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Image segmentation is a fundamental task for many computer vision and image processing applications. There exist many useful
and reliable models for two-phase segmentation. However, the multiphase segmentation is a more challenging problem than two
phase segmentation, mainly due to strong dependence on initialization of solutions. In this paper we propose a reliable hierarchical
algorithm for multiphase texture image segmentation by making full use of two-phase texture models in a fuzzy membership
framework. Application of the new algorithm to the synthetic and real medical imaging data demonstrate more satisfactory results
than existing algorithms.

1. Introduction

Image segmentation is a fundamental problem in image
processing which is a prerequisite to high-level computer
vision applications. It aims to divide an image representing
a real scene or a synthetic one into classes or categories,
corresponding to different objects and the background in the
image. In the end, each pixel should belong to one class and
only one. In other words, we look for a partition of the image
into distinct segments, and each of them shares some features
in common such as intensities, color, or texture. In particular,
image texture defined by repeated patterns of intensities adds
much complication in image processing tasks. A textured
image often has several regions with different textures in
existence, and the task of segmentation is to locate the texture
boundaries, with which this paper is concerned.

Over the past two decades, a variety of different tech-
niques have been developed to solve the problem of image
segmentation, ranging from region growing and emerging
[1], watershed algorithms [2], minimum description length
criteria [3], and active contour models [4, 5] to Mumford-
Shah energy minimization model [6].

Historically, image segmentation is known as the process
to segment an image into two categories of regions: the
foreground and the background. This process nowadays is
referred to as a two-phase modeling, whereas multiphase
modeling is specifically to deal with segmentation of more
than two regions. Earlier work on segmentation attempts to
detect the feature boundaries directly by edge detection [7–
9]. These methods are susceptible to noise which is often
present in real applications, and as such they are not suitable
for processing either textured or noisy images, unless one
applies it to the transformed image after applying a Gabor-
type filter to the original one [10].

For nontexture images, the most influential model,
known as MS-model, is proposed by Mumford and Shah
[6], where the required boundary set Γ of features as well
as the segmented image u is determined from minimizing
an energy functional. Unfortunately this elegant model is
numerically difficult to realize, as such considerable effort has
been made in order to alleviate this problem. For instance,
Ambrosio and Tortorelli [11] have proposed a more solv-
able model by approximating the MS-model with elliptic
functionals defined on Sobolev spaces. However, the most
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well-known paper based on [6] is the algorithm proposed
by Chan and Vese [12]. Known as the CV-model, this was
initially designed for two-phase segmentation of images of
approximately piecewise constant intensities, using the
framework of level set functions [13].

Segmentation of texture image is intrinsically more chal-
lenging than intensity-based ones. For texture images, detect-
ing edges directly is problematic as it would treat texture
patterns as image features. One of the strategies is to derive
texture features from the image by first applying certain
filters to it, and subsequently these features will be treated
as a multichannel (i.e., color) segmentation problem. For
instance, Sandberg et al. [14] have used Gabor filters for
texture image segmentation by extending the original CV-
model [12], and a similar strategy has also been adopted by a
later work [15]. On the other hand, there have been other
powerful models proposed to tackle texture segmentation
of texture image directly [16–18]. Especially, both the
region competition model of Zhu and Yuille [16] and the
nonparametric model of Kim et al. [17] minimized mutual
information as fidelity measure plus the regularization term.
More recently Ni et al. [18] proposed a more reliable model
based on Wasserstein distance as fidelity measure which leads
to global optimal solutions to segmentation of texture image,
where local histogram information is extensively used in
order to divide the image domain into two regions in each of
which the difference of the cumulative distribution function
from its median is minimal.

Mory and Ardon [19] used the concept of fuzzy region
competition to unify and extend it to model texture segmen-
tation problems. Here, each pixel is assigned a probability,
instead of a precise membership integer, of belonging to a
particular region. The fuzzy region competition has been
further generalized to deal with multiphase segmentation
problems by Li and coworkers [20, 21], and in particular the
multiphase texture segmentation model [20], referred to as
LN-model, will be discussed in the following sections.

