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Abstract

There exist many models for deformable image registration, mainly dif-
fering in how regularization is introduced. On one hand, models minimizing
first- or second-order derivatives such as diffusion-, elastic-, or curvature-based
image registration are known to generate globally smooth deformation fields.
On the other hand, regularization techniques based on total variation (TV)
preserving discontinuities of the deformation field are useful to a class of prob-
lems where smoothness is less a concern. It is still a challenge to design a
model suitable for both smooth problems and non-smooth problems.

This talk first proposes a variational model based on a modified TV reg-
ularization, which can be interpreted as a half way model between diffusion
(smooth) and TV (non-smooth) registration. The idea stems from image
restoration where smoothing and preserving discontinuities are both impor-
tant. Second to solve the resulting Euler- Lagrange system of two coupled,
nonlinear partial differential equations (PDEs), we present a nonlinear multi-
grid (NMG) strategy and an adaptive parameter selection procedure. Nu-
merical tests using both synthetic and realistic images not only confirm that
the proposed model is more robust in registration quality for a wide range of
applications than previous models, but also that the proposed NMG method
can deliver an acceptable solution many orders of magnitude faster than the
gradient descent approach, popularly used in image processing.
Keywords: deformable image registration, discontinuity-preserving image
registration, non-rigid image registration, nonlinear multigrid, total variation,
variational approach.
AMS Subject Classifications: 65K10, 65N55, 94A08, 47A52.

1 Introduction

Image registration, also called image fusion, image matching or image warping, is

a widely used task in image processing and is applied whenever a series of images of

the same or similar scene needs to be compared or integrated. It has applications in

various fields. Particularly, in medical imaging there are practical applications that

require a registration step to monitor disease progression and/or plan treatment
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guidance. For an overview on registration methodology, we refer to [14, 15], and

references therein. This work focuses on deformable image registration set in a

variational framework [15].

Given a so-called reference image R and a so-called template image T , the

goal of image registration is to determine a reasonable transformation φ, such

that the transformed version of the template becomes similar to the reference in

the geometrical sense. Here, we model the given images R and T as smooth and

compactly supported functions mapping points of a rectangular domain Ω ⊂ R2

to a domain V ⊂ R+
0 and the template is distorted by the transformation φ (x) =

x + u (x) with a so-called deformation or displacement field u : Ω → Ω, whose

components u1 and u2 are functions of the variable x = (x1, x2)
⊤ in the image

domain Ω. The term u is used to model the transformation φ because it can view

as how a point in the deformed template image T (u) = T (x+u(x)) = (T ◦ φ)(x)

is moved away from its original position. Thus the problem of estimating the

transformation φ and the deformation field u are equivalent. Without loss of

generality we assume that Ω = [0, 1]2 ⊂ R2 and V = [0, 1] for 2D gray-scale images

throughout this work.

As is known, deformable image registration is a nonlinear and ill-posed prob-

lem in the sense of Hadamard (i.e., uniqueness of the solution is not guaranteed).

Therefore, it becomes necessary to impose a deformation model for penalising

unwanted and irregular displacement fields as much as possible using some prior

knowledge. In general, various variational models for the deformable image reg-

istration have two basic building blocks. The first one is a so-called similarity

measure D quantifying distance or similarity of two given images R and T , and

the second one is a so-called regularizer R, which rules out unwanted, irregu-

lar, and/or nonunique solutions during registration process. As a consequence,

the deformable image registration can be mathematically posed as a minimization

problem of the so-called Tikhonov energy functional,

Jα [u] = D (R, T (u)) + αR (u) . (1)

Here α > 0 is the so-called regularization parameter that compromises similarity

and regularity; Section 4 presents an idea of selecting α. When the image intensi-
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ties of the given images R and T are comparable (i.e., in a monomodal registration

scenario), the proper choice of D is the so-called sum of squared differences (SSD)

given by

D (R, T (u)) =
1

2

∫
Ω
(T (x+ u (x))−R (x))2 dx, (2)

which is adopted in this work.

