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Unsupervised Low-Dose CT Reconstruction With
One-Way Conditional Normalizing Flows

Ran An"”, Ke Chen

Abstract—Deep-learning techniques have demonstrated signifi-
cant potential in low-dose computed tomography (LDCT) recon-
struction. Nevertheless, supervised methods are limited by the
scarcity of labeled data in clinical scenarios, while CNN-based
unsupervised denoising methods often result in excessive smoothing
of reconstructed images. Although normalizing flows (NFs) based
methods have shown promise in generating detail-rich images and
avoiding over-smoothing, they face two key challenges: (1) Existing
two-way transformation strategies between noisy images and latent
variables, despite leveraging the regularization and generation
capabilities of NFs, can lead to detail loss and secondary artifacts;
and (2) Training NFs on high-resolution CT images is computa-
tionally intensive. While conditional normalizing flows (CNFs) can
mitigate computational costs by learning conditional probabilities,
current methods rely on labeled data for conditionalization, leav-
ing unsupervised CNF-based LDCT reconstruction an unresolved
challenge. To address these issues, we propose a novel unsuper-
vised LDCT iterative reconstruction algorithm based on CNFs.
Our approach implements a strict one-way transformation during
alternating optimization in the dual spaces, effectively preventing
detail loss and secondary artifacts. Additionally, we propose an
unsupervised conditionalization strategy, enabling efficient train-
ing of CNFs on high-resolution CT images and achieving fast,
high-quality unsupervised reconstruction. Experimental results
across multiple datasets demonstrate that the proposed method
outperforms several state-of-the-art unsupervised methods and
even rivals some supervised approaches.

Index Terms—Low-dose CT, iterative reconstruction, unsuper-
vised learning, conditional normalizing flows, generative models,
regularized reconstruction.

1. INTRODUCTION

OMPUTED tomography (CT) is a widely utilized medical
imaging technique for visualizing the internal structures
of objects. However, it is well known that excessive exposure to
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X-rays can pose significant health risks, including an increased
likelihood of cancer and genetic damage [1]. In response, people
have adopted the “as low as reasonably achievable” (ALARA)
principle [2] to guide the minimization of X-ray dosage in diag-
nostic procedures. However, low-dose scanning will inevitably
introduce noise into the projection data, thereby introducing
severe noise and artifacts in the reconstructed images [3]. There-
fore, LDCT reconstruction has always been a popular subject in
the medical imaging community.

For LDCT, various denoising strategies have been proposed,
including image post-processing techniques [4], [5], [6] and
projection data pre-processing methods [7], [8], [9]. While
these approaches are straightforward and convenient, they of-
ten neglect the consistency between the image and projection
data during the reconstruction procedure, usually leading to
blurring and secondary artifacts in the reconstructed images.
To address these limitations, some other traditional methods
have incorporated artificially designed priors, such as total
variation (TV) minimization [10], into iterative reconstruction
frameworks [11], [12], [13]. These methods achieve improved
consistency and reconstruction quality but are often hindered
by the need for extensive hyper-parameter tuning and a large
number of iterations. Furthermore, the accuracy and universality
of these artificial priors remain significant concerns that warrant
further investigation.

In contrast to traditional methods, learning-based methods
exhibit superior reconstruction performance, leveraging priors
derived from “Big Data.” Recently, deep learning (DL) tech-
niques have shown remarkable capabilities in modeling and
data fitting, leading to significant advancements in DL-based
LDCT reconstruction. For image post-processing, various neu-
ral network (NN) architectures, such as FBPConvNet [14],
RED-CNN [15], DIRE [16], and CTFormer [17], have achieved
promising results. However, these purely post-processing strate-
gies often overlook the consistency between image and pro-
jection data, easily resulting in over-smoothing and detail loss
in the reconstructed images. To address this limitation, some
dual-domain denoising networks have been proposed, which
jointly process projection data and images within a unified
framework. Notable examples include DRCNN [18], DDP-
Net [19], DuDoUFNet [20], and DRONE [21]. Additionally,
some methods unroll regularized iterative algorithms into NN
to adaptively train hyperparameters, achieving outstanding per-
formance. Representative approaches in this category include
LEARN [22] and PD-Net [23]. Despite their exceptional perfor-
mance, these methods rely on a supervised learning framework,
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necessitating large amounts of labeled data for training. This
requirement poses significant challenges in real-world CT due to
ethical considerations and the practical difficulties of obtaining
perfect consistent repeat scans.

To mitigate the reliance on labeled data, some unsupervised
strategies have been proposed for LDCT reconstruction. One
approach involves simulating paired data using generative adver-
sarial networks (GAN) [24]. Representative methods in this cat-
egory include GAN-CIRCLE [25], Cycle-Free CycleGAN [26],
AdalN-Based Tunable CycleGAN [27], and IdentityGAN [28].
However, these methods predominantly rely on cyclic consis-
tency loss, which often results in unstable training. Furthermore,
ensuring the authenticity and accuracy of the generated paired
dataremains a significant challenge. Alternatively, unsupervised
LDCT image denoising methods inspired by the Noise2Noise
(N2N) framework have been developed [29], [30], [31], [32].
Despite their potential, these methods still require pairs of noisy
images of the same scene, which are difficult to obtain in
practical applications. To address this limitation, self-supervised
methods that leverage the noisy image itself have been proposed,
such as Noise2Sim [33] and Noise2inverse [34]. Additionally,
dual-domain denoising strategies have been introduced to en-
sure consistency between projection data and images, includ-
ing ETSRP [35], SSDDNet [36], and SDBDNet [37]. These
self-supervised methods demonstrate performance comparable
to supervised approaches but often suffer from over-smoothing
and loss of detail due to their pursuit of averaging. To enhance the
sharpness and detail of reconstructed images, GAN have been
employed to post-process the outputs of denoising networks.
Notable examples include DD-UNET [38] and CLEAR [39].
However, this hybrid approach still faces challenges related
to GAN instability and accuracy, limiting its performance in
preserving structures and details.