For the past decade, research in multiphase nontexture
segmentation has been active with a focus on grayscale im-
ages. The work on multiphase texture segmentation is more
recent.

A number of multiphase models have been proposed
most of which are generalized from two-phase ones; see [22–
30]. Gao and Bui [26] proposed a hierarchical model for
multiphase segmentation problem for piecewise smoothing
image. Jung et al. [31] formulated a multiphase segmentation
model built upon the celebrated phase transition work
of Modica and Mortola in material sciences. An efficient
algorithm for minimizing the piecewise constant Mumford-
Shah functional of image segmentation was proposed [32]
based on the threshold dynamics of Merriman et al. [33]
for evolving an interface by its mean curvature. More recent
work include models based on shape and topological sen-
sitivity [28] and H1 regularization model [34]. Salah et al.
[35] recently proposed to use a kernel function to map the
original image into data of a higher dimension so that the
piecewise constant model becomes applicable. Inclusion of
shape constraints into the multiphase segmentation was also
explored by Cremers [36]. Several models for multiphase

segmentation of image frames have also been proposed
[29, 37]. We also remarked that there is a very interesting
unsupervised multiphase segmentation model from [30],
which can automatically determine the number of regions
during the segmentation process.

It has been observed that most generalized models work
well only for a small number of problems, and robustness is
a major issue. For instance, the above-mentioned CV-model
[12] was generalized to multiphases in [22] and then refined
in [23]. However as noted by [38, 39], the new model [23]
has a strict requirement on its initial guess which contradicts
the idea of automatic segmentation. Moreover, the phase
number has to be 2n, where n is the number of level set
functions. To improve this model, the idea of hierarchical
implementation of the robust CV-model [12] was first
considered in [38] (with time-marching solver a.k.a. additive
operator splitting (AOS)) and was further improved by
Badshah and Chen [39] with a robust multigrid solver. Along
this line, Ni et al. [40] employed the fast time-marching dual
algorithm proposed by [41]. These improved hierarchical
models have produced convincing results in segmentation
of intensity images but not yet applied to segmentation of
texture images.

In clear contrast to two-phase segmentation, multiphase
texture segmentation is relatively understudied so far. Several
feature-based models have been proposed to tackle the prob-
lem by working on features derived by different strategies.
For instance, Aujol et al. [42] have proposed a model based
on features derived from applying wavelet transforms to
the image of interest. Similarly, Wei and Xin [43] pro-
posed a supervised model based on contourlet features for
aerial image segmentation. These feature-based models have
limitation in choosing appropriate descriptors of texture.
The most recent Li-Ng (LN) model [20] was based on
mutual information which implies that there is no need to
detect features first as is required by feature-based models.
However, this model is not globally convex, as such the
performance is sensitive to initialization; Li and Ng [20] have
remarked that this occurs in segmentation problems with
three or more phases. As such more advanced segmentation
models are needed.

We finally remark that there have been recent advances
in efficient solvers for variational models. Different from the
past solvers such as gradient descent level set methods, a
diversity of fast solvers have been proposed; these include
graph cut [44], multigrid [39, 45], dual projection algorithm
[41], as well as genetic algorithms [46]. Amongst these, alter-
nating optimization strategies via the elegant dual projection
model have been increasingly employed in the literature
[20, 40].

The rest of the paper is organized as follows. Section 2
reviews some existing segmentation models, paying special
attention to fuzzy region competition models which assign
a probability value at each pixel rather than an integer for
phases. Section 3 introduces our new hierarchical algorithm
based on general two-phase models. Section 4 shows a series
of experiments for comparisons and verifications. Some
conclusions are drawn in Section 5.
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2. Review of Some Segmentation Models

We shall review five models that are reliable for two-phase
segmentation. The first two models are designed for non-
texture segmentation, and the last three models are for
texture segmentation; in particular the fourth model by Ni
et al. is the most reliable as well as the most expensive.