1.1 Review of four image registration models

The actual choice of the building block R is very crucial and depends on the

application under consideration. Different choices of R not only lead to different

deformation models but also to different Euler-Lagrange systems involving coupled

nonlinear PDEs. The most popular are the following:

(1) Elastic image registration, whereR is based on the linearised elastic potential

and given by

Relas(u) =

∫
Ω
((µ/4)

2∑
l,m=1

(∂xl
um + ∂xmul)

2 + (λ/2)(∇ · u)2)dx. (3)

Here µ > 0 and λ ≥ 0 are the so-called Lamé constants which reflect material

properties; see more details in [15] and references therein.

(2) Diffusion image registration [2, 3, 11, 12, 15, 18], where R is based on the

first-order partial derivatives of ul and given by,

Rdiff(u) =
1

2

2∑
l=1

∫
Ω
|∇ul|2 dx. (4)

(3) Fischer–Modersitzki’s curvature image registration [4, 9, 11, 12, 15], where

R is based on an approximation of the mean curvature of the surface of ul

and given by

Rcurv(u) =
1

2

2∑
l=1

∫
Ω
(∆ul)

2dx. (5)

(4) Total variation (TV) image registration [5], where R is based on the first-

order partial derivatives of ul and given by

RβTV (u) =
2∑

l=1

∫
Ω
|∇ul|β dx =

2∑
l=1

∫
Ω

√
u2lx1

+ u2lx2
+ βdx. (6)

Here β > 0 is a small real parameter for avoiding non-differentiable at zero;

see more details in [5, 16].
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As is known, Relas, Rdiff, andRcurv produce globally smooth deformation fields.

While they are useful for several applications, they become poor if discontinuities

or steep gradients in the deformation fields are expected (e.g. resulting from

multiple moving objects or partially occluded objects). See Figures 1-2 for a

particular registration problem where the common regularization techniques yield

oversmooth deformation fields and Figures 3-4 for a typical registration problem

requiring smooth deformation fields.

In order to preserve discontinuities of the deformation field, RβTV helps to

preserve piecewise constant smoothness, which is much weaker than those global

smoothness of Relas, Rdiff, and Rcurv; see Figures 3-5 for example. However,

RβTV may not be suitable for some particular image registration problems, which

require deformation fields having very strong smoothing properties, i.e. where the

staircase effect is not desirable.

1.2 Review of numerical techniques for deformable image regis-
tration

Various numerical techniques for deformable image registration have been pro-

posed in solving the Euler-Lagrange systems of coupled nonlinear PDEs resulting

from the minimization problem of the energy functional (1). These technique can

be broadly divided into two main categories: the so-called parabolic and ellip-

tic approaches. A parabolic (gradient descent or time marching) approach per-

forms by introducing the so-called artificial time variable and then determining

the steady state solution of the system of time-dependent linear PDEs (see e.g.

[3, 4, 9, 12, 15, 18]) and an elliptic approach performs by directly solving the system

of nonlinear PDEs with a method of our choice, e.g. the fixed-point (FP) iteration,

Newton-type, multigrid (MG) methods (see e.g. [2, 5, 6, 7, 8, 10, 11, 13, 19]). As

is known, MG techniques are usually much faster than those of gradient descent

approaches, commonly used in image processing applications. Therefore, in this

paper we propose a fully automatic, fast, and accurate approach based on the

so-called full approximation scheme nonlinear multigrid (FAS-NMG) strategy (see

[17]) and an adaptive procedure in selecting the optimal value of α developed by

[2]. In literature, the use of MG techniques for deformable image registration is
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hardly new; see e.g. [2, 5, 6, 7, 8, 9, 10, 11, 18, 19] and references therein. However,

the use of the FAS-NMG methods for this kind of registration problems is rela-

tively new with a few references; see e.g. [2, 6, 8, 19]. To the best of our knowledge,

it is completely new in the field of discontinuity-preserving image registration.

The rest of the paper is organized as follows. Section 2 first presents a new

variational model that can helps to preserve discontinuities of u and then discusses

its numerical solution based on the FAS-NMG method in Section 3. Section 4

presents a method of selecting the optimal value of α. Experimental results from

syntectic and real images are illustrated in Section 5 before conclusions in Section

6.