Generative models, including normalizing flows (NFs) [40]
and diffusion models [41], have been increasingly utilized to
learn priors from clean images, serving as regularization terms
in iterative reconstruction frameworks. For instance, Wei et al.
introduced an alternating minimization algorithm featuring a
two-way transformation strategy—mapping between noisy im-
ages and latent variables via NFs—to address imaging inverse
problems [42]. Similarly, Fabian et al. proposed PatchNR [43],
which trains NFs on patches of normal-dose images and incor-
porates NFs as the regularization term in iterative reconstruction.
On the diffusion model front, He et al. developed EASEL [44]
based on the score-based diffusion model [45], while Liu et al.
and Xia et al. proposed Dn-Dp [46] and DPR-IR [47], respec-
tively, leveraging the denoising diffusion probabilistic model
(DDPM) [48] for iterative LDCT reconstruction. These methods
adopt an unsupervised strategy that requires only normal-dose
images for training, aligning well with practical applications.
However, these methods still carry some challenges. Training
NFs on high-resolutionimages (e.g., 512 x 512)is computation-
ally intensive, limiting their applicability. Although dimension-
reduction techniques [49] and conditional probability learn-
ing strategies [50] have been proposed to mitigate this issue,
dimensionality reduction often leads to information loss, and
existing conditionalization methods typically rely on labeled
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data, restricting their use in unsupervised LDCT reconstruction.
Additionally, the two-way transformation between noisy images
and latent variables in NFs can lead to distribution bias, resulting
in detail loss and secondary artifacts in reconstructed images.
Diffusion-model-based methods also face a well-recognized
limitation: their reconstruction process is often time-consuming,
requiring thousands of iterative sampling steps. While fast sam-
pling techniques such as DDIM [51] and DPM-solver [52] have
reduced the number of steps to as few as 50 or even 10-20, their
efficacy in LDCT reconstruction has not yet been thoroughly
validated. Consequently, achieving efficient and high-quality
unsupervised LDCT reconstruction with generative models still
poses challenges.

This paper introduces a novel iterative reconstruction algo-
rithm for LDCT by improving the current NFs-based methods.
Our approach achieves high-quality and efficient reconstruc-
tion through an unsupervised framework that relies solely on
normal-dose images for distribution learning. To fully exploit the
regularization and generation capabilities of NFs, we implement
a dual-space alternating iterative reconstruction in the data and
latent space. Unlike existing methods that employ two-way
transformation, our algorithm adopts strict one-way generation
transformation, effectively preventing the introduction of sec-
ondary artifacts. Furthermore, to enable efficient training of NFs
on high-resolution images for unsupervised LDCT reconstruc-
tion, we propose an innovative unsupervised conditionalization
method, facilitating the training of CNFs. This allows our net-
work to act on high-resolution images easily. By utilizing the
linearization technique and the ordered-subset simultaneous al-
gebraic reconstruction technique (OS-SART) [53] for incremen-
tal reconstruction, our method achieves computation-efficient
reconstruction. As an unsupervised framework, our approach
performs comparably to supervised methods and surpasses the
speed of some popular generative-model-based iterative re-
construction methods. Experiments on two datasets demon-
strate that our method effectively addresses the primary chal-
lenges associated with current NFs-based LDCT reconstruction.
Compared to state-of-the-art unsupervised and even supervised
LDCT reconstruction methods, our method shows promising
performance. The key contributions of our work are summarized
as follows:

® We propose a novel unsupervised iterative reconstruction

algorithm for LDCT based on NFs, which integrates reg-
ularization in both the data and latent spaces of the NFs
and utilizes a strict one-way transformation strategy. Our
method effectively mitigates the issues of detail loss and
secondary artifacts caused by the two-way transformation
of noisy images.

® We propose an unsupervised conditionalization strategy for

CNFs-based LDCT reconstruction without paired training
data. Leveraging this strategy, we efficiently train unsu-
pervised CNFs on high-resolution CT images and achieve
fast iterative reconstruction. To the best of our knowledge,
this is the first time CNFs have been incorporated into the
LDCT reconstruction procedure.

e Experiments conducted on different datasets demonstrate

that our method achieves relatively fast reconstruction
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speed and superior performance compared to several
state-of-the-art learning-based iterative reconstruction ap-
proaches.

II. RELATED WORK
A. NFs-Based LDCT Reconstruction

The forward projection process of LDCT can be modeled as
follows:

y=Azx+mn, (D

where y € R™ represents the vectorized low-dose projection
data, z € R™ denotes the vectorized ideal clean image, n € R™
corresponds to the low-dose noise introduced during scanning,
and A € R™*" is the known projection matrix.

