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A FOURTH ORDER VARIATIONAL IMAGE REGISTRATION
MODEL AND ITS FAST MULTIGRID ALGORITHM

N. CHUMCHOB†¶, K. CHEN‡¶, AND C. BRITO-LOEZA¶

Abstract. Several partial differential equations (PDEs) based variational methods can be used
for deformable image registration, mainly differing in how regularization for deformation fields is
imposed [44]. On one hand for smooth problems, models of elastic-, diffusion-, and fluid-image
registration are known to generate globally smooth and satisfactory deformation fields. On the other
hand for non-smooth problems, models based on the total variation (TV) regularization are better
for preserving discontinuities of the deformation fields. It is a challenge to design a deformation
model suitable for both smooth and non-smooth deformation problems.

One promising model that is based on a curvature type regularizer and appears to deliver excellent
results for both problems is proposed and studied in this paper. A related work due to Fischer and
Modersitzki [21] and then refined by Henn and Witsch [37] used an approximation of the mean
curvature and obtained improved results over previous models. However, this paper investigates
the full curvature model and finds that the new model is more robust than approximated curvature
models and leads to further improvement.

Associated with the new model is the apparent difficulty in developing a fast algorithm as the
system of two coupled PDEs is highly nonlinear and of fourth order so standard application of
multigrid methods does not work. In this paper, we first propose several fixed-point type smoothers.
Then we use both local Fourier analysis and experiments to select the most effective smoother which
turns out to be a primal-dual based method. Finally we use the recommended smoother to propose a
nonlinear multigrid algorithm for the new model. Numerical tests using both synthetic and realistic
images not only confirm that the proposed curvature model is more robust in registration quality
for a wide range of applications than previous work [44, 37], but also that the proposed algorithm is
fast and accurate in delivering visually-pleasing registration results.

Key words. Deformable image registration, Nonlinear multigrid method, Variational 4th order
PDEs, Regularization, Curvature.
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1. Introduction. One of the major problems of current research and applica-
tions in image processing is image registration. It is the process of finding an optimal
geometric transformation between corresponding images. It can also be seen as the
process of overlaying two or more images of the same or similar scene taken at dif-
ferent times, from different perspectives, and/or by different imaging machineries.
Therefore, this procedure is required whenever a series of corresponding images needs
to be compared or integrated. Applications that require a registration step range
from art, astronomy, biology, chemistry, criminology, physics, remote sensing. Partic-
ularly, in medical applications, non-invasive imaging is increasingly used in almost all
stages of patient care: from disease detection to treatment guidance and monitoring.
For an overview on registration methodology, we refer to [43, 31, 44], and references
therein. This work focuses on an improved deformable image registration model in a
variational formulation.

The variational framework. Variational PDEs-based image registration mod-
els have been successfully proven to be very valuable tools in several applications,
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although much improvement is still required. A general framework of the image
registration can be formulated as follows: given two images of the same object, re-
spectively referred to as reference R and template T , we search for a vector-valued
transformation φ defined by

φ(u)(·) : Rd → Rd, φ(u)(x) : x 7→ x+ u (x)

that depends on the unknown deformation or displacement field

u : Rd → Rd, u : x 7→u (x) = (u1(x), u2(x), . . . , ud(x))
⊤.

such that the transformed template T ◦φ(u(x)) = T (x+u(x)) = T (u) becomes similar
to the reference R. Once the corresponding location φ(u(x)) = x+u (x) is calculated
for each spatial location x in the image domain Ω ⊂ Rd, an image interpolation is
required to assign the image intensity values for the transformed template T (u) at non-
grid locations within image boundaries. For locations outside the image boundaries,
the image intensities are usually set to be a constant value, typically zero [44]. It
is worth noticing that the displacement u is more intuitive than the transformation
φ because it can measure how much a point in the transformed template T (u) has
moved away from its original position in T . Here we shall restrict ourselves to scalar
or gray intensity images and model them as compactly supported functions mapping
from the image domain Ω ⊂ Rd into V ⊂ R+

0 , where d ∈ N represents the spatial
dimension of the images which is usually d = 2 (images) or d = 3 (volume data
set) with boundary ∂Ω. Without loss of generality we assume that the registration
problem is described in the two-dimensional case (d = 2) throughout this work, but
it is readily extendable to the three-dimensional case (d = 3). We also assume further
that Ω = [0, 1]2 ⊂ R2 and V = [0, 1] for 2D gray intensity images.

Assume the image intensities of R and T are comparable (i.e. in a monomodal
registration scenario), the task is to solve the minimization problem of a similarity
measure

(1.1) min
u

{
D (u) =

1

2

∫
Ω

(T (x+ u (x))−R (x))
2
dx

}
.

As is known, this problem is generally ill-posed in the sense of Hadamard. Therefore,
the minimization of D will not guarantee an unique solution. It becomes necessary to
impose a constraint on the solution u via a deformation regularizer R for penalizing
unwanted and irregular solutions using some priori knowledge. We shall adopt the
Tikhonov regularization. As a consequence, the image registration problem can be
posed as a minimization problem of the joint energy functional given by

(1.2) min
u

{Jα [u] = D (u) + αR (u)},

where the regularizer R will be discussed shortly. Here α > 0 is the regularization
parameter that compromises similarity and regularity, and u is searched over a set
U of admissible functions minimizing Jα. The set U is generally assumed to be a
linear subspace of a Hilbert space H equipped with its usual scalar product ⟨u,η⟩H =∫
Ω
u(x) ·η(x)dx =

∫
Ω
⟨u(x),η(x)⟩R2 dx where

∫
Ω
⟨·, ·⟩R2 denotes the Euclidean scalar

product. The first variation of D is given by

(1.3) δD (u;η) = ⟨f(u),η⟩H
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for all variational directions η ∈ H where

(1.4) f(u) = (f1(u), f2(u))
⊤
= (T (u)−R)∇uT (u),

is a nonlinear function that will be much used later. Here we denote by ∇uF =
(∂F/∂u1, ∂F/∂u2)

⊤ the gradient of a functional F with respect to u (x) to distinguish
from the usual gradient ∇F = (∂F/∂x1, ∂F/∂x2)

⊤. In what follows, we also use the

notation ∂xℓ
F = ∂F

∂xℓ
and ∂x1x2F = ∂2F

∂x1∂x2
.

Review of five PDE-based image registration models. Non-surprisingly,
the choice of the deformation regularizer R is very crucial for effective registration.
Different choices of R lead not only to different deformation fields but also to different
Euler-Lagrange systems of coupled nonlinear PDEs. Below we review the specific
choice of R and the subsequent system in five commonly used variational models.

1) Elastic image registration: Choosing R in (1.2) based on the linearized elastic
potential of the deformation field as given by

(1.5) Relas(u) =

∫
Ω

((µ/4)
2∑

l,m=1

(∂xl
um + ∂xmul)

2
+ (λ/2)(∇ · u)2)dx,

leads to the Euler-Lagrange system of two second-order nonlinear PDEs:{
f1 (u)− α ((λ+ 2µ)∂x1x1u1 + µ∂x2x2u1 + (λ+ µ)∂x1x2u2) = 0
f2 (u)− α ((λ+ µ)∂x1x2u1 + µ∂x1x1u2 + (λ+ 2µ)∂x2x2u2) = 0

(1.6)

(elastic model)

subject to
⟨
µ
(
∇u+ (∇u)⊤

)
+ λdiag(∇ · u),n

⟩
R2 = 0 on ∂Ω. Here µ > 0

and λ ≥ 0 are the so-called Lamé constants which reflect material properties
and n = (nx1 , nx2)

⊤
is the outward unit normal to the image boundary ∂Ω.

This model assumes that the displacement field u is relatively small; see more
details in [44] and references therein.

2) Diffusion image registration [17, 20, 40, 41, 44, 49]: ChoosingR in (1.2) based
on the L2 norm of ∇ul as given by

(1.7) Rdiff(u) =
1

2

2∑
l=1

∫
Ω

|∇ul|2 dx,

leads to the Euler-Lagrange system of two second-order nonlinear PDEs also:{
f1(u)− α∆u1 = 0
f2(u)− α∆u2 = 0

(diffusion model)(1.8)

subject to ⟨∇ul,n⟩R2 = 0 on ∂Ω. We note that this registration model can be
viewed as a special case of the elastic model when non-physical parameters,
µ = 1 and λ = −1, are taken (as the physical λ ≥ 0). Practically this model
can be solved effectively as the operators are simple.

3) Fischer–Modersitzki’s curvature image registration [21, 22, 23, 40, 41, 44]:
Choosing R in (1.2) based on an approximation of the mean curvature of the
surface of ul given by

(1.9) RFMcurv(u) =
1

2

2∑
l=1

∫
Ω

(κ̂M (ul))
2dx =

1

2

2∑
l=1

∫
Ω

(∆ul)
2dx,
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leads to the Euler-Lagrange system of two fourth-order nonlinear PDEs:{
f1(u) + α∆2u1 = 0
f2(u) + α∆2u2 = 0

(Fischer–Modersitzki ’s curvature model)(1.10)

subject to the special boundary conditions∇ul = 0, ∇∆ul = 0 on ∂Ω, for l =
1, 2. Here ul is understood as a surface in R3 represented by (x1, x2, ul(x1, x2)),
where initially ul(x1, x2) = 0, with the mean curvature of the surface of ul is
given by

κM (ul) = ∇ · ∇ul√
1+|∇ul|2

=
(1 + u2

lx1
)ulx1x1

− 2ulx1
ulx2

ulx1x2
+ (1 + u2

lx2
)ulx2x2

(1 + u2
lx1

+ u2
lx2

)3/2
.(1.11)

Observe that assuming that |∇ul| ≈ 0 yields κM (ul) ≈ κ̂M (ul) = ∆ul. Thus
the above model uses an approximation of the surface curvature in its regu-
larizer R.

4) Henn–Witsch’s curvature image registration [38, 37, 33, 35, 34]. Choosing R
based on an approximation of the sum of the squared principal curvatures
κP1(ul) and κP2(ul) of the surface of ul as well as an approximation of the
Gaussian curvature KG(ul) given by

RHWcurv(u) =
1

2

2∑
l=1

∫
Ω

((κ̂M (ul))
2 − 2K̂G(ul))dx

=
1

2

2∑
l=1

∫
Ω

(∆ul)
2 − 2(ulx1x1

ulx2x2
− u2

lx1x2
)dx,(1.12)

leads to the Euler-Lagrange system of two modified fourth-order nonlinear
PDEs: {

f1(u) + α∆2u1 = 0
f2(u) + α∆2u2 = 0

(Henn–Witsch’s curvature model)(1.13)

subject to Bl(ul) = 0 on ∂Ω with

B1(ul) = − ∂

∂n
∆ul −

∂

∂s

[
∂2ul

∂x1∂x2
(n2

1 − n2
2) +

(
∂2ul

∂2x2
− ∂2ul

∂2x1

)
nx1nx2

]
,

and B2(ul) = ∂2ul

∂n2 , where s denotes the unit tangential vector (orthogonal
to n). To see how the curvatures are approximated in (1.12), we see that
|∇ul| ≈ 0 leading to

κ2
P1
(ul) + κ2

P2
(ul) = (κP1(ul) + κP2(ul))

2 − 2κP1(ul)κP2(ul)

= (κM (ul))
2 − 2KG(ul)

≡ (∇ · ( ∇ul√
1+|∇ul|2

))2 − 2(
ulx1x1

ulx2x2
−u2

lx1x2

(1+|∇ul|2)2 )

≈ (κ̂M (ul))
2 − 2K̂G(ul)

≡ (∆ul)
2 − 2(ulx1x1

ulx2x2
− u2

lx1x2
).
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5) Total variation (TV) image registration [24, 25, 54]: Choosing R based on
the TV semi-norm of ∇ul given by

(1.14) RβTV (u) =
2∑

l=1

∫
Ω

|∇ul|β dx =
2∑

l=1

∫
Ω

√
u2
lx1

+ u2
lx2

+ βdx,

leads to the Euler-Lagrange system of two second-order nonlinear PDEs:{
f1 (u)− α∇ · ( ∇u1

|∇u1|β
) = 0

f2 (u)− α∇ · ( ∇u2

|∇u2|β
) = 0

(the TV model)(1.15)

subject to ⟨∇ul,n⟩R2 = 0 on ∂Ω. Here β > 0 is a small real parameter for
avoiding singularities when |∇ul| = 0; see more details in [24, 25, 46]. Note
that each displacement variable u1 and u2 is regularized separately in (1.14)
and therefore the decoupling of the nonlinear diffusion processes can be clearly
seen from (1.15). We also note that the rotational invariance of (1.14) is
missing because it is the non-vectorial regularization. Hence non-smooth reg-
istration problems with non-axis-aligned discontinuities are difficult to solve
with this model; see Figures 1.1−1.2 for an axis-aligned problem and 1.7−1.8
for a non-axis-aligned problem. Occasionally a pre-aligning step may be used
to improve results for this type of non-smooth registration problems.