2 A new discontinuity-preserving model

Motivated by several regularization techniques that have been prove to be very

useful in optical flow computation, image reconstruction, and image restoration;

see [1] and references therein, one can smooth isotropically each component of u

inside homogeneous (or flat) regions corresponding to weak gradients and preserve

its discontinuities in inhomogeneous regions presenting large gradients by replacing

|∇z| in (6) (where z is u1 or u2) by ϕ (|∇z|) where the so-called potential function

ϕ satisfies some conditions to ensure the discontinuity-preserving. Consequently,

our modified TV (MTV) model can be represented in terms of a general notation,

RMTV(u) =
2∑

l=1

∫
Ω
ϕ (|∇ul|) dx, (7)

and then leads to the nonlinear system of PDEs given by{
f1(u)− α∇ · (ϕ

′(|∇u1|)
|∇u1| ∇u1) = 0, f2(u)− α∇ · (ϕ

′(|∇u2|)
|∇u2| ∇u2) = 0

subject to ϕ′(|∇ul|)
|∇ul| ∂nul = 0 on ∂Ω (MTV)

(8)

where n = (n1, n2)
⊤ is the outward unit vector normal to the image boundary ∂Ω

and

f1 (u) = (T (u)−R) ∂u1T (u), f2 (u) = (T (u)−R) ∂u2T (u) (9)

are the results of the first variation of the data term D.

There exist many choices for the potential function ϕ [1] to modify the TV

model. Below we give some commonly used ones for (7) and its diffusion coefficient

D (s) = ϕ′ (s) /s:
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• ϕ (s) = 1
ps

p, D(s) = 1
s2−p , 1 < p < 2 (ϕ is related to (6), i.e. RβTV when p = 1)

• ϕ (s) = log
(
1 + s2

)
, D (s) = 2

1+s2 ,

• ϕ (s) = s2

1+s2 , D(s) = 2
(1+s2)2

• ϕ (s) = 2
√
1 + s2 − 2, D(s) = 2√

1+s2

• ϕ (s) = 2 log [cosh (s)], D(s) =

{
2

2 tanh (s) /s
, s = 0
, s ̸= 0

It is worth noticing that the diffusion coefficient (or the stopping function)D(s) has

the following basic properties: (1) D(s)→ 0 as s → ∞. (2) D(s)→ M (0 < M <

+∞) as s → 0. These mean that on one hand it preserves discontinuities of u by

reducing or stopping the diffusion (smoothing) process in inhomogeneous regions,

on the other hand it smooths u isotropically inside homogeneous regions. In other

words, TV-like regularization is used in inhomogeneous regions and diffusion- or

quadratic-like regularization is used in homogeneous regions. These are the main

reasons how RMTV can be simply interpreted as a half way between diffusion and

TV regularization techniques for deformable image registration; see e.g. Figures

1-5. In this study, we focus only on the potential function ϕ defined by ϕ (s) =

log
(
1 + s2

)
to be a numerical phototype for this kind of regularization techniques,

and then the resulting Euler-Lagrange equations can be explicitly expressed in

terms of the nonlinear system of two coupled PDEs as follows:
LNL(u1)

f1 (u)
︷ ︸︸ ︷
−α∇ · ( 2∇u1

1+(|∇u1|)2
)︸ ︷︷ ︸

N1(u)

= g1, f2 (u)

LNL(u2)︷ ︸︸ ︷
−α∇ · ( 2∇u2

1+(|∇u2|)2
)︸ ︷︷ ︸

N2(u)

= g2

subject to ∂nu1 = ∂nu2 = 0 on ∂Ω

(10)

Here Nl (l = 1, 2) and LNL are the nonlinear partial differential operators and

gl = 0 (l = 1, 2) is technical notation for numerical solutions that will be used in

the next sections.

3 A nonlinear multigrid method

Full approximation scheme nonlinear multigrid (FAS-NMG) techniques [?, 17] have

been prove to be very useful in image processing applications for solving large
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systems of nonlinear equations arising from high-resolution digital images in real-

life applications.

The basic idea of a FAS-NMG method is to smooth high frequency components

of the error of the solution by performing a few steps with a so-called nonlinear

smoother (an iterative relaxation technique) such that a smooth error term can be

well represented and approximated on a coarser grid. After a nonlinear residual

equation has been solved on the coarse grid, a coarse-grid correction is interpolated

back to the fine grid and used to correct the fine grid approximation. Finally, the

nonlinear smoother is performed again in order to remove some new high frequency

components of the error introduced by the interpolation.