Given the low-dose projection data y, the ideal reconstructed
image % can be obtained by maximizing the following logarith-
mic probability:

& = argmaxlog p(y|z) + log p(z). (2)

where p(y|z) is the posterior probability of y given x, and
p(z) denotes the prior probability of x. Assuming p(y|z) ~
N(Az,0}), (2) transforms into a minimization problem:

R 1
T e argmmFHy—Aa:H%—logp(x). 3
T gg

The prior probability p(x) plays a critical role in this minimiza-
tion problem, and accurately modeling it is essential. A promis-
ing approach is to learn p(z) from a large dataset of normal-dose
images using generative models such as NFs [40]. In general,
NFs learn a differentiable bijective mapping Fyp = G, !, param-
eterized by 6, between the data distribution p(x) and a simple
distribution p(z), such as the standard Gaussian distribution
p(z) ~ N(0,1). Using a trained NFs Fjy, each image sample
x corresponds to a unique latent variable z, and the two can be
bidirectionally mapped through the invertible network:

z = Fy(x),
4
{z = Gy(2). )
The prior probability p(x) can then be expressed as:
log p(x) = log p(z) + log |[det(DFy(x))|, (5)

where DFy(x) denotes the Jacobian of F, with respect to x,
and its determinant det(DJFy(z)) accounts for the change in
density due to the transformation Fy. It is worth noting that the
second term on the right side of (5) is a constant and p(z) ~
N(0,1). Substituting (5) and z = Gy(z) into (3), we obtain a
new minimization problem with respect to z:

2 € argmin ly — AGy(2)[l3 + 4]2]3- (6)
z

where A is a parameter that controls the regularization strength.

To address the optimization problem in (6), several methods
have been proposed. In [54] and [55], the authors suggest op-
timizing z directly in the latent space using gradient descent.
While this approach leverages the generative capabilities of
NFs and produces detail-rich images, it lacks constraints in

-

Normal-dose Low-dose Two-way NFs

Fig. 1. Reconstructed images using the two-way transformation of NFs.
Compared to the normal-dose images, structure distortion and noise residuals
can be easily observed.

the z-space and often converges to local optima, resulting in
suboptimal reconstruction accuracy. In [43] and [49], the authors
propose optimizing in the z-space by setting Gy(z) =  and
z = Fy(z) in (6) and updating x via gradient descent. This strat-
egy improves reconstruction accuracy but fails to fully utilize
the generative capabilities of NFs, often leading to excessive
smoothing. To better utilize the regularization and generation
capabilities of NFs, Wei et al. [42] introduced an alternating opti-
mization strategy. They alternately update x and z in the data and
latent spaces, performing domain transfer through the two-way
transformation of NFs (i.e., z = Gy(z) and z = Fy(z)). This
method achieves effective dual-space alternating optimization
and demonstrates promising results on natural image tasks.
However, it exhibits limitations in LDCT reconstruction, where
high accuracy in the reconstructed image is critical. Firstly,
it does not constrain the consistency between x and z across
adjacent iterations, which can negatively impact data fidelity
and reconstruction accuracy.

More importantly, the two-way transformation maps noisy
images, rather than normal-dose images that follow the distribu-
tion of training samples, into the latent space using z = Fy(x).
Such a mapping can cause a significant shift of the latent
variable, adversely affecting subsequent iterations. In LDCT
reconstruction, this issue would easily lead to detail loss and
secondary artifacts, particularly under high noise levels. As
shown in Fig. 1, compared to the normal-dose images, the
reconstructed images using the two-way transformation exhibit
severe artifacts and structural distortions. In [42], the authors
propose to use the unfolding strategy to improve reconstruction
performance. However, this brings the requirement for paired
training data, which is challenging to obtain in clinical LDCT
scenarios.

B. Conditional Normalizing Flows

Although NFs exhibit good mathematical properties, enabling
efficient sampling and straightforward likelihood evaluation,

Authorized licensed use limited to: University of Liverpool. Downloaded on August 05,2025 at 21:54:26 UTC from IEEE Xplore. Restrictions apply.



488

their complex network architectures with a large number of
parameters make them computationally intensive. For gener-
ating low-resolution images such as those with a resolution of
64 x 64, NFs are more than capable. However, when applied
to a high-resolution such as 512 x 512, the memory require-
ments and training time will be huge and unacceptable. For
instance, training a Glow model [56] (a classic NFs model)
on 5-bit 256 x 256 images can take approximately one week
using 40 GPUs [49]. To address this challenge, several strategies
have been proposed. Kothari et al. [49] introduced injective
flows, termed Trumpets, which reduce the dimensionality of
high-resolution images to a smaller scale, enabling the train-
ing of small-scale NFs. While this approach significantly re-
duces the computational costs and facilitates training NFs on
high-resolution images, the dimensionality reduction will in-
evitably lead to information loss, resulting in detail loss in the
generated images. Alternatively, conditional normalizing flows
(CNFs) [57] have been proposed to address this issue by incorpo-
rating the already-known information as conditions. CNFs learn
conditional probabilities rather than the full probability distri-
bution. By introducing conditions into the training phase, CNFs
can simplify the training process for high-resolution images. Ad-
ditionally, by incorporating conditions during inference, CNFs
can provide information for image generation, making it more
efficient and adaptable to specific applications. Similar to (4),
the bidirectional mapping of CNFs with a condition ¢ can be
expressed as:
z2=Fy ('I ) C)?
{x = Gy(z,0). )

Although CNFs enable training on high-resolution images
and enhance generation efficiency, their application in unsu-
pervised LDCT reconstruction remains challenging. Current
CNFs-based LDCT reconstruction methods often depend on
paired data for conditionalization [50], [58], which is difficult
to implement in an unsupervised framework. Additionally, these
methods typically use the low-dose image itself as the condition,
potentially introducing noise and artifacts into the inference
process, thereby compromising reconstruction quality. While
Wolf et al. [59] proposed a down-sampling conditionalization
strategy for unpaired image denoising, this approach struggles
to perform well when low-dose noise and artifacts are severe.
Furthermore, existing methods primarily employ CNFs for pure
image generation rather than integrating them into a reconstruc-
tion procedure [50], [58], [60]. This limitation often results in
inconsistency between the projection data and the reconstructed
image, leading to inaccuracy of the image structures.

