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ABSTRACT
The mean curvature model is one of the efficient higher-order models for
image denoising, and its Euler-Lagrange equation is a fourth-order nonlin-
ear equationwhichmakes the development of efficient numericalmethods
very difficult. In this paper, on the one hand, it is proposed to replace the
gradient in the nonlinear terms other than themean curvaturewith the gra-
dient obtainedby convolving the imagewith aGaussian low-pass filter. This
modification leads to a new Euler-Lagrange equation that retains the struc-
ture of the original equation, but with a reduced degree of nonlinearity. On
the other hand, we also develop a novel fixed point curvature method to
solve this new equation. Numerical experiments show that ourmethod not
only recovers high-quality images from highly noisy images, but is also 10
times faster than the nonlocal means (NLM) method and 6–10 times faster
than the the augmented Lagrangian method.
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1. Introduction

Inverse problems arise from various fields in applied sciences and engineering challenges. Typically,
a mathematical model modeling an inverse problem includes data fidelity and regularization; the for-
mer varies with the problem, while the latter overcomes the ill-posed nature of an inverse problem by
limiting the solution space. This paper presents a novel and efficient algorithm for a high-ordermodel
based on the mean curvature regularizer. Although it can be applied to numerous models [26,29,36],
we focus specifically on the image noise removal problem.

Let u be a true and unknown image and η be some random noise. In the scenario of additive
Gaussian noise, given an observed image z, our goal is to restore u from

z = u+ η. (1)

There exist several other noisemodels, includingmultiplicative noise [16], Poisson noise [18], Cauchy
noise [1,14] and Rican noise [31]. However, the fidelity of these noise models varies. Analyzing the
previously mentioned model (1) is sufficient without loss of generality. The goal of image denoising
is to remove noise η while preserving key features in u such as edges.
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This paper is concerned with an effective solution for the variational model to solve (1)

min
u

{
J(u) = α

∫
�

� (κ) dxdy+ 1
2
‖u− z‖2L2(�)

}
, (2)

where the non-negative function �(·) is defined either as �(κ) = |κ|, �(κ) = κ2/2, or a combina-
tion of both. Here the most important geometric quantity is the mean curvature

κ = ∇ · ∇u√
1+ |∇u|2 ,

which is more effective in (2) compared to other regularization methods. However, the model (2) is
known to be extremely challenging to solve. This paper addresses this challenge by developing a new
reformulation and, consequently, a new numerical method.

Many related works have been proposed and investigated for (1). The total variation (TV) model,
introduced by Rudin, Osher, and Fatemi [23], is widely used in image processing due to its effective-
ness as a low-order convex model to preserve the edges and contours of objects. In addition, several
fast and efficient numerical methods are available [7,8,28]. However, the model exhibits staircase
effects, blurs object corners, and fails to preserve intensity contrasts. In [21], Osher, Solé and Vese
proposed to use theH−1 norm for the oscillatory functions as the fitting term to preserve the texture
within the TV model, referred to as the following OSV model

min
u

α

∫
�
|∇u|dxdy+ 1

2

∫
�
|∇(�−1)(u− z)|2dxdy.

The corresponding Euler-Lagrange equation transformed by the Laplace operator is

α�

(
∇ · ∇u|∇u|

)
+ (u− z) = 0,

∂u
∂�n

∣∣∣∣
∂�

= 0,
∂κ

∂�n
∣∣∣∣
∂�

= 0, (3)

where ∂� is the boundary of the domain �, �n is outer normal vector.
Over the last twodecades, several high-ordermodels [3,9,10,17,39] have beendeveloped to address

these undesirable properties and achieve satisfactory results. One of the most famous high-order
models was first studied by Zhu-Chan [39], whose timemarchingmethodwas found to be excessively
slow. However, this model improves the staircase effects found in the TV model while preserving
image contrast and object edge sharpness. To illustrate the difficulty, consider �(κ) = κ2/2 as an
example: the corresponding Euler-Lagrange equation is non-trivial and takes the form

g(u) = α∇ · 1√
1+ |∇u|2

(
I − ∇u∇u

T

1+ |∇u|2
)
∇κ + (u− z) = 0, (x, y) ∈ � (4)

with the same boundary condition of (3), where I ∈ R2×2 is the identity matrix. The time marching
approach is quite slow because it has to satisfy the CFL condition by choosing a small time step. Also,
certain methods that were effective for the TV model, such as lagged fixed point methods [28] and
primal-dual methods [8], do not work for (4), as shown in [4].

An effective approach for this mean curvature model, �(κ) = |κ|, is the augmented Lagrangian
methods (ALM) [35,37,38], which achieve approximations of the minimizers of the original
high-order functional by focusing on minimizing multiple low-order functionals. While aug-
mented Lagrangian methods are increasingly refined for dealing with high order variational mod-
els [11–13,15,26,34], tuning the hyper-parameters becomes complex and challenging. Furthermore,
the interactions among the decoupled variables become complicated due to the integration ofmultiple
intermediate variables and parameters. In addition, establishing theoretical convergence is difficult
due to the complex interdependencies among the auxiliary variables.



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 3

To avoid introducingmultiple intermediate variables, Brito-Loeza andChen [4] present an efficient
nonlinear multigrid which uses the stabilized fixed point method as a smoother. In [32], the authors
proposed a homotopy method based on gradually decreasing the smoothing parameter β to provide
a good initial value for the fixed point curvature method.