Let Ω be a bounded open subset of R2 with Γ = ∂Ω its
boundary, and let I : Ω → R be the given grayscale image.
The aim of multiphase segmentation is to partition Ω into
N regions Ωi, 1 ≤ i ≤ N , where Ωi

⋂
Ω j = 0, i /= j and

∑N
i=1 Ωi = Ω.

Mathematically, each phase may be characterized by a
distinct constant as defined in [5] and in two phases with
N = 2, one may simply try to find a piecewise constant
solution u taking two constant values in {0, 1} (or two other
constants {α1,α2} for membership identity). However it is
often advantageous to look for a solution u that takes values
in [0, 1] in a fuzzy membership framework [19].

2.1. The Mumford-Shah-Based CV Model. A general form of
two-phase segmentation problem can be represented [19]
as

min
Γ,α1,α2

E(Γ,α1,α2) =
∫

Γ
ds + λ1

∫

Ω1

r1(α1, x)dx

+ λ2

∫

Ω2

r2(α2, x)dx,

(1)

where Γ is the (unknown) union of all boundaries of Ωi,
and λ1, λ2 are two positive and suitable multipliers; often we
choose λ1 = λ2 = λ. The two functions r1(α1, x), and r2(α2, x)
are respective similarity measures of pixels (or region errors)
in domains Ω1, and Ω2 with their representative values.

The well-known CV model [12] chooses ri(αi, x) = (αi −
I(x))2 in (1). Here, u takes values in {α1,α2}. The model can
be adapted to tackle the multiphase segmentation problem
[38–40] when more constants are defined.

The level set formulation (as a means to rewrite the
above integrals over Ω1, Ω2 as over Ω) is commonly used
to represent this model, and subsequently the resulting
partial differential equation (PDE) is solved by a gradient
descent time-marching method, as with the celebrated CV
model [12]. However, this model (1) is not convex (neither
is the CV model), as such the level set methods need a
reasonable initialization in order to avoid local minima. This
prerequisite and the slow convergence are inherent weakness
of this PDE-based method.

2.2. A Global Convex Model. Recently, Bresson et al. [47]
have tried to reformulate the above problem into a convex
one so that the global minimum becomes easier to compute.
The idea is to introduce constraints and to convert the

two-phase model into a convex total variational (TV) model
as follows:

min
0≤u≤1,α1,α2

E(u,α1,α2) =
∫

Ω
|∇u(x)|dx + λ

∫

Ω
u(x)r1(α1, x)dx

+ λ
∫

Ω
(1− u(x))r2(α2, x)dx.

(2)

It should be remarked that Bae and Tai [48] have proposed a
convexified model for four-phase segmentation.

Further, the Chambolle’s pioneering work [41] of fast
dual projection can be used to provide an elegant efficient
solver for this equation. More specifically, after an auxiliary
variable v is added to it, (2) will be formulated as

min
0≤u≤1,α1,α2

E(u,α1,α2)=
∫

Ω
|∇u(x)|dx+

1
2θ

∫

Ω
(u(x)−v(x))2dx

+ λ
∫

Ω
v(x)r1(α1, x)dx

+ λ
∫

Ω
(1− v(x))r2(α2, x)dx,

(3)

where the convex form here
∫
Ω(u(x) − v(x))2dx is to force u

and v to be close to each other (while serving the purpose of
decoupling the nonlinearity), θ > 0 is a small parameter to
penalize the error between u(x) and v(x). One hopes that, on
convergence (with smaller and smaller θ), u = v is obtained.
Then the model (3) becomes

min
u

∫

Ω
|∇u(x)|dx +

1
2θ

∫

Ω
(u(x)− v(x))2dx, (4)

min
0≤v≤1,α1,α2

1
2θ

∫

Ω
(u(x)− v(x))2dx

+ λ
∫

Ω
v(x)r1(α1, x)dx + λ

∫

Ω
(1− v(x))r2(α2, x)dx,

(5)

where the minimization problem (4) can be efficiently solved
by a fast dual projection algorithm [41] and (5) is solved
explicitly. The derived solution is

u(x) = v(x)− θ divw(x), (6)

where w can be solved by a fixed point method as follows:

wn+1 = wn + dt∇(divwn − v/θ)
1 + dt|divwn − v/θ| , (7)

where dt ≤ 1/8 is some suitable time step. The solution of
(5) can be derived as

v(x) = max{min{u(x)− θλ(r1(α1, x)− r2(α2, x)), 1}, 0}.
(8)

