
A Coefficient of Variation Based Image Selective
Segmentation Model Using Active Contours

Noor Badshah∗, Ke Chen†, Haider Ali and Ghulam Murtaza ‡

Abstract

Most image segmentation techniques are efficient to segment images with promi-
nent edges, but are less so for some challenging images with low frequencies and with
overlapping regions of homogeneous intensities. In our recent work we proposed an
effective model of selective segmentation which works well for many examples except
these challenging images. In this paper we propose a new model using the coefficient
of variation as a fidelity term. Test results show that the new model performs much
better than previous works in successfully segmenting the challenging images.
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1 Introduction

In image segmentation, the main issue is to extract features according to a given criterion

[3, 5, 6, 10, 11, 13, 15]. There exist two important categories of methods. The first

category refers to edge-based methods. Through the seminal work of [5, 13, 8, 20], active

contours have proven their effectiveness for such a task. The general idea behind an

active contours model is to apply partial differential equations (PDEs) to deform a curve

towards the boundaries of the object of interest. In these methods, the contour is driven

towards image edges. For edge detection, most models use an edge detector function

which depends on the gradient of a given image [3, 10, 11]. In contrast, the second

category contains region-based methods. Among region based active contour models, we

find minimum description length criteria [14], region growing and emerging [2], Mumford-

Shah functional minimization [18] and watershed algorithms [24] as examples. Let z(x, y)

be a given image defined on a rectangular domain Ω. Mumford and Shah (MS) [18]

proposed the general model:

min
u,Γ

F (u,Γ) = µ.length(Γ) + λ

∫
Ω

|z − u|2dx+

∫
Ω\Γ

|∇u|2dx.
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to automatically find the edge Γ of z by a piecewise smooth function u. The Chan-Vese

(CV) [6] model is a special case of the piecewise constant MS model when restricted to

only two phases. Since the CV model is not based on the gradient of the image z(x, y) for

the stopping process, it can detect contours both with and without gradients. The CV

active contour model uses the energy minimization functional given by:

F (c1, c2,Γ) = µ.length(Γ) + λ1

∫
inside(Γ)

|z − c1|2dxdy + λ2

∫
outside(Γ)

|z − c2|2dxdy,

where z is a given image, Γ is an unknown boundary, c1 and c2 are constants depending

on Γ and representing the average value of z inside and outside of Γ respectively.

The above categories of segmentation models are global because all global features are

to be segmented. Although they are useful, however, in certain segmentation problems we

need to segment a particular object and not all objects in it. Thus selective segmentation

is a task in which an object/region of interest is detected, given additional information of

geometric constraints in the form of list of points near the object/region.

In our recent work [3] we proposed a mixed model of edge-based and region-based

methods, based on the work of [10, 11, 6] and [6]. There we achieved more robustness

for noisy images than previous work. However, this old model [3] can produce spurious

objects i.e. fails the selection in some cases. Now we equip our model with a new type

of fidelity term that can work better even when edges are not prominent or an image has

overlapping regions with almost homogeneous intensities. This fidelity term is based on

coefficient of variation. Our experimental results ensure the better performance of this

new type of fidelity term based model than the old one.

This paper is organized in the following way. Section 2 contains a review of the

Badshah-Chen model [3]. In Section 3 we present our proposed new model of minimization

and derive the Euler-Lagrange equation. In Section 4 we describe a semi-implicit method

and an additive operator splitting (AOS) method for solving the PDE. In Section 5 we

give some experimental results.

2 The Badshah-Chen Model

To segment a given image z or find the boundary Γ of a desirable feature, the Badshah

and Chen (BC) model [3] solves

min
c1,c2,Γ

F (Γ, c1, c2)

where

F (Γ, c1, c2) = µ

∫
Γ

d(x, y)g(|∇z|)ds

+ λ1

∫
outside(Γ)

(z − c1)
2dxdy + λ2

∫
inside(Γ)

(z − c2)
2dxdy (1)
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and µ, λ1 and λ2 are constants and are used for assigning different weights, c1 and c2 are

the mean intensities outside and inside a contour Γ respectively. The distance function

d(x, y) is define in [11] as

d(x, y) =
m∏
i=1

(
1− e

−
(x− xi)

2

2σ2 e
−
(y − yi)

2

2σ2

)
, ∀(x, y) ∈ Ω,

where the marker set

A = {(xi, yi) : i = 1, 2, 3, .....,m}

are the given geometrical constraints and we wish to detect the boundary of an interested

object near A. Intuitionally it is clear that in the neighborhood of A, d ≈ 0.