In this study, we use Gaussian low-pass filtering to suppress the peaks of the gradient beyond
the mean curvature in the nonlinear part of the Euler-Lagrange Equation (4) in order to reduce the
nonlinearity. For simplicity, the resulting approximate equation is called the new Euler-Lagrange
equation, and the degree of nonlinearity can be varied by varying the standard deviation σ of
the Gaussian filter. Although the lagged fixed point method cannot solve (4), it can solve the new
Euler-Lagrange equation as long asσ is large enough. This is crucial for the success of the newmethod.

The rest of this paper is organized as follows. In Section 2, we will present the work related to
the algorithms in this paper in terms of both the combination of filtering and PDEs, and the fixed
point curvature method. In Section 3, we give the formulation of the new Euler-Lagrange equation
by analyzing the second-order semipositive definite operator and construct a fixed-point method for
solving the new Euler-Lagrange equation. In Section 4, we present various numerical results obtained
from the implementation of the proposed algorithm.

2. The related works

We give a brief review of previous methods that are designed to reduce nonlinearity or to facilitate
better decoupling.

Traditional denoisingmethods mainly rely on local filtering or least-squares estimation. Although
these methods are straightforward and can extract the trend of the signal, they result in edge blurring
and do not preserve the details and contrast of the image.

In image processing, the method of incorporating low-pass filtering into partial differential equa-
tions (PDEs) has long been used. Torre and Poggio [27] provide a thorough validation for the appli-
cation of filtering before differentiation by analysing the properties of different integro-differential
operators proposed for edge detection. As noted by Witkin [30], applying a Gaussian convolution to
the signal at each scale is equivalent to solving the heat equation with the signal as the initial con-
dition. Malik and Perona [22] proposed a model for edge detection by anisotropic diffusion defined
by

∂u
∂t
= ∇ · (f (|∇u|)∇u) , u(0) = Gσ ∗ z. (5)

where f (·) : R
+ → [0, 1] is a smooth decreasing function with f (0) = 1, and f (|∇u|)→ 0 (|∇u| →

∞). To reduce irrelevant peaks in the gradient due to noise, the initial smoothing of z is performed
with a low-pass filter Gσ . This approach appears to reintroduce the nonadaptive filtering that the
theory initially sought to avoid, resulting in a loss of edge accuracy.

The modification of the model (5) suggested in [6] involves substituting |∇u| with its approx-
imation |∇Gσ ∗ u| to avoid the inconsistencies in the Perona and Malik model as demonstrated
below

∂u
∂t
= ∇ · (f (|∇Gσ ∗ u|)∇u

)
, u(0) = z. (6)

However, this model does not have a clear geometric interpretation.
Based on the geometric interpretation of |∇u|κ which diffuses u in the tangential direction but

not in the normal direction at all [19,20], the mean curvature motion model

∂u
∂t
= |∇u|∇ · ∇u|∇u| , u(0) = z (7)

has received significant attention in image processing. Alvarez, Lions and Morel [2] combined the
geometric interpretation of mean curvature motion with the Perona andMalik theory to propose the
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nonlinear parabolic differential equation

∂u
∂t
= f (|∇Gσ ∗ u|)|∇u|∇ · ∇u|∇u| , u(0) = z. (8)

The fixed point technique proposed by Vogel and Omen [28] can be formulated as a quasi-Newton
iterative scheme. Conversely, the authors in [7] propose that it can be viewed as a semi-implicit time-
stepping approachwith an infinite time step. Inspired by the quasi-Newton structure of the fixed point
method, we develop a fixed point curvature technique [32] to solve theMCmodel with a large positive
parameter β . This technique is less nonlinear, and the quasi-Newton method shows a wider range of
convergence. Since the fourth order nonlinear term is a second-order nonlinear operator acting on
another second-order nonlinear term, the current known iteration u(k) (u(0) = z) is employed to fix
the outer second-order operator defined by

M(∇u) = −∇ · 1√|∇u|2 + β

(
I − ∇u∇u

T

|∇u|2 + β

)
∇ ,

resulting in a simplified nonlinear equation

−αM(∇u(k))∇ · ∇u√|∇u|2 + β
+ (u− z) = 0, (9)

which similar to the Euler-Lagrange equation of TV model. Therefore, the next iteration for updat-
ingM(∇u) is achieved through the lagged fixed point method. A homotopy equation is formulated
where the parameter β is gradually reduced to 1, applying this fixed point curvature approach as a
correction mechanism in path tracking.

In [33], a relaxed fixed point (RFP) method is proposed, which reduces the nonlinearity of (4)
by removing the highly nonlinear term fromM(∇u), i.e. replacingM(∇u) with −∇ · 1√

|∇u|2+β
∇ .

The method produces high quality denoised images, although it is not a direct solution of the Euler-
Lagrange Equation (4).

3. A new fixed point curvature method

As observed by Brito-Loeza and Chen [4], the variations of directly constructed fixed point methods
are ineffective for the mean curvature model. A significant reformulation is necessary to make the
Equation (4) suitable for the development of a fixed point method.

In this study, the gradient ∇u within M(∇u) is replaced by ∇Gσ ∗ u to reduce the peak of the
gradient and thus the nonlinearity ofM(∇u). A fixed point iterative approach is then formulated to
solve the new Euler-Lagrange equation.

