or tuples
(T, R,¢)) and test on N pairs (W and N are referred to
Table I).

Dice
ACDC [33] CAMUS [34]
SyN [36] 0.6893 £+ 0.1703 0.6399 £+ 0.1011
VM [11] 0.7384 4+ 0.1654 0.7320 £ 0.0845
CTF [13] 0.7398 +0.1193 0.6672 4+ 0.0619
QC [12] 0.7971 +0.1442 0.6795 £ 0.1000
MR [37] 0.7485 £ 0.1650 0.7625 £+ 0.0794
Ours 0.7960 £ 0.1366 0.7877 + 0.0678

presents a systematic parameter sensitivity analysis where we
have fixed A\; and varying A2 (0 to 0.1 with increments of
0.01), varying A3 (0 to 2000 with increments of 200). For
each parameter configuration, we evaluate their impacts on
registration performance through Re-SSD and MFN metrics.
Fig 15 reveals three key observations: (i) increasing A3 leads to
a smaller MFN value and larger Re-SSD, indicating that S(¢)
effectively enhances deformation field smoothness. However,
excessive weight may lead to the deformation to be over-
smoothed, consequently impairing registration accuracy; (ii)
the introduction of the GT'D (when Ay > 0) substantially
reduces MFN without significantly affecting Re-SSD, demon-
strating that the RDG-generated labels can effectively suppress
mesh folding while maintaining registration precision; (iii) the
sensitivity test for hyper-parameters shows that our framework
maintains consistent robustness across parameter variations
and achieves effective few-shot learning performance.

To further validate the robustness of the proposed frame-
work, we conducted cross-validation experiments using a
dataset of 150 samples. The data was systematically parti-
tioned into different training and test sets through random
stratified sampling. After training the network with randomly
selected training set, we applied the proposed network to
perform registration on the test sets. The experimental results
demonstrated consistent performance across various data par-
titions, achieving a registration accuracy of Re-SSD = 0.0499
+0.0115, MEN = 0.12 £ 0.84 and Re-SSD = 0.0825 + 0.0184,
MFN = 0.86 + 3.38. This result is align with the quantitative
results shown in Table 9, further validating the robustness
and generalization capability of the proposed network under
different data division scenarios.

VI. CONCLUSION

Mesh folding elimination is important for many image reg-
istration applications in clinical medicine. Existing registration
methods are limited either by the lack of labels for supervised
learning or the lack of physical prior for unsupervised learning.
In this paper, we propose a novel few-shot learning registration
framework for supervised diffeomorphic image registration

30 -

~~__ /'//A 2000
005 _— 1500
. _— 1000
~— 500
Aa 00 A3

Fig. 15: Influence of the weights (A2 and A3) in the loss
function on the registration performance ( Re-SSD and MFN).

network. The proposed framework contains three parts: the
random diffeomorphism generator (RDG) which inverts the
real labels ¢, via the information provided by the randomly
generated complex vector fields, network training data gen-
erator which generates the labels for training the supervised
network, and supervised learning network for diffeomorphic
image registration.

The proposed framework is not limited to large amount
of dataset for training and has the ability to be trained well
under the condition that only a few images can be used for
training. This is very important for medical image registration
on some rare diseases in which case the collection of images
is challenging.

Though the proposed few-shot learning framework has
many advantages, limitations still exists on the following
three aspects: (1). The RDG and the registration network
are independent and the no end-to-end mode needs manual
intervention; (2). The quasiconformal theory works only on
2D space, which makes it difficult to extend to 3D registration
directly; (3). The original labels rely on the real data. To
address the above three challenges, in future research, we
main focus on the following three problems: (i). Extending the
framework to a model composed entirely of neural networks
which ensures an end-to-end mode for few-shot learning; (ii).
Extending the proposed 2D few-shot learning framework to
3D few-shot learning framework (The rough idea is referred
to Appendix for details. Though the principle seems to be
direct, there are still some difficulties for this extension. We
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will address these challenges in forthcoming work); (iii).
Replacing the U-Net structure in the proposed framework with
some more complex networks (for example, the Generative
Adversarial Networks (GAN)) to address the dependence on
the real data.

