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a b s t r a c t

Variational registration models are non-rigid and deformable imaging techniques for
accurate registration of two images. As with other models for inverse problems using the
Tikhonov regularization, they must have a suitably chosen regularization term as well as
a data fitting term. One distinct feature of registration models is that their fitting term is
always highly nonlinear and this nonlinearity restricts the class of numerical methods that
are applicable. This paper first reviews the current state-of-the-art numerical methods for
such models and observes that the nonlinear fitting term is mostly ‘avoided’ in developing
fast multigrid methods. It then proposes a unified approach for designing fixed point
type smoothers for multigrid methods. The diffusion registration model (second-order
equations) and a curvaturemodel (fourth-order equations) are used to illustrate our robust
methodology. Analysis of the proposed smoothers and comparisons to other methods are
given. As expected of a multigrid method, being many orders of magnitude faster than the
unilevel gradient descent approach, the proposed numerical approach delivers fast and
accurate results for a range of synthetic and real test images.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Image registration is one of the most useful and yet challenging tasks in image processing applications. It is the process
of finding an optimal geometric transformation between corresponding images. It can also be seen as the process of overlaying
two or more images of the same or similar scene taken at different times, from different perspectives, and/or by different
imagingmachineries. Therefore, this procedure is requiredwhenever a series of corresponding images needs to be compared
or integrated. Applications that require a registration step range from art, astronomy, biology, chemistry, criminology,
physics and remote sensing. Particularly, in medical applications, non-invasive imaging is increasingly used in almost all
stages of patient care: from disease detection to treatment guidance and monitoring. For an overview on registration
methodology,we refer to [1–3], and the references therein. This paper focuses on a robustmultigrid approach for deformable
image registration models in a variational formulation.

Variational partial differential equations (PDEs) based image registration models have been successfully proven to be
very valuable tools in several applications, although much improvement is still required. A general framework of the image
registration can be formulated as follows: given two images of the same object, respectively referred to as reference R and
template T , we search for a vector-valued transformation ϕ defined by

ϕ(u)(·) : Rd
→ Rd, ϕ(u)(x) : x → x+ u(x)
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that depends on the unknown deformation or displacement field

u : Rd
→ Rd, u : x → u(x) = (u1(x), u2(x), . . . , ud(x))⊤

such that the transformed template T ◦ ϕ(u(x)) = T (x + u(x)) = T (u) becomes similar to the reference R. Once the
corresponding location ϕ(u(x)) = x+ u(x) is calculated for each spatial location x in the image domain Ω ⊂ Rd, an image
interpolation is required to assign the image intensity values for the transformed template T (u) at non-grid locationswithin
image boundaries. For locations outside the image boundaries, the image intensities are usually set to be a constant value,
typically zero [3]. We see that the displacement u measures by how much a point in the transformed template T (u) has
moved away from its original position in T . Here we shall restrict ourselves to scalar or gray intensity images and model
them as compactly supported functions mapping from the image domain Ω ⊂ Rd into V ⊂ R+0 , where d ∈ N represents
the spatial dimension of the images which is usually d = 2 (planar images) or d = 3 (volume data set) with boundary
∂Ω . Without loss of generality we assume that the registration problem is described in the two-dimensional case (d = 2)
throughout this work, but it is readily extendable to the three-dimensional case (d = 3). We also assume further that
Ω = [0, 1]2 ⊂ R2 and V = [0, 1] for 2D gray intensity images.

Assume the image intensities of R and T are comparable (i.e. in a monomodal registration scenario), the task is to solve
the minimization problem of a similarity measure

min
u


D(u) =

1
2

∫
Ω

(T (x+ u(x))− R(x))2dx


, (1)

whose functional is the sum of squared differences (SSD) [4–20,3,21,22] which is widely used. As is known, this problem
is generally ill posed in the sense of Hadamard. Therefore, the minimization of D will not guarantee an unique solution. It
becomes necessary to impose a constraint on the solution u via a deformation regularizer R for penalizing unwanted and
irregular solutions using some priori knowledge. In the Tikhonov regularization framework, the image registration problem
can be posed as a minimization problem of the joint energy functional given by

min
u
{Jα[u] = D(u)+ αR(u)}, (2)

whereα > 0 is the regularization parameter that compromises similarity and regularity, and T (u) = T (x+u(x)) represents
the transformed template image. The regularizer R is designed to ensure that the deformation field u constructed is unique
and close to the true solution. As the aim of this paper is to address the fast solutions issue, we consider two regularizers:
firstly the diffusion regularizer as introduced in [4]:

R(u) =
1
2

2−
l=1

∫
Ω

|∇ul|
2dx, (3)

and secondly the curvature regularizer in [5] as

RCv(u) =
1
2

2−
l=1

∫
Ω

(κM(ul))
2dx =

1
2

2−
l=1

∫
Ω

(1ul)
2dx, (4)

as respective examples of second-order PDEs and fourth-order PDEs; our method will also be applicable to other models
that lead to second-order PDEs e.g. the elastic and fluid models [3] and the total variation model [8,9], the combined
regularization model [23] and other curvature models [24].

Although themultigrid techniques have been successfully used for numerical solutions for deformable image registration
[9,10,12,14,16–18,21,22], none of the existing variants are optimal implementations. In these works, the nonlinear fitting
term is not directly dealt with; we remark that other image restoration models [25–28] do not usually have nonlineari-
ties resulting from a fitting term (unless a L1 fitting or an expectation–maximization fitting is used). We may classify these
existing variants into 2 categories:

(1) Linear multigrid framework. Haber and Modersitzki [12] used an inexact Gauss–Newton (GN) scheme combined with
a linear multigrid method as an inner solver for solving the elastic image registration problem corresponding to (2).
Henn [16] considered the curvature image registration problem and similarly used a coupled outer–inner iteration
method with the inner solver provided by a linear multigrid method for solving the system of the fourth-order PDEs.
Hömke [17] concentrated on the elastic image registration and introduced a numerical solution of the minimization
problem given by (2) using a regularized GN method with a trust region approach in which one normal equation
corresponding to a linear subproblem is solved iteratively with a linear multigrid method. Köstler et al. [18] introduced
a combined diffusion- and curvature-based regularizer for optical flow and deformable image registration problems
and solved the resulting minimization problem represented in terms of (2) with an inexact GN method where each GN
perturbation is estimated by a linear multigrid approach. Stürmer et al. [21] considered the diffusion image registration
and solved the system of nonlinear PDEs using a coupled outer–inner iteration method with the inner solver provided
by a linear multigrid method commonly used for heat equations.
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(2) Nonlinear multigrid framework. The use of the nonlinear multigrid (NMG) methods can be found in works of [9,10,14,
22]. In particular, Frohn-Schauf et al. [9] considered the minimization problem of the data term D given by (1) only and
then the total variation (TV) regularization at a GN step; further they solved the resulting nonlinear system by the full
approximation scheme NMG (FAS-NMG)method due to Brandt [29] with an augmentationmethod and a line relaxation
smoother. Gao et al. [10] used the FMGmethod for solving the system of nonlinear PDEs related to variational approach
for the diffusion image registration, where they used the Newton–Gauss–Seidel smoother (i.e. global linearization by
Newton’s iteration and Gauss–Seidel (GS) iteration for the resulting linear systems [20,30]) and an adaptive procedure
for determining large deformations. Finally Henn andWitsch [14] solved the elastic image registration problem using a
nonlinear Jacobi smoother plus a line search procedure on the regularization parameter α, and Zikic et al. [22] used the
full multigrid (FMG) method for a diffusion image registration problem and solved the system of nonlinear parabolic
PDEs with a fixed point (FP) type of smoothers within the semi-implicit time-marching approach.

We also remark that the 2D optical flow formulation (that does not use SSD) suitable for registering closely related images
(e.g. video sequences) can be solved by multigrid techniques [31,32] using time-marching smoothers. In this paper, our aim
is to propose a different but robust smoother for the nonlinear multigrid framework that works for a range of models.

The rest of the paper is organized as follows. In Section 2, we consider our first model problem of diffusion registration,
surveying and discussing its numerical treatments. A new fixed point smoother is proposed and analyzed in Section 3 for the
FAS-NMG approach for the underlying nonlinear Euler–Lagrange system. In Section 4, we consider our first model problem
of curvature registration and demonstrate how to use our proposedmethod. Experimental results frommedical test images
are illustrated in Section 5 in order to show the excellent performance of the proposed numerical scheme compared with
other methods with conclusions summarized in Section 6.

2. The diffusion registration model and its numerical methods

We now introduce our first model and review briefly various solution methods paying particular attention to robustness
of multigrid methods. The model itself is not particularly more important than other models from [3] but we use it to
illustrate the fast solution issues of image registration. Below use the notation ∂xℓF =

∂F
∂xℓ

and ∂x1x2F =
∂2F

∂x1∂x2
.

2.1. The diffusion model

The minimizer of the energy functional Jα in (2), defined by (1) and (3), with respect to the minimizer u = (u1, u2)
⊤

satisfies the so-called Euler–Lagrange equations [3], given by the following system of two coupled, nonlinear, and elliptic
partial differential equations (PDEs) for u = (u1(x1, x2), u2(x1, x2))⊤:N1(u) = −α1u1 +

f1(u)  
(T (u)− R)∂u1T (u) = 0,

N2(u) = −α1u2 +

f2(u)  
(T (u)− R)∂u2T (u) = 0,

(5)

subject to the homogeneous Neumann’s boundary conditions

∂nu1 = ∂nu2 = 0 on ∂Ω. (6)

Here the nonlinear functions f1(u), f2(u) are from the data fitting terms, which are (as remarked) features of registration
models distinct from other imaging models [26]. Refer to [9,4,10,14,3,21,22]. In fact, the nonlinear coupling of the two PDEs
is through the term T (u). Hereby, ∆ denotes the Laplace operator, and n = (n1, n2)

⊤ is the outward unit vector normal to
the image boundary ∂Ω . Note that the first and second terms in (5) are the first variations of the regularizer term R and the
data term D , respectively.