The function g(|∇z|) is called as an edge detector function and the following one is a

popular choice

g(|∇z|) = 1

1 + |∇z|2

but there exist many other choices. Since edge is the portion of an image where there is

a sudden change in the intensity function, hence the value of the function |∇z|2 is large

at the pixels which belongs to edge. Consequently, g(|∇z|)≃0 near an edge.

The first term of the Badshah-Chen model is the
∫
Γ
d(x, y)g(|∇z|)ds similar to [10, 11].

The aim was to find the unknown boundary curve Γ by minimizing their proposed func-

tional. Since this model depends on edge detector function which uses gradient infor-

mation and this causes mal-functioning of the model in noisy images or in images with

fuzzy or discrete edges. Isotropic Gaussian smoothing is necessary to smooth z but un-

fortunately it also smooth the edges. So the idea of geodesic active contours alone is not

sufficient.

To empower this model to work in noisy images, region information are also used by

adding λ1

∫
outside(Γ)

(z− c1)
2dxdy+λ2

∫
inside(Γ)

(z− c2)
2dxdy with edge information to form

the remaining 2 terms of the BC model. These terms belong to the CV model proposed

in [6]. In this way the CV model and its advantages are utilized in the BC model.

Application of a level set formulation [19, 20, 22] enables us to get the implicit repre-

sentation of the boundary, interior and exterior regions of the object of interest in a given

image. Let us denote the exterior of Γ by Ω+ and interior by Ω−. If ϕ : Ω → R, a Lipchitz

continuous function, is a level set function, then

Γ = {(x, y) : ϕ(x, y) = 0},
Ω+ = {x, y) : ϕ(x, y) > 0}, Ω− = {(x, y) : ϕ(x, y) < 0}.

Further, the quantities in equation (1) can be reformulated by

length{Γ} =

∫
Ω

|∇H(ϕ)| =
∫
Ω

δ(ϕ)|∇ϕ|dxdy,
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∫
outside(Γ)

|z − c1|2dx =

∫
Ω

|z − c1|2H(ϕ)dxdy,∫
inside(Γ)

|z − c2|2dx =

∫
Ω

|z − c2|2 (1−H(ϕ))dxdy.

where the one dimensional Heaviside and Dirac delta functions

H(x) =

{
1 if x ≥ 0
0 if x < 0

and δ(x) = H ′(x)

will be respectively replaced by regularized versions [6, 7, 19]

Hϵ(w) =
1

2

(
1 +

2

π
arctan(

w

ϵ
)
)
, δϵ(w) = H ′

ϵ(w) =
ϵ

π(ϵ2 + w2)
.

Thus equation (1) becomes

Fϵ(ϕ, c1, c2) = µ

∫
Ω

d(x, y)g(|∇z|)δϵ(ϕ)|∇ϕ|dxdy + λ1

∫
Ω

|z(x, y)− c1|2Hϵ(ϕ)dxdy

+ λ2

∫
Ω

|z(x, y)− c2|2(1−Hϵ(ϕ))dxdy.