APPENDIX:3D EXTENSION OF THE PROPOSED
FEW-SHOT LEARNING FRAMEWORK

Assume (2 is a bounded domain on R? and ¢ : Q — Q
is a diffeomorphism, then for any point x € €, by polar
decomposition, we have

Ve(x) =U(x)P(x) = U(x),/ V(x) Vep(x)

=UW(x)3(x)W (x), (24)
where U(x) and W(x) are rotation matrices, 3(x) is the
diagonal matrix containing the singular values a, b and ¢ of
V(x). By convention, we require that a > b > ¢ > 0.

Note that here W (x) is a 3D rotation matrix, which is
denoted by

=Wy (X)W, (X)W, (%),
Tin T2 T3
To1 T22 T32 ) 25)
31 T32 733
1 0 0
where W, (x) = | 0 cosf, —sinf, |,
0 sinf, cosb,
cosf, 0 —sinf,
W, (x) = 0o 1 0 :
sinf, 0 cosf,
cosf, —sinf, O
We,(x) = sinf, cosf, 0 |, ri1 = cosf,cosby,
0 0 1

r12 = cos B, sin b, sinf, —sin 6, cosb,,
r13 = cos 0, sin 0, cos, — sin b, sind,, ro; = sind, cos b,
792 = sin 6, sin 0, sin 6, + cos 6, cos O,
r93 = sin 6, sin 6, cos 0, —cos 0, sin 6, 131 =
cos 0, sin 0, rs3 = cos 6, cos 0.

The angles 6, = arctan( r32/r33)
0, = arctan(—rs1/\/r3, + r33), 0, = arctan(ray /r11).

By Eq. (25), we obtain the 3D quasiconformal representa-
tion [38] for the mapping ¢ : Q@ — Q by

—sinfy, r3z =

vx € Q. (26)

M(X) = (a> ba c, 01& aya 02)

Based on this representation, the 2D model (6) is directly
extended to 3D model

¢ = argmin \F(¢) + aG(p) 27

where fi(x) is a given six dimensional vector field with the
first three components are positive, A\, « > 0, the fitting term

- / i~ p(o)|2dx,
Q

with p(e) is a 3D quasiconformal representation for the
mapping ¢ : 2 — ) determined by Eq. (26) and the 3D
conformal regularization [39]

Glp) = / VeV —

In Eq. (27), it is not explicit for the definition of u(y),
though it may be suitable for being set as a loss function
for some back propagation network. To make it explicit,
we further discuss the reconstruction of 3D quaisconformal
mapping ¢ : {2 — (2 by giving a six dimensional vector field
Aa(x) = (a,b,¢,05,0,,0,) with a,b,é > 0.

By Eq. (24), there holds,

(28)

2
%IHQCZX. (29)

2.0 0

a
VieVe=W | 0o » o |[WT. (30)
0

0 ¢

Right multiplying by (V) ™! on both side of Eq. (30), we
have

a2 0 0
1
T _ 2 T 1
Vie=W] 0 ¥ 0 |W Tt (Ve (ch)c’ (31)
0 0 ¢

where C' is the adjugate matrix of Vi with C' = (Vo X

V3, Vs x Vi, Ve x Va).

ke 00

Define A=W [ 0 2 0 W7T, Eq. (31) becomes
0 0 <2

AVTp =, (32)

Note that here A is determined by the giving the vector field
a(x) = (a, l;a G, éﬂca éya éz)

Based on Eq. (32), we proposed the other variational model
to generate 3D quaisconformal mapping:

@ = argmin \F () + aG(p), (33)

where [i(x) is a given six dimensional vector field with the
first three components are positive, A, « > 0, the fitting term

o) = / 1AVT o — C|2dx. (34)
Q
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