Thus, we have discussed a simple algorithm for v(x) and
u(x). We note that similar use of an intermediate variable
such as v here can be seen in other works for example, [49].
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2.3. The Fuzzy Region Competition Form of Two-Phase Seg-
mentation. The fuzzy region competition model by Zhu
and Yuille [16] or Kim et al. [17] for texture segmentation
chooses

ri(αi, x) = logPi(I(x) | αi), (9)

where Pi(I | αi) denotes the probability density function
(usually a Gaussian) for a conditional probability. Although
Zhu and Yuille have used parametric representation [16],
and Kim et al. used nonparametric representation [17],
both of them have used standard PDE solution methods. So
these models again are not globally convex; as such solvers
may suffer from getting stuck at local minima. Of note,
if the probability density Pi is a Gaussian distribution and
the variance is known, this model will then reduce to the
aforementioned CV-model.

2.4. The Local Histogram-Based Model. Rather than the
mutual information-based strategies, Ni et al. [18] proposed
a new strategy using local histograms (i.e., Wasserstein
distance, instead of image intensities) to define a region in
order to segment texture images. First of all, a Wasserstein
distance with exponent 1 (measuring the distance of two
histograms P1, and P2 with the range [0,L]) is defined as

W1(P1,P2) =
∫ L

0

∣
∣F1

(
y
)− F2

(
y
)∣
∣dy, (10)

where for each y, Fj(y) is the cumulative histogram for Pj ;
usually L = 255 for intensity images. At each pixel x, an
intensity-based histogram Px of a small local ball Bx,τ of
radius τ centered on x is defined by

Px
(
y
) =

∣
∣
{
z ∈ Bx,τ ∩Ω : I(z) = y

}∣
∣

∣
∣Bx,τ ∩Ω

∣
∣ ,

Fx
(
y
) =

∣
∣
{
z ∈ Bx,τ ∩Ω : I(z) ≤ y

}∣
∣

∣
∣Bx,τ ∩Ω

∣
∣ ,

(11)

for each prescribed y. Then in the framework of (1), Ni et al.
[18] chooses

ri(αi, x) =
∫ L

0

∣
∣αi − Fx

(
y
)∣
∣dy. (12)

That is to say, an image is segmented according to how
accumulated local histograms of a group of pixels are close
to a fixed value. We remark that this approach so far has only
been used in two-phase texture image segmentation. Since
both τ and L are involved, the model is expensive to apply.

2.5. The LN Multiphase Texture Model. Derived from fuzzy
region competition method, the multiphase segmentation
problem for texture images can be formulated through the
concept of mutual information as follows [20]:

E(Γ) =
N∑

i=1

μ

2

∫

∂Ωi

ds−
N∑

i=1

∫

Ωi

logPi(I ,Ωi)dx, (13)

where Pi(I ,Ωi) is the nonparametric probability density func-
tion (pdf) that is estimated by Parzen window by the inten-
sity values of pixels in region Ωi. In the case of N = 2, the
energy in the second term will be similar to the one by Kim
et al. [17], who firstly proposed it for texture segmentation.

This energy can be reformulated in a total variational
framework as follows:

E(U ,P) =
N∑

i=1

∫

Ω
|∇ui|dx −

N∑

i=1

λ
∫

Ω
ui logPi(I ,ui)dx,

(14)

where U = (u1, . . . ,uN ) is the fuzzy membership vector, and
P = (P1, . . . ,PN ) is the corresponding pdf vector and is then
approximated by

E(U ,V ,P) =
N∑

i=1

(∫

Ω
|∇vi|dx +

1
2θ

∫

Ω
(vi − ui)

2dx

−λ
∫

Ω
ui logPi(I ,ui)dx

)

.