Keeping ϕ fixed and minimizing Fϵ(ϕ, c1, c2) with respect to c1 and c2, we have

c1(ϕ) =

∫
Ω
z(x, y)Hϵ(ϕ)dxdy∫
Ω
Hϵ(ϕ)dxdy

, and c2(ϕ) =

∫
Ω
z(x, y)(1−Hϵ(ϕ))dxdy∫

Ω
(1−Hϵ(ϕ))dxdy

,

assuming that the curve has a non-empty exterior and non-empty interior in Ω. Now keep-

ing c1, c2 fixed and minimizing Fϵ with respect to ϕ yields the following Euler-Lagrange

equation for ϕ:
δϵ(ϕ)

[
µdiv

(
G(x, y) ∇ϕ

|∇ϕ|

)
−λ1(z(x, y)− c1)

2 + λ2(z(x, y)− c2)
2
]
= 0 in Ω,

G(x, y)δϵ(ϕ)

|∇ϕ|
∂ϕ

∂n⃗
= 0 on ∂Ω,

(2)

where G(x, y) = d(x, y)g(|∇z|), n⃗ is the unit exterior normal to the boundary ∂Ω, and
∂ϕ

∂n⃗
is the normal derivative of ϕ at the boundary.

The above PDE may be considered as a steady state form of the evolution equation:

∂ϕ

∂t
= δϵ(ϕ)

[
µ∇.

(
G(x, y)

∇ϕ

|∇ϕ|

)
− λ1(z − c1)

2 + λ2(z − c2)
2
]
, in Ω (3)

where ϕ(t, x, y) = ϕ0(x, y) in Ω. For robustness and iteration initialization, a balloon

term [11], αG(x, y)|∇ϕ|, was added, where α is constant. To solve the above evolution

equation, an additive operator splitting method (AOS) was used [25, 16].

Although we have shown in [3] that this model is more robust than the existing models,

however there are images where the above BC model will fail, in particular, MRI and CT

images with fuzzy edges, unilluminated organs and overlapping homogeneous regions.
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Since the BC model (1) involves the fidelity term or region detector
∫
|z − c1|2dxdy+∫

|z − c2|2dxdy taken from CV model [6], it not only carries its advantages to BC model

but also inherits its weaknesses of a CV model. Experimental results showed that the BC

model does not work efficiently while dealing with some tough images due to detection

of spurious objects. For the detection of low contrast, unilluminated and overlapping

homogeneous regions better region detectors are required.

3 Coefficient of Variation Equipped Selective Model

Based on the concept of coefficient of variation (CoV ) [1, 17], we introduce a new type of

fidelity term given by,

λ1

∫
outside(Γ)

(z − c1)
2

c21
dxdy + λ2

∫
inside(Γ)

(z − c2)
2

c22
dxdy.

Thus we propose the following model, to be denoted by CSM:

min
Γ,c1,c2

F (Γ, c1, c2)

where

F (Γ, c1, c2) = µ

∫
Γ

d(x, y)g(|∇z|)ds+ λ1

∫
outside(Γ)

(z − c1)
2

c21
dxdy + λ2

∫
inside(Γ)

(z − c2)
2

c22
dxdy

and µ, λ1, λ2 are constants and are used for assigning different weights.

Here for a discrete image z, the new model may be explained as follows. Denoting the

image intensity at position (i, j) as zi,j, the variance defined by

V ar(z) =
1

N

∑
i,j

(
zi,j −Mean(z)

)2

,

where Mean(z), denoting the mean intensity of a given image, is previously used in the

BC model as the fidelity term. The COV is defined as:

CoV 2 =
V ar(z)(

Mean(z)
)2

The value of CoV is higher in areas where there are edges than the areas which are

uniform [17, 21]. It means that a higher value indicates that pixels belong to the edges

and a small value indicates that the pixels belong to the uniform region. The properties

of CoV [17, 21] indicate that it can be used as a fitting term as well as a good region

detector. The experimental results using COV as fidelity term to modify the CV model

show that the converged contour tends to be next the initial contour. We use COV to

detect non-spurious objects near an initial contour.
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Thus the level set formulation for (4) becomes

F (ϕ, c1, c2) = µ

∫
Ω

d(x, y)g(|∇z|)δ(ϕ)|∇ϕ|dxdy + λ1

∫
Ω

(z(x, y)− c1)
2

c21
H(ϕ)dxdy

+λ2

∫
Ω

(z(x, y)− c2)
2

c22
(1−H(ϕ))dxdy,

and a modified minimization problem from using Hϵ and δϵ:

min
ϕ,c1,c2

Fϵ(ϕ, c1, c2),

where

Fϵ(ϕ, c1, c2) = µ

∫
Ω

d(x, y)g(|∇z|)δϵ(ϕ)|∇ϕ|dxdy + λ1

∫
Ω

(z(x, y)− c1)
2

c21
Hϵ(ϕ)dxdy

+ λ2

∫
Ω

(z(x, y)− c2)
2

c22
(1−Hϵ(ϕ))dxdy.