2.2. Discretization by a finite difference method

For sake of clarity, let (uh
l )i,j = uh

l (x1i , x2j) denote the grid function for l = 1, 2 with grid spacing h = (h1, h2) =
(1/n1, 1/n2). Applying finite difference schemes based on the cell-centered grid points to discretize (5), the discrete
Euler–Lagrange equations at a grid point (i, j) over the discrete domain,

Ωh = {x ∈ Ω|x = (x1i , x2j)
⊤
= ((2i− 1)h1/2, (2j− 1)h2/2)⊤, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2} (7)

are given by
N h

1 (uh)i,j = −αLh(uh
1)i,j + f h1 (uh

1, u
h
2)i,j = gh

1i,j

N h
2 (uh)i,j = −αLh(uh

2)i,j + f h2 (uh
1, u

h
2)i,j = gh

2i,j

(8)

with the following notation



656 N. Chumchob, K. Chen / Journal of Computational and Applied Mathematics 236 (2011) 653–674

−Lh(uh
l )i,j =

1
h2
1
((Σ)i,j(uh

l )i,j − (Σ)i,j(uh
l )i,j),

(Σ)i,j = 2(1+ γ 2), γ = h1/h2,

(Σ)i,j(uh
l )i,j = (uh

l )i+1,j + (uh
l )i−1,j + γ 2(uh

l )i,j+1 + γ 2(uh
l )i,j−1

f h1 (uh
1, u

h
2)i,j = (T h∗

i,j − Rh
i,j)((T

h∗
i+1,j − T h∗

i−1,j)/(2h1)),

f h2 (uh
1, u

h
2)i,j = (T h∗

i,j − Rh
i,j)((T

h∗
i,j+1 − T h∗

i,j−1)/(2h2)),

T h∗
i,j = T h(i+ (uh

1)i,j, j+ (uh
2)i,j),

(uh)i,j = ((uh
1)i,j, (u

h
2)i,j)

⊤.

Here gh
1i,j
= gh

2i,j
= 0 on the finest grid in multigrid setting to be used shortly. We note that the approximations in (8) need

to be adjusted at the image boundary ∂Ωh using the homogeneous Neumann boundary conditions

(uh
l )i,1 = (uh

l )i,2, (uh
l )i,n2 = (uh

l )i,n2−1, (uh
l )1,j = (uh

l )2,j, (uh
l )n1,j = (uh

l )n1−1,j. (9)

2.3. Review of non-multigrid numerical solvers

The first commonly used method is a gradient descent approach solving, instead of the nonlinear elliptic system (5), the
nonlinear parabolic system

∂tu1 − α1u1 = −(T (u)− R)∂u1T (u)
∂tu2 − α1u2 = −(T (u)− R)∂u2T (u),

(10)

where u = u(x, t) = (u1(x, t), u2(x, t))⊤ will converge to the solution of (5) when t →∞, with the initial solution u(x, 0),
typically u(x, 0) = 0. The advantage is that various time-marching schemes can be used to solve (10) in order to circumvent
the nonlinearity on the right-hand side. For example, the semi-implicit scheme can be proceeded as follows (inmatrix vector
form obtained from the discretized version of Eq. (10))

u(k+1)
1 =


I− ατ

2−
l=1

Al

−1
(u(k)

1 − τ f1(u
(k)
1 , u(k)

2 ))

u(k+1)
2 =


I− ατ

2−
l=1

Al

−1
(u(k)

2 − τ f2(u
(k)
1 , u(k)

2 )).

(11)

Here, I is the identity matrix, fl(uk
1, u

k
2) is the discretized version of the second term in (5) using an appropriate finite

difference approximation, usually the central finite difference, τ > 0 is the time-step determined by a forward difference
approximation of the time derivative ∂tul, and Al is the coefficient matrix from discretization of the Laplace operator ∆

along the l-coordinate direction subject to Neumann boundary conditions. The DCT-based method from [3] or the FT-based
method from [33,34] may be used to solve the above equation.

The second method by an additive operator splitting (AOS) scheme introduced in [4,35,36] is faster and more efficient
than the standard semi-implicit scheme (11). The basic idea is to replace the inverse of the sum by a sum of inverses. The
corresponding iterations are then defined by

u(k+1)
1 =

1
2

2−
l=1

(I− 2ατAl)
−1(u(k)

1 − τ f1(u
(k)
1 , u(k)

2 ))

u(k+1)
2 =

1
2

2−
l=1

(I− 2ατAl)
−1(u(k)

2 − τ f2(u
(k)
1 , u(k)

2 )),

(12)

which is much cheaper than those obtained from (11) because the two tri-diagonal systems in each component are solved
per iteration rather than the 5-band system.

The thirdmethod by the one-cycle multi-resolution (or a coarse-to-fine FMG technique) is proposed in [20]. The idea is
to solve (5) first with the Newton–Gauss–Seidel relaxation method given by

u(new)
1 = u(old)

1 −
N1(u(old))

∂u1N1(u(old))

u(new)
2 = u(old)

2 −
N2(u(old))

∂u2N2(u(old))

(13)
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on the coarsest (lowest) resolution, and then interpolate the coarse solution with an appropriate method as a good initial
guess solution to the next finer resolution. This process is repeated until (5) has been solved by (13) on the finest (highest) or
original resolution. Although, thismethod provideswellmatched images inmost of the cases and the basic idea is essentially
the same as a FMG method as in [37,38,30,39,40], one should note that convergence cannot be proved even for much
simpler equations [30]. This is due to the fact that the solution on the fine level depends strongly on the coarse one. As
a consequence, errors introducing from the interpolation procedure may propagate in such a way that they spoil the overall
results completely.

Although the above three methods are easy to implement on a unilevel and multilevel, they are not as efficient as a
multigrid method.

2.4. Review of multigrid solvers and previous work

Multigrid techniques are widely used fast methods for various PDEs [37,38,41,30,39,40]. For deformable image
registration models, we give a brief review here [9,10,12,14,16–18,21,22].

The basic idea of a multigrid method is to smooth high-frequency components of the error of the solution by performing
a few steps with a smoother such that a smooth error term can be well represented and approximated on a coarser grid.
After a linear or nonlinear residual equation has been solved on the coarse grid, a coarse-grid correction is interpolated back
to the fine grid and used to correct the fine-grid approximation. Finally, the smoother is performed again in order to remove
some new high-frequency components of the error introduced by the interpolation.

Below we shall first review the basic FAS-NMG algorithm before discussing previous work on solving (5). As it turns out,
two approaches considered are both more efficient than an unilevel method but none are robust solvers.

2.4.1. The full approximation scheme (FAS)
For a nonlinear problem, the use of a full approximation scheme (the nonlinear multigrid method (NMG) in [29]) is

natural. The FAS technique has been tried in various image processing applications; see e.g. [42,43,32,44,27,28,45,9,46,47].
We now denote our PDEs (5) by

N h
1 (uh) = gh

1 ,

N h
2 (uh) = gh

2 ,
(14)

separating the linear operator Lh from the nonlinear operator f hl (l = 1, 2) on a general fine grid with step size h = (h1, h2)
on Ωh.

Let vh
= (vh

1, v
h
2)
⊤ be the result computed by performing a few steps with a smoother (pre-smoothing step) on the

fine-grid problem. Then, the algebraic error eh of the solution is given by eh = uh
− vh. The residual equation system is

given by
N h

1 (vh
+ eh)−N h

1 (vh) = gh
1 −N h

1 (vh) = rh1
N h

2 (vh
+ eh)−N h

2 (vh) = gh
2 −N h

2 (vh) = rh2 .
(15)

In order to correct the approximated solution vh on the fine grid, one needs to compute the error eh. However, the error
cannot be computed directly. Since high-frequency components of the error in pre-smoothing step have already been
removed by the smoother, we can transfer the following nonlinear system to the coarse grid as follows

N h
1 (vh
+ eh)  

N h
1 (uh)

= rh1 +N h
1 (vh)  

gh1

N h
2 (vh
+ eh)  

N h
2 (uh)

= rh2 +N h
2 (vh)  

gh2

→


N H

1 (vH
+ eH)  

N H
1 (uH )

= rH1 +N H
1 (vH)  

gH1
N H

2 (vH
+ eH)  

N H
2 (uH )

= rH2 +N H
2 (vH)  

gH2

(16)

where H = 2h is the new cell size H1 × H2 with H1 ≥ h1 and H2 ≥ h2 and gH
l ≠ 0 on the coarse grid. After the nonlinear

residual equation system on the coarse grid (16) have been solved with a method of our choice, the coarse-grid correction
eH = uH

−vH is then interpolated back to the fine grid eh that can nowbe used for updating the approximated solution vh on
the fine grid, i.e. vh

new = vh
+eh. The last step for a FASmultigrid is to perform the smoother again to remove high-frequency

parts of the interpolated error (post-smoothing step).
In our FAS multigrid for diffusion image registration, standard coarsening is used in computing the coarse-grid domain

ΩH by doubling the grid size in each space direction, i.e. h → 2h = H . For intergrid transfer operators between Ωh and
ΩH , the averaging and bilinear interpolation techniques are used for the restriction and interpolation operators denoted
respectively by IHh and IhH ; see the details in [37,38,30,39,40]. In order to compute the coarse-grid operator of N h

l (uh)

consisting of two parts: Lh(uh
l ) and f hl (uh

1, u
h
2), a so-called discretization coarse-grid approximation (DCA) is performed

[37,31,30,40]. The idea is to rediscretize the Euler–Lagrange directly. In the case of Lh(uh
l ), the corresponding coarse-grid
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part LH(uH
l ) is obtained by the restriction of uh

l and a simple adaptation of the grid size to the discretized Laplacian. For
f hl (uh

1, u
h
2), we first use the restriction operator with both components of the deformation field uh, uh

1 and uh
2, and the given

images, Rh and T h, and then compute the corresponding coarse-grid part f Hl (uH
1 , uH

2 ). To solve (14) numerically, our FAS
multigrid is applied recursively down to the coarsest grid consisting of a small number of grid points, typically 4 × 4, and
may be summarized as follows:

Algorithm 1 (FAS Multigrid Algorithm). Denote FAS multigrid parameters as follows:
ν1 pre-smoothing steps on each level
ν2 post-smoothing steps on each level
l the number of multigrid cycles on each level (l = 1 for V-cycling and l = 2 for W-cycling). Here we present the V-cycle

with l = 1.
α regularization parameter
ω relaxation parameter
GSiter the maximum number of iterations using a smoother

[vh
1, v

h
2] ← FASCYC(vh

1, v
h
2, N h

1 , N h
2 , gh

1 , g
h
2 , R

h, T h, ν1, ν2, α, ω,GSiter).