(15)

By relaxing uN = 1 − ∑N−1
i=1 ui, the above energy is further

approximated by

E
(
U ,V ,P

)
=

N−1∑

i=1

(∫

Ω
|∇vi|dx +

1
2θ

∫

Ω
(ui − vi)2dx

−λ
∫

Ω
ui log

(
PN (I ,uN )
Pi(I ,ui)

)

dx
)

(16)

subject to 0 ≤ ui ≤ 1, for i = 1, . . . ,N − 1, where V =
(v1, . . . , vN ).

Then minimization of this energy E(U ,V ,P) was solved
following the fast dual projection model iteratively and in
each step:

(i) for fixed P, V , ui = max{min{vi − θλ log(PN/Pi, 1},
0}, i = 1, . . . ,N − 1;

(ii) for fixed P and U , vi = ui − θ divwi(x), i = 1,N −
1. Here, wi can be solved by a fixed-point method
similar to the two-phase problem, by initializing
w0
i = 0,

wn+1
i = wn

i + dt∇(divwn
i − v/θ

)

1 + dt
∣
∣divwn

i − v/θ
∣
∣ , (17)

(iii) for fixed U , and V , update P as in [20].

In summary, the above two-phase models are reliable
(when N = 2), while the multiphase texture models are
not (when N > 2). Our idea below is to make full use
of the reliable two-phase models for multiphase texture
segmentation.

3. A Hierarchical Algorithm for
Texture Segmentation

Since most multiphase segmentation models solve a non-
convex minimization problem, the solution methods can be
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Q0

Q1 Q2

Q3 Q4 Q5 Q6

Q7 Q8

(a) Example 1 (Figure 5(a)) demonstrating segmented phases

Q0

Q1 Q2

Q3 Q4

(b) Example 2 (Figure 3(a)) demonstrating segmented phases

(c) Entropy map of example 1 (d) Intrinsic texture map of exam-
ple 1

(e) Entropy map of example 2 (f) Intrinsic texture map of exam-
ple 2

Figure 1: Two examples to illustrate our hierarchical algorithm.

seriously affected by initialization or easily get stuck in a
minimizer, when the number of phases is larger than two.
It should be remarked that there has been some promising
progress recently [48] that can reformulate models into
convex ones which have a global minimizer but no local
minimizers. To improve on [20] when N > 2, we pursue an
alternative approach in this paper.

Motivated by [39] for a hierarchical algorithm and [1]
for seeded region growing models, for non-texture images,
we now propose a hierarchical algorithm for segmenting a
multiphase texture image.

Our idea is the following. Assume that each phase
contains a seeded point indicating the location of a phase;
practically one simply clicks on a few points within the image
to define seeds. We recursively apply a two-phase model (3)
to split a partitioned region into two further subregions and
generates an ordered binary tree to represent the structure
of the image, as is illustrated in Figure 1. The entire image
domain is initially defined as Q0, representing the ini-
tialization, which can be arbitrary, we may conveniently
choose the image itself (normalized to range from 0 to
1) as initialization for v. Then, our two-phase model (i.e.,
mutual information or local histogram) is to segment the
given image I , Q0 representing the entire domain, into two
phases (a domain Q1 and its complement Q2) using fast dual
projection strategy. The partitioned regions Q1 and Q2 will
be stored as the tree nodes. For each of Q1 and Q2, there

is a decision here to make to determine if they are further
segmented. This can be done by checking how many seeds a
subregion contains, and further segmentation is only carried
out using the two-phase model again if more than 1 seed
point is contained. Figure 1(a) illustrated the work flow and
at the end the original image was successfully segmented into
five regions (i.e., Q3, Q4, Q5, Q7, and Q8). Of note, region
term can either be represented by mutual information or
Wasserstein distance, or even an alteration between them
may be implemented. Other strategies such as Mory and
Ardon’s strategy [50] as cost function might be useful, or
mixed form during the iteration might be useful.