3.1. Motivation

Our previous work [32], which applied a homotopy method involving the gradual reduction of the
parameter β as illustrated in (9), gave very encouraging experimental results. To provide a basis for
our new study, we present below a brief analysis. First, we define

D(∇u) = 1√|∇u|2 + β

(
I − ∇u∇u

T

|∇u|2 + β

)
= 1

(|∇u|2 + β)
3
2

(
u2y + β −uxuy
−uxuy u2x + β

)
,

and then denote M(∇u) = −∇ · (D(∇u)∇). It is not difficult to prove the following two proposi-
tions.
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Proposition 3.1: For any β > 0, the matrix D(∇u) is a symmetric positive definite matrix with two
eigenvalues

λ1 = 1√|∇u|2 + β
, λ2 = β(|∇u|2 + β

) 3
2
= β

|∇u|2 + β
λ1 ≤ λ1,

and the condition number is

Cond(D(∇u)) = λ1

λ2
= |∇u|

2 + β

β
.

Proposition 3.2: The diagonal matrix ofD(∇u) satisfies

β(|∇u|2 + β
) 3
2
I ≤ 1

(|∇u|2 + β)
3
2

(
u2y + β 0

0 u2x + β

)
≤ 1√|∇u|2 + β

I.

If β is large enough and |∇u| is finite, then we have −uxuy/(|∇u|2 + β)
3
2 and

√|∇u|2 + β are
close to 0 and

√
β respectively. According to the Proposition 3.2, D(∇u) will be close enough to the

matrix 1√
β
I. Since

−∇ ·
(

1√
β
I∇

)
= − 1√

β
∇ · ∇ = − 1√

β
�,

the Equation (9) is close to (3). It is known that an OSV model with an appropriate regularization
parameter is effective not only in removing noise but also in preserving texture; however, a large β
results in a small regularization parameter and the iterative solution remains close to the noisy image.
Therefore, using a homotopy technique with a decreasing β for path tracking results in an increasing
regularization parameter as β decreases, which removes more noise and subsequently reduces the
peak value of the noise-induced gradient uncorrelation.

The key to developing algorithms for solving (4) is to reduce the nonlinearity. Both of the above
methods focus on reducing the nonlinearity ofM(∇u). The fixed point curvature technique requires
extending a significant parameter β to 1, while the RFP approach removes the highly nonlinear term
in (4). In particular, as the condition numberD(∇u) decreases, so does the nonlinearity ofM(∇u).
So we set β = 1, so that Cond(D(∇u)) = 1+ |∇u|2 depends only on |∇u|, which leads us to try to
reduce Cond(D(∇u)) by reducing |∇u|.

Witkin [30] observes that convolving a signal with a Gaussian at each scale
√

σ , represented as
u(x, y, σ) = Gσ ∗ u(0)(x, y), corresponds to solving the heat equation

∂u(x, y, σ)

∂σ
= �u(x, y, σ), u(x, y, 0) = u(0)(x, y).

The Gaussian convolution kernel function is symmetric and strictly decreasing around the mean,
ensuring that the weights decrease smoothly with increasing distance. For a small standard deviation
σ , the Gaussian convolution Gσ ∗ u approximates u; for a large σ , Gσ ∗ u approximates the mean of
u. In general, |∇Gσ ∗ u| is less than |∇u|, and |∇Gσ ∗ u| gradually approaches zero as σ increases.

3.2. Formulation of the new Euler-Lagrange equation

Due to the noise, the gradient of the image undergoes extremely large and theoretically infinite oscil-
lations. When the noisy image z is used as the initial value in the fixed point curvature method, the
uncorrelated peak of the noise-induced gradient leads to a significantly large Cond(D(∇z)). Note
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thatD(∇z) is the matrix constructed by ∇z, and its condition number is 1+ |∇z|2. By replacing ∇z
inD(∇z) with ∇Gσ ∗ z, we get

Cond(D(∇Gσ ∗ z)) = 1+ |∇Gσ ∗ z|2 ≤ 1+ |∇z|2 = Cond(D(∇z)).

Even in cases where σ is so large that M(∇Gσ ∗ z) approaches the Laplace operator �, the tex-
ture preserving properties of the OSV model will not cause excessive blurring of the image edges.
Furthermore, changing σ does not affect the α regularization parameter.

Based on the above analysis, we replace M(∇u) by M(∇Gσ ∗ u) to obtain the following new
Euler-Lagrange equation

g̃(u) = −αM(∇Gσ ∗ u)∇ · ∇u√
1+ |∇u|2 + (u− z) = 0. (10)

Note that the nonlinear term of (10) integrates a second order symmetric positive semidefinite
operator M(∇Gσ ∗ u) with the mean curvature κ , which is an important geometric quantity with
nonlinear structure, and its nonlinearity is less than that ofM(∇u)κ .

3.3. The fixed point iterativemethod for (eqn10)

We have justified the validity of the new Euler-Lagrange Equation (10). Next, we look at how to solve
this fourth-order nonlinear equation.

Newton’s method is known to be a fast iterativemethod for solving nonlinear equations. However,
Newton’s method cannot be directly applied to standard TV models or to this particular equation.