III. METHODS

Based on CNFs, we propose an end-to-end unsupervised
iterative reconstruction algorithm for LDCT. Our method in-
tegrates three core components: the unsupervised condition-
alization strategy, the one-way iterative LDCT reconstruction
algorithm, and the CNFs network architecture. In this section,
we provide a detailed description of each of these components.
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A. Unsupervised Conditionalization Strategy

In the unsupervised training phase of CNFs, only normal-dose
images are available. Consequently, the conditions must be
derived from the normal-dose images themselves to maintain
an unsupervised framework. On the other hand, during the
inference stage, the only accessible information is the low-dose
projection data, which implies that the condition must originate
from the low-dose data. To ensure consistency between the
training and inference phases, the conditions in both stages
should follow the same distribution. Therefore, we propose the
following two key criteria that the conditions should satisfy:

® The conditions should contain the majority of the structural

and feature information in the ideal clean image, while
avoiding the inclusion of redundant information such as
excessive noise and artifacts.

® The two conditions corresponding to the normal-dose and

low-dose data of the same object should exhibit a high
degree of similarity and, ideally, be identical.

Based on the two key criteria outlined above, we propose a
novel conditionalization method for CNFs-based unsupervised
LDCT reconstruction. Specifically, for the low-dose projection
data y, to get the intuitive image information, we first reconstruct
it into an image x using a reconstruction operator R:

x=R(y). (€]

Next, we remove the majority of noise and artifacts from the
image using a plug-and-play denoiser D (e.g. BM3D [61],
NLM [62] or DnCNN [63]) and a high-frequency-filter wavelet
reconstruction operator WW:

d =W(D(z)). )

To enhance the robustness of the condition, we add a low-level
Gaussian noise n ~ N(0,0?) to ¢

c=c +n, (10)

where o is the standard deviation of the added noise. The entire
process C for generating the condition ¢ from the projected data
y can be expressed as:

¢ = C(y) = W(D(R(y))) + . an

During the training stage, we replace R (y) in the above equation
with the normal-dose image = and apply the same WV and D to
derive the conditions for the normal-dose images. It is important
to note that although the denoiser is applied to the normal-dose
image, it does not significantly compromise the image structures
or details. Instead, it produces a condition that is consistent with
the low-dose image, ensuring consistency between the training
and inference phases.

Using our proposed conditionalization method, we can gen-
erate conditions for both normal-dose and low-dose data for
unsupervised LDCT reconstruction. To assess the quality of the
obtained conditions and fine-tune parameters—such as the noise
level in BM3D or NLM—we require a pair of normal-dose
and low-dose data. The evaluation criteria are based on the
SSIM [64] between the paired conditions and the SSIM between
these conditions and the clean normal-dose image. Higher SSIM
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Fig. 2. Condition examples generated with the BM3D denoiser.
values generally indicate conditions with better quality. As an
illustration, Fig. 2 showcases examples of conditions generated
using the BM3D denoiser.

B. One-Way CNFs LDCT Reconstruction Algorithm

To address the limitations of current dual-space alternating
optimization methods, we propose a novel iterative reconstruc-
tion algorithm with two key improvements: (1) To maintain
consistency between x and z across iterations, we introduce
constraint terms and update = and z separately; (2) Instead of
the two-way transformation strategy, we adopt a strict one-way
transformation between the image = and the latent variable z
during alternating optimization, thereby effectively preventing
secondary artifacts. Specifically, using the trained CNFs Gy,
we reformulated the problem in (6) into the following double-
variable minimization problem with a constraint term:

(&,2) = argmin |y — Az|; + 223 + o |z — Go(=, ¢)ll3

(12)
where A and o are model parameters that control the regulariza-
tion strength and the proximity between x and Gy(z, ¢), respec-
tively. Using the coordinate descent algorithms [65], this prob-
lem can be decomposed into the following two sub-problems:

" = argmin |y — Azl 4 o ||z — Go (2", )|
v
+rflz =23, (13)
and
2 = argmin Allz]3 + o o™ = Go(z, o)
:
+ralz— 23, (14

where r; and ro are manual algorithm parameters that reg-
ulate the proximity of z and z between adjacent iterations.
Notably, our method only incorporates the generation process
x = Gy(z, ¢) of the CNFs, enforcing a strict one-way transfor-
mation from the latent variable z to the image x. This approach
elegantly avoids the issues of detail loss and secondary artifacts
associated with the two-way transformation.

The sub-problem in (13) admits a closed-form solution:

2" = (ATA + o1+ 1) ATy + 0Go (2", ¢) + riz™).

15)
To solve the sub-problem in (14), we need the derivative of
Go(z, c) with respect to z. However, despite the differentiability
of CNFs, expressing the derivative of such a network explicitly
is challenging. To address this, we linearize the second term
in (14), which is difficult to differentiate directly. Let s(z) =
|z 1 — Gy(z,c)||3, based on the diffeomorphism property of
Gy, s(z) can be approximated by its first-order Taylor expansion

s(z) & s(2"H < &(2"), (z—2") >=|jz"" — Qg(z",c)H;
—2V.Gp(2", ¢) (™ — Gy(2", ¢))(z—2").