It is worth noticing that designing a suitable smoother is a major task in

developing an efficient multigrid method. As already well known, the Newton-

Gauss-Seidel relaxation do not perform well as a good smoother in leading to the

convergence of the FAS-NMG technique for solving the nonlinear system related

to the TV regularization technique. In this work, we then focus on designing a

working smoother based on a typical FP method, which is semi-implicit in both

regularizer and data terms. Staring with an initial guess u[0] (e.g. u[0] = 0) leads

to

N[u[ν]]u[ν+1] = G[ν], (11)

where u[ν+1] = (u
[ν+1]
1 , u

[ν+1]
2 )⊤, Llin

NL[u
[ν]
l ]u

[ν+1]
l = −α∇ · ( 2∇u

[ν+1]
l

1+(∇u
[ν]
l )2

), G
[ν]
l = gl −

fl(u
[ν]
1 , u

[ν]
2 ),

N[u[ν]] =

[
(Llin

NL[u
[ν]
1 ] + σ

[ν]
11 ) σ

[ν]
12

σ
[ν]
21 (Llin

NL[u
[ν]
2 ] + σ

[ν]
22 )

]
, G[ν] =

(
G

[ν]
1 + σ

[ν]
11u

[ν]
1 + σ

[ν]
12u

[ν]
2

G
[ν]
2 + σ

[ν]
22u

[ν]
2 + σ

[ν]
21u

[ν]
1

)
,

σ
[ν]
l1 = ∂u1fl(u

[ν]
1 , u

[ν]
2 ) = (∂ul

T (u[ν]))(∂u1T (u
[ν])) + (T (u[ν])−R)(∂u1ul

T (u[ν])),

and

σ
[ν]
l2 = ∂u2fl(u

[ν]
1 , u

[ν]
2 ) = (∂ul

T (u[ν]))(∂u2T (u
[ν])) + (T (u[ν])−R)(∂u2ul

T (u[ν])).

We note that the resulting linear system given by (11) can be solved by the

so-called block or pointwise collective Gauss-Seidel (PCGS) relaxation method,

i.e. all difference equations are updated simultaneously. In order to gain more
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efficiency, one may introduce the so-called relaxation parameter ω ∈ (0, 2) and

iterate the ω−PCGS steps by

(u[ν+1])
(k+1)
i,j = (1− ω) (u[ν+1])

(k)
i,j + ω(N[u[ν]]

(k+1)
i,j )−1(G[ν])

(k+1/2)
i,j︸ ︷︷ ︸

original PCGS result

. (12)

We note further that the proposed smoother given by (12) shows the interaction

between the actual FP iteration that overcomes the nonlinearity of the operator

Nl at each outer step ν and the ω−PCGS method that solves the resulting linear

system of equations at each corresponding inner step k. Instead of solving the

linear system of equations using the proposed smoother with very high precision,

the smoother can perform only a few iteration to obtain an approximation solution

at each outer step ν. This is likely the so-called inexact lagged-diffusivity method

that have been widely used for solving other problems in image processing applica-

tions related to the TV regularization technique. We also note that line relaxation

techniques, e.g. alternative line relaxation, are optional for the second step. How-

ever, we found with several numerical tests that they require less MG cycles in

leading to the convergence of the FAS-NMG technique, but more computational

costs than the proposed smoother given by (12). Finially, we note that in our FAS-

NMG framework, the V-cycle is applied recursively down to the coarsest grid of a

small number of grid points, typically 4× 4. In order to compute the coarse-grid

operator of Nl, the so-called discretization coarse grid approximation (DCA) is

used. For intergrid transfer operators between the fine- and coarse-grid domains,

the averaging and bi-linear interpolation techniques are used for the restriction

and interpolation operators; see the details in [17].

4 A robust approach for discontinuity-preserving im-
age registration (RADPIR)

As is typical of Tikhonov regularization, the energy functional Jα in (1) has a

regularization parameter α. To provide well matched images, we have to carefully

select α because it is in general unknown a priori. In order to find a suitable α

automatically, we follow the ‘cooling’ process suggested in [2, 7] and references

therein. The basic idea is to start with a high initial value of α and then slowly
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reduce α such that the obtained solution can be used to be an excellent starting

point for the next in order to decrease Jα. An alternative approach is to use a

L-curve method.