For multiphase segmentation problems, it is always
assumed that the number of phases are known and more
than two, so at least one 2-phase segmentation will be
unconditionally performed. For instance, for a 3-phase
problem as illustrated in Figure 1(b), for Q1 and Q2, at least
one of them has to be further segmented, but the program
has to follow a rule to decide which one to continue. On
the other hand, for the 5-phase problem Figure 1(a), both
Q1 and Q2 should be further segmented.

In summary, our algorithm can be stated in the following
steps.

(i) initialization: Initialize Q0 and set seed points inter-
actively.

(ii) two-phase segmentation by
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(a) Original image (b) Result with M1 (c) Result with M2 (d) Result with M3

(e) Original image (f) Result with M1 (g) Result with M2 (h) Result with M3

(i) Original image (j) Result with M1 (k) Result with M2 (l) Result with M3

(m) Original Image (n) Result with M1 (o) Result with M2 (p) Result with M3

Figure 2: Simulation results on two-phase texture segmentation problems.

(a) initialization: initialize u;

(b) iterations:

update v by (8), where r will be replaced with
the strategy adopted, that is, mutual informa-
tion strategy or local histogram;
update u by (6);
update region term defined either as Pi or local
histogram distance metrics;

(c) termination;

(iii) for each detected phase, run the previous step if there
are two or more seeds in it.

(iv) termination strategy: no further segmentation is pos-
sible.

Finally, we show some results on designing alternative
and possible indicators that may be used to decide on further
segmentation without using seeds. For example, region size,
change of uniformity described by standard deviation, or
even the difference between the child phases or between
them and parent one, are candidate choices for this purpose.
None of the indicators we tested are suitable for texture
segmentation. Our analysis established that conventional
measures that worked well for non-texture segmentation
problems cannot be readily applied. In searching for new
strategies, a measure that can reflect the uniformity of texture
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(a) Original image (b) Random initialisation (c) Results from random
initialisation

(d) User initialisation (e) Results from user ini-
tialisation

(f) Original image (g) Random initialisation (h) Results from random
initialisation

(i) User initialisation (j) Results from user ini-
tialisation

Figure 3: Results of three-phase segmentation by M2. Note: only two phases were segmented for (a).

(a) Original image (b) Seed points (c) Result with M4I (d) Results with M4II

(e) Original image (f) Seed points (g) Result with M4I (h) Results with M4II

Figure 4: Results of 3-phase segmentation by our proposed strategies (M4I and M4II).

would be particularly attractive. From the many different
options we tested, due to the limit of space, here we only
discuss two of them: entropy and a new texture feature based
on semilocal image information [51]. Maps of both of them
were given in Figures 1(c), 1(d), 1(e), and 1(f), respectively.
Values of mean and standard deviation (STD) of each region
are presented in Tables 1 and 2. For the entropy one, an

entropy map was produced by computing entropy values of
a small window centred at each pixel in the image. By doing
this, we wish we can reuse a concept similar to the work on
non-texture images, unfortunately, this does work as stated.
For the 3-phase problem, values of mean entropy ± STD are
4.91±0.29 and 5.85±0.18 for phases Q2 and Q3, respectively.
If using STD as criteria, Q2 should be further split because of
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(a) Original image (b) Seed points (c) Result with M4I (d) Result with M4II

Figure 5: Results of five phase segmentation by our proposed strategies.

(a) Original image (b) Seed points (c) Result with M4I (d) Result with M4II

(e) Original Image (f) Seed points (g) Result with M4I (h) Result with M4II

Figure 6: Results of segmentation of OCT images by our proposed strategies.

its nonuniformity, but this is incorrect. The second measure
fails as well for this example. Using these measures for the 5-
phase problem are also problematic mainly because that they
do not monotonically decrease when the number of different
textures becomes smaller. For instance, STD values of Q2

are lower than Q6. Combinations of these have also been
considered, but this becomes a tuning process for threshold
values from image to image. All of them are applicable only to
a specific problem and a generic one proved to be nonexistent
due to the complexity of texture. This automation is certainly
one of the future research directions.