Proposition 3.3: Suppose u(k) is known. Given thatD(∇Gσ ∗ u(k)) ∈ R2×2 is a symmetric positive def-
inite matrix, then the semi-positive operatorM(∇Gσ ∗ u(k)) = −∇ ·D(∇Gσ ∗ u(k))∇. Consequently,
the equation

−αM(∇Gσ ∗ u(k))∇ · ∇u√
1+ |∇u|2 + (u− z) = 0

is equivalent to

α∇ · ∇u√
1+ |∇u|2 −

(
M(∇Gσ ∗ u(k))

)−1
(u− z) = 0, (11)

which represents the optimality condition for minimizing the following energy functional:

α

∫
�
|∇u|1dxdy+ 1

2

∫
�

∣∣∣∣D(∇Gσ ∗ u(k))
1
2∇

(
M(∇Gσ ∗ u(k))

)−1
(u− z)

∣∣∣∣2 dxdy. (12)

In [24], Shi, Chang, and Xu established the convergence of the fixed-point method for the TV
image deblurring model:

α

∫
�
|∇u|βdxdy+ 1

2

∫
�
|Ku− z|2dxdy, (13)

where K denotes the blurring operator. Since both the second terms in Equations (15) and (16) are
convex, the fixed point method for (11) with the initial value u(0) = z is convergent. This can be



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 7

formally written as follows:

−α∇ · ∇u(k+1)√
1+ |∇u(k)|2 +

(
M(∇Gσ ∗ u(k))

)−1
(u(k+1) − z) = 0, k = 0, 1, 2, . . .

which can be rewritten as follows

−αM(∇Gσ ∗ u(k))∇ · ∇u(k+1)√
1+ |∇u(k)|2 + (u(k+1) − z) = 0, k = 0, 1, 2, . . . (14)

The fixed point method described above can be considered as a semi-implicit timemarching method
with an infinite time step. As the Equation (10) is still fourth order nonlinear equation, this fixed point
method is still slow to converge.

Taking the current iteration u(k) as the approximate solution of (10), then−g̃(u(k)) is the residual
of (10). The residual equation of (10) is as follows

(
−αM(∇Gσ ∗ u(k))∇ · ∇√

1+ |∇u(k)|2 + 1

)
e(k) = −g̃(u(k)). (15)

where e(k) is the error that needs to be solved, and the next iteration is u(k+1) = u(k) + e(k).
In fact, by simply moving the right term of Equation (15) to the left, we have

0 = −αM(∇Gσ ∗ u(k))∇ · ∇e(k)√
1+ |∇u(k)|2 + e(k) + g̃(u(k))

= −αM(∇Gσ ∗ u(k))∇ · ∇
(
u(k) + e(k)

)
√
1+ |∇u(k)|2 +

(
u(k) + e(k) − z

)

= −αM(∇Gσ ∗ u(k))∇ · ∇u(k+1)√
1+ |∇u(k)|2 +

(
u(k+1) − z

)
.

The above analysis is based on the case where u(k+1) and e(k) are analytical solutions of Equations (14)
and (15) respectively. However, we can only find numerical solutions for the fourth order Equa-
tions (14) and (15), so u(k+1) is not really the same as u(k) + e(k). (15) can be considered as a fixed
pointmethod of quasi-Newton form, the efficiency of the algorithmcan be improved by applying (15),
since the quasi-Newton method generally has superlinear convergence.

We will now present the discretisation of the continuous formulation of the Euler-Lagrange
equation for the MCmodel in � = [0, n]× [0, n]. The mesh size is d = 1, and ui,j (i, j = 1, 2, . . . , n)
denotes the value of the function u at pixel (i, j). Then the forward difference of gradient at pixel (i, j)
is defined by

(∇u)i,j =
(
(ux)i,j; (uy)i,j

)
with

(ux)i,j =
{
ui+1,j − ui,j if i < n,
0 if i = n,

(uy)i,j =
{
ui,j+1 − ui,j if j < n,
0 if j = n.
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Since the divergence operator is the negative adjoint of the gradient operator, i.e. ∇· = −∇∗.
Therefore, the discrete divergence operator can be defined as follows

(∇ · ∇u)i,j =

⎧⎪⎨
⎪⎩

(ux)i,j if i = 1
(ux)i,j − (ux)i−1,j if i = 2, . . . , n
−(ux)i−1,j if i = n

+

⎧⎪⎨
⎪⎩

(uy)i,j, if j = 1,
(uy)i,j − (uy)i,j−1, if j = 2, . . . , n,
−(uy)i,j−1, if j = n.

To simplify the notation, we use bold letters to represent the vector. Once we have stacked the grid
function u along the rows of � into a vector

u = (u1,1, . . . , un,1, u1,2, . . . , un,2, . . . , u1,n, . . . , un,n)T

as usual, then u ∈ RN , where N = n2. Let v = Gσ ∗ u, then v denotes the transformation of Gσ ∗ u
into vectors along the rows of �.

The discrete gradient (∇u)i,j can be expressed by multiplying the matrix AT
l ∈ R2×N , for l =

1, 2, . . . ,N, into the vector u:

AT
l u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(ul+1 − ul;ul+n − ul), if lmod n �= 0 and l+ n ≤ N,
(0;ul+n − ul), if lmod n = 0 and l+ n ≤ N,
(ul+1 − ul; 0), if lmod n �= 0 and l+ n > N,
(0; 0), if lmod n = 0 and l+ n > N.

It can be deduced that the discretisation of (15) is

(αM1M2 + IN) e(k) = −g̃(u(k)), (16)

where

M1 =
∑
i
Ai

1√
1+ |AT

i v(k)|2

(
I − AT

i v
(k) ⊗

(AT
i v

(k))T

1+ |AT
i v(k)|2

)
AT
i , M2 =

∑
i
Ai

AT
i√

1+ |AT
i u(k)|2

.

Here
⊗

denotes the Kronecker product and IN is a unit matrix of dimensionN. Note thatM1,M2 ∈
RN×N are non-diagonal symmetric semipositive definite matrices, so their product M1M2 is an
asymmetric semipositive definite matrix [32].