By substituting this approximation into the sub-problem in (14),
the solution z"*1 is given by:
oV.Ge(2", c) ("L — Gy(2™, ¢)) + ro2"

= 17
PR )

(16)

Zn+1

where V,Gg (2", ¢) (™! — Gy(2™, ¢)) can be computed using
the automatic derivation of the following loss function with
respect to 2" using the Pytorch tools:

L=—L et = Go(z", 05

In summary, the iteration process of our unsupervised one-
way CNFs reconstruction algorithm can be expressed as:

2" = (ATA + ol + D) Y ATy + 060G (2", ¢) + ria™),
oV.Go(2", c)(a™ T — Gy(2™, ¢)) + re2™

A+ T2
T = ge('gvc) = gg(ZK,C),

(18)

n+1 —

IS

)

(19)
where Z is the final output of z after the K, iteration, and &
is the final reconstructed image generated by the CNFs using 2
and the condition c.

In the iteration of %!, computing the inverse of (AT A +
oI + r11) is required. However, since the projection matrices
A vary for each projection angle, using the matrix form of
A in computation is impractical due to excessive storage and
computational demands. On the other hand, if A is treated as an
operator, solving the inverse of (AT A + oI + 1) is difficult.
To address this, we employ a two-step incremental reconstruc-
tion strategy to approximate 2™*!. First, we reconstructed an
intermediate image ants using the ordered-subset simultaneous
algebraic reconstruction technique (OS-SART) [53], with 2 as
the initial value:

2"t2 = 0S8 — SART (2", y, w) (20)

where w is the relaxation factor. This step can be seen as
minimizing the first term in (13). Notably, using OS-SART to
solve the fidelity term is more appropriate than minimizing the
l5 norm, as modeling the low-dose noise in projection data with
a fixed-variance Gaussian distribution is often inaccurate. In
contrast, the reconstruction process of OS-SART better respects
the noise characteristics of the projection data. In the second
step, the solution z"*! is computed without requiring matrix
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Fig. 3.

Algorithm 1: One-Way Conditional Normalizing Flows
(OW-CNFs) Unsupervised LDCT Reconstruction Algo-
rithm.

1: Input: The noisy projection data y, the hyperparameters
A, 0, r1 and 7o, the relaxation parameter w of OS-SART,
the random Gaussian initialization z° and
2% = Gy(2°, ¢), and the number of iterations K.

2: Operators: The NFs Gy and OS-SART.

3: Output: The final reconstructed image .

4: forn=0,...,.K—1:

5: 2"tz = OS — SART (2", y,w)
6: gt "3 4 0Gy(2", ¢) + ria”
l+0+m
7: 2t =
oV.Go(2", c) (" — Gp(2", ¢)) + 1oz
A =+ ) ’
8: end
9 2=Gy(2K,¢e)
10: return &

inversion, as follows:

ni1 T3 4 0Gy(2" ¢) + "
"t = .
]. +0+T1

This step can be seen as minimizing the remaining terms in (13).
For OS-SART, we set the number of iterations to 1 and carefully
tuned the relaxation factor w to achieve a good balance between
data fidelity and the CNFs priors. This ensures that structure
distortion is avoided while achieving adequate denoising. The
overall flow of our one-way CNFs LDCT reconstruction algo-
rithm is summarized in Algorithm 1.

2y

C. Network

The overall network of our CNFs consists of two main com-
ponents: a backbone NFs network and a condition module. The
backbone NFs network comprises 4 flow blocks, each containing
12 tandem combinations of the Actnorm layer, the invertible
1 x 1 convolutional layer, and the affine coupling layer, follow-
ing a structure similar to the well-known Glow model [56]. Each
convolutional layer in the network has 512 feature channels. In
the condition module, the condition c is integrated into each

The network structure of our conditional normalizing flows.

Wy

14al-oaii

Fig.4. Someimage examples in the RRM dataset ((a)—(c)) and the LIDC-IDRI
dataset ((d)—(f)).

affine coupling layer of the backbone NFs by concatenating it
with the mainstream features. The overall network structure of
our CNFs is illustrated in Fig. 3.

IV. EXPERIMENTS

A. Experimental Setup

To evaluate the performance of the proposed one-way con-
ditional normalizing flows (OW-CNFs) unsupervised LDCT
reconstruction algorithm, we conducted experiments on two
datasets. We assessed the reconstructed images using both visual
inspection and quantitative metrics, comparing the results with
several state-of-the-art deep-learning methods. These include
popular unsupervised generative-model-based methods such as
PatchNR [43], EASEL [44], DPR-IR-I, and DPR-IR-II [47], as
well as supervised LDCT denoising networks like EDCNN [66],
DESDGAN [67], CoreDiff [68], and CTFormer [17].

The experiments were conducted on two datasets: (1) The
random rectangle models (RRM) dataset and (2) The LIDC-
IDRIdataset [69]. The RRM dataset is home-made, consisting of
randomly generated images, each containing a large ring and ten
parallel stripe rectangles with varying lengths and gray values,
some examples are shown in Fig. 4(a)—(c). The reconstruction
performance of different methods can be directly evaluated
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based on the reconstruction of these rectangular stripes. This
dataset includes 1024 images for training, 128 images for vali-
dation and 128 images for testing. Each image has a resolution
of 128 x 128 and a gray value range of [0, 1.0]. The LIDC-IDRI
dataset is a public CT image dataset containing 241689 normal-
dose slices from 1012 patients. For our experiments, we selected
4409 slices from patients 001 to 025 for training, 272 slices from
patient 052 for validation, and 133 slices from patient 051 for
testing. Examples of these slices are shown in Fig. 4(d)—(f).
All selected CT slices have a resolution of 512 x 512 and a
Hounsfield units (HU) range of [—1024, 2048].