Keeping ϕ fixed and minimizing Fϵ(ϕ, c1, c2) with respect to c1 and c2, we have

c1(ϕ) =

∫
Ω
z2(x, y)Hϵ(ϕ)dxdy∫

Ω
z(x, y)Hϵ(ϕ)dxdy

, (4)

and

c2(ϕ) =

∫
Ω
z2(x, y)(1−Hϵ(ϕ))dxdy∫

Ω
z(x, y)(1−Hϵ(ϕ))dxdy

. (5)

Now keeping c1, c2 fixed and minimizing Fϵ with respect to ϕ yields the following Euler-

Lagrange equation for ϕ:
δϵ(ϕ)

[
µdiv

(
G(x, y) ∇ϕ

|∇ϕ|

)
− λ1

(z(x, y)− c1)
2

c21
+ λ2

(z(x, y)− c2)
2

c22

]
= 0 in Ω,

G(x, y)δϵ(ϕ)

|∇ϕ|
∂ϕ

∂n⃗
= 0 on ∂Ω,

(6)

where G(x, y) = d(x, y)g(|∇z|).

Remark 3.1 Denominators in (4) and (5) can be zero in situations where we need to

segment an object/region having zero value. For such cases we can obtain the values of c1

and c2 as follows,

c1(ϕ) =

∫
Ω
z2(x, y)Hϵ(ϕ)dxdy∫

Ω
z(x, y)Hϵ(ϕ)dxdy + γ

, c2(ϕ) =

∫
Ω
z2(x, y)(1−Hϵ(ϕ))dxdy∫

Ω
z(x, y)(1−Hϵ(ϕ))dxdy + γ

,

where γ is a small positive real number and similarly we may replace c2l by c2l + γ in (6).

6



We now add a balloon term αG(x, y)|∇ϕ| to speed up the convergence of the evolution

equation as done in [3]. Thus we get

∂ϕ

∂t
= δϵ(ϕ)

[
µ∇.

(
G(x, y)

∇ϕ

|∇ϕ|

)
− λ1

(z(x, y)− c1)
2

c21
(7)

+ λ2
(z(x, y)− c2)

2

c22
+ αG(x, y)|∇ϕ|

]
, in Ω

ϕ(t, x, y) = ϕ0(x, y), in Ω.

The existence of ϕ can be proved along similar lines to [11].

4 Numerical Methods

We present two numerical methods for solving nonlinear parabolic partial differential

equation (7).

4.1 Semi implicit-method

First we write the PDE (7) in a self adjoint form

∂ϕ

∂t
= µδϵ(ϕ)∇

(
G(x, y)

∇ϕ

|∇ϕ|

)
+ f(x, y),

i.e.

∂ϕ

∂t
= µδϵ(ϕ(x, y))

[
G(x, y)∇.

( ∇ϕ

|∇ϕ|

)
+∇G(x, y).

( ∇ϕ

|∇ϕ|

)]
+ f(x, y), (8)

where

f(x, y) = µδϵ(ϕ)
[
− λ1

(z(x, y)− c1)
2

c21
+ λ2

(z(x, y)− c2)
2

c22

]
+ αG(x, y)|∇ϕ|.