Proposition 3.4: The Conjugate Gradient Squaring (CGS) method proposed in [25] is a polynomial-
based conjugate gradient algorithm for systems of asymmetric sparse linear equations. Since the coeffi-
cient matrix αM1M2 + IN of linear Equations (16) is an asymmetric positive definite sparse matrix,
the solution of (15) by the CGS method will converge.

The FPC1 method described below is intended for images with low levels of noise, where no new
intermediate variables are introduced and only a parameter σ is added.

Algorithm 1: [u, k]← FPC1(z, kmax, tol, σ)

step 1. Set k = 0,u(k) = z.
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step 2. While k < kmax, do Compute αM1M2 + IN and g̃(u(k)), using the CGS method, find the
solution of (16), set u(k+1) = u(k) + e(k), k = k+ 1. If ‖e(k)‖ < tol, return with u = u(k),
break.

step 3. Return with u = u(k).

For images with high noise, it is necessary to increase the σ of the Gaussian filter to effectively
minimize the uncorrelated maximum of the noise gradient. However, a larger σ would cause (10) to
approximate (3). To solve this problem, we propose a stepwise reduction of the standard deviation σ
in the FPC1 method. The algorithm is as follows.

Algorithm 2: [u, k]← FPC2(z, kmax, tol, σ0, σ)

step 1. Set k = 0,u(k) = z, σk = σ0.
step 2. While σk > σ , do

(i) Compute the αM1M2 + IN and g̃(u(k)), using the CGS method, find the solution of (16),
set u(k+1) = u(k) + e(k).

(ii) Choose σk+1 < σk, k = k+ 1.
step 3. While ‖e(k)‖ > tol and k < kmax, do Compute αM1M2 + IN and g̃(u(k)), using the CGS

method, find the solution of (16), set u(k+1) = u(k) + e(k), k = k+ 1.
step 4. Return with u = u(k).

4. Numerical experiments and discussions

The effectiveness of themodel (2) and a lack of efficient methods are widely discussed. In this section,
our main goal is to demonstrate the superior efficiency of our newly developed method. We employ
both synthetic and natural images with intensity levels ranging from [0, 255] to evaluate our proposed
methods. Gaussian white noise, with a mean of zero and standard deviations of 10, 20, and 30, is
introduced to the original images of various pixels. All numerical experiments are executed using
MATLAB on a Windows 10 (64bit) notebook with a 1.60GHz Intel(R) Core(TM) i5-10210U CPU
and 8GB of RAM.

To quantitatively assess the quality of the restored images at various noise levels, we employed the
signal-to-noise ratio (SNR), and structural similarity index measure (SSIM). The definitions of SNR,
and SSIM are as follows:

SNR = 10 log10

∑n
i=1

∑n
j=1 ũ2i,j∑n

i=1
∑n

j=1(ui,j − ũi,j)2
, SSIM = (2μũμu + c1) (2σũu + c2)(

μ2
ũ + μ2

u + c1
)+ (

σ 2
ũ + σ 2

u + c2
) ,

where ũ represents the original image and u represents the restored image, μũ and μu are the local
mean values of the images ũ and u, σũ and σu are their respective standard deviations; c1 and c2 are
constants to prevent the denominator from approaching zero; and σũu is the covariance between ũ
and u.

4.1. The performance of the new fixed point curvaturemethod

In this experiment we use test images with a noise level of 10. Firstly, we test the changes in SNR
and relative residual (ReRes = ‖g(ũ)‖2/‖g(z)‖2) with increasing the number of iterations of the
FPC1 method; secondly, we compare the HMTP [32] and RFP [33] methods with the FPC1 method
for images at different pixels. In general, the denoising result depends mainly on the regularization
parameter α. The α parameters for ‘Circle’, ‘Synthetic’, ‘Pepper’ and ‘Aircraft’ are 150, 200, 100 and
100 respectively, and σ = 1.2.

The SNR and SSIM of the recovered images from the HMTP method, the RFP method and the
FPC1method, as well as the CPU time (in seconds), are shown in Table 1. From Table 1 it can be seen
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Table 1. Numerical results for test images with a noisy of 10.

pixels 256×256 512×512 1024×1024
Example Method SNR SIMM time SNR SIMM time SNR SIMM time

Circle HMTP 30.5 0.9726 66.1 31.1 0.9835 237 32.3 0.9901 1113
RFP 31.4 0.9858 24.9 33.2 0.9917 107 35.3 0.9929 441
FPC1 31.7 0.9864 5.6 33.8 0.9918 36.9 35.5 0.9928 128

Synthetic HMTP 35.8 0.9846 49.5 38.3 0.9916 238 40.2 0.9939 1802
RFP 36.4 0.9913 25.1 39.0 0.9937 139 41.8 0.9945 551
FPC1 37.2 0.9906 6.2 39.4 0.9938 27.5 41.7 0.9944 121

Pepper HMTP 27.0 0.8985 83.5 27.0 0.9349 311 28.1 0.9685 1443
RFP 27.5 0.9239 22.3 28.3 0.9556 129 30.2 0.9784 469
FPC1 28.2 0.9350 4.7 28.6 0.9599 32.8 30.3 0.9796 147

Aircraft HMTP 27.9 0.9156 47.2 28.8 0.9470 224 29.5 0.9716 1684
RFP 28.9 0.9690 36.1 30.4 0.9790 180 32.5 0.9866 575
FPC1 29.4 0.9695 5.3 31.1 0.9798 25.9 33.0 0.9863 141

Figure 1. Description of the SNR (left) and ReRes (right) for images of size 256× 256 in FPC1 iterations.

that the FPC1 method has the shortest CPU time, approximately one tenth of the HMTP method
and one quarter of the RFP method. Furthermore, the FPC1 method yields the highest SNR in the
recovered images, with a 1.0–3.5 dB improvement over theHMTPmethod and a 0.2–0.8 dB improve-
ment over the RFP method. The SSIM values for the recovered images using both the FPC1 and RFP
methods are also well above those of the HMTP method.