4. Experimental Results

We first tested our algorithms on synthetic texture images
and real medical images including optical coherence tomog-
raphy (OCT) images. Note, here for the testing purpose, we
set θ = 0.1, λ = 0.2, and dt = 1/8. For simplicity, we denote
by:

(i) M1—the method of CV model [12];

(ii) M2—the method of mutual information by Li and
Ng [20];

(iii) M3—the method of local histogram by Ni et al. [40];

(iv) M4I—the method of our framework using mutual
information as fidelity term;

(v) M4II—the method of our framework using local
histogram as fidelity term.

4.1. Numerical Tests and Comparisons. Below, we use 2 sets
of experiments to show that direct multiphase segmentation
models can be sensitive to initialization, while our new
algorithm is robust.

4.1.1. Comparisons of Two-Phase Models. In this first set
of tests, we applied the CV-model (M1) and two texture
segmentation models (M2 and M3) to synthetic and real
texture images, see Figure 2. All three models performed
reasonably well on a noisy synthetic grayscale image, but
for texture image, the CV-model (M1) was no longer able
to detect the object with textures. On the other hand, both
texture models (M2 and M3) are good for two phases, while
it appears that the mutual information one (M2) performs
the best.
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Table 1: Example one for demonstration of stopping criteria (success: � and failure: ×).

Feature Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

Mean 118.78 195.33 21.36 220.62 215.28 185.42 146.55 253.84

Intrinsic texture STD 98.71 46.05 3.79 10.81 12.23 55.91 28.80 1.65

OK? � � � � � � × �
Mean 5.12 5.31 4.92 5.32 5.45 5.21 5.72 4.34

Entropy STD 0.32 0.59 0.29 0.20 0.18 0.73 0.22 0.42

OK? × � × × � � � ×

Table 2: Example two for demonstration of stopping criteria.

Feature Q0 Q1 Q2 Q3 Q4

Mean 53.30 250.67 64.48 44.87

Intrinsic texture STD 15.44 3.01 16.33 6.99

OK? � � × ×
Mean 5.85 4.91 5.98 5.77

Entropy STD 0.18 0.29 0.09 0.17

OK? × × � �

4.1.2. Segmentation of Multiphase Texture Images. In this sec-
ond set of tests, we show that the M2 is good for three phases
but can also fail for these phases if the initial guess is not
chosen accurately enough, see Figure 3. Other two models
M1 and M3 were not tested as the CV-model (M1) cannot
cope with texture as shown in the previous, example while
the M3 is not yet developed for multiphase segmentation.

We also applied our new segmentation algorithms M4I
and M4II to the same three phase images and a five-
phase segmentation problem, respectively, and the results are
pleasing as expected; see Figure 4 for the results of three-
phase problems and Figure 5 for the five-phase one.

4.2. A Medical Imaging Application Segmentation of OCTs.
Optical coherence tomography (OCT) is a noninvasive
imaging technology that can reveal cross-sectional infor-
mation of the biological tissues, and it is a powerful tool
assisting diagnosis and management of a wide range of eye
diseases. All OCT images are extremely noisy and none
of the existing denoising models work well for such OCT
images. In this section, we show a useful application of
our proposed segmentation strategies to some OCT images,
when treated as texture images. A typical OCT image of
the retina demonstrates multilayers of the retina tissues, see
Figures 6(a) and 6(e). The acceptable results by our M4I and
M4II, as one can see from Figure 6, demonstrate the potential
capability of our strategies for segmenting multiple retinal
layers in the OCT images.

5. Conclusions

Multiphase texture segmentation problem represents a sig-
nificant challenge in image processing. There is a lack of

robust and reliable models in the literature. In this paper,
we proposed a reliable hierarchical multiphase texture seg-
mentation strategy based on recursive use of the two phase
approaches. We have unified recently proposing two-phase
strategies of representing region errors, that is, mutual
information-based and Wasserstein distance-based, into the
same framework. Our application to the synthetic and real
medical imaging data demonstrated satisfactory results. One
of our future work is to continue investigating alternative
strategies for further segmentation (subdividing). We shall
also investigate how to use our new algorithm for OCT layer
segmentation for clinical research use.
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