Now using the following differences given by,

∆x
−(ϕi,j) = ϕi,j − ϕi−1,j, ∆x

+(ϕi,j) = ϕi+1,j − ϕi,j

∆y
−(ϕi,j) = ϕi,j − ϕi,j−1, ∆y

+(ϕi,j) = ϕi,j+1 − ϕi,j

and a semi implicit scheme, the discretized form of the above equation is:

ϕn+1
i,j − ϕn

i,j

△t
= µδϵ(ϕ

n
i,j)Gi,j

[ 1

h2
1

△x
−

( △x
+ϕ

n+1
i,j√

(△x
+ϕ

n
i,j/h1)2 + (△y

+ϕ
n
i,j/h2)2

)]

+ µδϵ(ϕ
n
i,j)Gi,j

1

h2
2

△y
−

( △y
+ϕ

n+1
i,j√

(△x
+ϕ

n
i,j/h1)2 + (△y

+ϕ
n
i,j/h2)2

)

+ µ
δϵ(ϕ

n
i,j)

|∇ϕn
i,j|

( 1

h2
1

△x
+G(x, y)△x

+ϕ
n+1
i,j

)
+

µδϵ(ϕ
n
i,j)

|∇ϕn
i,j|

( 1

h2
2

△y
+G(x, y)△y

+ϕ
n+1
i,j

)
+ fi,j.
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Using h1 = h2 = 1 (i.e. absorb h1 and h2 into the parameter µ), we get

ϕn+1
i,j − ϕn

i,j

△t
= µδϵ(ϕ

n
i,j)Gi,j

[
(ϕn+1

i+1,j − ϕn+1
i,j )Ci,j − (ϕn+1

i,j − ϕn+1
i−1,j)Ci−1,j (9)

+ (ϕn+1
i,j+1 − ϕn+1

i,j )Ci,j − (ϕn+1
i,j − ϕn+1

i,j−1)Ci,j−1

]
+

µδϵ(ϕ
n
i,j)

|∇ϕn
i,j|

[
△x

+G(x, y)(ϕn+1
i+1,j − ϕn+1

i,j ) +△y
+G(x, y)(ϕn+1

i,j+1 − ϕn+1
i,j )

]
+ fi,j,

where

Ci,j =
1√

(∆x
+ϕ

n
i,j)

2 + (∆y
+ϕ

n
i,j)

2

Ci−1,j =
1√

(∆x
+ϕ

n
i−1,j)

2 + (∆y
+ϕ

n
i−1,j)

2

Ci,j−1 =
1√

(∆x
+ϕ

n
i,j−1)

2 + (∆y
+ϕ

n
i,j−1)

2
.

As the coefficients Ci−1,j, Ci,j and Ci,j−1 are freezed at the nth iteration, equation (9)

defines a linear system of equations which can be solved by an iterative method. To speed

the solution we shall develop AOS method as done in [16, 25, 26] to solve the PDE (7).

4.2 An Additive Operator Splitting Method

The above introduced semi-implicit method, though stable with respect to ∆t, can be

expensive to apply if the spatial dimension ≥ 2. Related to the famous ADI (alternating

direction implicit methods [9]), the AOS scheme [16, 25] splits the 2-dimensional spatial

operator into a sum of two one dimensional space discretizations so that the resulting

linear system can be efficiently solved by applying two times the Thomas algorithm;

other splitting methods (e.g. multiplicative type) may also be considered. Rewrite the

PDE (8) in the form

∂ϕ

∂t
= µδϵ(ϕ)∇(F∇ϕ) + f

= µδϵ(ϕ)
(
∂x(F∂xϕ) + ∂y(F∂yϕ)

)
+ f,

where F = G
|∇ϕ| . Therefore we consider the first one-dimensional problem in x-direction:

ϕn+1
i,j − ϕn

i,j

△t
= µδϵ(ϕ)

(
F n
i+1/2,j(ϕ

n+1
i+1,j − ϕn+1

i,j )− F n
i−1/2,j(ϕ

n+1
i,j − ϕn+1

i−1,j)
)
+ fi,j

i.e.,

ϕn+1
i,j = ϕn

i,j + µ△t
(
c1ϕ

n+1
i+1,j − c2ϕ

n+1
i,j + c3ϕ

n+1
i−1,j

)
+ fi,j, (10)
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where

c1 = δϵ(ϕ)
F n
i,j + F n

i+1,j

2
,

c2 = δϵ(ϕ)
F n
i−1,j + 2F n

i,j + F n
i+1,j

2
,

c2 = δϵ(ϕ)
F n
i,j + F n

i−1,j

2
.