Figures 1 describe the SNR and ReRes in fixed point iterations. The left figure shows that the SNR
increases with the number of iterations, with the first four iterations growing rapidly and the fifth
iteration starting to slow down, the SNR of the synthetic image grows close to 15 dB and the SNR of
the natural image grows close to 8 dB. The right-hand figure shows that the ReRes value of both the
synthetic and natural images decreases as the number of iterations increases and tends to stabilize
after the fifth iteration.

4.2. Comparison of OSV, NLM and FPC2methods

The NLMmethod [5], which uses the average of all points in a Gaussian neighborhood similar to the
(x, y) neighborhood as the denoising value at (x, y), is an improvement on the traditional local filter-
ing method. It is able to preserve the detailed features of the image. In this numerical experiment, we
compare the OSV method and the NLM method with the FPC2 method. Gaussian white noise with
zero mean and 30 variance is added to the original images. The α parameters for ‘Synthetic’, ‘Pepper’
and ‘Aircraft’ are 750, 400 and 400 respectively, and σ0 = 10, σ = 2. The SNR and SSIM of the recov-
ered image and the computation time (in seconds) are shown in the Table 2. In this experiment, we
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Table 2. Numerical results for images with a noisy level 30.

pixels 256×256 512×512 1024×1024
Example Method SNR SSIM time SNR SSIM time SNR SSIM time

Synthetic OSV 30.6 0.9672 5.83 33.2 0.9707 31.8 35.3 0.9684 144
NLM 30.2 0.8927 63.6 31.5 0.9622 332 31.9 0.9771 1175
FPC2 30.7 0.9717 6.82 33.2 0.9803 33.4 35.2 0.9773 119

Pepper OSV 21.8 0.8504 4.13 23.3 0.9047 20.1 26.9 0.9441 112
NLM 21.9 0.8122 63.1 24.1 0.8907 270 26.3 0.9425 1400
FPC2 22.4 0.8506 6.95 24.2 0.9103 33.6 26.6 0.9491 119

Aircraft OSV 20.7 0.8912 3.62 22.3 0.9294 23.0 26.3 0.9437 112
NLM 22.6 0.8688 64.2 25.0 0.9408 283 27.1 0.9664 1199
FPC2 22.6 0.9199 9.08 25.0 0.9541 30.6 27.3 0.9627 121

set the search window to 21× 21 pixels and a similarity square neighborhood window to 7× 7, and
the filter parameter is 30 for the NLMmethod.

From the Table 2 we can see that the FPC2 method is as fast as the OSV model, it is about 10
times faster than the NLMmethod. The SSIM data of the images recovered by the FPC2 method are
the highest of the three methods. In terms of SNR, the ‘synthetic’ image recovered by both the OSV
model and the FPC2 method are the same, they are higher than the NLM method, but for the other
three test images the FPC2 method has a higher SNR than the other two methods.

Figures 2 shows the images recovered by the three methods and their difference images. From
the recovered images, all methods preserve the edges well and avoid the staircase effect. As for the
difference images, clear fine edges are almost visible in the difference images of theOSVmodel, a small
amount of geometric structure can be vaguely seen in the difference images of theNLMmethod,while
it is difficult to find geometric information in the difference images of the FPC2 method.

4.3. Comparison of ALM and new fixed point curvaturemethod

With reference to FFTALM [37] and GSALM [38], the augmented LagrangianMethod demonstrates
its effectiveness and efficiency in the MCmodel of�(κ) = |κ|. The method proposed in this study is
also applicable to the case of �(κ) = |κ| with M(∇u) = ∇ · β√

1+|∇u|2|κ|3β

(
I − ∇u∇uT1+|∇u|2

)
∇ . In this

experiment, we compare the recovery efficiency of the FPC2methods with the FFTALM andGSALM
methods for the mean curvature model of �(κ) = |κ|.

The parameter settings for the FFTALM and GSALM methods are α = 0.45, r1 = 0.2, r2 =
42, r3 = 4× 103, r4 = 4.5× 104 and the maximum iteration is 400. The α parameters for the FPC2
method of ‘Boat’, ‘Man’, ‘Dot’ and ‘Bridge’ are 140, 140, 500 and 80 respectively, and σ0 = 6, σ = 2.0.

Table 3 shows the numerical results of the FFTALM, GSALM and FPC2methods when processing
an image of size 512× 512 andnoise level 20. The data inTable 3 shows that among the threemethods,
the FCP2 method recovers the highest SNR of the images and requires much less CPU time than
the other two methods. For the ‘boat’, ‘Man’ and ‘Bridge’ images, the SSIM of the FPC2 method is
significantly higher than that of FFTALM and GSALM, but for the ‘Dot’ image, the SSIM of the FPC2
method is slightly lower than that of the other two methods.