• If Ωh = coarset grid (|Ωh| = 4× 4), solve (14) using time-marching techniques
such as semi-implicit or
AOS scheme (Section 2.3) and then stop. Else continue with following step.
• Pre-smoothing:

For z = 1 to ν1, [vh
1, v

h
2] ← Smoother(vh

1, v
h
2, g

h
1 , g

h
2 , R

h, T h, α, ω,GSiter).
• Restriction to the coarse grid:

vH
1 ← IHh vh

1, vH
2 ← IHh vh

2, RH
← IHh R

h, TH
← IHh T

h.
• Set the initial solution for the coarse-grid problem:
[vH

1 , vH
2 ] ← [v

H
1 , vH

2 ].
• Compute the new right-hand side for the coarse-grid problem:

gH
1 ← IHh (gh

1 −N h
1 (vh

1, v
h
2))+N H

1 (vH
1 , vH

2 ),

gH
2 ← IHh (gh

2 −N h
2 (vh

1, v
h
2))+N H

2 (vH
1 , vH

2 ).
• Implement the FAS multigrid on the coarse-grid problem:
[vH

1 , vH
2 ] ← FASCYC(vH

1 , vH
2 , N H

1 , N H
2 , gH

1 , gH
2 , RH , TH , ν1, ν2, α, ω,GSiter).

• Add the coarse-grid corrections:
vh
1 ← vh

1 + IhH(vH
1 − vH

1 ), vh
2 ← vh

2 + IhH(vH
2 − vH

2 ).
• Post-smoothing:

For z = 1 to ν2, [vh
1, v

h
2] ← Smoother(vh

1, v
h
2, g

h
1 , g

h
2 , R

h, T h, α, ω,GSiter).

For practical applications our FAS multigrid method is stopped if the maximum number of V- or W-cycles ε1 is reached
(usually ε1 = 20), the mean of the relative residuals obtained from the Euler–Lagrange equations is smaller than a small
number ε2 > 0 (typically ε2 = 10−8 for a convergence test and only ε2 = 10−1 for a practical registration), the relative
reduction of the dissimilarity is smaller than some ε3 > 0 (we usually assign ε3 = 0.10 meaning that the relative reduction
of the dissimilarity would decrease about 90%), or the change in two consecutive steps of the data/fitting term D is smaller
than a small number ε4 > 0 (typically ε4 = 10−8). A pseudo-code implementation of our FAS multigrid method is then
summarized in the following algorithm:

Algorithm 2 (FAS Multigrid Method).

vh
← FASMG(vh, α,−→ε ).

• Select α,−→ε = (ε1, ε2, ε3, ε4) and initial guess solutions vh
initial =

(vh
1, v

h
2)
⊤ on the finest grid.

• Set K = 0, (vh)K = vh
initial,ε2 = ε2 + 1,ε3 = ε3 + 1, andε4 = ε4 + 1.

•While (K < ε1 ANDε2 > ε2 ANDε3 > ε3 ANDε4 > ε4)

– (vh)K+1 = [vh
1, v

h
2] ←

FASCYC(vh
1, v

h
2, N h

1 , N h
2 , gh

1 , g
h
2 , R

h, T h, ν1, ν2, α, ω,GSiter)

–ε2 = mean{
‖ghl −N h

l ((vh)K+1)‖l2
‖ghl −N h

l (vhinitial)‖l2
|l = 1, 2}

–ε3 = Dh(Rh,Th((vh)K+1))
Dh(Rh,Th)

, [Recall that Dh(Rh, T h(·)) ∼
h1h2
2 ‖R

h, T h(·)‖2l2 ]

–ε4 = |Dh(Rh, T h((vh)K+1))−Dh(Rh, T h((vh)K ))|

– K = K + 1
• end
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As iswell known, in addition to restriction and interpolation operators, the aboveAlgorithm1 requires a suitable smoother
based on some iterative relaxation method which is often the decisive factor in determining whether or not a multigrid
algorithm converges. This issue is discussed next after we review the linear multigrid method.

2.4.2. The linear multigrid method for (5)
For a nonlinear problem, a linearization approach can lead to a coupled outer–inner iteration method with the inner

solver provided by a linear multigrid method. For (5), the outer iteration is introduced either in a GN iteration [12,17,18] or
in terms of the semi-implicit time-marching scheme [21] as follows


I− ατ

2−
l=1

Al


u(k+1)
1 = (u(k)

1 − τ f1(u
(k)
1 , u(k)

2 ))
I− ατ

2−
l=1

Al


u(k+1)
2 = (u(k)

2 − τ f2(u
(k)
1 , u(k)

2 )),

(17)

which is a system of two linear elliptic PDEs. Finally each outer step k is solved iteratively by a linear multigrid. In order
to reduce the number of outer steps, a scale space framework described in [15] is used for adapting automatically the
registration parameters τ andα. Although, this numerical scheme is very accurate for providing visually pleasing registration
results, we found experimentally that it is quite slow in fulfilling the necessary condition for being a minimizer of the
variational problem represented by (2), i.e. in achieving convergence, because the linear system has to be solved many
times with changing the right-hand side of (17). This is a convenient way of using a multigrid method but is not as optimal
as a nonlinear multigrid method.

2.4.3. The nonlinear multigrid method for (5)
The above introduced FAS-NMG Algorithm 2 can be readily applied to (5). The choice of a suitable smoother is a key.

Below we briefly review four types of smoothers that have been or can be used for diffusion image registration:
(1) The Newton–Gauss–Seidel relaxation smoother. This was used in [10] for (5). Although, there are no numerical results
to demonstrate the convergence of the FMG technique in their work, we foundwith several tests that this kind of smoothers
provides visually pleasing registration results within a few multigrid steps. However, it does not perform well as a good
smoother in leading to the convergence of the FAS-NMGmethod. Note that this smoother can be derived directly from (13).
(2) The fixed point (FP) iteration based smoothers. The simple linearized iterations by the following

−α1u[ν+1]1 = −(T (u[ν])− R)∂u1T (u[ν])

−α1u[ν+1]2 = −(T (u[ν])− R)∂u2T (u[ν])
(18)

as discussed in [3, p. 79] have been used by researchers; we shall call this method the standard FP (SFP) below. This SFP
scheme encounters a singular system for all fixed point step ν due to Neumann’s boundary conditions. Without any special
treatment for overcoming the singularity, we found that simple iterative methods such as the Jacobi-, GS-, or successive
over-relaxation (SOR) type methods usually fail to lead to convergence of the FAS-NMG technique; however we discuss
ways of improving this idea below.
(3) The augmented system technique for the SFP scheme. This was introduced in [8,9]. The idea is to convert the singular
system to a nonsingular one by augmenting extra equations. However, it may not lead to satisfaction of the necessary (first-
order) condition of a minimizer of the variational problem represented by (2). In details, this smoother builds on the above
SFP method (18) with an initial guess u[0]

−αL(u[ν+1]1 ) = g1 − f1(u
[ν]
1 , u[ν]2 ) = G[ν]1

−αL(u[ν+1]2 ) = g2 − f2(u
[ν]
1 , u[ν]2 ) = G[ν]2 .

(SFP) (19)

Recall that g1 = g2 = 0 on the finest grid in multigrid setting and the symbol h and (·)i,j in (8) are dropped for simplicity.
As already mentioned above, the resulting system is singular in case of Neumann’s boundary conditions approximated by
(9). The reason for singularity is due to zero row sums at boundary points, i.e. the constant functions lie in the kernel of L.
In this case the discrete system has a solution if and only if the discrete compatibility condition

n1,n2−
i,j=1

(G[ν]l )i,j = 0 for l = 1, 2

is satisfied [37,8,9,30]. Obviously, this condition fails when the given images are substantially different. Recognizing the
above difficulties, Frohn-Schauf et al. [8,9] proposed to solve a nearby problem created by a simple modification, which
guarantees that discrete solutions exist for each fixed point problem from replacing G[ν]l (l = 1, 2) by
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G[ν]l = G[ν]l −
⟨G[ν]l , I⟩
⟨I, I⟩

I,

where I is the n1 × n2-vector (1, . . . , 1). Note that if u[ν+1] solves the new discrete system
−αL(u[ν+1]1 ) =G[ν]1

−αL(u[ν+1]2 ) =G[ν]2 ,
(20)

then u[ν+1] + c also solves the same problem for any c . This means that the solution is not unique. In order to determine
the unique solution of the discrete system given by (20), they put a constraint on u[ν+1]. This can be done by applying the
zero-mean condition,

n1,n2−
i,j=1

(u[ν+1]l )i,j = ⟨u
[ν+1]
l , I⟩ = cl = 0 for l = 1, 2. (21)

We shall denote the above method by MSFP-FS (a modified SFP due to Frohn-Schauf et al.).
(4) The modified standard FP smoothers. Following the same idea of overcoming singularities, below, consider 2
alternative ways of modifying the SFP method (18)

−αL(u[ν+1]1 )+ c1u
[ν+1]
1 = G[ν]1 + c1u

[ν]
1

−αL(u[ν+1]2 )+ c2u
[ν+1]
2 = G[ν]2 + c2u

[ν]
2 ,

(MSFP-1) (22)


(−αL+ ϵ)u[ν+1]1 = G[ν]1

(−αL+ ϵ)u[ν+1]2 = G[ν]2 ,
(MSFP-2) (23)

where cl (l = 1, 2) and ϵ are positive real numbers (very small number for ϵ). We note first that the modified SFP method
of the first type (MSFP-1) given by (22) can be viewed as a semi-implicit time-marching scheme when c1 = c2 = c > 0 is
interpreted to be the time-step, as used in [3, p. 80]. Second, the second type (MSFP-2) represented by (23) is the simplest
way to stabilize the SFP method by adding the small number ϵ to all diagonal elements of L, as used in [43] in a different
context. Finally, we note that determining the optimal values for the fixed point parameters c1, c2 (or c), and ϵ in automatic
procedures leading to convergence of the FP method (and a multigrid technique) is not straight forward for real-world
applications because tuning is needed for different registration problems.