The normal-dose and low-dose projection data were generated
using a simulated projection algorithm with a fan-beam imaging
system. For the RRM dataset, we employed 360 projection
views uniformly distributed within the range [0, 27] and a linear
detector comprising 256 cells. For the LIDC-IDRI dataset, both
the projection views and the number of detector cells were set to
1000. We generated the clean projection data and added Poisson
noise to the incident rays to emulate the low-dose projection
data:

I
0

where y. represents the clean projection data, while y,, the noisy
low-dose one. Iy and I signify the number of incident and
collected photons, respectively. Typically, a smaller / indicates
a lower dose level and results in more noisy projection data.
In accordance with this principle, we set Iy = 1 x 105 to sim-
ulate the normal-dose projection data, with the corresponding
normal-dose images reconstructed using OS-SART for refer-
ence. For the generation of low-dose projection data, we as-
signed [p =1 x 103 for the RRM dataset, and I, = 1 x 10* for
the LIDC-IDRI dataset. The projection operator and OS-SART
were coded using CUDA kernels wrapped by the Cupy library
(https://github.com/cupy/cupy).

We selected an NFs-based unsupervised regularized iterati-
ve reconstruction method PatchNR [43], three diffusion-model-
based unsupervised iterative reconstruction methods EASEL
[44], DPR-IR-I and DPR-IR-II [47], and four recent supervised
LDCT denoising methods EDCNN [66], DESDGAN [67],
CoreDiff [68] and CTFormer [17], as the comparative methods,
in which DPR-IR-II utilizes the DDIM [51] acceleration
strategy for fast reconstruction. Additionally, we implemented
the two-way iterative reconstruction algorithm [42] introduced
in Section II, utilizing the same CNFs network as our proposed
method, referred to as “TW-CNFs”. For evaluation, we adopted
the commonly used PSNR and SSIM [64] as image quality
assessment metrics. Codes for all comparative methods are
publicly available. During the training phase of each method,
we used the loss function and optimizer specified in the original
training methodology, selecting appropriate learning rates and
mini-batch sizes. For the conditionalization part of our proposed
OW-CNFs, we chose BM3D [61] as the denoiser D. Given
that generative-model-based iterative reconstruction methods,
including EASEL, DPR-IR-I, DPR-IR-II, PatchNR, TW-CNFs,
and our proposed OW-CNFs, exhibit randomness in their recon-
structions, we performed 10 reconstructions simultaneously and

averaged the results to obtain the final reconstruction. Regarding
the hyper-parameters A, o, 71 and r5 in the proposed OW-CNFs,
we empirically preset them and tuned them by the “trial and
error” strategy, following the convergence state of the iteration.
In experiments on the RRM dataset, these four parameters were
sett00.0005, 10.0,0.001 and 0.01, respectively. For experiments
on the LIDC-IDRI dataset, they were set to 0.0001, 1.5, 0.01 and
0.01, respectively. All experiments were conducted on a server
running Ubuntu 20.04.5 with Python 3.11, PyTorch 1.12.1, and
CUDA 11.3, equipped with an Nvidia Tesla V100 GPU card.

B. Results

On both the RRM and LIDC-IDRI datasets, the proposed OW-
CNFs demonstrate outstanding performance. Fig. 5 illustrates
one set of reconstruction results on the RRM dataset at dose level
Iy =1 x 103. The result of the proposed OW-CNFs exhibits
comparable quality to the state-of-the-art generative-model-
based methods and the supervised methods. As highlighted in the
zoomed-in areas, the three diffusion-model-based methods—
EASEL, DPR-IR-I, and DPR-IR-II—show effective reconstruc-
tion of the stripes but retain noticeable noise residues, with
EASEL being particularly affected. The NFs-based method,
PatchNR, performs well in denoising but introduces block arti-
facts in the reconstructed image. This issue likely arises because
PatchNR learns priors from image patches rather than the entire
image, leading to some loss of global information and a tendency
to misinterpret large noise blocks as image structures. The TW-
CNFs method exhibits noise retention and structural deforma-
tion in the reconstructed image. For instance, in the zoomed-in
area, the length of the lower stripe is incorrect, and its right end
is severely blurred or even missing. Given the simplicity and
regularity of the image, the four supervised methods—EDCNN,
DESDGAN, CoreDiff, and CTFormer—achieve satisfactory de-
noising results. Notably, the proposed unsupervised OW-CNFs
perform comparably to these supervised methods and even
surpass them in quantitative metrics. In addition to effective
denoising, the proposed OW-CNFs accurately reconstruct every
stripe in the image, demonstrating outstanding performance.