Below we shall use the notation Relas, Rdiff, RFMcurv, RHWcurv and RβTV to
mean respectively the underlying models as shown. Here the first four models are
quite different from the fifth one.

Firstly, Relas, Rdiff, RFMcurv, and RHWcurv produce globally smooth deformation
fields, although the latter two models are better than the former two. While they are
useful for several applications, they become poor if discontinuities or steep gradients
in the deformation fields are expected (e.g. resulting from matching several moved
objects or partially occluded objects). See Figures 1.1−1.2 for a particular registration
problem where these regularization techniques yield oversmooth deformation fields.

Secondly, RβTV helps to preserve discontinuities of the deformation field in clear
contrast to the first four models; see Figures 1.3−1.4 for example, in particular the
piecewise smoothness shown in Figure 1.4 (c) at the top region. However, RβTV may
not be suitable for smooth registration problems, which are modeled better with the
first four methods.

In addition to these 5 models, the optical flow model [1, 2] is also widely used
which works the best if features have minor changes from R to T e.g. in matching
sequential frames in a video.

Review of numerical techniques for deformable image registration. Effi-
cient solution of the coupled nonlinear PDEs resulting from a variational registration
model is an important task. Various numerical techniques have been proposed and
tested, which may be broadly divided into two main categories: the so-called parabolic
and elliptic approaches. A parabolic approach (gradient descent or time marching)
introduces an artificial time variable and then determines the steady state solution
of the system of time-dependent linear PDEs (see e.g. [20, 21, 33, 41, 44, 49]), often
making use of the convenient explicit time marching schemes. Unfortunately such an
approach is often quite slow. The elliptic approach solves the PDEs directly, with the
common choice being the fixed-point (FP) iteration, Newton-type methods, multigrid
(MG) methods; see e.g. [17, 25, 26, 28, 27, 32, 36, 39, 40, 42, 55].

The structure of the systems of PDEs obtained from the first four regularizers
presented before is fundamentally different from that of the TV regularizer or the
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(a) R (b) T

(c) T (u) [Relas] (d) T (u) [Rdiff] (e) T (u) [RβTV]

(f) T (u) [RFMcurv] (g) T (u) [RHWcurv] (h) T (u) [RNewCv]

Fig. 1.1. Registered images for two rectangular blocks shown in (a) R and (b) T of size
32×32 (Example 1: results by (c) Relas with (µ, λ) = (1, 1), (d) Rdiff, (e) RβTV with β = 0.01,
(f) RFMcurv, (g) RHWcurv, (h) RNewCv with β = 0.01. A non-smooth deformation example
to show that our registration model RNewCv gives the satisfactory registration results as good
as those from RβTV, which is known to be suitable. Here the regularization parameter α was
well-selected for all registration models.

full curvature model; see Section 2 later. While the differential operators in the first
case are linear by construction, the latter ones are nonlinear and thus more difficult
to handle. In this sense, the higher-order regularizer to be proposed in this paper
shares this difficulty with the TV regularizer. Although all PDE techniques yield the
system of nonlinear PDEs anyway due to the similarity term, this difference has a
decisive fact on the design of a MG method. As is known, MG techniques (whenever
they converge) are usually much faster than all other methods including the gradient
descent approaches, commonly used in image processing applications. However the
convergence of MG techniques is not always possible for a general problem. Therefore,
developing convergent MGs for a nonlinear problem is of general interest. As far
as our registration problems are concerned, the second order models can be solved
efficiently using either a linear multigrid method within a fixed-point framework or
a full approximation scheme [6, 8, 50, 52, 53] based nonlinear multigrid (FAS-NMG)
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(a) Relas (b) Rdiff
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(c) RβTV (d) RFMcurv
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(e) RHWcurv (f) RNewCv
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Deformation field u = (u1, u2)
⊤

Fig. 1.2. Deformation fields for the non-smooth registration problem shown in Figure
1.1 (a)− (b) (Example 1): results by (a) Relas with (µ, λ) = (1, 1), (b) Rdiff, (c) RβTV with
β = 0.01, (d) RFMcurv, (e) RHWcurv, and (f) RNewCv with β = 0.01. The exact deformation
field is given by a shift of the upper rectangular to the right and a shift of the lower rectangular
to the left; c.f. Figure 1.1 (a)− (b).

method. Refer to [17, 25, 26, 28, 27, 32, 36, 33, 39, 40, 49, 55] and references therein.
However, the effective solution of fourth order registration problems is much more
challenging. Nevertheless a linear multigrid method within a fixed-point framework
can be developed for the particular fourth order systems (1.10) and (1.13); see [28,
33, 40]. As we shall demonstrate, the new fourth order model to be proposed here
cannot be solved by existing methods. We shall present our new algorithms shortly.
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(a) R (b) T

(c) T (u) [Relas] (d) T (u) [Rdiff] (e) T (u) [RβTV]

(f) T (u) [RFMcurv] (g) T (u) [RHWcurv] (h) T (u) [RNewCv]

Fig. 1.3. Registered images for X-ray images shown in (a) R and (b) T of size 128× 128
(Example 2): results by (c) Relas with (µ, λ) = (1, 1), (d) Rdiff, (e) RβTV with β = 0.01,
(f) RFMcurv, (g) RHWcurv, (h) RNewCv. A smooth deformation example to show that our
registration model RNewCv gives the satisfactory registration results as good as those from
RFMcurv and RHWcurv, which are known to be suitable. Here the regularization parameter α
was well-selected for all registration models.

The rest of the paper is organized as follows. Section 2 first presents a new PDE-
based image registration model based on a curvature regularizer suitable for both
smooth and non-smooth deformation problems and then discusses unilevel iterative
numerical methods for it in Section 3. Section 4 presents a fast multigrid approach
after first analyzing some iterative solvers as potential smoothers. Experimental re-
sults from real images illustrating the improved results from the new model and the
efficiency from FAS-NMG are shown in Section 5 before conclusions in Section 6.

2. A new PDE-based image registration model. Motivated by the attrac-
tive properties of the Fischer–Modersitzki’s curvature registration model (1.9) im-
proving on previous first order models (1.5) and (1.7), we consider an alternative
formulation that uses the full curvature without approximations and hope to achieve
further improvements in terms of registration quality.

Our main aim is to design a registration model or regularization energy, which
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(c) RβTV (d) RFMcurv
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(e) RHWcurv (f) RNewCv
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Deformation field u = (u1, u2)
⊤

Fig. 1.4. Deformation fields for the smooth registration problem shown in Figure 1.3
(a) − (b) (Example 2): results by (a) Relas with (µ, λ) = (1, 1), (b) Rdiff, (e) RβTV with
β = 0.01, (d) RFMcurv, (e) RHWcurv, and (f) RNewCv. (c) shows the piecewise constant
smoothness at the top region by RβTV.

is able to solve not only smooth and non-smooth registration problems, but also to
allow affine-linear transformations. To this end, instead of using κM (ul) from (1.11),
we consider the curvature of the level lines:

(2.1) κ(ul) = ∇ · ∇ul

|∇ul|β =
(β + u2

lx1
)ulx1x1

− 2ulx1
ulx2

ulx1x2
+ (β + u2

lx2
)ulx2x2

(β + u2
lx1

+ u2
lx2

)3/2

and propose the following regularization functional:

(2.2) RNewCv(u) =
2∑

l=1

∫
Ω

Φ(κ(ul))dx.

where Φ(s) = 1
2s

2 is mainly considered for developing a novel regularization energy
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(a) u1 (β = 1) (b) u1 (β = 0.01)
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Fig. 1.5. Surface plots of u1 for the non-smooth registration problem shown in Figure
1.1 (a) − (b) (Example 1): results by RNewCv with (a) β = 1 and (b) β = 0.01. (a) and (b)
show smoothing effects on the surface of u1 at two different values of β.

in this work and the general notation in (2.2) allows for other choices, e.g.

Φ(s) =

{
|s|, s > 1
s2, s ≤ 1

leading to similar registration qualities for either smooth or non-smoother registration
problems. The registration model (1.2) with the regularization energy (2.2) yields to
the Euler-Lagrange system of two coupled nonlinear PDEs:

f1(u) + α∇ · ( 1

|∇u1|β
∇κ(u1)−

∇u1 · ∇κ(u1)

(|∇u1|β)3
∇u1︸ ︷︷ ︸

V 1

) = 0

f2(u) + α∇ · ( 1

|∇u2|β
∇κ(u2)−

∇u2 · ∇κ(u2)

(|∇u2|β)3
∇u2︸ ︷︷ ︸

V 2

) = 0

(new curvature-type model)(2.3)

or in a compact notation{
f1(u) + α∇ · V 1 = 0
f2(u) + α∇ · V 2 = 0

(new curvature-type model)(2.4)

where the nonlinear fitting terms fl are defined in (1.4). Similar to those in [21], we
chose the following boundary conditions

(2.5) ⟨∇ul,n⟩R2 = ⟨∇κ(ul),n⟩R2 = 0 on ∂Ω

in this paper.
Our particular choice of regularizer in (2.2) has several advantages. Firstly the

kernel of the proposed regularization energy (2.2) consists only of affine-linear trans-
formations. That is, RNewCv(Ax + b) = 0 for A ∈ R2×2 and b ∈ R2. Hence the
proposed energy RNewCv is invariant under planar rotation and translation. In other
words, it shares this attractive property with the Fischer–Modersitzki’s and Henn–
Witsch’s curvature approach. However, due to the adopted boundary conditions (2.5),
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(a) R (b) T

(c) T (u) [RNewCv] (d) u

0 0.5 1

0

0.5

1

Fig. 1.6. Results by RNewCv for the synthetic example given by [37]. Top to bottom from
left to right: reference (a), template (b), registered image (c), associated deformation field
(d). The registration problem to consider the effect of the underlying boundary conditions.
Clearly, the affine-linear displacement is not penalized in the interior of the image domain.

the solution u = (u1, u2)
⊤ of the Euler-Lagrange system (2.3) is restricted to a par-

ticular subset of H2(Ω)×H2(Ω). In this case,{
ul ∈ H2(Ω),

∂ul

∂n
=

∂κ(ul)

∂n
= 0, l = 1, 2

}
⊂ H2(Ω)×H2(Ω).

Consequently the affine-linear transformations are penalized by the underlying bound-
ary conditions (zero Neumann boundary conditions) and only constant transforma-
tions belong to the kernel of (2.3). In order to analyze or study the effect of the
boundary conditions in the new PDE model (2.3), the synthetic example given by [37]
was considered. As shown in Figure 1.6, the template T is a rotated and translated
version of the reference R. Therefore, the exact solution to produce a well-matched
image is not a constant transformation. The result presented in Figure 1.6 (c) shows
that the new PDE model (2.3) succeeds in completely matching the given images.
Moreover, it is shown by Figure 1.6 (d) that the effect of the undesired boundary
conditions is much less noticeable, in particular in the interior of the image domain.
Note that we also consider the effect of the boundary conditions for the case where
the required geometric transformation is very complex; see Example 3 and its results
in Section 5.1 later.

Secondly the new PDE model (2.3) preserves discontinuities of u because the dif-

fusion coefficients 1
|∇ul|β → 0 and ∇ul·∇κ(ul)

|∇ul|3β
→ 0 when |∇ul|β → ∞. In other words,
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(a) R (b) T

(c) T (u) [RβTV] (d) T (u) [RNewCv]

Fig. 1.7. Registered images for two objects shown in (a) R and (b) T of size 32 × 32:
results by (c) RβTV with β = 0.01, (d) RNewCv with β = 0.01. The non-smooth registration
problem with non-axis-aligned discontinuities to show that the TV model (1.15) and the new
PDE model (2.3) are not rotationally invariant.

for non-smooth registration problems the new PDE model preserves discontinuities of
u by reducing or stopping the diffusion (smoothing) process in inhomogeneous regions
presenting large gradients. Note also that the proposed regularization energy RNewCv

reduces to RFMcurv in (1.9) if |∇ul| ≈ 0 and we take β = 1.