In other tests, we found experimentally that although the approximation solutions obtained from the MSFP-FS scheme
are visually pleasing, they may not fulfill the necessary condition for being a minimizer of the variational problem (2). The
reason is that this numerical scheme solves a nearby problem for each fixed point step ν by changing the right-hand side of
(19) subject to the zero-mean condition (21).

These difficulties have motivated us to develop the new smoother in the next section.

3. The proposed algorithm with a new and robust smoother

To first design a better smoother for (5), we have to re-consider the nonlinear terms in (19) in a new FP scheme. Once
this is done, a basic linear iterative solver such as the Jacobi, GS or SORmethod for each corresponding systemmay be used.
Then to improve the model robustness, we use a multi-resolution idea to choose the regularization parameter α.

3.1. The new FP smoother

Our idea of a new FP scheme is different from the SFP (18) and its variants, by aiming for full implicitness in both
regularizer and data terms. This leads to

−αL(u[ν+1]1 )+ f1(u
[ν+1]
1 , u[ν+1]2 ) = g1

−αL(u[ν+1]2 )+ f2(u
[ν+1]
1 , u[ν+1]2 ) = g2

(24)

before we introduce linearization. We linearize the data term fl(u
[ν+1]
1 , u[ν+1]2 ) via a first-order approximation of form (for

l = 1, 2)

fl(u
[ν+1]
1 , u[ν+1]2 ) ∼ fl(u

[ν]
1 , u[ν]2 )+ ∂u1 fl(u

[ν]
1 , u[ν]2 )δu[ν]1 + ∂u2 fl(u

[ν]
1 , u[ν]2 )δu[ν]2 ,

= fl(u
[ν]
1 , u[ν]2 )+ σ

[ν]
l1 δu[ν]1 + σ

[ν]
l2 δu[ν]2 , (25)

where

σl1(u[ν]) = ∂u1 fl(u
[ν]
1 , u[ν]2 ) = (∂ulT (u[ν]))(∂u1T (u[ν]))+ (T (u[ν])− R)(∂u1ulT (u[ν])),



N. Chumchob, K. Chen / Journal of Computational and Applied Mathematics 236 (2011) 653–674 661

and

σl2(u[ν]) = ∂u2 fl(u
[ν]
1 , u[ν]2 ) = (∂ulT (u[ν]))(∂u2T (u[ν]))+ (T (u[ν])− R)(∂u2ulT (u[ν])).

By (25), it leads to the semi-implicitly fixed point iteration step in terms of a 2× 2 matrix as follows

N[u[ν]]u[ν+1] = G[u[ν]], (RFP) (26)

where RFP refers to robust FP (yet to be tested shortly), u[ν+1] = (u[ν+1]1 , u[ν+1]2 )⊤,

N[u[ν]] =
[
−αL+ σ11(u[ν]) σ12(u[ν])

σ21(u[ν]) −αL+ σ22(u[ν])

]
,

G[u[ν]] =


G[ν]1 + σ11(u[ν])u[ν]1 + σ12(u[ν])u[ν]2

G[ν]2 + σ21(u[ν])u[ν]1 + σ22(u[ν])u[ν]2


.

To solve (26),we adopt the block or pointwise collective Gauss–Seidel (PCGS) relaxationmethod, i.e. all difference equations
are updated simultaneously. A PCGS step is then given by

(u[ν+1])[k+1]i,j = (N[u[ν]]i,j)−1(G[u[ν]])
[k+1/2]
i,j , (27)

where using the same notation as (8)

N[u[ν]]i,j =
[
(α/h2

1)(Σ)i,j + (σ11(u[ν]))i,j (σ12(u[ν]))i,j
(σ21(u[ν]))i,j (α/h2

1)(Σ)i,j + (σ22(u[ν]))i,j

]
,

(G[u[ν]])[k+1/2]i,j =


(G[ν]1 )i,j + (σ11(u[ν]))i,j(u[ν]1 )i,j + (σ12(u[ν]))i,j(u[ν]2 )i,j + (α/h2

1)(Σ)i,j(u
[ν+1]
1 )

[k+1/2]
i,j

(G[ν]2 )i,j + (σ21(u[ν]))i,j(u[ν]1 )i,j + (σ22(u[ν]))i,j(u[ν]2 )i,j + (α/h2
1)(Σ)i,j(u

[ν+1]
2 )

[k+1/2]
i,j


,

(Σ)i,j(u
[ν+1]
l )

[k+1/2]
i,j = (u[ν+1]l )

[k]
i+1,j + (u[ν+1]l )

[k+1]
i−1,j + γ 2(u[ν+1]l )

[k]
i,j+1 + γ 2(u[ν+1]l )

[k+1]
i,j−1 .

To gain more efficiency, one may introduce a relaxation parameter ω ∈ (0, 2) and iterate the ω-PCGS steps by

(u[ν+1])[k+1]i,j = (1− ω)(u[ν+1])[k]i,j + ω (N[u[ν]]i,j)−1(G[u[ν]])
[k+1/2]
i,j  

original PCGS result

. (28)

We note first that the proposed smoother given by (26) shows the interaction between the actual fixed point iteration that
overcomes the nonlinearity of the operator Nl at each outer step ν and the ω-PCGS method that solves the resulting linear
system of equations at each corresponding inner step k. Second, instead of solving the linear system of equations using the
inner solver (28) with very high precision, it can perform only a few iteration to obtain an approximation solution at each
outer step. Evidently, this procedure leads to a slight difference of convergence in the fixed point schemewhen the proposed
smoother is used as a stand-alone solver, whereas the computational costs significantly reduce; see Fig. 1(a). Moreover, the
relaxation parameter ω also has a strong influence on the convergence speed. As the stand-alone solver of (26) we usually
use ω > 1, typically ω = 1.85, because it results in speeding up the convergence compared with the PCGS approach
(ω = 1); see Fig. 1(b). For our multigrid algorithm, however, we use the local Fourier analysis and several experiments
to select the optimal value of ω; see Section 3.2 later. Finally we remark that other iterative techniques such as the line
relaxation techniques or the preconditioned conjugate gradient method may also be used as an inner solver. However, the
ω-PCGS relaxation method appears a cheaper option for practical applications.

Implementation of our proposed smoother (26) based on the ω-PCGS method (28) on a fine grid can be summarized as
follows:

Algorithm 3 (Our Proposed Smoother). Denote by
α regularization parameter
ω relaxation parameter
GSiter the maximum number of ω-PCGS iterations

[vh
1, v

h
2] ← Smoother(vh

1, v
h
2, g

h
1 , g

h
2 , R

h, T h, α, ω,GSiter).
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Fig. 1. Number of outer iterations ν in (26) used to drop the mean of relative residuals of (24) to 10−8 for different values of (a) GSiter and (b) ω at a fixed
value of α = 0.1 for processing the registration problem in Examples 1 as shown in Fig. 3(a)–(b) on a 32× 32 grid. The red diamond indicates the optimal
choice in each plot.

• Use input parameters to compute (σlm[vh
])i,j, (G[vh

])i,j,

and (N[vh
]i,j)
−1

for l,m = 1, 2, 1 ≤ i ≤ n1, and 1 ≤ j ≤ n2 (Here
(vh)i,j = ((vh

1)i,j, (v
h
2)i,j)

⊤).
• Perform ω-PCGS steps

– for k = 1 : GSiter
– for i = 1 : n1

– for j = 1 : n2

– Compute
(vh)

[k+1]
i,j = ((vh

1)
[k+1]
i,j , (vh

2)
[k+1]
i,j )⊤ using (28)

– end
– end

– end

We remark that in a different context [48,32] for a different technique, a first-order approximation of

T (u[ν+1]) = T (x+ u[ν+1]) = T (x+ u[ν] + δu[ν])

≈ T (x+ u[ν])+ ∂u1T (x+ u[ν])δu[ν]1 + ∂u2T (x+ u[ν])δu[ν]2 , (29)

similar to expanding fl(u
[ν+1]
1 , u[ν+1]2 ) in (25) is used to derive the FP schemes. We also wish to remark that the above

quantities σl1(u[ν]), σl2(u[ν]) may be refined to derive a cheaper implementation than our FP method (26). We note first
that σ21(u[ν]) = σ12(u[ν]). Second in order to have a simple and stable numerical scheme as pointed out by several works;
see e.g. [18] and [3, p. 56/79], we approximate σlm(u[ν]) by σlm(u[ν]) = (∂ulT (u[ν]))(∂umT (u[ν])) for m = 1, 2 since
the image difference T (u[ν]) − R becomes small for well registered images and the second-order derivatives of T (u[ν])
(∂umulT (u[ν])), a problematic part of σlm(u[ν]), are very sensitive to noise and are hard to estimate robustly. Finally, we note
that if discrete image gradient ∂ulT (u[ν]) does not vanish at one point, the system matrix of these linearized equations is
strictly or irreducibly diagonally dominant. This guarantees the existence of a unique solution of each linearized system and
global convergence of the Jacobi and GS iterations [49,50].