Consider the discrete version of the minimization problem (1) with the same

notation

minJα [u] = D (R, T (u)) + αR (u) . (13)

Let α1 be the initial value, which is sufficiently large. At the (s + 1)th step we

set α(s+1) = ηα(s) ∈ [α0, α1], where η ∈ (0, 1) is a constant, usually chosen to

be about 0.5, and α0 is a small positive number, e.g. 5 × 10−5. Subsequently,

we apply α(s+1) and the initial guess solution obtained by the previous iteration

u
(s+1)
initial = u(s) with the associated inner loop to obtain the optimal solution u(s+1)

within some tolerance. As mentioned in [2], since the functional Jα is changing at

each outer loop iteration, the demand of decreasing the value of the same functional

is not reasonable. Then, the solution u(s+1) and parameter α(s+1) are acceptable

if they satisfy the so-called consistent condition:

Jα(s+1) [u(s+1)] = D[u(s+1)]+α(s+1)R[u(s+1)] < Jα(s+1) [u(s)] = D[u(s)]+α(s+1)R[u(s)].

However, if this condition is not satisfied, we increase η (usually to 0.9) and re-start

the step. Our experience suggests that the stopping criterion given by∥∥u(s+1) − u(s)
∥∥
l2

max{
∥∥u(s+1)

∥∥
l2
,
∥∥u(s)

∥∥
l2
}
< δ (14)

is suitable, where δ > 0 is small (normally set to 10−3).

In order to save computational work for high-resolution digital images, a low-

tolerance is applied to reduce the accumulated costs in each minimization problem

solved by our FAS-NMG method and we shall name this method by a robust

approach for discontinuity-preserving image registration (RADPIR). In order to

increase the performance of this method, we propose to use a hierarchy of L grids

(with level L the finest and level 1 the coarsest one) with the so-called multi-

resolution or multilevel continuation technique. Firstly we shall seek the optimal

α on the coarsest level 1 with the grid size of 32 × 32 only (we selected this size

of grid points because it still contains useful information from the low-resolution
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versions of the given images) and secondly we use the multilevel continuation idea

to provide the initial guesses for the next finer level while using our FAS-NMG

method.

5 Numerical examples

In this section we demonstrate 3 sets of experiments results

• the abilities of RMTV in solving the particular registration problems as rep-

resented by Example 11-22 shown respectively in Figure 1 (a)-(b) and Figure

3 (a)-(b);

• the overall performance of our proposed numerical methods on a set of med-

ical data by processing Example 2 shown in Figure 3 (a)-(b);

• a comparison between our FAS-NMG method and the semi-implicit time

marching schemes on the set of clinical images in Example 2.

In all experiments, the bi-linear interpolation technique was used to compute

T (u), and ν1 = 5, ν2 = 5, ω = 1.85, GSiter = 5 (the ω−PCGS steps) were

employed in the multigrid procedure with a zero deformation field as initialization.

For medical images we preprocessed them with a Gaussian kernel of standard

deviation σ̂ = 1.

5.1 Comparison RMTV with different regularization techniques

In this experiment, our aim is to investigate capabilities of RMTV, RβTV and Rdiff,

which belong to the same class of variational image registration models using 1st-

order partial derivatives, in solving Example 1-2. To be a fair comparison, we

used the same systematic formulation as explained in Sections 3-4 for solving the

discretised Euler-Lagrange equations related to RβTV and Rdiff.

As shown in Figure 1 (c)-(e), on one hand, RMTV and RβTV produced visually

pleasing registration results, while Rdiff did not. The main reason is that the exact

deformation field is given by a shift of the upper rectangular to the right and a

shift of the lower rectangular to the left; c.f. Figure 2 (a)-(b). Therefore, the exact

1Adapted from [5]
2Source: http://www.math.mu-luebeck.de/safir/

275



(a) R (b) T

(c) T (u) [RMTV] (d) T (u) [RβTV]

ε̃ = 0.0007 ε̃ = 0.0010
(e) T (u) [Rdiff] (f) T (u) [Relas] (g) T (u) [Rcurv]