Figs. 6, 7, and 8 present the reconstruction results on the
LIDC-IDRI dataset at dose level Iy = 1 x 10%. The proposed
OW-CNFs demonstrate superior performance. As shown in
the zoomed-in areas, OW-CNFs exhibit high accuracy and
sharpness in recovering image structures, while achieving high-
quality denoising. In contrast, although the diffusion-model-
based methods EASEL, DPR-IR-I and DPR-IR-II perform well
in structure recovery, they are plagued by residual noise and
artifacts that can obscure image details. The NFs-based method
PatchNR still shows pseudo structures, while TW-CNFs suffer
from severe structure deformation and loss of image detail.
Among the four supervised methods, the GAN-based DES-
DGAN exhibits severe artifacts, while the results of EDCNN
and CTFormer show obvious structural distortions. Although
the diffusion-model-based denoising method CoreDiff demon-
strates better overall effect, it lacks precision in image details
and contrast. The average metrics for the test sets are shown
in Table I. Notably, as an unsupervised method, the proposed
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(a) Normal-dose (b) Low-dose (c) EDCNN (d) DESDGAN (e) CoreDiff (f) CTFormer

20.40/0.566 37.54/0.965 37.23/0.976 37.89/0.975 31.31/0.917
(g) EASEL (h) DPR-IR-I (i) DPR-IR-II (i) PatchNR (k) TW-CNFs () OW-CNFs (Ours)
33.02/0.882 38.48/0.954 38.37/0.950 29.03/0.914 34.30/0.948 39.32/0.976

Fig. 5. Reconstruction results of each method on the RRM dataset at dose level Ty = 1 x 103, The display window of the gray value range is set to [0,1.0].

(a) Normal-dose (b) Low-dose (c) EDCNN (d) DESDGAN (e) CoreDiff (f) CTFormer
20.79/0.424 31.93/0.808 29.31/0.738 32.07/0.827 32.16/0.811

(g) EASEL (h) DPR-IR-I (i) DPR-IR-II (i) PatchNR (k) TW-CNFs () OW-CNFs (Ours)
29.66/0.738 33.27/0.820 33.18/0.819 28.66/0.610 29.10/0.733 33.57/0.842

Fig. 6. Reconstructed image results of each method on the LIDC-IDRI dataset at dose level Io = 1 x 10%. The display window is [—~240, 160]HU.

(a)Normal-dose (b) Low-dose (c) EDCNN (d) DESDGAN (e) CoreDiff (f) CTFormer
18 31.56/0.753 28.87/0.685 31.79/0.777 31.55/0.748

(g) EASEL (h) DPR-IR-I (i) DPR-IR-II (i) PatchNR (k) TW-CNFs () OW-CNFs (Ours)
28.51/0.650 31.36/0.743 31.32/0.738 25.27/0.509 27.75/0.641 32.58/0.780

Fig. 7. Reconstructed image results of each method on the LIDC-IDRI dataset at dose level Iy = 1 x 10, The display window is [—240, 160]HU.
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(b) Low-dose
17.87/0.330

(c) EDCNN
31.48/0.734

(g) EASEL
28.86/0.632

(h) DPR-IR-I
31.18/0.715

(i) DPR-IR-II
31.12/0.717

(d) DESDGAN

(j) PatchNR

(e) CoreDiff
31.69/0.762

(f) CTFormer

28.71/0.647 31.37/0.727

(k) TW-CNFs
28.60/0.641

(I) OW-CNFs (Ours)

25.14/0.492 32.07/0.752

Fig. 8.

TABLE I
THE AVERAGE METRICS (PSNR(DB)/SSIM) OF EACH METHOD ON THE TEST
SETS OF THE RRM AND THE LIDC-IDRI DATASETS

Dataset RRM LIDC-IDRI

Method PSNR SSIM PSNR SSIM
SART 20.48  0.567 19.84  0.395
EASEL 33.06 0.884 2933  0.703
DPR-IR-I 38.38 0954 32,62  0.806
DPR-IR-II 38.31 0.951 3240  0.801
Patch-NR 2942 0921 28.62  0.707
TW-CNFs 3274 0934 2889  0.712
OW-CNFs (Ours) 38.97 0972 3295 0.813
EDCNN 37.31 0964  31.79  0.786
DESDGAN 3535 0970 2899  0.784
CoreDiff 38.77 0970 3191 0.807
CTFormer 31.32 0916  31.77  0.782

OW-CNFs achieve the highest average PSNR and SSIM values,
surpassing all the four supervised methods.

To evaluate the reconstruction speed of the proposed OW-
CNFs, we compared the average iteration numbers and recons-
truction time of each generative-model-based iterative
reconstruction method on 512 x 512 CT images from the LIDC-
IDRI dataset. In previous experiments, we adopted a strategy
of performing 10 reconstructions simultaneously and averaging
the results to ensure robustness. However, since all these
iterative methods involve time-consuming reconstruction
procedure (e.g. OS-SART) in each iteration, the number
of simultaneous reconstructions significantly impacts their
overall reconstruction time. To provide a comprehensive
comparison of performance and speed, we compared the
results of each method under two scenarios: performing 1
reconstruction and performing 10 simultaneous reconstructions.
As shown in Table II, the proposed OW-CNFs achieve
a good balance between performance and reconstruction
speed. The diffusion-model-based methods, EASEL and
DPR-IR-I, require iterations at every predefined noise level,
resulting in a large number of iterations and prolonged
reconstruction times. Although DPR-IR-II, which employs
the DDIM acceleration strategy for fast sampling, reduces
the sampling steps to 200 without significant performance

Reconstructed image results of each method on the LIDC-IDRI dataset at dose level Io = 1 x 10%. The display window is [—240, 160]HU.