Below we analyze the smoothing property of our proposed smoother (26).

3.2. Local Fourier analysis (LFA)

LFA is a powerful tool to analyze the smoothing properties of iterative algorithms used in MG methods. Although LFA
was originally developed for discrete linear operators with constant coefficients on infinite grids, it can also be applied to
more general nonlinear equations with varying coefficients such as the discrete version of (5). To this end, first an infinite
grid is assumed to eliminate the effect of boundary conditions and second it is also assumed that the discrete nonlinear
operator can be linearized (by freezing coefficients) and replaced locally by a new operator with constant coefficients [30].
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This approach has proved to be very useful in the understanding of MG methods when solving nonlinear problems; see for
instance [42,51,43,44,52,12,53,54,18,55] for interesting examples and discussions.

3.2.1. Measure of h-ellipticity
It is well known that h-ellipticity is crucial for multigrid methods to be effective. It is often used to decide whether or not

pointwise error smoothing procedures (e.g. our proposed smoother (26) based on (28)) can be constructed for the discrete
operator under consideration. To this end, we shall show that the linearized systemNh[uh

]uh
= Gh[uh

] in (26) at some outer
step provides a sufficient amount of h-ellipticity in a similar way shown in [12,18,30,40] for a discrete system of PDEs. Here
uh and uh denote the exact solution and the current approximation and Nh[uh

] and Gh[uh
] the resulting discrete operators

from the linearization at uh. For simplicity, our analysis is carried out over the infinite grid

Ω∞h = {x ∈ Ω|x = (x1i , x2j)
⊤
= ((2i− 1)h/2, (2j− 1)h/2)⊤, i, j ∈ Z2

} (30)

where h = 1/n denotes the mesh parameter.
Let ϕh(θ, x) = exp(iθx/h) ·I be grid functions, whereI = (1, 1)⊤, θ = (θ1, θ2)

⊤
∈ 2 = (−π, π]2, x ∈ Ω∞h , and

i =
√
−1. It is important to remark that due to the locality nature of LFA, our analysis applies to each grid point separately,

i.e. we consider the local discrete system Nh(ξ)uh
= Gh(ξ) centered and defined only within a small neighborhood of each

grid point ξ = (i, j) and uh(ξ) = [uh
1(ξ), uh

2(ξ)]. Applying the discrete operator Nh(ξ) to the grid functions ϕh(θ, x), i.e.
Nh(ξ)ϕh(θ, x) = Nh(ξ , θ)ϕh(θ, x), yields the Fourier symbol as follows:

Nh(ξ , θ) =

[
−αLh(θ)+ σ11(ξ) σ12(ξ)

σ21(ξ) −αLh(θ)+ σ22(ξ)

]
(31)

(see details related to Fourier symbols of systems of PDEs in [30,40]). Here Lh(θ) denotes the Fourier symbol of the discrete
Laplacian operator Lh. Following [30,40], the measure of h-ellipticity is defined viaNh(ξ, θ) as follows:

Eh(Nh(ξ)) =
min{| det(Nh(ξ , θ))| : θ ∈ Θhigh}

max{| det(Nh(ξ , θ))| : θ ∈ 2}
, (32)

where 2high = 2 \ (−π/2, π/2]2 denotes the range of high frequencies and

det(Nh(ξ , θ)) = α2(Lh(θ))2 + αc1(Lh(θ))+ c2 (33)

represents the determinant ofNh(ξ , θ) where

c1 = −(σ11(ξ)+ σ22(ξ)) and c2 = σ11(ξ)σ22(ξ)− σ12(ξ)σ21(ξ).

For the Laplacian, we have

−Lh(θ) = (2/h2)(2− (cos θ1 + cos θ2)), min
θ∈2high

(−Lh(θ)) = −Lh(−π/2, 0) = 2/h2

and maxθ∈2(−Lh(θ)) = −Lh(π, π) = 8/h2. Therefore,

Eh(Nh(ξ)) =
2α + c1h2

+ (c2h4/2α)

32α + 4c1h2 + (c2h4/2α)
(34)

and

lim
h→0

Eh(Nh(ξ)) =
1
16

(35)

bounded away from 0 for all possible choices α, h > 0 and for all possible values of σ11(ξ), σ12(ξ), σ21(ξ), and σ22(ξ) (i.e. the
results do not depend on the given images) over the whole discrete domain Ωh.

As a result, the discrete system Nh[uh
]uh
= Gh[uh

] is appropriate to pointwise error smoothing procedures and so is our
proposed smoother (26) combined with the ω-PCGS method (28).

3.2.2. Smoothing analysis for the proposed smoother
A robust and potential smoother has to take care of the high-frequency components of the error between the exact

solution and the current approximation since the low-frequency components becomes the high-frequency components on
coarser grids and they cannot be reduced on coarser grids by the coarse-grid correction procedure. A quantitative measure
of the smoothing efficiency for a given algorithm is the smoothing factor denoted byµ from a LFA and numerically computed
for test problems, which is defined as the worst asymptotic error reduction, by performing one smoother step, of all high-
frequency error components [30,40]. Below we shall analyze the smoothing properties of the proposed smoother via (26)
and (28).
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As pointed out in many cases of nonlinear operators with varying coefficients in [42,51,43,44,52,12,53,54,18,55], the
smoothing factor is x-dependent. Therefore, it is customary to look for themaximum over the local smoothing factors of the
frozen operator Nh(ξ), i.e.

µ∗loc = max
ζ∈Ωh

µloc. (36)

To determine µloc we consider again the local discrete system Nh(ξ)uh(ξ) = Gh(ξ). By using the splitting Nh(ξ) =

N[+]h (ξ)+ N[0]h (ξ)+ N[−]h (ξ), it is possible to write the local inner iterations of (26) (for ω = 1) as

N[+]h (ξ)uh
new(ξ)+ N[0]h (ξ)uh

new(ξ)+ N[−]h (ξ)uh
old(ξ) = Gh(ξ) (37)

where uh
old(ξ) and uh

new(ξ) stand for the approximations to uh(ξ) before and after the inner smoothing step, respectively
and

N[+/0/−]
h (ξ) =


(N[+/0/−]

h (ξ))1,1 (N[+/0/−]
h (ξ))1,2

(N[+/0/−]
h (ξ))2,1 (N[+/0/−]

h (ξ))2,2


.

For a specification of this splitting, we use the stencil notation as follows:

Lh
[+]
=

α

h2

 0 0 0
−1 0 0
0 −1 0


, Lh

[0] =
α

h2

0 0 0
0 1 0
0 0 0


, Lh

[−]
=

α

h2

0 −1 0
0 0 −1
0 0 0


,

(N[+/−]

h (ξ))l,m =


Lh
[+/−] for l = m

0, for l ≠ m,
(N[0]h (ξ))l,m = κl,mLh

0 (l,m = 1, 2),

and

κ =

[
κ1,1 κ1,2
κ2,1 κ2,2

]
=

[
Σ + (h2/α)σ11(ξ) (h2/α)σ12(ξ)

(h2/α)σ21(ξ) Σ + (h2/α)σ22(ξ)

]
.

By subtracting (37) from Nh(ξ)uh(ξ) = Gh(ξ) and defining ehnew(ξ) = uh(ξ) − uh
new(ξ) and ehold(ξ) = uh(ξ) − uh

old(ξ) we
obtain the local system of error equations

N[+]h (ξ)ehnew(ξ)+ N[0]h (ξ)ehnew(ξ)+ N[−]h (ξ)ehold(ξ) = 0
or

ehnew(ξ) = −[N[0]h (ξ)+ N[+]h (ξ)]−1[N[−]h (ξ)]ehold(ξ) = Sh(ξ)ehold(ξ) (38)

where Sh(ξ) is the amplification factor. The effect of Sh(ξ) on the grid functions ϕh(θ, x) within 2high = 2 \ [−π/2, π/2]2
will determine the smoothing properties of the PCGS method (27).

For the ω-PCGS approach (28), the amplification factor denoted by Sh(ξ , ω) can be defined in a similar way as (38) and
its Fourier symbol is given bySh(ξ , θ, ω) = [N0

h(ξ , θ)+ ωN+h (ξ , θ)]−1[(1− ω)N0
h(ξ , θ)− ωN−h (ξ , θ)] ∈ C2×2. (39)

Here the Fourier symbols of N[+/0/−]
h (ξ) are

N[+/0/−]
h (ξ , θ) =

[
(N[+/0/−]

h (ξ , θ))1,1 (N[+/0/−]
h (ξ , θ))1,2

(N[+/0/−]
h (ξ , θ))2,1 (N[+/0/−]

h (ξ , θ))2,2

]
. (40)

Therefore, the local smoothing factor is

µloc = sup{|ρ(Sh(ξ , θ, ω))| : θ ∈ 2high} (41)

where ρ indicates the spectral radius ofSh(ξ , θ, ω). Recall that

(N[+]h (ξ , θ))l,m =


−

α

h2
(exp(−iθ1)+ exp(−iθ2)) for l = m

0, for l ≠ m,
(42)

(N[−]h (ξ , θ))l,m =


−

α

h2
(exp(iθ1)+ exp(iθ2)) for l = m

0, for l ≠ m
(43)

(N[0]h (ξ , θ))l,m =
α

h2
κl,m (44)

will be used to compute (39).
To select the optimal value of ω and test our smoother we consider one set of medical images as shown respectively

in Fig. 3(a)–(b) on a 32 × 32 grid. Fig. 2 shows the smoothing factors of the proposed smoother (26) based on the ω-PCGS
approach (28) at different values of ω. It indicates that the optimal value ω providing µ∗loc ≈ 0.5 is not exactly 1 but very
close to 1, typically ω = 0.9725.
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Fig. 2. Smoothing factors µ∗loc at a fixed value of α = 0.1 after 5 outer iterations with GSiter = 5 by the proposed smoother (26) based on the ω-PCGS
approach (28) with different values of ω for the registration problem in Examples 1 as shown in Fig. 3(a)–(b) on a 32× 32 grid. The red diamond indicates
the optimal value of ω.