Thirdly the role of the lifting parameter β for RβTV and RNewCv is not only to
avoid division by zero in the numerical implementation, but can also be used to adjust
the ellipticness of the PDE models (1.15) and (2.3). For instance, β = 1 results in
a more elliptic PDE and therefore the recovered deformation fields are more smooth
than those of a small β; see Figure 1.9 for the results by RβTV and Figure 1.5 by
RNewCv with different values of β. Although this can be used to approximate first-
order homogeneous diffusion processes in (1.15) for the TV model, a higher-order PDE
model like the one we are proposing in (2.3) is still needed to obtain correct solutions
for difficult registration problems as we will show through Example 3 in Section 5.1; see
Figures 5.1−5.3. However, β ≪ 1 is required for non-smooth registration problems.

Finally, although any linear combination of a smooth and a non-smooth regu-
larization energy can solve both smooth and non-smooth registration problems, a
regularization energy based on higher-order derivatives like (2.2) is required for reg-
istration problems where an affine-linear pre-registration step is unavoidable.

Remark 1. Similar to the TV model (1.15) and most other variational models
for registration [44], the new PDE model (2.3) is not rotationally invariant. This
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(a) RβTV (b) RNewCv
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1.2
0 0.5 1

−0.2
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0.8
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Deformation field u = (u1, u2)
⊤

Fig. 1.8. Deformation fields for the non-smooth registration problem shown in Figure
1.7 (a) − (b): results by (a) RβTV with β = 0.01, (b) RNewCv with β = 0.01. The exact
deformation field is given by a shift of the upper object to the bottom-right corner and a shift
of the lower object to the top-left corner. Clearly, the TV model (1.15) and the new PDE
model (2.3) are not rotationally invariant, c.f. Figures 1.2.

is because the nonlinear diffusion processes resulting from the Gâteaux derivative of
RNewCv do not enforce coupling between the displacement variables u1 and u2. As
already mentioned in Section 1, it may prevent to obtain a good registration in some
situations, e.g non-smooth registration problems with non-axis-aligned discontinuities.
Two registration problems and their results as shown in Figures 1.1−1.2 and 1.7−1.8
confirm this fact. A possible way to solve this problem that we will explore in the short
future is to use vectorial regularizations similar to those in [5, 7, 11] for vector-valued
image denoising.

From now on we shall use the notation RNewCv to mean the full curvature model
(2.2) and the numerical solutions of (2.4) will be discussed next.

3. Numerical solution of the PDE system (2.4). While variational models
have already made useful contributions to high-resolution image processing, a remain-
ing major challenge is to implement fast and stable numerical algorithms for solving
various associated Euler-Lagrange systems (of nonlinear PDEs). In this section we
briefly review possible numerical methods that have been studied for other models
and could be considered for solving (2.4). To proceed, denote the discrete domain
consisting of N = n2 cells of size h× h by

Ωh = {x ∈ Ω|x = (x1i , x2j )
⊤ = ((2i− 1)h/2, (2j − 1)h/2), 1 ≤ i, j ≤ n}

throughout this section where h = 1/n denotes the grid space.

Finite difference discretization. We shall use a cell-centered finite difference
approximation for the underlying PDEs. For simplicity, let (uh

l )i,j = uh
l (x1i , x2j )

denote the grid functions for l = 1, 2. After discretizing (2.4), the grid system at
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(a) (b)

ε̃3 = 0.16 ε̃3 = 0.11
(c) (d)
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β = 0.01 β = 1

Fig. 1.9. Registered images and associated deformation fields for the registration problem
(the smooth case) shown in Figure 1.3 (a)− (b) by RβTV with different values of β. Top:
registered images by (a) β = 0.01 and (b) β = 1. Middle: associated deformation fields at
(c) β = 0.01 and (d) β = 1. Bottom: associated deformation fields at top regions of (c)
and (d). Clearly, a suitably selected β can be used to approximate first-order homogeneous
diffusion processes in (1.15) and improve results of RβTV. The associated deformation fields
determined by β = 1 is more smoother than those of β = 0.01. Recall that ε̃3 means the
relative reduction of the dissimilarity defined in Algorithm 2.

(i, j) ∈ Ωh is given by

(3.1)



fh
1 (u

h
1 , u

h
2 )i,j + α∇ · (V h

1 )i,j︸ ︷︷ ︸
Nh

1 (u
h)i,j

= 0

fh
2 (u

h
1 , u

h
2 )i,j + α∇ · (V h

2 )i,j︸ ︷︷ ︸
Nh

2 (u
h)i,j

= 0

i.e.

{
N h

1 (u
h)i,j = 0,

N h

2 (u
h)i,j = 0,
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subject to the discrete boundary conditions,

(3.2)


(uh

l )i,1 = (uh
l )i,2, (uh

l )i,n = (uh
l )i,n−1,(

uh
l

)
1,j

= (uh
l )2,j , (uh

l )n,j = (uh
l )n−1,j ,

κ(uh
l )i,1 = κ(uh

l )i,2, κ(uh
l )i,n = κ(uh

l )i,n−1,
κ(uh

l )1,j = κ(uh
l )2,j , κ(uh

l )n,j = κ(uh
l )n−1,j ,

with the following notation for the fitting terms fl from (1.4)

fh
1

(
uh
1 , u

h
2

)
i,j

= (Th∗

i,j −Rh
i,j)((T

h∗

i+1,j − Th∗

i−1,j)/ (2h)),

fh
2

(
uh
1 , u

h
2

)
i,j

= (Th∗

i,j −Rh
i,j)((T

h∗

i,j+1 − Th∗

i,j−1)/ (2h)),

Th∗

i,j = Th(i+
(
uh
1

)
i,j

, j +
(
uh
2

)
i,j
),

(uh)i,j = ((uh
1 )i,j , (u

h
2 )i,j)

⊤.

Here we approximate the term ∇ · (V h
l )i,j as follows:

(3.3) (
∂V 1

l

∂x1
)i,j + (

∂V 2
l

∂x2
)i,j =

(V 1
l )i+1,j − (V 1

l )i,j
h

+
(V 2

l )i,j+1 − (V 2
l )i,j

h
.

Therefore, we need to calculate V 1
l at the grid points (i+1, j) and (i, j) and V 2

l at the
grid points (i, j+1) and (i, j). Below we list the approximation used in our numerical
realizations for estimating V 1

l at the grid point (i, j):

κ(uh
l )i,j =

δ−x1

h

 δ+x1
(uh

l )i,j/h√
β + (δ+x1(u

h
l )i,j/h)

2 + (δ+x2(u
h
l )i,j/h)

2


+
δ−x2

h

 δ+x2
(uh

l )i,j/h√
β + (δ+x1(u

h
l )i,j/h)

2 + (δ+x2(u
h
l )i,j/h)

2

 ,

(uh
lx1

)i,j = δ+x1

(
uh
l

)
i,j

/h,

(uh
lx2

)i,j = δ+x2

(
uh
l

)
i,j

/h,

δ±x1

(
uh
l

)
i,j

= ±
(
(uh

l )i±1,j − (uh
l )i,j

)
,

δ±x2

(
uh
l

)
i,j

= ±
(
(uh

l )i,j±1 − (uh
l )i,j

)
,

|∇ul|β =
√
β + (δ+x1(u

h
l )i,j/h)

2 + (δ+x2(u
h
l )i,j/h)

2,

((κ(ul))x1)i,j = [κ(ul)i+1,j − κ(ul)i,j ]/h,

((κ(ul))x2)i,j = [κ(ul)i,j+1 − κ(ul)i,j ]/h.

Discretization for V 1
l at the grid point (i + 1, j) and V 2

l at the grid points (i, j + 1)
and (i, j) can be given similarly.

3.1. Method 1 – a semi-implicit time marching (SITM) method. As
discussed in Section 1, the main idea of time marching approaches is to introduce
an artificial time variable t and compute the steady-state solution of the system of
time-dependent PDEs of the form:{

∂tu1(x; t) +N 1(u(x; t)) = 0
∂tu2(x; t) +N 2(u(x; t)) = 0
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where

N l(u(x; t)) = fl(u(x; t)) + α∇ · ( 1

|∇ul(x; t)|β
∇κ(ul(x; t))

− ∇ul(x; t) · ∇κ(ul(x; t))

|∇ul(x; t)|3β
∇ul(x; t)).

In order to overcome the nonlinearity of N l, the so-called explicit scheme can be
conveniently applied, and the iteration is then given by{

∂tu1(x, tk+1) = −N 1(u(x, tk))
∂tu2(x, tk+1) = −N 2(u(x, tk))

k = 0, 1, 2, 3, ...

where u(x, t0) is some initial displacement field, typically u(x, t0) = 0.
For the time discretization we introduce a time-step τ > 0, and update u at the

(k + 1)th time-step by{
u1(x, tk+1) = u1(x, tk)− τN 1(u(x, tk))
u2(x, tk+1) = u2(x, tk)− τN 2(u(x, tk))

which we simply denote by

(3.4)

{
(u

(k+1)
1 )i,j = (u

(k)
1 )i,j − τN 1(u

(k))i,j ]

(u
(k+1)
2 )i,j = (u

(k)
2 )i,j − τN 2(u

(k))i,j ]
,

where the symbol h used in the previous section is dropped for simplicity. We note
that the above time-marching based fourth-order numerical scheme for (2.4) is easy
to implement, but very slow to converge because the time-step τ is required to be
proportional to the fourth power of the grid spacing for stability reasons.

In order to speed up the convergence of (3.4), we may increase implicitness via
linearizing nonlinear ‘coefficients’ in the associated system and define the iteration
step as follows:{

(u
(k+1)
1 )i,j = (u

(k)
1 )i,j − τN lin

1 (u(k+1))i,j

(u
(k+1)
2 )i,j = (u

(k)
2 )i,j − τN lin

2 (u(k+1))i,j
i.e.

{
A1(u

(k)
1 )(u

(k+1)
1 )i,j = B1(u

(k))i,j ,

A2(u
(k)
2 )(u

(k+1)
2 )i,j = B2(u

(k))i,j ,

or in full details

(3.5)



−ατ∇ · (∇u
(k)
1 · ∇κ(u

(k)
1 )

|∇u
(k)
1 |3β

∇u
(k+1)
1 )i,j + (u

(k+1)
1 )i,j︸ ︷︷ ︸

A1(u
(k)
1 )(u

(k+1)
1 )i,j

=

(u
(k)
1 )i,j − τ [f1(u

(k))i,j + α∇ · ( 1

|∇(u
(k)
1 )i,j |β

∇κ(u
(k)
1 )i,j ]︸ ︷︷ ︸

B1(u(k))i,j

−ατ∇ · (∇u
(k)
2 · ∇κ(u

(k)
2 )

|∇u
(k)
2 |3β

∇u
(k+1)
2 )i,j + (u

(k+1)
2 )i,j︸ ︷︷ ︸

A2(u
(k)
2 )(u

(k+1)
2 )i,j

=

(u
(k)
2 )i,j − τ [f2(u

(k))i,j + α∇ · ( 1

|∇u
(k)
2 |β

∇κ(u
(k)
2 )i,j ]︸ ︷︷ ︸

B2(u(k))i,j
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which is a semi-implicit time marching scheme for (2.4). Here we denote by

N lin

l (u(k+1))i,j = fl(u
(k))i,j + α∇ · ( 1

|∇u
(k)
l |β

∇κ(u
(k)
l ))

−
∇u

(k)
l · ∇κ(u

(k)
l )

|∇u
(k)
l |3β

∇u
(k+1)
l )i,j .(3.6)

the frozen operator, linearized at a grid point (i, j). We note that this frozen operator
allows us to solve (2.4) as the system of two second-order linearized PDEs at each
time step k because the coefficients from the higher-order derivatives are frozen in the
associated discrete system.

3.2. Method 2 – a stabilized semi-implicit time marching (SSITM)
method. Although this above idea of linearization via semi-implicitness seems rea-
sonable, we found experimentally that the numerical scheme (3.5) (though a bit better
than the explicit scheme (3.4)) is only stable when τ is small and small τ will lead
to slow convergence in the overall registration process. The reason for this stability

problem is that the discrete system has a highly nonlinear coefficient
∇u

(k)
l ·∇κ(u

(k)
l )

|∇u
(k)
l |3β

that can easily change its sign for large τ so neither positive-definiteness nor diago-
nal dominance can be guaranteed for numerical schemes of the underlying system (a
matrix form of (3.5))[

A1(u
(k)
1 ) 0

0 A2(u
(k)
1 )

](
u
(k+1)
1

u
(k+1)
2

)
=

(
B1(u

(k))
B2(u

(k))

)
.