ε̃ = 0.0391 ε̃ = 0.0217 ε̃ = 0.0077

Figure 1: Registered images for two rectangular blocks shown in (a) R and (b) T of size

32 × 32 (Example 1): results by (c) RMTV, (d) RβTV with β = 0.0001, (e) Rdiff, (f)

Relas with (µ, λ) = (1, 0), and (g) Rcurv. Recall that ε̃3 means the relative reduction of

dissimilarity.

deformation field is piecewise constant with substantial discontinuities at regions

close to the interface between the upper and the lower rectangular. Consequently,

Rdiff must fail because it tries to smooth the deformation field as much as possible

at those regions; see over smoothing results of the field as shown in Figure 2 (c). On

the other hand, as shown in Figures 4 (a)-(c) RMTV and Rdiff gave slightly better

registration results than those of RβTV in terms of ε̃ (the relative reduction of

dissimilarity), but the corresponding deformation fields shown in Figures 5 (b)-(c)

are more reasonable than that of RβTV depicted in Figures 5 (a). This because the

exact deformation field is globally smooth, almost the same shapes as determined
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(a) RMTV (b) RβTV
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(c) Rdiff (d) Relas (e) Rcurv
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Deformation field u = (u1, u2)
⊤

Figure 2: Deformation fields for the registration problem shown in Figure 1 (a)-(b) (Ex-

ample 1): results by (a) RMTV, (b) RβTV with β = 0.0001, (c) Rdiff, (d) Relas with

(µ, λ) = (1, 0), and (e) Rcurv.

by RMTV and Rdiff, but the results of RβTV are almost piecewise constant in

some parts of the upper regions. Both experiments confirm that RMTV is a half

way between RβTV and Rdiff. In other words, RMTV is compatible with RβTV

for registration problems requiring to preserve discontinuities and it is compatible

with Rdiff for those registration problems requiring to have global smoothness of

the field. In case of Relas and Rcurv, we found by applying different numerical

techniques given in [15] that registration results are similar to those of Rdiff as

shown in Figures 1 (f)-(g), 2 (d)-(e), 4 (d)-(e), and 5 (d)-(e).

5.2 h−independent convergence tests

One of the key properties of multigrid techniques is that their convergence does

not depend on the number of grid points. Thus, in the second test we designed

our experiments on clinical images by processing Example 2 as shown in Figure

3. The number of multigrid steps (V-cycles) used to drop the relative residual

below 10−8, the relative reduction of dissimilarity, and the runtimes (in seconds)

are given in Table 1 with different sizes of grid points. The results show that all

registration algorithms not only converge within a few multigrid steps as expected
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(a) R (b) T (c) T (u)

ε̃ = 0.0917

Figure 3: Registration results for X-ray and MRI images (Examples 2 (a)-(b)) using the

proposed numerical methods. Left column: reference R, center column: template T , right

column: the deformed template image T (u) obtained from RMTV.

from a multigrid technique, but they are also accurate because the dissimilarities

between the reference and registered images have been reduced more than 88%. For

overall performance the experimental results suggest that the multilevel RADPIR

method would be preferred for practical applications because the multi-resolution

idea used in cooling α has been prove to be very useful for initialization. It results

in speeding up overall runtimes of the standard RADPIR method around 3 times.

FAS-NMG RADPIR Multilevel+RADPIR
N/R/D/C N/R/D/IC/C N/R/D/IC/C

Example 2 : α = 0.0909

h = 1/128 8/3.1 × 10−9/0.1012/26.2 4/6.6 × 10−9/0.0917/95.4/110.1 6/7.1 × 10−9/0.0917/21.6/41.0

h = 1/256 8/1.8 × 10−9/0.1098/134.4 5/3.6 × 10−9/0.1098/298.0/365.1 6/3.1 × 10−9/0.1098/29.4/109.5

h = 1/512 8/9.5 × 10−9/0.1150/453.3 5/1.4 × 10−9/0.1124/1402.1/1707.5 6/4.4 × 10−9/0.1124/57.9/396.1

h = 1/1024 8/3.6 × 10−9/0.1168/1864.4 5/2.1 × 10−9/0.1168/5137.5/6289.7 5/6.5 × 10−9/0.1168/171.9/1332.1

Table 1: Registration results of the proposed numerical methods for processing Examples

2 shown in Figure 3 (a)-(b). The letters ‘N’, ‘R’, ‘D’, ‘C’, and ‘IC’ mean the number of

multigrid steps, the relative reduction of residual, the relative reduction of dissimilarity,

the total runtimes, and the initial runtimes for determining the optimal α and initial guess

u(0), respectively.