Figure 3 shows the images recovered by the three methods. From the recovered images, the clouds
in the sky, the lines on themast, and the surface of the water in the ‘Boat’ image recovered by the FPC2
method are closer to the original image; while in the ‘Man’ image recovered by the FPC2method, the
girl’s arms are recovered more smoothly than in the other two methods, and the dots on the girl’s
skirt are also recovered better.

5. Conclusions

This paper presents a new fixed point curvature method for solving the Euler-Lagrange equations for
themean curvature model. Themethod consists of reducing the nonlinearity ofM(∇u) by replacing
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Figure 2. From left column to right column: original ‘Pepper’ image and noisy image, recovered images and difference images by
OSV model, NLMmethod and FPC2 method.

the gradient ∇u in the second order semi-positive definite operatorM(∇u) by ∇Gσ ∗ u to obtain a
variant of the Euler-Lagrange equations which is similar in structure to the Euler-Lagrange equation
of the OSVmodel. When the standard deviation of the Gaussian filter is large, the equation is close to
the Euler-Lagrange equation of the OSVmodel. Combined with the fact that the fixed-point method
can efficiently solve the Euler-Lagrange equation of the OSVmodel, we construct the fixed-point cur-
vature iteration method. In addition, for highly noisy images, we introduce a parameter continuation
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Table 3. Numerical results for ‘Boat’, ‘Man’, ‘Dot’ and ‘Bridge’ of size 512× 512.

Example Boat Man

Method SNR SSIM time SNR SSIM time

FFTALM 25.40 0.9129 192.30 22.55 0.8912 177.36
GSALM 25.33 0.9051 210.15 22.53 0.8823 217.46
FPC2 26.27 0.9244 22.67 22.82 0.8941 29.82

Example Dot Bridge

Method SNR SSIM time SNR SSIM time

FFTALM 31.35 0.9904 184.59 19.78 0.8835 166.90
GSALM 30.61 0.9910 214.16 19.71 0.8701 198.87
FPC2 31.97 0.9875 30.04 19.98 0.8955 28.34

Figure 3. From left column to right column: original images, noisy images, recovered images by FFTALMmethod, GSALMmethod
and FPC2 method.

procedure to gradually reduce the standard deviation of the Gaussian filtering during the iteration
process.

Numerical experiments show that our method recovers the image geometry better, especially the
edges, in the same time as the OSV model. It also recovers high quality images from highly noisy
images, and the images recovered by our method have higher SNR and SSIM compared to the NLM
method, and the speed is 10 times faster than the NLMmethod.More importantly, our method is not
only faster, but also recovers smoother and more natural images with less detail loss than the ALM
method that solves the mean curvature model.

Acknowledgments
We are grateful to Professor Wei Zhu for the provision of the source codes of the FFTALM and GSALMmethods.



14 F. YANG ET AL.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
The research was supported by the National Natural Science Foundation of China (11501243).

References
[1] X. Ai, G. Ni, and T. Zeng, Nonconvex regularization for blurred images with Cauchy noise, Inverse Probl. Imaging

16(3) (2022), pp. 625–646.
[2] L. Alvarez, P.-L. Lions, and J. Morel, Image selective smoothing and edge detection by nonlinear diffusion (II), SIAM

J. Numer. Anal. 29 (1992), pp. 845–866.
[3] K. Bredies, K. Kunisch, and T. Pock, Total generalized variation, SIAM J. Imaging Sci. 3(3) (2010), pp. 492–526.
[4] C. Brito-Loeza and K. Chen, Multigrid algorithm for high order denoising, SIAM J. Imaging Sci. 3(3) (2010),

pp. 363–389.
[5] A. Buades, B. Coll, and J. Morel, A review of image denoising algorithms, with a new one, SIAMMultiscale Model.

Simul. 4(2) (2005), pp. 490–530.
[6] F. Catte, P.-L. Lions, J.-M. Morel, and T. Coll, Image selective smoothing and edge detection by nonlinear diffusion,

SIAM J. Numer. Anal. 29(1) (1992), pp. 182–193.
[7] T. Chan, H. Zhou, and R. Chan, Advanced signal processing algorithms, in Proceedings of the International Society

of Photo-Optical Instrumentation Engineers, F.T. Luk, ed., SPIE, 1995, pp. 314–325.
[8] T.F. Chan, G.H. Golub, and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration,

SIAM J. Sci. Comput. 20(6) (1999), pp. 1964–1977.
[9] T.F. Chan, A. Marquina, and P. Mulet,High-order total variation-based image restoration, SIAM J. Sci. Comput. 22

(2000), pp. 503–516.
[10] T.F. Chan, S.H. Kang, and J. Shen, Euler’s elastica and curvature-based inpainting, SIAM J. Appl. Math. 63 (2002),

pp. 564–592.
[11] L.-J. Deng, R. Glowinski, and X.-C. Tai, A new operator splitting method for the Euler elastica model for image

smoothing, SIAM J. Imaging Sci. 12(2) (2019), pp. 1190–1230.
[12] Y. Duan, Y. Wang, and J. Hahn, A fast augmented Lagrangian method for Euler’s elastica models, Numer. Math.:

Theory Methods Appl. 6(1) (2012), pp. 47–71.
[13] F. He, X. Wang, and X. Chen, A penalty relaxation method for image proccessing using Euler’s elastica model, SIAM