TABLE I
THE AVERAGE METRICS (PSNR(DB)/SSIM), ITERATION NUMBERS AND
INFERENCE TIME OF EACH GENERATIVE-MODEL-BASED METHOD BY
PERFORMING SINGLE AND 10 SIMULTANEOUS RECONSTRUCTIONS, ON THE
LIDC-IDRI DATASET

10 Reconstructions PSNR  SSIM  Iters Time
EASEL 29.33 0.703 1800  4650s
DPR-IR-I 32.62 0.806 1000  1814s
DPR-IR-II 32.40 0.801 200 361s
Patch-NR 28.62 0.707 409 509s
TW-CNFs 28.89 0.712 33 131s
OW-CNFs (Ours) 32.95 0.813 71 344s
1 Reconstruction PSNR SSIM  Iters Time
EASEL 26.88 0.502 1800 620s
DPR-IR-I 32.23 0.800 1000 364s
DPR-IR-II 32.17 0.799 200 72s
Patch-NR 28.03 0.681 424 176s
TW-CNFs 28.15 0.688 36 26s
OW-CNFs (Ours) 32.48 0.803 76 67s

degradation, our method demonstrates comparable speed while
delivering superior reconstruction performance. PatchNR, while
faster than non-accelerated diffusion-model-based methods,
exhibits relatively lower performance. TW-CNFs achieve the
fastest reconstruction speed due to fewer iterations, but their
performance is significantly inferior to the proposed OW-CNFs.
In contrast, the proposed OW-CNFs combine high performance
with relatively fast reconstruction speed, highlighting
their advantages. Notably, performing 10 simultaneous
reconstructions and averaging the results can enhance the
performance of these generative-model-based methods, but this
approach also increases the reconstruction time by multiples.
In the proposed OW-CNFs, the relaxation parameter w of
OS-SART plays a critical role in balancing data fidelity and
CNFs priors. Variations in w directly impact reconstruction
quality. Fig. 9 illustrates the trend of average PSNR on the test
sets for different values of w. Overall, w should remain small,
but excessively small values can compromise data fidelity and
reduce reconstruction accuracy. To address this, we utilized the
automatic backpropagation of Pytorch to adaptively adjust w.
By initializing w with a small value (e.g. w = 0.1) and using

Authorized licensed use limited to: University of Liverpool. Downloaded on August 05,2025 at 21:54:26 UTC from IEEE Xplore. Restrictions apply.



494

——RRM ——LIDC-IDRI
39.00
3800 o ——
37.00
= 36.00
; 35.00
GE 34.00
33.00 —
32.00 /
31.00
0.01 0.05 0.10 0.15 0.20
(O]
Fig. 9. The trend of average PSNR under different w.

the minimization problem in (12) as the loss function, our re-
construction process can adaptively learn appropriate relaxation
factors for different reconstructed images.

V. DISCUSSION AND CONCLUSION

We propose a novel unsupervised LDCT iterative reconstruc-
tion algorithm, OW-CNFs, based on conditional normalizing
flows. By introducing an iterative reconstruction algorithm that
employs strict one-way transformation during alternating opti-
mization in the data and latent spaces, we address the issues
of detail loss and secondary artifacts inherent in the current
two-way transformation strategy. To enable unsupervised LDCT
reconstruction with CNFs, we propose a conditionalization
method tailored for LDCT, facilitating efficient training on high-
resolution CT images. Furthermore, we propose an efficient
iterative reconstruction procedure by employing the coordinate
descent algorithms and the linearization technique. By lever-
aging the incremental reconstruction of OS-SART, we achieve
computationally efficient iterations and effectively balance data
fidelity with CNFs priors. Experimental results demonstrate the
outstanding performance of our method, which achieves com-
petitive reconstruction speeds among generative-model-based
iterative reconstruction methods and delivers performance com-
parable to supervised learning approaches.

As a generative-model-based method, the proposed OW-
CNFs effectively overcome the primary limitations of CNN-
based denoising networks, which often result in over-smoothing
and detail loss in CT images. Instead, our method produces
images that better align with diagnostic requirements. Compared
to diffusion-model-based methods, which also stem from gener-
ative models, the key advantage of OW-CNFs lies in eliminating
the need for a fixed, large number of sampling steps (often up to
a thousand), thereby significantly reducing reconstruction time.
This efficiency is largely attributed to our conditionalization
method, which simplifies the iterative process by providing
additional priors through the condition. While we are not the
first to apply CNFs to LDCT problems, we are the first to effec-
tively and deeply integrate CNFs into the unsupervised LDCT
reconstruction procedure. Unlike other methods that use CNFs
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solely for image-domain post-processing and require extensive
paired training data, our method integrates the priors learned by
CNFs directly into the LDCT reconstruction procedure, avoid-
ing the image-data inconsistency issues commonly associated
with post-processing networks. Moreover, our method operates
within an unsupervised framework, requiring only normal-dose
images for training, making it highly applicable in practical CT
scenarios where training data, especially paired data, is scarce.

Despite the promising performance, the proposed OW-CNFs
could be further improved. First, the introduction of multiple
hyperparameters necessitates extensive tuning, which can be
burdensome. While we have addressed this partially by au-
tomating the adjustment of the relaxation parameter w, how to
process other hyperparameters needs further research. Second,
the quality of the conditions significantly impacts the training
and generation processes of CNFs. Developing methods to gen-
erate conditions with higher accuracy and stronger priors for
LDCT reconstruction remains an open challenge. Although our
proposed conditionalization method is simple and effective, it
relies on basic quantitative indicators and manual adjustments.
Incorporating more advanced information extraction techniques,
such as pre-trained feature learning networks, could enhance the
performance and speed of our method. Additionally, replacing
OS-SART with faster reconstruction approaches, such as ana-
lytic reconstruction or sparse-angle reconstruction, could further
accelerate the iteration and is a promising direction for future
research.
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