In order to improve stability, the stabilizing terms based on the so-called convexity-
splitting technique developed in [9, 10, 18, 19] may be added as follows:

(3.7)



γ1τF(u
(k+1)
1 )i,j − ατ∇ · (∇u

(k)
1 ·∇κ(u

(k)
1 )

|∇u
(k)
1 |3β

∇u
(k+1)
1 )i,j + (u

(k+1)
1 )i,j

= γ1τF(u
(k)
1 )i,j + (u

(k)
1 )i,j − τ [f1(u

(k))i,j + α∇ · ( 1

|∇u
(k)
1 |β

∇κ(u
(k)
1 )i,j ]

γ2τF(u
(k+1)
2 )i,j − ατ∇ · (∇u

(k)
2 ·∇κ(u

(k)
2 )

|∇u
(k)
2 |3β

∇u
(k+1)
2 )i,j + (u

(k+1)
2 )i,j

= γ2τF(u
(k)
2 )i,j + (u

(k)
2 )i,j − τ [f2(u

(k))i,j + α∇ · ( 1

|∇u
(k)
2 |β

∇κ(u
(k)
2 )i,j ]

where γl > 0 and the stabilizing term F(ul) is some appropriate partial differential
operator arising from the minimization of a convex functional, such as

∫
Ω
|∇ul|dx or∫

Ω
|∇ul|2dx.
Note that 1

|∇u
(k)
l |β

→ 1 as |∇u
(k)
l | → 0 for smooth problems (β = 1) and 1

|∇u
(k)
l |β

→

0 as ∇u
(k)
l | → ∞ for non-smooth problems (β < 1). Therefore, F(u

(k+1)
l )i,j =

−∇ · (∇u
(k+1)
l

|∇u
(k)
l |β

)i,j resulting from
∫
Ω
|∇ul|dx smooths u isotropically inside homo-

geneous regions corresponding to weak gradients and preserves discontinuities of u
in inhomogeneous regions representing large gradients by reducing or stopping dif-

fusion process. As a consequence, F(u
(k+1)
l )i,j = −∇ · (∇u

(k+1)
l

|∇u
(k)
l |β

)i,j appears to be

an appropriate choice for both smooth and non-smooth registration problems, while

F(u
(k+1)
l )i,j = −∆(u

(k+1)
l )i,j resulting from

∫
Ω
|∇ul|2dx is only suitable for smooth

cases.
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3.3. Method 3 – fixed-point methods. As is well-known [51, 15, 16], fixed-
point (FP) methods are usually faster than time marching approaches when appro-
priate FP schemes are applied. To try this idea, we use a similar linearization to

the above (3.7) without γl, τ plus a linearized version of fl(u
[ν+1]
1 , u

[ν+1]
2 ) via Taylor’s

expansion as follows

fl(u
[ν+1]
1 , u

[ν+1]
2 ) ≈ fl(u

[ν]
1 , u

[ν]
2 ) + ∂u1fl(u

[ν]
1 , u

[ν]
2 )δu

[ν]
1 + ∂u2fl(u

[ν]
1 , u

[ν]
2 )δu

[ν]
2 ,

= fl(u
[ν]
1 , u

[ν]
2 ) + σ

[ν]
l1 δu

[ν]
1 + σ

[ν]
l2 δu

[ν]
2 ,

= fl(u
[ν]
1 , u

[ν]
2 ) + σ

[ν]
l1 (u

[ν+1]
1 − u

[ν]
1 ) + σ

[ν]
l2 (u

[ν+1]
2 − u

[ν]
2 )(3.8)

where

σ
[ν]
l1 = ∂u1fl(u

[ν]
1 , u

[ν]
2 ) = (∂ul

T (u[ν]))(∂u1T (u
[ν])) + (T (u[ν])−R)(∂u1ul

T (u[ν]))

and

σ
[ν]
l2 = ∂u2fl(u

[ν]
1 , u

[ν]
2 ) = (∂ul

T (u[ν]))(∂u2T (u
[ν])) + (T (u[ν])−R)(∂u2ul

T (u[ν])).

Then a FP scheme for (2.4) can be given by (for ν = 0, 1, 2, 3, ...)

(3.9)



−α∇ · (∇u
[ν]
1 ·∇κ(u

[ν]
1 )

|∇u
[ν]
1 |3β

∇u
[ν+1]
1 )i,j + (σ

[ν]
11 )i,j(u

[ν+1]
1 )i,j

+(σ
[ν]
12 )i,j(u

[ν+1]
2 )i,j = (σ

[ν]
11 )i,j(u

[ν]
1 )i,j + (σ

[ν]
12 )i,j(u

[ν]
2 )i,j

−f1(u
[ν])i,j − α∇ · ( 1

|∇u
[ν]
1 |β

∇κ(u
[ν]
1 ))i,j ,

−α∇ · (∇u
[ν]
2 ·∇κ(u

[ν]
2 )

|∇u
[ν]
2 |3β

∇u
[ν+1]
2 )i,j + (σ

[ν]
22 )i,j(u

[ν+1]
2 )i,j

+(σ
[ν]
21 ))i,j(u

[ν+1]
1 )i,j = (σ

[ν]
21 )i,j(u

[ν]
1 )i,j + (σ

[ν]
22 )i,j(u

[ν]
2 )i,j

−f2(u
[ν])i,j − α∇ · ( 1

|∇u
[ν]
2 |β

∇κ(u
[ν]
2 ))i,j .

Here σ
[ν]
l1 , σ

[ν]
l2 are refined as follows. We first see that σ

[ν]
21 = σ

[ν]
12 . In order to have a

simple and stable numerical scheme as noted in several works in different contexts; see

e.g. [28], [40] and [44, p.56-79], we approximate σ
[ν]
lm by σ

[ν]
lm = (∂ul

T (u[ν]))(∂umT (u[ν]))
for m = 1, 2 since the image difference T (u[ν])− R becomes small for well registered
images and so the second-order derivatives need not be evaluated.

Unfortunately, we found experimentally that the above FP scheme is neither
stable nor convergent. This difficulty arises from the unbalanced terms present in the
resulting discrete system. For example, fixing β = 10−2 in the flat regions where

|∇ul| = 0 reduces the diffusion coefficient ∇ul·∇κ(ul)
|∇ul|3β

≈ O(106) compared with that of

only 1
|∇ul|β ≈ O(102) for the TV restoration case [46, 51].

3.4. Method 4 – a stabilized fixed-point (SFP) method. In order to im-
prove the FP scheme (3.9), the convexity-splitting idea [9, 18, 19] is again considered
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by adding stabilized terms as follows:

(3.10)



γ1F(u
[ν+1]
1 )i,j − α∇ · (∇u

[ν]
1 ·∇κ(u

[ν]
1 )

|∇u
[ν]
1 |3β

∇u
[ν+1]
1 )i,j + (σ

[ν]
11 )i,j(u

[ν+1]
1 )i,j

+(σ
[ν]
12 )i,j(u

[ν+1]
2 )i,j = γ1F(u

[ν]
1 )i,j + (σ

[ν]
11 )i,j(u

[ν]
1 )i,j

+(σ
[ν]
12 )i,j(u

[ν]
2 )i,j − f1(u

[ν])i,j ,−α∇ · ( 1

|∇u
[ν]
1 |β

∇κ(u
[ν]
1 ))i,j

γ2F(u
[ν+1]
2 )i,j − α∇ · (∇u

[ν]
2 ·∇κ(u

[ν]
2 )

|∇u
[ν]
2 |3β

∇u
[ν+1]
2 )i,j + (σ

[ν]
22 )i,j(u

[ν+1]
2 )i,j

+(σ
[ν]
21 ))i,j(u

[ν+1]
1 )i,j = γ2F(u

[ν]
2 )i,j + (σ

[ν]
21 )i,j(u

[ν]
1 )i,j

+(σ
[ν]
22 )i,j(u

[ν]
2 )i,j − f2(u

[ν])i,j − α∇ · ( 1

|∇u
[ν]
2 |β

∇κ(u
[ν]
2 ))i,j

and we shall name this resulting FP scheme as the stabilized fixed-point (SFP) method.

As mentioned in Method 2, we also found that F(u
[ν+1]
l ) = −∇ · (∇u

[ν+1]
l

|∇u
[ν]
l |β

) is a

suitable choice for both smooth and non-smooth registration problems. Therefore,
our SFP method can be explicitly expressed as follows:

(3.11) NSFP[u[ν]]u[ν+1] = GSFP[u[ν]]

where

NSFP[u[ν]] =

[
−αLSFP

1 [u
[ν]
1 ]i,j (σ

[ν]
12 )i,j

(σ
[ν]
21 )i,j −αLSFP

2 [u
[ν]
2 ]i,j

]
,

GSFP[u[ν]] =

(
(ĝ1)

[ν]
i,j

(ĝ2)
[ν]
i,j

)

(ĝl)
[ν]
i,j = −γl∇ · (

∇u
[ν]
l

|∇u
[ν]
l |β

)i,j + (σ
[ν]
l1 )i,j(u

[ν]
1 )i,j + (σ

[ν]
l2 )i,j(u

[ν]
2 )i,j − fl(u

[ν])i,j

− α∇ · ( 1

|∇u
[ν]
l |β

∇κ(u
[ν]
l ))i,j

and

−αLSFP
l [u

[ν]
l ]i,j(u

[ν+1]
l )i,j = −α∇ · (

Dl(u
[ν]
l )︷ ︸︸ ︷

(
γl/α

|∇u
[ν]
l |β

+
∇u

[ν]
l · ∇κ(u

[ν]
l )

|∇u
[ν]
l |3β

)∇u
[ν+1]
l )i,j

+ (σ
[ν]
ll )i,j(u

[ν+1]
l )i,j .

In each SFP outer iteration ν, a pointwise collective Gauss-Seidel (PCGS) relax-
ation method is used as the inner solver in our numerical scheme to solve approxi-
mately the associated linear system. Here the kth PCGS step is given by

(3.12) (u[ν+1])
[k+1]
i,j =

(
NSFP[u[ν]]i,j

)−1

(GSFP[u[ν]])
[k+1/2]
i,j ,

where

NSFP[u[ν]]i,j =

[
α

(Σ
[ν]
1 )i,j
h2 + (σ

[ν]
11 )i,j (σ

[ν]
12 )i,j

(σ
[ν]
21 )i,j α

(Σ
[ν]
2 )i,j
h2 + (σ

[ν]
22 )i,j

]
,
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(GSFP[u[ν]])
[k+1/2]
i,j =

(
(ĝ1)

[ν]
i,j + α(Σ

[ν]

1 )i,j(u
[ν+1]
1 )

[k+1/2]
i,j

(ĝ2)
[ν]
i,j + α(Σ

[ν]

2 )i,j(u
ν+1]
2 )

[k+1/2]
i,j

)
,

(Σ
[ν]
l )i,j = (2Dl3(u

[ν]
l )i,j +Dl1(u

[ν]
l )i,j +Dl2(u

[ν]
l )i,j),

(Σ
[ν]

l )i,j(u
[ν+1]
l )

[k+1/2]
i,j = (1/h2)

(
(Dl3(u

[ν]
l )i,j)(u

[ν+1]
l )

[k]
i+1,j + (Dl1(u

[ν]
l )i,j)(u

[ν+1]
l )

[k+1]
i−1,j

+(Dl3(u
[ν]
l )i,j)(u

[ν+1]
l )

[k]
i,j+1 + (Dl2(u

[ν]
l )i,j)(u

[ν+1]
l )

[k+1]
i,j−1

)
Dl1(u

[ν]
l )i,j = Dl(u

[ν]
l )i−1,j , Dl2(u

[ν]
l )i,j = Dl(u

[ν]
l )i,j−1, Dl3(u

[ν]
l )i,j = Dl(u

[ν]
l )i,j .

We remark that other iterative techniques such as the line relaxation techniques or
the preconditioned conjugate gradient method may also be used as inner solvers.
However, the PCGS relaxation method appears a cheaper option. Finally, we note

that the stabilizing terms −γl∇ · (∇u
[ν+1]
l

|∇u
[ν]
l |β

) and σ
[ν]
ll lead the system (3.11) to be

diagonally dominant and therefore using GS iterations is appropriate [45, 47, 16].

3.5. Method 5 – a primal-dual fixed-point (PDFP) method. In designing
alternative methods for (2.4), we note that the previous four methods tackle the
nonlinearity in some direct way. Below we consider an indirect way of treating the
nonlinearity by reducing the high-order derivatives. In fact, high-order PDEs (in
the context of mixed finite elements or in the denoising model [14]) as well as high-
order ordinary differential equations are often reduced to low orders before numerical
solution.