3.3. A nonlinear multigrid algorithm with automatic selection of α

As is typical of Tikhonov regularization, the energy functional Jα in (2) has a regularization parameter α. To provide
well matched images, we have to carefully select α because it is in general unknown a priori. In order to find a suitable
α automatically, we follow the ‘cooling’ (‘continuation’) process suggested in [56–58,12,15,59,60]. The basic idea is to start
with a high initial value of α and then slowly reduce α such that the obtained solution can be used to be an excellent starting
point for the next in order to decrease Jα . An alternative approach can be the L-curve method.

Consider the discrete version of the minimization problem (2) with the same notation
minJα[u] = D(R, T (u))+ αR(u). (45)

Let α1 be the initial value, which is sufficiently large. At the (s+1)th step we set α(s+1)
= βα(s)

∈ [α0, α1], where β ∈ (0, 1)
is a constant, usually chosen to be about 0.5, and α0 is a small positive number, e.g. 5× 10−5. Subsequently, we apply α(s+1)

and the initial guess solution obtained by the previous iteration u(s+1)
initial = u(s) with the associated inner loop to obtain the

minimumu(s+1) within some tolerance. Asmentioned in [58], since the functionalJα is changing at each outer loop iteration,
the demand of decreasing the value of the same functional is not reasonable. Then, the solution u(s+1) and parameter α(s+1)

are acceptable if they satisfy the so-called consistent condition:
Jα(s+1) [u(s+1)

] = D[u(s+1)
] + α(s+1)R[u(s+1)

] < Jα(s+1) [u(s)
] = D[u(s)

] + α(s+1)R[u(s)
].

However, if this condition is not satisfied, we increase β (usually to 0.9) and re-start the step. Our experience suggests that
the stopping criterion given by

‖u(s+1)
− u(s)

‖l2

max{‖u(s+1)‖l2 , ‖u(s)‖l2}
< δ (46)

is suitable, where δ > 0 is small (normally set to 10−3).
Finally, we summarize this process as follows:

Algorithm 4 (Multigrid Image Registration Through Cooling).

[v∗, α∗] ← cooling(v(0), α(0),−→ε ).

• Set s = 1, v(s)
= v(0), α(s)

= α(0), β = 0.5.
• Outer iteration: For s = 1, 2, 3, . . .

– 1. Set α(s+1)
= βα(s) in [5× 10−5, α(s)

].
– 2. Inner iteration: vnew ← FASMG(v(s), α(s+1),−→ε ).
– 3. If Jα(s+1) [vnew] < Jα(s+1) [v(s)

].
– 3.1 Set v(s+1)

= vnew, β = 0.5, s = s+ 1, and go to 4.
Else

– 3.2 Set β = 0.9, and go to 4.
– 4. Check for convergence using the criterion (46).

If not satisfied, then return to 1, else, exit to the next
step to stop.
• Set v∗ = vnew and α∗ = α(s).
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In order to save computational work for high-resolution digital images, the low-tolerance−→ε lo = (2, 10−4, 0.1, 10−4) is
applied to reduce the accumulated costs in each minimization problem. Then our first algorithm, namely a robust diffusion
image registration (RDR) approach, can be stated as follows:

Algorithm 5 (The Basic RDR Method).

1. Input−→ε lo.Set α = 1 (optional). Set
−→ε hi = (20, 10−8, 0.10, 10−8) (high-tolerance).
2. Obtain the optimal regularization parameter α (through cooling)
via Algorithm 4:

– [v(0), α] ← cooling(v, α,−→ε lo).

3. Solve the discrete minimization problem (45) on the finest level
using the found α:

– v ← FASMG(v(0), α,−→ε hi).

Although the above algorithm enables us to find a goodα, the cost of resolving the same problem repeatedly is expensive.
We propose to use a hierarchy of L grids (with level L the finest and level 1 the coarsest one) using a multi-resolution idea
to gain efficiency while finding an effective α. Firstly we shall seek the optimal α on the coarsest level 1 with the grid size of
32× 32 only (believed to be coarse enough) and secondly we use the multilevel continuation idea [12] to provide the initial
guesses for the next finer level.

Algorithm 6 (Multilevel Grid Continuation for Optimal α and Reliable Initial Solution).

[v
[lev]

, α[lev]] ← RDR_multiresolution(v
[lev]

, α[lev], lev,−→ε ).

• If lev = 1
– v[lev] = 0
–α[lev] = C [C > 0 should be large enough e.g.

C = 100]
– [v[lev], α[lev]] ← cooling(v[lev], α[lev],−→ε )

• Else
– v[lev−1] = (IHh v

[lev]
1 , IHh v

[lev]
2 )⊤

– [v[lev−1], α[lev−1]] ←
RDR_multiresolution(v[lev−1], α[lev−1], lev − 1,−→ε )

– v[lev] = (IhHv
[lev−1]
1 , IhHv

[lev−1]
2 )⊤

–α[lev] = 4α[lev−1] [Recall that α[lev] = αn2
lev and

nlel = 2nlel−1]
– v[lev] ← FASMG(v[lev], α[lev],−→ε )

• Endif

Finally the overall procedure of finding an optimal α and then starting a nonlinear multigrid method to solve (2) is
summarized below as Algorithm 7:

Algorithm 7 (The Refined RDR Multi-Resolution Method).

1. Input−→ε lo and−→ε hi.
2. Obtain the optimal regularization parameter α (through
cooling) and

a good initial solution (through multi-resolution) v(0) via
Algorithm 6:

– [v(0), α] ← RDR_multiresolution(v[L], α[L], L,−→ε lo).
3. Solve the minimization problem (45) on the finest level lev =
L using the found α

and the initial guess solution v(0):
– v[lev] ← FASMG(v(0), α,−→ε hi).
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4. An application of Algorithm 7 to a curvature model

To test the robustness of our numerical algorithm for other registration models, in this section, we shall examine our
second test model, namely, the curvature image registrationmodel, as introduced in [5,6]; see also [7,18,33,3].
The curvature model. Based on an approximation of the mean curvature of the surface of ul, Fischer–Modersitzki’s curvature
approach aims to find a reasonable deformation field u that minimizes the following functional [5,6]

Jα(u) = D(u)+ αRCv(u)

where RCv is as in (4). This leads to the Euler–Lagrange system of two fourth-order nonlinear PDEs:
f1(u)+ α∆2u1 = 0
f2(u)+ α∆2u2 = 0

(Fischer–Modersitzki’s curvature model) (47)

subject to the special boundary conditions∇ul = 0, ∇1ul = 0 on ∂Ω , for l = 1, 2.We remark that the use of second-order
derivatives in the energy functional (4) not only provides smoother deformation fields u than those of (3), but also allows
for an automatic rigid alignment. Here ul is understood as a surface in R3 represented by (x1, x2, ul(x1, x2)), where initially
ul(x1, x2) = 0, with themean curvature of the surface of ul is given by

κM(ul) = ∇ ·
∇ul

1+ |∇ul|
2
=

(1+ u2
lx1

)ulx1x1
− 2ulx1

ulx2
ulx1x2

+ (1+ u2
lx2

)ulx2x2

(1+ u2
lx1
+ u2

lx2
)3/2

. (48)

Observe that |∇ul| ≈ 0 yields κM(ul) ≈κM(ul) = 1ul. See also [24].
Since the biharmonic operatorwhich appears in (47) is known to lead to poormultigrid efficiency, therefore, it is common

to split up the equation into a system of two Poisson-type equations; see [37,38,16,18,30,39,40]. Based on this splitting idea,
(47) can be converted to the following system using additional unknown functions v1 = −1u1 and v2 = −1u2:

−1u1 − v1 = 0
−1u2 − v2 = 0
f1(u)− α1v1 = 0
f2(u)− α1v2 = 0

(49)

subject to the boundary conditions transferred into ∇ul = 0 and ∇vl = 0 on ∂Ω where the data term fl(u) is given by (5).
To solve the above continuous system numerically, (49) is first discretized by the cell-centered finite difference scheme

over the discrete domain

Ωh = {x ∈ Ω|x = (x1i , x2j)
⊤
= ((2i− 1)h/2, (2j− 1)h/2), 1 ≤ i, j ≤ n}

consisting of N = n2 cells of size h × h with grid spacing h = 1/n. Let (zhl )i,j = zhl (x1i , x2j) denote the grid function forl = 1, . . . , 4, where zhl = uh
l or vh

l for l = 1, 2. Then, the discrete system of (49) at a grid point (i, j) is given by

−Lh(uh
1)i,j − (vh

1)i,j  
N h

1 (zh)i,j

= (gh
1 )i,j

−Lh(uh
2)i,j − (vh

2)i,j  
N h

2 (zh)i,j

= (gh
2 )i,j

f h1 (uh
1, u

h
2)i,j − αLh(vh

1)i,j  
N h

3 (zh)i,j

= (gh
3 )i,j

f h2 (uh
1, u

h
2)i,j − αLh(vh

2)i,j  
N h

4 (zh)i,j

= (gh
4 )i,j,

(50)

where (zh)i,j = ((zh1)i,j, (z
h
2)i,j, (z

h
3)i,j, (z

h
4)i,j)