5.3 Comparison our FAS-NMG method with the semi-implicit
time-marching schemes

The main aim of this experiment is to show that the parabolic approaches are

quite slow in achieving convergence. We took Example 2 to illustrate this point.

Table 2 summarizes the results for the standard semi-implicit and additive operator

splitting (AOS) time marching schemes with different numbers of grid points. To

be a fair comparison between them, we used those results determined by our FAS-
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(a) T (u) [RβTV] (b) T (u) [RMTV] (c) T (u) [Rdiff]

ε̃ = 0.1574 ε̃ = 0.0917 ε̃ = 0.1082
(d) T (u) [Relas] (e) T (u) [Rcurv]

ε̃ = 0.0853 ε̃ = 0.0777

Figure 4: Registration results for the problem of size 128× 128 shown in Figure 3 (a)-(b)

(Example 2): results by (a) RβTV with β = 0.001, (b) RMTV, (c) Rdiff, (d) Relas with

(µ, λ) = (1, 0), and (e) Rcurv.

NMG method represented in Table 1. That is, we started all methods with the

same α = 0.0909 and the same initial guess, u(0) = 0. Here, the time-step τ is

required to be sufficiently small for each size of the problem. We used τ = 10−4

for h = 1/128 − 1/512 and τ = 10−6 for h = 1/1024. As expected from the

experiments, all methods are accurate in registering the given images because the

dissimilarities between the reference and registered images have been reduced more

than 88%. However both time marching methods fail to drop the relative residual

to 10−8 in a few time steps (even large values of τ are used) and the runtimes used

by our FAS-NMG method are significantly faster in delivering the same level of

the relative dissimilarity.

6 Conclusions

In this paper, we have proposed first a novel regularization technique, a half way

between diffusion and TV regularization techniques, for deformable image regis-

tration, and then a fully automatic, fast, and accurate approach based on the
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(a) T (u) [RβTV] (b) T (u) [RMTV] (c) T (u) [Rdiff]
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(d) T (u) [Relas] (e) T (u) [Rcurv]
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Deformation field u = (u1, u2)
⊤

Figure 5: Deformation fields for the registration problem shown in Figure 3 (a)-(b) (Ex-

ample 2): results by (a) RβTV with β = 0.001, (b) RMTV, (c) Rdiff, (d) Relas with

(µ, λ) = (1, 0), and (e) Rcurv.

Standard Semi-Implicit AOS
N/R/D/C N/R/D/C

h = 1/128 21973/ ∗ /0.1012/5232.4 (1.45 hours) 23946/ ∗ /0.1012/3074.1 (0.85 hours)
h = 1/256 19808/ ∗ /0.1098/25513.9 (7.08 hours) 21197/ ∗ /0.1098/15587.0 (4.32 hours)
h = 1/512 ∗/ ∗ / ∗ /∗ (> 15 hours) 16637/ ∗ /0.1150/53757.1 (14.9 hours)
h = 1/1024 ∗/ ∗ / ∗ /∗ (> 15 hours) ∗/ ∗ / ∗ /∗ (> 15 hours)

Table 2: Registration results of the proposed FAS-NMG method, the standard semi-

implicit, and AOS time marching methods for Example 2 shown in Figure 3 (a)-(b).

∗ indicates either computation stopped after about 15 hours or failure in dropping the

relative residual to 10−8.

FAS-NMG strategy and the automatic procedure in selecting the optimal value of

α for solving the corresponding variational problem. Numerical tests confirm that

the proposed regularization technique is more flexible than those common tech-

niques such as the diffusion and total variation based regularization techniques.

They also show that the FAS-NMG technique based on the proposed smoother

is h−independent convergence and much faster than those of semi-implicit time-

marching schemes in delivering the same numerical results. Future works will

address a typical regularization technique and multigrid methods of other regular-

ization techniques for deformable image registration, and in particular 3D prob-

lems.
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