In order to apply this idea to (2.4), our first step is to introduce suitable inter-
mediate variables (which we shall call dual variables)

v1 = −κ(u1) = −∇ · ∇u1

|∇u1|β and v2 = −κ(u2) = −∇ · ∇u2

|∇u2|β ,

leading to the equivalent system of four second-order nonlinear PDEs given by

(3.13)


−∇ · ∇u1

|∇u1|β − v1 = g1

−∇ · ∇u2

|∇u2|β − v2 = g2

f1 (u)− α∇ · ( ∇v1

|∇u1|β +
∇u1·(−∇v1)

|∇u1|3β
∇u1) = g3

f2 (u)− α∇ · ( ∇v2
|∇u2|β + ∇u2·(−∇v2)

|∇u2|3β
∇u2) = g4

subject to the boundary conditions transferred into ∇ul = 0 and ∇vl = 0 for l = 1, 2
where gl̂ = 0 (l̂ = 1, . . ., 4). The next step is to linearize (3.13) by a FP scheme as
follows:

(3.14) NPDFP[z[ν]]z[ν+1] = GPDFP[z[ν]]

where linearization for fl(u
[ν+1]
1 , u

[ν+1]
2 ) is as in (3.8), z[ν+1] = (z

[ν+1]
1 , z

[ν+1]
2 , z

[ν+1]
3 ,

z
[ν+1]
4 )⊤ = (u

[ν+1]
1 , u

[ν+1]
2 , v

[ν+1]
1 , v

[ν+1]
2 )⊤,

NPDFP[z[ν]] =


−L̃1[u

[ν]
1 ] 0 −1 0

0 −L̃2[u
[ν]
2 ] 0 −1

σ
[ν]
11 σ

[ν]
12 −αL̃1[u

[ν]
1 ] 0

σ
[ν]
21 σ

[ν]
22 0 −αL̃2[u

[ν]
2 ]

 ,
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GPDFP[z[ν]] = (g1, g2, ĝ
[ν]
3 , ĝ

[ν]
4 )⊤,

L̃l[u
[ν]
l ]z

[ν+1]

l̂
= ∇ · (

D̃l(u
[ν]
l )︷ ︸︸ ︷

1

|∇u
[ν]
l |β

∇z
[ν+1]

l̂
) (z

[ν+1]

l̂
= u

[ν+1]
l or v

[ν+1]
l ),

ĝ
[ν]
3 = g3 − f1(u

[ν]
1 , u

[ν]
2 ) + σ

[ν]
11 u

[ν]
1 + σ

[ν]
12 u

[ν]
2 + α∇ · (

∇u
[ν]
1 ·(−∇v

[ν]

1)

|∇u
[ν]
1 |3β

∇u
[ν]
1 ),

ĝ
[ν]
4 = g4 − f2(u

[ν]
1 , u

[ν]
2 ) + σ

[ν]
22 u

[ν]
2 + σ

[ν]
21 u

[ν]
1 + α∇ · (

∇u
[ν]
2 ·(−∇v

[ν]

2)

|∇u
[ν]
2 |3β

∇u
[ν]
2 ).

Here discretization of (3.14) is done as in Section 3. We shall call this numerical scheme
a primal-dual fixed-point(PDFP) method because it includes the primal variables u1,
u2 and the dual variables v1, v2 in a FP scheme. We remark that other choices of
selecting the dual variables for (2.4) were also tested, but did not work well. For
example, introducing the new variables

−→v 1 =
1

|∇u1|β
∇κ(u1)−

∇u1 · ∇κ(u1)

|∇u1|3β
∇u1

and

−→v 2 =
1

|∇u2|β
∇κ(u2)−

∇u2 · ∇κ(u2)

|∇u2|3β
∇u2

can only reduce the resulting PDEs to the third-order systems. We note further that
in our numerical scheme each PDFP outer step is solved using a PCGS relaxation
method as the inner linear solver (as with Method 4 of Section 3.4). Here, such an
inner solution step is given by

(3.15) (z[ν+1])
[k+1]
i,j = (NPDFP[z[ν]]i,j)

−1(GPDFP[z[ν]])
[k+1/2]
i,j ,

where

NPDFP[z[ν]]i,j =


(Σ̃

[ν]
1 )i,j
h2 0 −1 0

0
(Σ̃

[ν]
2 )i,j
h2 0 −1

(σ
[ν]
11 )i,j (σ

[ν]
12 )i,j α

(Σ̃
[ν]
1 )i,j
h2 0

(σ
[ν]
21 )i,j (σ

[ν]
22 )i,j 0 α

(Σ̃
[ν]
2 )i,j
h2

 ,(3.16)

(GPDFP[z[ν]])
[k+1/2]
i,j =


(g1)i,j + (Σ̃

[ν]

1 )i,j(u
[ν+1]
1 )

[k+1/2]
i,j

(g2)i,j + (Σ̃
[ν]

2 )i,j(u
[ν+1]
2 )

[k+1/2]
i,j

(ĝ3)
[ν]
i,j + α(Σ̃

[ν]

1 )i,j(v
[ν+1]
1 )

[k+1/2]
i,j

(ĝ4)
[ν]
i,j + α(Σ̃

[ν]

2 )i,j(v
[ν+1]
2 )

[k+1/2]
i,j

 ,(3.17)

(Σ̃
[ν]
l )i,j = (2D̃l3(u

[ν]
l )i,j + D̃l1(u

[ν]
l )i,j + D̃l2(u

[ν]
l )i,j),(3.18)

(Σ̃
[ν]

l )i,j(z
[ν+1]

l̂
)
[k+1/2]
i,j =

1

h2

(
(D̃l3(u

[ν]
l )i,j)(z

[ν+1]

l̂
)
[k]
i+1,j(3.19)

+ (D̃l1(u
[ν]
l )i−1,j)(z

[ν+1]

l̂
)
[k+1]
i−1,j

+ (D̃l3(u
[ν]
l )i,j)(z

[ν+1]

l̂
)
[k]
i,j+1

+(D̃l2(u
[ν]
l )i,j−1)(z

[ν+1]

l̂
)
[k+1]
i,j−1

)
,
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and

D̃l1(u
[ν]
l )i,j = D̃l(u

[ν]
l )i−1,j ,(3.20)

D̃l2(u
[ν]
l )i,j = D̃l(u

[ν]
l )i,j−1, D̃l3(u

[ν]
l )i,j = D̃l(u

[ν]
l )i,j .

Here the approximations in (3.15)−(3.20) need to be adjusted at the image boundary
∂Ωh using the homogeneous Neumann boundary conditions, i.e.

(3.21) (zh
l̂
)i,1 = (zh

l̂
)i,2, (zh

l̂
)i,n = (zh

l̂
)i,n−1, (zh

l̂
)1,j = (zh

l̂
)2,j , (zh

l̂
)n,j = (zh

l̂
)n−1,j .

Note that the above matrix NPDFP is invertible due to

det(NPDFP) = α
(Σ̃

[ν]
1 )2i,j
h4

(σ
[ν]
22 )i,j + α

(Σ̃
[ν]
2 )2i,j
h4

(σ
[ν]
11 )i,j + (σ

[ν]
11 )i,j(σ

[ν]
22 )i,j

+

[
α2

(Σ̃
[ν]
1 )2i,j(Σ̃

[ν]
2 )2i,j

h8
− (σ

[ν]
12 )

2
i,j

]
> 0,

since σ12 is relatively small and σ11, σ22 are non-negative, so the last term is positive.

Method Rel. residual Iterations Run times
(seconds)

Example 1 SSITM 4.1× 10−2 500 15.69
(32× 32) SFP 5.8× 10−2 500 15.20

PDFP 9.9× 10−9 334 13.57

Example 2 SSITM 4.2× 10−3 500 15.16
(32× 32) SFP 7.2× 10−3 500 16.06

PDFP 9.9× 10−9 182 7.53

Table 3.1
Run-time comparison (in seconds) of Method 2 (SSITM), Method 4 (SFP), and Method

5 (PDFP) for Example 1 (in 32 × 32 as shown in Figure 1.1 (a) − (b)) and Example 2 (as
shown in Figure 1.3 (a)− (b)). Obviously, Method 5 (PDFP) is the fastest way in dropping
the relative residual to 10−8, while others are not successful. Here the maximum iteration
for each method is 500.

We have so far presented five numerical methods for solving (2.4) where Method
2 is superseded by Method 4 and Method 3 is not recommended. So it remains to
test the overall performances of the three numerical schemes (i.e. Methods 2, 4, 5).
We tested them for both the non-smooth (Example 1) and the smooth (Example 2)
registration problems as respectively shown in Figure 1.1 (a) − (b) and Figure 1.3
(a) − (b). We shall compare the relative residual (“Rel. residual”) and the relative
SSD error (“Rel. SSD”) respectively defined by

(3.22) ε̃2 = mean{ ||ghl −N h
l (z

h)||2
||ghl −N h

l (z
h
initial)||2

| l = 1, ..., 4}, ε̃3 =
Dh(Rh, Th(uh))

Dh(Rh, Th)
.

The test results represented in Figure 3.1 (a) − (d) and Table 3.1 show that the
new Method 5 performs much better than the others, especially run times used for
convergence to the minimizers of the minimization problem (1.2). Moreover, as shown
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(a) Example 1 - SSD by 3 methods (b) Example 2 - SSD by 3 methods

5 10 15 20 25 30
Number of Iterations (x 10)

Rel. SSD VS. No. Iteration
 

SSITM
SFP
PDFP

5 10 15
Number of Iterations (x 10)

Rel. SSD VS. No. Iteration
 

SSITM
SFP
PDFP

(c) Example 1 - RRes by 3 methods (d) Example 2 - RRes by 3 methods

2 4 6 8 10 12 14 16
Number of Iterations (x 20)

Rel. residual VS. No. Iteration
 

SSITM
SFP
PDFP

2 4 6 8
Number of Iterations (x 20)

Rel. residual VS. No. Iteration
 

SSITM
SFP
PDFP

Fig. 3.1. Numerical results by Method 2 (SSITM (3.7)), Method 4 (SFP with γl = 1/
√
β),

and Method 5 (PDFP) for Example 1 (in 32 × 32 as shown in Figure 1.1 (a) − (b)) and
Example 2 (as shown in Figure 1.3 (a)− (b)). The top plots show the relative errors in SSD
and the bottom plots show the relative residuals versus iterations. Clearly, Method 5 (PDFP)
performs much better than the other two methods.

in Figure 3.2, Method 5 as expected produces a comparable residual for both the
original system (2.4) and the equivalent system.

Although the above tests show that Method 5 is recommended as a unilevel
method, our next task is to select a suitable smoother from these methods for designing
a convergent MG method for (2.4). To proceed, we shall use a local Fourier analysis
to decide which method (4 or 5) is better suited for our purpose. As it turns out,
Method 5 is indeed the better method but, even so, modification is still needed for it
to be an effective smoother.

4. A nonlinear multigrid method. Multigrid techniques [8, 30, 50, 52, 53]
have been proved to be very useful in the context of deformable image registration
for solving large systems of linear or nonlinear equations arising from high-resolution
digital images and real-life applications. The basic idea of a multigrid method is
to smooth high frequency components of the error of the solution on a fine grid by
performing a few steps with a smoother (an iterative relaxation technique) such that
a smooth error term can be well represented and approximated on a coarser grid.
After a residual equation has been solved on the coarse grid, a coarse-grid correction
is interpolated back to the fine grid and used to correct the fine grid approximation.



112 N. Chumchob, K. Chen and C. Brito

(e) Old vs New Res by Method 5 (f) Old vs New Res by Method 5

2 4 6 8 10 12 14 16
Number of Iterations (x 20)

Rel. residual VS. No. Iteration
 

Equi. system
Org. system

2 4 6 8
Number of Iterations (x 20)

Rel. residual VS. No. Iteration
 

Equi. system
Org. system

Example 1 Example 2

Fig. 3.2. Comparison of the relative residuals by Method 5 using both the original system
(2.4) and the equivalent system (3.13).

Finally, the smoother is performed again in order to remove some new high frequency
components of the error introduced by the interpolation. This is known as a two-grid
cycle, and with recursive application it can be extended to a multigrid method.

A working MG has 3 main components: (i) Smoothing via an iterative method; (ii)
Restriction from a fine grid to a coarse grid; (iii) interpolation from a coarse grid to a
fine one. On the coarsest grid, an effective unilevel solver is used for accurate solution;
here we shall use Method 5. Without reducing the importance of the restriction and
interpolation operators, the efficiency of every MG method strongly relies on the
efficiency of the smoother used at each level. We shall first discuss the choice of our
smoothers before presenting an overall algorithm.