⊤
= ((uh

1)i,j, (u
h
2)i,j, (v

h
1)i,j, (v

h
2)i,j)

⊤ and (ghl )i,j = 0 (l = 1, . . . , 4) on the finest
grid in multigrid setting. Recall that the discrete versions of Lh and f hl (uh

1, u
h
2)i,j are given in the same way as represented

by Section 2.2 and the approximations used in (50) need to be modified at grid points near the image boundary ∂Ωh using
the homogeneous Neumann boundary conditions approximated by one-side differences for boundary derivatives:

(zhl )i,1 = (zhl )i,2, (zhl )i,n = (zhl )i,n−1, (zhl )1,j = (zhl )2,j, (zhl )n,j = (zhl )n−1,j. (51)

A robust smoother based on the linearization scheme (25). As mentioned above, our aim is to apply our linearization idea (25)
in solving the equivalent system (49). This leads to the linearized system

NCv
[z[ν]]z[ν+1] = GCv

[z[ν]], (52)
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where the symbols h and (·)i,j in (50) are dropped for simplicity. Here

NCv
[z[ν]] =


−L 0 −1 0
0 −L 0 −1

σ11(u[ν]) σ12(u[ν]) −αL 0
σ21(u[ν]) σ22(u[ν]) 0 −αL

 (53)

and

GCv
[z[ν]] =


g1
g2

g3 − f1(u
[ν]
1 , u[ν]2 )+ σ11(u[ν])u[ν]1 + σ12(u[ν])u[ν]2

g4 − f2(u
[ν]
1 , u[ν]2 )+ σ21(u[ν])u[ν]1 + σ22(u[ν])u[ν]2

 . (54)

Asmentioned in Section 3.1, σ [ν]21 = σ
[ν]
12 and σ

[ν]
lm = (∂ulT (u[ν]))(∂umT (u[ν])) form = 1, 2 are used to stabilize our numerical

scheme. In order to solve (52), we again apply the ω-PCGS as the inner solver and its kth step is updated by

(z[ν+1])[k+1]i,j = (1− ω)(z[ν+1])[k]i,j + ω(NCv
[z[ν]]i,j)−1(GCv

[z[ν]])[k+1/2]i,j (55)

where

NCv
[z[ν]]i,j =


(Σ)i,j/h2 0 −1 0

0 (Σ)i,j/h2 0 −1
(σ11(u[ν]))i,j (σ12(u[ν]))i,j α(Σ)i,j/h2 0
(σ21(u[ν]))i,j (σ22(u[ν]))i,j 0 α(Σ)i,j/h2

 (56)

(Σ)i,j =

2 at (1, 1), (n, 1), (n, 1), and (n, n) (four corners)
3 for all (1, j), (n, j), (i, 1), and (i, n) where 2 ≤ i, j ≤ n− 1 (boundary lines)
4 for all (i, j) where 2 ≤ i, j ≤ n− 2 (interior points),

(57)

(GCv
[z[ν]])[k+1/2]i,j =



(g1)i,j + (1/h2)(Σ)i,j(u
[ν+1]
1 )

[k+1/2]
i,j

(g2)i,j + (1/h2)(Σ)i,j(u
[ν+1]
2 )

[k+1/2]
i,j

(g3)i,j − f1(u
[ν]
1 , u[ν]2 )i,j + (σ11(u[ν]))i,j(u[ν]1 )i,j

+ (σ12(u[ν]))i,j(u[ν]2 )i,j + (α/h2)(Σ)i,j(v
[ν+1]
1 )

[k+1/2]
i,j

(g4)i,j − f2(u
[ν]
1 , u[ν]2 )i,j + (σ22(u[ν]))i,j(u[ν]2 )i,j

+ (σ21(u[ν]))i,j(u[ν]1 )i,j + (α/h2)(Σ)i,j(v
[ν+1]
2 )

[k+1/2]
i,j


, (58)

and

(Σ)i,j(z
[ν+1]l )

[k+1/2]
i,j = (z[ν+1]l )

[k]
i+1,j + (z[ν+1]l )

[k+1]
i−1,j + (z[ν+1]l )

[k]
i,j+1 + (z[ν+1]l )

[k+1]
i,j−1 . (59)

With the above smoother, the curvature model can be solved using our Algorithms 7–7.
Similarly to Section 3.2, we can show by the LFA that (1) limh→0 Eh(NCv

h (ξ)) = 1
256 , i.e. the linearized system (52) is h-

elliptic; and (2) ω ≈ 1 (typically ω = 0.9725) provides the good smoothing properties (µ∗loc ≈ 0.5), where the effects of ω
on smoothing factors of (55) in processing the registration problem shown in Fig. 3(a)–(b) are almost identical with Fig. 2.
We also conducted several numerical tests to confirm that (52) is a robust smoother for the FAS-NMG method to solve the
curvature model (47); see Section 5.2.

5. Numerical experiments

Themain aimof this section is to show that our newAlgorithm7using (25) is effective and robust in leading to convergent
multigrid methods in the FAS-NMG framework for both the diffusion and curvature models. In all experiments, the bilinear
interpolation was used to compute the transformed template image T (u).

5.1. The diffusion model tests

We first focus on the performance of Algorithm 7 for two sets of medical data, Examples1 1 and 2 shown respectively in
Fig. 3(a)–(b) and (d)–(e). We first consider its convergence behavior with different resolutions, and then show comparisons
with several other methods. In all experiments for this section ν1 = 5, ν2 = 5, GSiter = 5, and ω = 0.9725 were used in
this test.

1 Source: http://www.math.mu-luebeck.de/safir/.

http://www.math.mu-luebeck.de/safir/
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a b c

d e f

Fig. 3. Registration results for X-ray andMRI images using the RDRmethodwith Algorithms 2, 5, and 7. Left column: reference R, center column: template
T , right column: the deformed template image T (u) obtained from Algorithm 7.

Table 1
Registration results of Algorithms 2, 5, and 7 for Examples 1 and 2 shown in Fig. 3(a)–(b) and (d)–(e). The letters ‘M’, ‘R’, ‘D’, ‘C’, and ‘IC’ mean the number
of multigrid steps, the relative reduction of residual, the relative reduction of dissimilarity, the total runtimes, and the initial runtimes for determining the
optimal α and initial guess u(0) , respectively.

Algorithm 2 Algorithm 5 Algorithm 7
M/R/D/C M/R/D/IC/C M/R/D/IC/C

Example 1: α = 0.1000
h = 1/128 10/2.1× 10−9/0.1082/4.3 6/1.8× 10−9/0.1082/7.9/10.1 7/3.4× 10−9/0.1082/2.1/6.2
h = 1/256 11/3.6× 10−9/0.1161/22.5 6/3.1× 10−9/0.1161/41.2/54.2 7/5.1× 10−9/0.1161/3.9/24.2
h = 1/512 11/2.8× 10−9/0.1221/106.4 6/2.5× 10−9/0.1221/180.1/231.9 6/7.5× 10−9/0.1221/7.3/65.1
h = 1/1024 11/8.6× 10−9/0.1239/472.6 6/3.8× 10−9/0.1239/798.1/1049.3 6/8.2× 10−9/0.1239/26.1/256.4

Example 2: α = 0.1176
h = 1/128 10/8.3× 10−9/0.0522/4.2 5/1.5× 10−9/0.0522/7.2/10.2 6/4.2× 10−9/0.0552/2.9/4.9
h = 1/256 11/5.6× 10−9/0.0582/22.9 6/2.6× 10−9/0.0582/31.3/41.7 7/6.9× 10−9/0.0582/3.0/17.9
h = 1/512 11/7.4× 10−9/0.0615/108.3 7/5.4× 10−9/0.0615/185.7/234.9 7/3.3× 10−9/0.0615/12.5/79.1
h = 1/1024 11/3.1× 10−9/0.0633/478.1 7/6.9× 10−9/0.0633/550.1/943.1 7/5.0× 10−9/0.0633/26.9/321.3

5.1.1. h-independent convergence tests
One of the key properties ofmultigrid techniques is that their convergence does not depend on the number of grid points.

Thus, in the first test we designed our experiments to investigate this property with Algorithms 2, 5, and 7, and to back up
our theoretical results by LFA in Section 3.2. The number of multigrid steps (V-cycles) used to drop the mean of the relative
residual below ε2 = 10−8, the relative reduction of dissimilarity, and runtimes (in seconds) are given in Table 1with different
sizes of grid points. The results show that all registration algorithms not only convergewithin a fewmultigrid steps, but they
are also accurate because the dissimilarities between the reference and registered images have been reducedmore than 87%
for Example 1 and 94% for Example 2. For overall performance the experimental results suggest that Algorithm 7 would be
preferred for practical applications because the multi-resolution idea used in the cooling process for α has been prove to be
very useful for initialization.

5.1.2. Comparison with other multigrid methods
Methods in [4,12,18,21,22] are some existing unilevel or multigrid techniques used to solve the diffusion model.
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Table 2
A comparison among different multigrid methods in [4,12,18,21,22] to solve the diffusion model in the
first 20 iterations. The letters ‘M’, ‘R’, and ‘D’ mean the number of iterations in dropping the mean of the
relative residuals resulting form (2) to 10−8 , the mean of the relative residuals, and the relative reduction
of dissimilarity, respectively. Our proposed multigrid method in the last row is clearly the fastest in
convergence.