J. Imaging Sci. 14(1) (2021), pp. 389–417.
[14] K. Jon, J. Liu, X. Wang, W. Zhu, and Y. Xing, Weighted hyper-Laplacian prior with overlapping group sparsity for

image restoration under Cauchy noise, J. Sci. Comput. 87 (2021), pp. 1–32.
[15] Z. Liu, B. Sun, X.-C. Tai, Q. Wang, and H. Chang, A fast minimization algorithm for the Euler elastica model based

on a bilinear decomposition, SIAM J. Imaging Sci. 46(1) (2024), pp. 290–314.
[16] X. Lv, F. Li, J. Liu, and S. Lu,Apatch-based low-rankminimization approach for speckle noise reduction in ultrasound

images, Adv. Appl. Math. Mech. 14(1) (2022), pp. 155–180.
[17] M. Lysaker, A. Lundervold, and X.-C. Tai, Noise removal using fourth-order partial differential equation with

applications to medical magnetic resonance images in space and time, IEEE Trans. Image Process. 12(12) (2003),
pp. 1579–1590.

[18] M. Ma and J. Yang, Poisson image restoration via an adaptive Euler’s elastica regularization, J. Intell. Fuzzy Syst. 45
(2023), pp. 2095–2110.

[19] J.-M. Morel and S. Solimini, Variational Methods in Image Segmentation, Progress in Nonlinear Differential
Equations and their applications, Birkhäuser Boston, Cambridge, MA, 1995.

[20] S. Osher and J. Sethian, Fronts propagating with curvature dependant speed: algorithms based on the Hamilton-
Jacobi formulation, J. Comput. Phys. 79 (1988), pp. 12–49.

[21] S. Osher, A. Solé, and L. Vese, Image decomposition and restoration using total variation minimization and the H−1
norm, SIAMMultiscale Model. Simul. 1(3) (2003), pp. 349–370.

[22] P. Perona and J. Malik, Scale space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach.
Intell. 12(7) (1990), pp. 629–639.

[23] L.I. Rudin, S. Osher, and E. Fatemi,Nonlinear total variation based noise removal algorithms, Physica D 60 (1992),
pp. 259–268.

[24] Y. Shi, Q. Chang, and J. Xu, Convergence of fixed point iteration for deblurring and denoising problem, Appl. Math.
Comput. 189 (2007), pp. 1178–1185.

[25] P. Sonneveld, CGS: A fast lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Comput.10(1) (1989),
pp. 36–52.



INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS 15

[26] X.-C. Tai, J. Hahn, and G.J. Chung,A fast algorithm for Euler’s elastica model using augmented Lagrangian method,
SIAM J. Imaging Sci. 4(1) (2011), pp. 313–344.

[27] V. Torre and T. Poggio, On edge detection, IEEE Trans. Pattern Anal. Mach. Intell. 8(2) (1986), pp. 147–163.
[28] C.R. Vogel and M.E. Oman, Iterative methods for total variation denoising, SIAM J. Imaging Sci. 17 (1996),

pp. 227–238.
[29] Y. Wang and Z. Pang, Image denoising based on a new anisotropic mean curvature model, Inverse Probl. Imaging

16(3) (2022), pp. 625–646.
[30] A.P. Witkin, Scale-space filtering, in Proceedings of IJCAI, Karlsruhe, 1983, pp. 1019–1021.
[31] T. Wu, Y. Min, C. Huang, Z. Li, Z. Wu, and T. Zeng, An efficient inexact Gauss-Seidel-based algorithm for image

restoration with mixed noise, J. Sci. Comput. 99(2) (2024), pp. 1–28.
[32] F. Yang, K. Chen, and B. Yu, Homotopy method for a mean curvature-based denoising model, Appl. Numer. Math.

62 (2012), pp. 185–200.
[33] F. Yang, K. Chen, B. Yu, and D. Fang, A relaxed fixed point method for a mean curvature-based denoising model,

Optim. Methods Softw. 22(9) (2014), pp. 274–285.
[34] J. Zhang andK. Chen,Anew augmented Lagrangian primal dual algorithm for elastica regularization, J. Algorithms

Comput. Technol. 10(4) (2016), pp. 325–338.
[35] J. Zhang, C.Deng, Y. Shi, S.Wang, andY. Zhu,A fast linearised augmented Lagrangianmethod for amean curvature

based model, East Asian J. Appl. Math. 8(3) (2018), pp. 463–476.
[36] Q. Zhong, Y. Li, Y. Yang, and Y. Duan, Minimizing discrete total curvature for image processing, in Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020, pp. 9471–9479.
[37] W. Zhu, X. Tai, and T. Chan, Augmented Lagrangian method for a mean curvature based image denoising model,

Inverse Probl. Imaging. 7(1) (2013), pp. 1409–1432.
[38] W. Zhu, X. Tai, and T. Chan, A fast algorithm for a mean curvature base image denoising model using augmented

Lagrangian method, in Global Optimization Methods, LNCS 8293, Springer-Verlag Berlin Heidelberg; 2014, pp.
104–118.

[39] W. Zhu and T. Chan, Image denoising using mean curvature, SIAM J. Imaging Sci. 5(1) (2012), pp. 1–32.


	1. Introduction
	2. The related works
	3. A new fixed point curvature method
	3.1. Motivation
	3.2. Formulation of the new Euler-Lagrange equation
	3.3. The fixed point iterative method for (eqn10)

	4. Numerical experiments and discussions
	4.1. The performance of the new fixed point curvature method
	4.2. Comparison of OSV, NLM and FPC2 methods
	4.3. Comparison of ALM and new fixed point curvature method

	5. Conclusions
	Acknowledgments
	Disclosure statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