4.1. Local Fourier analysis (LFA). LFA is a powerful tool to analyze the
smoothing properties of iterative algorithms used in MG methods. Although LFA
was originally developed for discrete linear operators with constant coefficients on
infinite grids, it can also be applied to more general nonlinear equations with varying
coefficients such as the discrete versions of (2.4) and (3.13). To this end, first an
infinite grid is assumed to eliminate the effect of boundary conditions and second it
is also assumed that the discrete nonlinear operator can be linearized (by freezing
coefficients) and replaced locally by a new operator with constant coefficients [50].
This approach has proved to be very useful in the understanding of MG methods
when solving nonlinear problems; see for instance [3, 4, 9, 10, 12, 13, 28, 27, 32, 40, 48]
for interesting examples and discussions. Note that although LFA does not consider
boundary conditions, the boundary conditions used here in our model do not affect
the analysis.

For linear problems, iterative methods such as damped Jacobi or Gauss-Seidel
(GS) methods are usually enough to rapidly reduce high frequencies of the underlying
error. However for nonlinear problems, non-standard smoothers are often required and
their efficiency in smoothing is the decisive factor in determining whether a given MG
is convergent or not. For nonlinear and anisotropic problems such as (2.4) and (3.13),
developing such an effective smoother is by no means a trivial task. A quantitative
measure of the smoothing efficiency for a given algorithm is the smoothing factor
denoted by µ from a LFA and numerically computed for test problems, which is
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defined as the worst asymptotic error reduction, by performing one smoother step, of
all high-frequency error components [50, 53]. Below we shall first analyze Methods
4, 5 before considering improvements.

4.1.1. Analysis of Method 4 (Smoother 1). Here we will compute the
smoothing factor of Method 4 iterations (as our Smoother 1 shortly) applied to the
linearized system NSFP

h [uh]uh = GSFP
h [uh] obtained by freezing coefficients in (3.11)

at some outer step. Here uh and uh denote the exact solution and the current ap-
proximation and NSFP

h [uh] and GSFP
h [uh] the resulting discrete operators from the

linearization at uh. The analysis is carried out over the infinite grid

(4.1) Ω∞
h = {x ∈ Ω|x = (x1i , x2j )

⊤ = ((2i− 1)h/2, (2j − 1)h/2)⊤, i, j ∈ Z2}.

Let φh(θ,x) = exp(iθx/h)· Î be grid functions, where Î = (1, 1)⊤, θ = (θ1, θ2)
⊤ ∈

Θ = [−π, π)2, x ∈ Ω∞
h , and i =

√
−1. It is important to remark that due to the

locality nature of LFA, our analysis applies to each grid point separately i.e., µ is
matrix with its (i, j) entry representing the smoothing factor for grid point ξ = (i, j).
Hence we define µloc = µ(ξ) as the local smoothing factor and µ̄loc as the worst
possible value of µloc over Ωh. Thus for Method 4 from (3.12)

µ̄SFP
loc = max

ξ∈Ωh

µSFP
loc .(4.2)

To determine µSFP
loc we consider the local discrete systemNSFP

h (ξ)uh(ξ) = GSFP
h (ξ)

centered and defined only within a small neighborhood of ξ and uh(ξ) = [uh
1 (ξ), u

h
2 (ξ)].

By using the splitting NSFP
h (ξ) = NSFP+

h (ξ) + NSFP−
h (ξ), it is possible to write the

local inner iterations of Method 4 as

(4.3) NSFP+
h (ξ)uh

new(ξ) +NSFP−
h (ξ)uh

old(ξ) = GSFP
h (ξ)

where uh
old(ξ) and uh

new(ξ) stand for the approximations to uh(ξ) before and after
the inner smoothing step, respectively. Here

NSFP+
h (ξ) =

[
−αLh[+]

1 (ξ) σ12(ξ)

σ21(ξ) −αLh[+]
2 (ξ)

]
,

NSFP−
h (ξ) =

[
−αLh[−]

1 (ξ) 0

0 −αLh[−]
2 (ξ)

]
,

−Lh[+]
l (ξ) =

1

h2

 0 0 0
−Dl2(ul(ξ)) Σl(ξ) + (h2/α)σll(ξ) 0

0 −Dl1(ul(ξ)) 0

 ,

and

−Lh[−]
l (ξ) =

1

h2

 0 −Dl3(ul(ξ)) 0
0 0 −Dl3(ul(ξ))
0 0 0

 .

By subtracting (4.3) from NSFP
h (ξ)uh(ξ) = GSFP

h (ξ) and defining ehnew(ξ) = uh(ξ)−
uh
new(ξ) and ehold(ξ) = uh(ξ)− uh

old(ξ) we obtain the local system of error equations

(4.4) NSFP+
h (ξ)ehnew(ξ) +NSFP−

h (ξ)ehold(ξ) = 0
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or

(4.5) ehnew(ξ) = −
[
NSFP+

h (ξ)
]−1 [

NSFP−
h (ξ)

]
ehold(ξ) = SSFP

h (ξ)ehold(ξ)

where SSFP
h (ξ) is the amplification factor. The effect of SSFP

h (ξ) on the grid functions

φh(θ,x) within Θhigh = Θ\[−π/2, π/2)
2
will determine the smoothing properties

of Method 4. Thus, provided PCGS is used as the inner solver, −Lh[+]
l (ξ,θ) and

−Lh[−]
l (ξ,θ) are defined by

−Lh[+]
l (ξ,θ) =

1

h2
(Σl(ξ) + (h2/α)σll(ξ)−Dl1(ξ) exp(−iθ1)−Dl2(ξ) exp(−iθ2)))

and

−Lh[−]
l (ξ,θ) = − 1

h2
(Dl3(ξ)(exp(iθ1) + exp(iθ2))).

and the local smoothing factor is

(4.6) µSFP
loc = sup{|ρ(SSFP

h (ξ,θ))| : θ∈ Θhigh}

where ρ indicates the spectral radius of SSFP
h (ξ,θ).

On a discrete grid of Θhigh, we shall be able to estimate the above factor shortly.

4.1.2. Analysis of Method 5 (Smoother 2). Now we consider the smoothing
factor of Method 5 from (3.14). To this end NPDFP

h [zh]zh = GPDFP
h [zh] will denote

the linearized system with zh and zh the exact solution and current approximation.
Here the grid function is defined by φh(θ,x) = exp(iθx/h) · Î, where Î = (1, 1, 1, 1)⊤.
The local inner iterations for the PDFP algorithm can therefore be written as

(4.7) NPDFP+
h (ξ)zh

new(ξ) +NPDFP−
h (ξ)zh

old(ξ) = GPDFP
h (ξ)

where

NPDFP+
h (ξ) =


−L̃h[+]

1 (ξ) 0 −1 0

0 −L̃h[+]
2 (ξ) 0 −1

σ11(ξ) σ12(ξ) −αL̃h[+]
1 (ξ) 0

σ21(ξ) σ22(ξ) 0 −αL̃h[+]
2 (ξ)

 ,

NPDFP−
h (ξ) =


−L̃h[−]

1 (ξ) 0 0 0

0 −L̃h[−]
2 (ξ) 0 0

0 0 −αL̃h[−]
1 (ξ) 0

0 0 0 −αL̃h[−]
2 (ξ)

 ,

−L̃h[+]
l (ξ) =

1

h2

 0 0 0

−D̃l2(ul(ξ)) Σ̃l(ξ) 0

0 −D̃l1(ul(ξ)) 0

 ,

and

−L̃h[−]
l (ξ) =

1

h2

 0 −D̃l3(ul(ξ)) 0

0 0 −D̃l3(ul(ξ))
0 0 0

 .
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Following the similar process of subtracting (4.7) from NPDFP
h (ξ)zh(ξ) = GPDFP

h (ξ)
one obtains the system of local error equations

NPDFP+
h (ξ)ehnew(ξ) +NPDFP−

h (ξ)ehold(ξ) = 0

or ehnew(ξ) = SPDFP
h (ξ)ehold(ξ) where e

h
old(ξ) = zh(ξ)−zh

old(ξ) and ehnew(ξ) = zh(ξ)−
zh
new(ξ) are the error functions and SPDFP

h (ξ) = −
[
NPDFP+

h (ξ)
]−1 [

NPDFP−
h (ξ)

]
.

Hence, by considering the grid functions φh(θ,x), we can represent L̃h[+]
l (ξ,θ) and

L̃h[−]
l (ξ,θ) by

−L̃h[+]
l (ξ,θ) =

1

h2
(Σ̃l(ξ)− D̃l1(ξ) exp(−iθ1)− D̃l2(ξ) exp(−iθ2))

and

−L̃h[−]
l (ξ,θ) = − 1

h2
(D̃l3(ξ)(exp(iθ1) + exp(iθ2))).

From here, the PDFP local smoothing factor is defined by

(4.8) µPDFP
loc = sup{|ρ(SPDFP

h (ξ,θ))| : θ∈ Θhigh}.

The effectiveness of the above 2 smoothers (i.e. Methods 4, 5) is now tested by
computing their smooth rates for Examples 1−2. The following Table 4.1 summarizes
the smoothing factors of Smoother 1 (SFP) and Smoother 2 (PDFP) for Examples
1− 2. Clearly for the smooth Example 2, both Smoothers 1 and 2 are effective and in

Smoother Example 1 (non-smooth) Example 2 (smooth)
1 0.9410 0.6825
2 0.9412 0.5212

Table 4.1
Smoothing factors µ̄loc after 10 outer iterations with PCGSiter = 10 by the SFP- and

PDFP-type smoothers for the smooth and non-smooth registration problems in Examples 1−2
as shown respectively in Figures 1.1 (a)− (b) and 1.3 (a)− (b).

particular Smoother 2 is better than Smoother 1. But for the non-smooth Example
1, they are much less efficient. Next we consider a method to improve the smoothers
and primarily to improve Smoother 2.

4.2. A new smoother and its analysis (Smoother 2∗). Recall that µ is a
matrix of amplification factors, whose maximum defines the smoothing factor as in
(4.6) and (4.8). It turns out that the largest entries of µ coincide with locations where

we observe strong jumps of the diffusion coefficients D̃l·(ξ). Therefore, our idea of
modifying the smoothers is to seek alternative ways to update the solutions where the
diffusion coefficients have large jumps. Denote by set W all those pixels with such
large coefficients jumps. The whole domain Ωh = W ∪ (Ωh\W ) admits two different
iterative solvers.

We consider an under-relaxation idea for the sub-domain W (representing the

jumps of D̃l(ξ)) by updating all these odd points by

(4.9) (z[ν+1])
[k+1]
i,j = (1− ω)(z[ν+1])

[k]
i,j + ω(NPDFP[z[ν]]i,j)

−1(GPDFP[z[ν]])
[k+1/2]
i,j︸ ︷︷ ︸

Standard PCGS step
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where ω is to be chosen next. As with the previous section, we can analyze the
smoothing factor for the ω−PCGS relaxation method in (4.9) by the LFA in the
similar way to (3.15). Here

−L̃h[+]
l (ξ,θ) and − L̃h[−]

l (ξ,θ)

are given by

(4.10) −L̃h[+]
l (ξ,θ) =

1

h2
(Σ̃l(ξ)− ωD̃l1(ξ) exp(−iθ1)− ωD̃l2(ξ) exp(−iθ2))

and

(4.11) −L̃h[−]
l (ξ,θ) =

1

h2
((1− ω)Σ̃l(ξ)− ωD̃l3(ξ)(exp(iθ1) + exp(iθ2))).

Further with the updated formulae for L̃h[+]
l , L̃h[−]

l at set W , the amplification fac-
tor ρ(SPDFP II

h ) is similarly defined using the updated formulae for SPDFP II
h (ξ) =

−
[
NPDFP+

h (ξ)
]−1 [

NPDFP−
h (ξ)

]
. Finally the overall smoothing factor is

µPDFP II
loc = max

{
sup
ξ∈W

{|ρ(SPDFP II
h (ξ,θ))| : θ∈ Θhigh},

sup
ξ∈Ωh\W

{|ρ(SPDFP
h (ξ,θ))| : θ∈ Θhigh}

}
.

For completeness, we also applied this idea of introducing ω inW for Smoother 1 (SFP
from (3.12)) and did a similar LFA analysis. For the same test examples as with Table
4.1, we now show the improved smoothing rates computed for the modified smoothers
in Table 4.2 where we name the modified Smoother 2 (i.e. Method 5, PDFP II) as
Smoother 2∗ and the modified Smoother 1 (i.e. from Method 4, SFP II) as Smoother
1∗. Clearly we see that the above under-relaxation idea does improve Smoothers 1, 2;
since more improvement can be observed in Smoother 2∗ (PDFP II) over Smoother
2 (PDFP), we shall take Smoother 2∗ as our recommended smoother.