Methods M/R/D

Multi-resolution+ AOS [4] 20/7.1× 10−4/0.1417
Multi-resolution+ FMG-V(2, 2) [21] 20/5.9× 10−4/0.1428
Multi-resolution+ Gauss–Newton+ LMG-V(2, 2) [12,18] 20/6.3× 10−7/0.1344
FAS-NMG-V(5, 5)+MSFP-FS smoother adapted from [8,9] (Section 2.4.3) 20/2.6× 10−5/0.1377
FAS-NMG-V(5, 5)+MSFP-1 smoother adapted from [22,3] (Section 2.4.3) 18/4.5× 10−9/0.1351
FAS-NMG-V(5, 5)+MSFP-2 smoother adapted from [43] (Section 2.4.3) 18/7.6× 10−9/0.1383
FAS-NMG-V(5,5)+ RFP smoother (26) (Section 3.1) 11/2.0× 10−9/0.1329

Table 3
Registration results of Algorithm 2 and AOS method [5] for Example 1 shown in Fig. 3(a)–(b). ∗ indicates
either computation stopped after about 24 h or failure in dropping the relative residual to 10−8 in 10,000
iterations. Note that a much smaller residual tolerance of 10−1 is practically needed; here we test for
convergence.

Algorithm 2 AOS
M/R/D/C M/R/D/C

h = 1/128 10/8.6× 10−9/0.1248/4.2 (0.07 min) 10000/ ∗ /0.1248/934.1 (>15 min)
h = 1/256 11/2.0× 10−9/0.1329/23.1 (0.38 min) 10000/ ∗ /0.1329/5500.8 (>1.5 h)
h = 1/512 11/9.4× 10−9/0.1383/105.2 (1.75 min) 10000/ ∗ /0.1383/2498.3 (>6.9 h)
h = 1/1024 11/4.7× 10−9/0.1404/427.6 (7.96 min) ∗/ ∗ / ∗ /∗ (>24 h)

In this section, we took Examples 1 to illustrate a comparison among our FAS-NMG method with Algorithm 2 and other
six multigrid methods by starting with the fixed parameters h = 1/256, α = 1/8 and u(0)

= 0. Here we used τ = 10−2
and applied the so-called multi-resolution technique with the gradient descent methods of [4,21] for fairness. The FMG or
LMGmethods in [12,18,21] were performed using two pre-smoothing and two post-smoothing steps with the pointwise GS
smoothers until the mean of relative residuals below a user-supplied threshold (tolLMG = 10−4).

Table 2 summarizes the results for all multigrid methods. As expected from the experiments, all methods are very fast
and accurate in registering the given images because the dissimilarities between the reference and registered images have
been reduced more than 80% within the first 20 iterations. However our method is not only the fastest way in solving the
problem, but also in dropping the mean of the relative residuals below 10−8.

5.1.3. Comparison with the AOS method [4]
TheAOSmethod is one of themostwidely used gradient descent techniques for diffusion image registration [4,19,21].We

take Example 1 to illustrate a comparison with our FAS-NMG method. Table 3 summarizes the results for Algorithm 2 and
AOS methods with different numbers of grid points. We used Algorithm 2 with α = 1/8 for fairness (as Algorithm 7 will be
even better). That is, we started bothmethods with the same α and the same initial guess, u(0)

= 0. For the AOSmethod, the
time-step τ is required to be sufficiently small for each size of the problem. We used τ = 10−2 for h = 1/128− 1/1024. As
expected from the experiments, both methods are very accurate in registering the given images because the dissimilarities
between the reference and registered images have been reduced more than 85%. However the AOS fails to drop the relative
residual to 10−8 in a few time steps (even for τ > 10−2) and the runtimes used by the RDR method is much faster than
those of the AOS technique in delivering the same level of the relative dissimilarity.

5.1.4. Comparison of multigrid methods with different smoothers
Our aim in this section is to show that we have proposed a robust smoother for the FAS-NMG technique in solving the

discrete system represented in (14). To end this, we have conducted several experiments of our FASmultigrid with different
kinds of smoothers:

(i) the proposed smoother based on the RFP method (26) represented by Algorithm 3 in Section 3
(ii) the GS smoother based on the SFP method given by (19) in Section 2.4.3 (the standard FP method defined in [3, p. 79]

with the standard linear (inner) solver)
(iii) the GS smoother based on the MSFP-FS method given by (20) and (21) in Section 2.4.3 (a modified SFP method adapted

from the numerical techniques of Frohn-Schauf et al. [8,9] with the standard linear solver)
(iv) the GS smoother based on MSFP-1 method given by (22) in Section 2.4.3 (a modified SFP method of the first type with

the standard linear solver)
(v) the GS smoother based on MSFP-2 method given by (23) in Section 2.4.3 (a modified SFP method of the second type

with the standard linear solver)
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a b c

Fig. 4. Results from Example 1 as shown in (a)–(b) by the curvature model (47) using the FAS-NMG method with the smoother (52). Left to right: the
reference R, the template T , and the registered image T (u) by the curvature model (47).

(vi) line relaxation smoothers based on the RFP method in Section 3 (the RFP method given by (26) with another kind of
iterative linear solvers)

(vii) the Newton–Gauss–Seidel smoother used in [10] and given explicitly in [20] in (13) (an alternative way of choice of
smoothers used in solving the discrete Euler–Lagrange equations represented by (14)).

Omitting the computational results, we remark that these observations can be made:

(a) The smoother in (ii) requires more multigrid cycles than the proposed smoother and may not lead to the convergence
of the FAS-NMG technique for small values of α.

(b) As expected, the results based on the smoother (iii) do not find a solution that is the necessary condition of the original
variational problem (2), although the underlying MG performs better than with other smoothers (slightly less well than
with our RFP smoother).

(c) The smoother in (iv)–(v) may take many multigrid cycles, not leading to the convergence of the FAS-NMG technique
when the fixed point parameters c1, c2 (or c), and ϵ are not well selected (i.e. the NMG becomes sensitive to these
parameters).

(d) As expected, line relaxation smoothers require less multigrid cycles but more computational costs than the proposed
smoother.

(e) TheNewton–Gauss–Seidel smoother providewellmatched imageswithin a fewmultigrid steps, but itmay requiremore
multigrid cycles than the proposed smoother in leading to the convergence of the FAS-NMG technique.

5.2. The curvature model

In this section, we aim to show that the FAS-NMGmethod with the smoother (52) based on our linearization idea (25) is
effective and robust to solve the curvature model (47) within the multigrid framework similar to Algorithm 1.

To this end, we took only one data set of medical images, Examples 1, as shown in Fig. 3(a)–(b). We first investigate
the convergence behavior and the registration accuracy of our FAS-NMG method with different sizes of image resolutions.
Secondwe compare three numerical solutionmethods for solving the curvaturemodel (47). In all experiments,Ω = [0, 1]2,
V = [0, 1], ν1 = 10, ν2 = 10, PCGSiter = 10, and ω = 0.9725 were used.

5.2.1. h-independent convergence tests
In this test, we started the registration processes with α = 10−4, u(0)

= 0, and h = 1/128, . . . , h = 1/1024. The
registered image is shown in Fig. 4(c). As expected from our LFA results, Fig. 5(a)–(b) shows that our FAS-NMG approach is
h-independent. It takes only a fewMG steps (almost the samenumber) to drop themean of the relative residuals below10−8.
Moreover, as shown in Fig. 5(b) only one MG step can reduce the dissimilarities between the reference and the registered
image more than 90% for the given registration problem.

5.2.2. Comparison with two other methods
In this section we aim to investigate the performance of the FAS-NMG method with the smoother (52) and those of

other two methods: the FP method (52) (the smoother used as a stand-alone solver) and the DCT-based method in [6]. We
note that the FT-based method in [33,34] is faster than the DCT-based method with the ratio of 2.3 for solving each linear
time-dependent problem resulting from (47). Thus, for this class of gradient descent techniques it is enough to use only the
DCT-based method, which is one of the most widely used techniques for the curvature model.
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Fig. 5. Results from Example 1 as shown by Fig. 3(a)–(b) by the curvature model (47) using the FAS-NMG method with the smoother (52). Left to right:
the histories of the mean of relative residuals (MRR) with respect to the MG steps and the histories of the relative SSD (RSSD) with respect to the MG steps.
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Fig. 6. Results from Example 1 as shown by Fig. 3(a)–(b) by the curvature model (47) using three numerical solution methods: the FAS-NMGmethod with
the smoother (52), the FPmethod (52), and the DCT-basedmethod in [6]. Left to right: (a) the histories of themean of relative residuals (MRR) with respect
to the iteration steps and (b) the histories of the relative SSD (RSSD) with respect to the iteration steps.

To this end, we started all methods with h = 1/256, α = 10−4 and u(0)
= 0. For the DCT-based method, the time-step

τ was selected to be τ = 10−2 (since the fixed parameters 1/h4
= N4

= 2564, V = [0, 1] and α = 10−4 were used in the
discrete system of (47), τ = 10−2 was a reasonable time-step).

Compared with the results by other two methods, Fig. 6(b) shows that our FAS-NMGmethod is very fast in reducing the
dissimilarities between the reference and registered images. Moreover, as shown in Fig. 6(a) it takes only a few steps to drop
the mean of the relative residuals (MRR) below 10−8. This is a remarkable result to conclude that its performance in solving
the curvature model (47) is much more efficient than those of the other two methods.

From both tests in Sections 5.1 and 5.2 they confirm that the smoothers based on our linearization idea by (25) are
effective and robust in leading to convergent multigrid methods for both the diffusion and curvature models.

6. Conclusions

In this paper we first reviewed various iterative methods for solving image registration models and then addressed the
problem of designing an optimal and efficient FAS-NMG technique. For the commonly used SSDmodel, we proposed a new,
simple and yet effective fixed point smoothing schemewhich is demonstrated to bemore effective than a large class of other
iterativemethods for a diffusionmodel and a curvaturemodel. A local Fourier analysis was done to confirm the effectiveness
of the smoother. For an automatic way of selecting the regularization parameter α, we proposed amulti-resolution idea that
seems to work well for a range of problems. Numerical results confirmed the expected robustness and excellent speed in
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convergence compared with other competing methods. Future work will address multigrid techniques for models of multi-
modal deformable image registration.
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