Smoother Example 1 (non-smooth) Example 2 (smooth)
1∗ (ω = 0.7) 0.8324 0.6711
2∗ (ω = 0.7) 0.7613 0.5210

Table 4.2
Improved smoothing factors µ̄loc after using ω under-relaxation idea in sub-domain W

Examples 1− 2.

4.3. Nonlinear Multigrid Algorithm. Full approximation scheme based non-
linear multigrid method (FAS-NMG) has become an efficient approach for solving
nonlinear problems, in particular image processing applications. Here instead of a
scalar PDE we have a coupled system of 4 nonlinear PDEs from (3.13):

N (zh) = gh, i.e.


N h

1 (z
h) = gh1
...

N h
4 (z

h) = gh4
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involving the nonlinear partial differential operator N h
l̂

(
zh
)
given by the left-hand

side of (3.13), where gl̂ = 0 on the finest grid, for l̂ = 1, . . . ,4.

Let zh =
(
zh1 , z

h
2 , z

h
3 , z

h
4

)⊤
be the approximation of zh after a few smoothing

iterations in a pre-smoothing step on a fine-grid problem. Then, the algebraic
error eh of the solution is given by eh = zh − zh where we denote by zh the exact
solution of (3.13). The residual equation system for the l̂th equation is given by

N h
l̂
(zh + eh)−N h

l̂
(zh) = gh

l̂
−N h

l̂
(zh) = rh

l̂
.

In order to correct the approximated solution zh on the fine grid, one needs to com-
pute the error eh. The computation of eh is prohibitively expensive and cannot be
computed directly on the fine grid. However, since high frequency components of
the error in pre-smoothing step have already been removed by the smoother, we can
transfer the following nonlinear system to the coarse grid as follows:

(4.12)
N h

l̂
(zh + eh)︸ ︷︷ ︸
Nh

l̂
(zh)

= rh
l̂
+N h

l̂
(zh)︸ ︷︷ ︸

gh

l̂

→
NH

l̂
(zH + eH)︸ ︷︷ ︸
NH

l̂
(zH)

= rH
l̂

+NH
l̂
(zH)︸ ︷︷ ︸

gH

l̂

where H = 2h is the new cell size H ×H with H ≥ h and gH
l̂

̸= 0 on the coarse grid.

After the nonlinear residual equation (4.12) on the coarse grid have been solved with
a method of our choice, the coarse-grid correction eH = zH −zH is then interpolated
back to the fine grid eh that can now be used for updating the approximated solution
zh of the original system on the fine grid zh

new = zh + eh (coarse-grid correction
step). The last step for a FAS-NMG method is to perform the smoother again to
remove high frequency parts of the interpolated error (post-smoothing step).

We now define our multigrid components for solving (2.4) via (3.13). Firstly,
standard coarsening is used in computing the coarse-grid domain ΩH by doubling the
grid size in each space direction, i.e. h → 2h = H. Secondly for intergrid transfer
operators between Ωh and ΩH , the averaging and bi-linear interpolation techniques
are used for the restriction and interpolation operators denoted respectively by IHh
and IhH ; see the details in [8, 30, 50, 52, 53]. In order to compute the coarse-grid

operator of N h
l (z

h) consisting of two main parts: fh
l (z

h
1 , z

h
2 ) and L̃h

l (z
h
l ), a so-called

discretization coarse grid approximation (DCA) is performed [8, 50, 53]. The idea is
to re-discretize the Euler-Lagrange system directly. In the case of fH

l (zH1 , zH2 ), we
first use the restriction operator for both components of the deformation field zh, i.e.
zh1 and zh2 , and the given images, Rh and Th, and then compute the corresponding

coarse-grid part of fh
l (z

h
1 , z

h
2 ). For L̃H

l (zHl ), the corresponding coarse-grid part of

L̃h
l (z

h
l ) is obtained using zHl and a DCA.
We now present our recommended Smoother 2∗ (modified Method 5) as an algo-

rithm before presentation of the overall algorithm for solving (2.4).

Algorithm 1 (Recommended Smoother 2∗ – PDFP II).
Denote by

α the regularization parameter

ω the relaxation parameter

K > 0 a tolerance (typically K = 10)
PCGSiter the maximum number of PCGS iterations
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[
zh

]
← Smoother

(
zh, gh1 , g

h
2 , g

h
3 , g

h
4 , R

h, Th, α, ω,K, PCGSiter
)

• Use input parameters to compute (σlm)i,j , (G
PDFP
h [zh])i,j ,

and (NhPDFP[zh]i,j)
−1 for l,m = 1, 2 and 1 ≤ i, j ≤ n

• Perform PCGS steps
− for k = 1 : PCGSiter
− for i = 1 : n
− for j = 1 : n

− if D̃l(ul)i,j ≥ K ·mean{D̃l1(ul)i,j , D̃l2(ul)i,j , D̃3(ul)i,j}
for l = 1 or 2

− Set ω = 0.7
else

− Set ω = 0
end

− Compute (z̃h)
[k+1]
i,j using (3.15) and set

(z)
[k+1]
i,j = (1− ω)(z)

[k]
i,j + ω(z̃h)

[k+1]
i,j

− end
− end

− end

To solve (3.13) numerically, our FAS-NMGmethod with the proposed MG smoother
given by Algorithm 1 is applied recursively down to the coarsest grid consisting of a
small number of grid points, typically 8 × 8. A pseudo-code implementation of our
FAS multigrid method is then summarized in the following algorithm:

Algorithm 2 (FAS-NMG Algorithm).
Denote FAS-NMG parameters as follows:

ν1 the number of pre-smoothing steps on each level

ν2 the number of post-smoothing steps on each level

µ the number of multigrid cycles on each level (µ= 1 for V−cycling and µ = 2 for

W−cycling).
[Here we present the V−cycle with µ= 1.]

α the regularization parameter

ω the relaxation parameter

K > 0 tolerance

PCGSiter the maximum number of iterations using a smoother

zh ← FAS −NMG
(
zh, α,−→ε

)
• Select α,−→ε = (ε1, ε2, ε3, ε4) and

initial guess solutions zh
initial = (zh1 , z

h
2 , z

h
3 , z

h
4 )

⊤ on the finest grid

• Set K = 0, [zh]K = zh
initial, ε̃2 = ε2 + 1, ε̃3 = ε3 + 1, and ε̃4 = ε4 + 1

• While (K < ε1 AND ε̃2 > ε2 AND ε̃3 > ε3 AND ε̃4 > ε4)

− [zh]K+1 ← FASCY C(zh, gh1 , g
h
2 , g

h
3 , g

h
4 , R

h, Th, ν1, ν2, α, ω, PCGSiter)
− Compute ε̃2 and ε̃3 at step K + 1 using (3.22),

[Recall that Dh
(
Rh, Th (·)

)
∼ h2

2
||Rh, Th (·) ||22]

− Compute the difference ε̃4 = |Dh(Rh, Th((uh)K+1))−Dh(Rh, Th((uh)K))|
− Set K = K + 1

• end



Fourth Order Variational Image Registration Model and Multigrid Algorithm 119

where [
zh

]
← FASCY C(zh, gh1 , g

h
2 , g

h
3 , g

h
4 , R

h, Th, ν1, ν2, α, ω,K, PCGSiter)

• If Ωh = coarset grid (|Ωh| = 8× 8), solve (3.13) using Algorithm 1
and then stop. Else continue with following step.

• Pre-smoothing:

For k = 1 to ν1,
[
zh

]
← Smoother(zh, gh1 , g

h
2 , g

h
3 , g

h
4 , R

h, Th, α, ω,K, PCGSiter)
• Restriction to the coarse grid:

zH1 ← IHh zh1 , z
H
2 ← IHh zh2 , zH3 ← IHh zh3 , zH4 ← IHh zh4 , RH ← IHh Rh, TH ← IHh Th

• Set the initial solution for the coarse-grid problem:[
z̃H1 , z̃H2 , z̃H3 , z̃H4

]
←

[
zH1 , zH2 , zH3 , zH4

]
• Compute the new right-hand side for the coarse-grid problem:

gH1 ← IHh (gh1 −N h
1 (z

h)) +NH
1

(
zH

)
, gH2 ← IHh (gh2 −N h

2

(
zh

)
) +NH

2 (zH),

gH3 ← IHh (gh3 −N h
3 (z

h)) +NH
3

(
zH

)
, gH4 ← IHh (gh4 −N h

4 (z
h)) +NH

4 (zH)
• Implement the FAS multigrid on the coarse-grid problem:

For k = 1 to µ,[
zH

]
← FASCY C

(
zH , gH1 , gH2 , gH3 , gH4 , RH , TH , ν1, ν2, α, ω,K, PCGSiter

)
• Add the coarse-grid corrections:

zh1 ← zh1 + IhH
(
zH1 − z̃H1

)
, zh2 ← zh2 + IhH

(
zH2 − z̃H2

)
zh3 ← zh3 + IhH

(
zH3 − z̃H3

)
, zh4 ← zh4 + IhH

(
zH4 − z̃H4

)
• Post-smoothing:

For k = 1 to ν2,
[
zh

]
← Smoother(zh, gh1 , g

h
2 , g

h
3 , g

h
4 , R

h, Th, α, ω,K, PCGSiter)

For practical applications our FAS-NMG method is stopped if the maximum
number ε1 of V− or W−cycles is reached (usually ε1 = 10), the mean of the relative
residuals obtained from the Euler-Lagrange equations (3.13) is smaller than a small
prescribed number ε2 > 0 (typically ε2 = 10−3), the relative reduction of the dis-
similarity ε̃3 is smaller than some ε3 > 0 (we usually assign ε3 = 0.3 meaning that
the relative reduction of the dissimilarity would decrease about 70%), or the change
in two consecutive steps of the data/fitting term D is smaller than a small number
ε4 > 0 (typically ε4 = 10−6).

5. Further numerical experiments. In this section we present some experi-
ments to

(i) compare the modeling results of our new curvature model RNewCv with two
related approximation models RFMcurv and RHWcurv as well as RβTV;

(ii) demonstrate the performance of our new Algorithm 2 for RNewCv with regard
to parameter changes.

Two representative data sets (a smooth registration problem and a non-smooth
registration problem to be denoted respectively as Example 31 and Example 4) were
selected for the experiments, as shown respectively in Figure 5.1 (a)− (d). Improve-
ments of RFMcurv and RHWcurv over non-curvature models can also be found from
[21, 22, 38, 37, 33, 35, 34]. In all cases, we use the bilinear interpolation to compute
the transformed template image T (u) once the displacement field is found. Below we
mainly highlight the further gains from using RNewCv.

Note that our FAS-NMG algorithm also works for the model ofRFMcurv. This can
be done by slightly adapting our FAS-NMG method and the main part is to design
a suitable smoother. According to the associated Euler-Lagrange system (1.10), the
PDFP idea can be used to obtain a PDFP-type smoother by replacing the nonlinear

1http://www.math.mu-luebeck.de/safir/
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operator L̃l in the main diagonal of NPDFP defined below (3.14) by the Laplacian and

discarding the last terms of ĝ
[ν]
3 , ĝ

[ν]
4 . Of course, the PCGS relaxation method is an

appropriate choice for solving the linearized system.

R T
(a) (b)

Example 3
(c) (d)

Example 4

Fig. 5.1. The second set of 2 registration problems. Left to right: reference R and
template T . Top to bottom: Example 3 (a smooth registration problem) and Example 4 (a
non-smooth registration problem).

5.1. Comparison with other PDE-based image registration models. In
the first experiment, our aim is to investigate capabilities of RFMcurv, RHWcurv,
RNewCv, and RβTV for registration of the two test Examples 3 − 4 in resolution
512× 512.

The registered results by the four models are shown in Figures 5.2 (a)− (d) and
5.4 (a) − (d) with the deformation results shown in Figures 5.3 (a) − (d) and 5.5
(a)− (d). For the smooth registration problem (Example 3), one can observe that all
three curvature methods work fine in producing an acceptable registration although
the registered result by the new model RNewCv has the best value of ε̃3. Moreover, we
can clearly see that it is always the case that RβTV even with the suitably selected β
for estimating homogeneous diffusion processes in (1.15) fails and the regularizations
based on higher-order derivatives like RFMcurv, RHWcurv, and RNewCv are successful.

However, for the non-smooth registration problem (Example 4), one can clearly
see that RFMcurv and RHWcurv failed to deliver a good registration (note other models
from [44] cannot register this hard example either), from Figures 5.4 (a)− (b) and 5.5
(a)− (b). But our new model RNewCv evidently produced visually pleasing results as
good as those of RβTV. The main reason is that the exact deformation field should
have a non-smooth shift for the left book to the top; c.f. Figures 5.5 (c)−(d). Precisely,
this field is piecewise constant and substantially discontinuous at regions close to the
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interface of the books. Consequently, RFMcurv and RHWcurv must fail because they
smooth the field at those regions; see over smoothing results of the field in Figure 5.5
(a)− (b).

Both examples confirm that our new model RNewCv is better and more flexible
than RβTV, RHWcurv and RFMcurv [21, 22, 38, 37, 33, 35, 34] which are in turn better
than a class of other registration models.

(a) T (u) [RFMcurv] (b) T (u) [RHWcurv]

ε̃3 = 0.041 ε̃3 = 0.043
(c) T (u) [RNewCv] (d) T (u) [RβTV]

ε̃3 = 0.038(β = 1) ε̃3 = 0.159(β = 1)

Fig. 5.2. Registered images for Example 3 (the smooth registration problem) shown in
Figure 5.1 (a)− (b). Top to bottom: results by (a) RFMcurv, (b) RHWcurv, (c) RNewCv, and
(d) RβTV. Clearly, RβTV failed and RNewCv gives the satisfactory registration results as good
as those from RFMcurv and RHWcurv, which are known to be suitable for smooth registration
problems. Recall that ε̃3 means the relative reduction of the dissimilarity defined in Algorithm
2.

Further, in Figures 5.2 (c) and 5.3 (c) we illustrate that our model is able to
solve problems involving affine transformations. As we had already mentioned in
Section 2, the use of the underlying boundary conditions may present some difficulties
since affine transformations are constrained to be constant transformations. However
far from boundaries in the interior of the domain this constraining effect is clearly
negligible.

5.2. Tests of our new FAS-NMG algorithm. In the previous section we
have used the LFA to inform our theoretical choice of suitable smoothers for our new
FAS-NMG Algorithm 2. Here by experiments, we hope to first verify the reliability
of this choice and then to further test the convergence issues of it with regard to
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Fig. 5.3. Recovered deformation fields for Example 3 (the smooth registration problem)
shown in Figure 5.1 (a) − (b). Top to bottom: results by (a) RFMcurv, (b) RHWcurv, (c)
RNewCv, and (c) RβTV.

parameters α, β in the model and the mesh parameter h.

1) Comparison of smoothers and h−independent convergence tests. We
shall re-solve the same Examples 3 − 4 as above using an increasing sequence of
resolutions (or a decreasing mesh parameter h) and show the results in Table 5.1.
Algorithm 2 is run using 3 separate smoothers (1 by Method 4 - SFP, 2 by Method 5
- PDFP I and 2∗ by a modified Method 5 - PDFP II respectively). In each case the
algorithm is stopped when the mean of the relative residual below 10−6 with ‘M’ the
recorded number multigrid cycles required. Then to get an measure of speed without
using the machines-dependent CPUs, we work out the work units (WUs) for each
case. We also use the relative reduction of dissimilarity ε̃3 to indicate the quality of
registration obtained at cycle ‘M’.

Here we define a work unit used in measured computational work as the work of
performing a smoother or relaxation step on the finest grid defined as follows:

1 WU = (cost of discretizing and constructing the linearized system per grid point

+ cost of PCGS updating per grid point)N (if N is the number of grid points)

For example, a work unit in performing one step of the PDFP I smoother can be
estimated by

1 WU = (150 + 123(PCGSiter))N
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(a) T (u) [RFMcurv] (b) T (u) [RHWcurv]

ε̃3 = 0.22 ε̃3 = 0.22
(c) T (u) [RNewCv] (d) T (u) [RβTV]

ε̃3 = 0.07(β = 0.005) ε̃3 = 0.08(β = 0.005)

Fig. 5.4. Registered images for Example 4 (the non-smooth registration problem) shown
in Figure 5.1 (c)− (d). Top to bottom: results by (a) RFMcurv, (b) RHWcurv, (c) RNewCv, and
(d) RβTV. Clearly, RFMcurv and RHWcurv failed and RNewCv gives the satisfactory registration
results as good as those from RβTV, which is known to be suitable for non-smooth registration
problems.

where the number 150 is estimated from computing all nonlinear coefficients and
the number 123 comes from each grid point in the linearized system (4 × 4) given
in (3.15) when solved by the Gaussian elimination method, which have the cost of
(4)3

3 + (4)2

2 − 5(4)
6 additions and (4)3

3 + (4)2 − (4)
3 multiplications. Therefore, the total

costs of one V-cycle used L coarse grids can be estimated as follows:

V-cycle cost = (ν1 + ν2)(150 + 123(PCGSiter))N
L∑

k=0

(1/4)k <
4

3
(ν1 + ν2) WUs.

Here we have ignored the cost of interpolation and restriction procedures as well as the
cost of residual correction procedure because they are relative small compared with
that of smoothing procedures. Recall that ν1, ν2, and PCGSiter denote respectively
the number of pre- and post-smoothing and PCGS steps.

In the numerical results shown in Table 5.1, one can see six quantities: the num-
bers of pre- and post-smoothing and PCGS steps ν1, ν2; the multigrid cycles ‘M’; the
relative reduction of dissimilarity D = ε̃3 and WUs.

As expected from the LFA results in the last section, our numerical results confirm
that Smoothers 2, 2∗ (as PDFP I and II) are much better than Smoother 1 (SFP) for
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Fig. 5.5. Recovered deformation fields for Example 4 (the non-smooth registration prob-
lem) shown in Figure 5.1 (c)− (d). Top to bottom: results by (a) RFMcurv, (b) RHWcurv, (c)
RNewCv, and (c) RβTV.

our FAS-NMG algorithm, because they not only lead to the convergence within a few
MG cycles as expected of a multigrid technique, but also to the accurate results. The
dissimilarities between the reference and registered images have been reduced more
than 90% for both examples.

Overall, as LFA predicts, the above experimental results suggest that Smoother
2∗ (PDFP II) would be preferred for practical applications. In other tests, we note the
Smoother 1 and other methods described in Section 3 can lead to the MG convergence
for both registration problems when the number of pre- and post smoothing steps ν1
and ν2 are further increased.

2) α−dependence tests. Next we assess how our MG algorithm is affected
when varying α. To this end, the MG algorithm based on Smoother 2∗ was tested
on Example 3 (see Figure 5.1 (a) − (b)) with the results shown in Table 5.2. Here
the following parameters are used: β = 1, ν1 = ν2 = PCGSiter = 10, and h =
1/256 for all experiments and α is varied from 1/10000 to 1/10. For this example,
large α is not needed as small ones give better results. However, the selection of
suitable α is a separate but important issue because it is in general unknown a priori
and it significantly affects on the qualities of registered images as well as the MG
performance. In order to estimate a reasonable α automatically, we may adapt our
MG algorithm and follow the ‘cooling’ process suggested in [17, 29, 28] which resembles
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h = 1/n MG with Smoother 1 MG with Smoother 2 MG with Smoother 2∗

for (SFP) (PDFP I) (PDFP II)
image ν1/ν2/PCGSiter/ ν1/ν2/PCGSiter/ ν1/ν2/PCGSiter/
of n× n M/D/WUs M/D/ M/D/WUs M/D/WUs

Ex. 3 α = 10−4, γ = β− 1
2

n = 128 10/10/10/18/0.03/480 10/10/10/6/0.0264/160 10/10/10/5/0.0258/133
n = 256 10/10/10/ ∗ / ∗ /∗ 10/10/10/7/0.0388/187 10/10/10/6/0.0386/160
n = 512 10/10/10/ ∗ / ∗ /∗ 10/10/10/7/0.0379/187 10/10/10/6/0.0379/160
n = 1024 10/10/10/ ∗ / ∗ /∗ 10/10/10/8/0.0412/213 10/10/10/7/0.0398/187

Ex. 4 α = 0.75/10000
n = 128 10/10/15/ ∗ / ∗ /∗ 10/10/15/11/0.0713/293 10/10/15/8/0.0698/213
n = 256 10/10/15/ ∗ / ∗ /∗ 10/10/15/12/0.0739/320 10/10/15/9/0.0701/240
n = 512 10/10/15/ ∗ / ∗ /∗ 10/10/15/12/0.0761/320 10/10/15/10/0.0712/267
n = 1024 10/10/15/ ∗ / ∗ /∗ 10/10/15/13/0.0793/347 10/10/15/10/0.0753/267

Table 5.1
Registration results of Algorithms 2 with the proposed smoothers for processing Examples

3 − 4 shown respectively in Figure 5.1 (a) − (d). The letters ‘M’, ‘D’, and ‘WUs’ mean
the number of multigrid cycles, the relative reduction of dissimilarity (ε̃3), the work units,
respectively. ‘∗’ indicates failure in dropping the mean of the relative residual to 10−6 within
20 MG-cycles. Recall that γ is the SFP parameter.

the L-curve method in other inverse problems. Nevertheless, for the range of α tested
in Table 5.2, our FAS-NMG still obtains the solution in a reasonable number of
iterations.

α β M D
10−4 1 6 0.0379
10−3 1 7 0.1528
10−2 1 7 0.3019
10−1 1 15 0.4709

Table 5.2
Results for α−dependence tests of Algorithms 2 with the PDFP II smoother for Example

3 shown in Figure 5.1 (a)− (b). The letters ‘M’ and ‘D’ mean the number of multigrid steps
and the relative reduction of dissimilarity (ε̃3).

3) β−dependence tests. As is well known, the quantities of results and the
performances of the MG techniques in solving the nonlinear system related to the TV
regularization technique are affected significantly by the values of β. As already dis-
cussed in Section 2, for registration purposes β = 1 is suitable for smooth registration
problems because the diffusion coefficients (D̃l) are almost isotropic in all regions and
then it leads to the smooth deformation fields. On the other hand β ≪ 1 is appropri-
ate for non-smooth registration problems because the diffusion coefficients are zero in
regions representing large gradients of the fields and then it allows discontinuities at
those regions. Here our aim is to see how our MG algorithm is affected when varying
the values of β.

To this end, the MG algorithm based on Smoother 2∗ was tested on the non-
smooth Example 4 as from Figure 5.1 (c) − (d). Here the following parameters are
taken: α = 0.75/10000, ν1 = ν2 = 10, PCGSiter = 15, and h = 1/256 for all
experiments and β is varied from 0.005 to 1. Table 5.3 shows that our MG algorithm
converges in a few steps. Theoretically β should be selected to be as small as possible.
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However, in practice, small β is not necessary and not recommendable. As shown
in our experiments, β = 1 × 10−2 or 5 × 10−3 is enough to solve the non-smooth
registration problem with the accurate results in a few MG steps.

α β M D
0.75× 10−4 5× 10−3 9 0.0701
0.75× 10−4 1× 10−2 8 0.0893
0.75× 10−4 1× 10−1 7 0.2324
0.75× 10−4 1× 10−0 6 0.4557

Table 5.3
Results for β−dependence tests of Algorithm 2 with Smoother 2∗ for Example 4 shown

respectively in Figure 5.1 (c) − (d). The letters ‘M’ and ‘D’ mean the number of multigrid
steps and the relative reduction of dissimilarity (ε̃3).

6. Conclusions. The majority of deformable registration models in the varia-
tional framework use the gradient information (first order derivatives) in their reg-
ularizers. For problems requiring less smooth deformation fields, such models be-
come ineffective and the curvature like information (second order derivatives) used in
regularization can improve the registration results, as shown in the recent works of
[21, 22, 38, 37, 33, 35, 34] where high-order and essentially linear PDEs are solved.

Different from approximate curvature models of [21, 22, 38, 37, 33, 35, 34], the
full curvature model considered in this paper does not make assumptions on the
deformation fields. Consequently our results improve over previous approximate cur-
vature models for both smooth and non-smooth registration problems in quality and
robustness of image registration. Moreover the underlying high order and nonlinear
PDEs stemmed from our full curvature model appears intractable for effective nu-
merical solutions as commonly used iterative solvers do not converge. We introduced
nontrivial fixed-point iterative methods and used them as smoothers for a nonlin-
ear multigrid method. The fast convergence of the multigrid algorithm is assured
by a local Fourier analysis. Numerical experiments demonstrated firstly the advan-
tages of our new model and then the fast convergence of our recommended multigrid
algorithm.
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