After we solve the system of equations (10) in the x-direction, we then solve a similar

system in y-direction before averaging the two solutions:

(I − 2∆tAl(Φ
n))Φn+1

l = fn, for l = 1, 2,

and Φn+1
l =

1

2

2∑
l=1

Φn+1
l ,

where I is the identity matrix and Al for l = 1, 2 a tridiagonal matrix. AOS scheme

uses 1-D semi implicit scheme in spatial directions independently, so AOS scheme is

absolutely stable. Both computational and storage effort is linear in the number of pixels.

Other methods for solution of this PDE is the Additive-Multiplicative Operator Splitting

(AMOS) schemes [4] and Multigrid method can also be used to solve the above PDE.

5 Experimental Results

In this section some simulation results are given. The experiments show that the new

method CSM preserves advantages of the BC method such as robustness in terms of

number of iterations, CPU time, segmenting noisy images. It has also been observed

that the CSM performs better when segmenting images with fuzzy edges, images with

homogeneous overlapping regions. The comparison below verifies this discussion. For the

sake of comprehensive comparisons, we also include the Gout model in these experiments.

For clarity, we shall denote by

M-1 — the Gout model

M-2 — the BC model and

M-3 — the proposed CSM.

Below we give the original images along with comparison results of these three meth-

ods. We begin with some simple examples where M-1, M-2 and M-3 work well. Then we

give some more examples to show that M-3 has far better performance than M-1, M-2. In

both M-2 and M-3, we use λ1 = λ2 = λ. In each of the following figures, the performance

of M-1, M-2 and proposed M-3 can be seen in row first, second and third respectively. The

first row shows the performance of M-1, the second row shows performance of M-2 and

the third row shows performance of M-3. The first column shows the original image with

initial contours. The second column displays the intermediate situations of active contour

of each model. The third column reveals the final solution in each model and the fourth
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column displays the segmented version of the final solution for the sake of convenience in

deep observations.

The behavior of M-2 can be seen in figures 2(g), 3(g), 4(g), 5(g) up to 8(g). On

the other hand much of the experiments reveal the unpredictable behavior of M-1 as it

mainly depends on edge detector function only. In figures 2(c), 4(c) and 6(c) it can be seen

that instead of completing its selective segmentation task, M-1 started detection of other

undesired region/object. In contrast with M-1, M-2, the best performance of M-3 can be

seen from the experiments. The experiments also exhibit that M-3 is best in accurate and

fast detection and successful in the images in which these two models are unable to work.

In figure 2 the original image with initial contour is given. Its clear from figures 2(c),

2(d), 2(g) and 2(h) that M-1 and M-2 are unable to detect the region of interest. On

the other hand successful results of M-3 can be seen in 2(k) and 2(l). In figure 2(a) the

original image with initial contour is displayed. The figure 2(c) shows that M-1 detected

the selected region in 1200 iterations where as figure 2(k) displays that M-3 detected the

same region in only 35 iterations. On the other hand the performance of M-2 can easily be

interpreted in figure 2(g). In figure 4(a) a medical image with initial contour is displayed.

The accuracy of detection of M-2 and M-3 is clearly visible by observing figures 4(g), 4(h),

4(k) and 4(l).

The figure 5 exhibits real breast image in which we wish to detect a white region.

Although It can be seen in 5(c) and 5(d) that M-1 detected the desired region but it

should also be noted that it took 800 iterations and consumed our precious time to search

an ideal initial contour for this model. An ideal initial contour for M-1 is a contour to be

selected almost on the boundary of an object/region of interest. It can be seen clearly in

figures 2(a), 3(a), 5(a), 6(a) and 7(a), that an ideal initial contour is provided to M-1, but

still the results are devastating. In contrast with M-1, it can be easily observed in 2(i),

3(i), 4(i), 5(i), 6(i), 7(i), 8(i) and 9(i) that M-3 gives best results without demanding an

ideal initial contour. The figure 6 displays a synthetic image and the performance of all

of the three models. The proposed M-3 successfully detects a selected region in synthetic

image and can be viewed as figure 6(k). The figures 6(c), 6(g) are displaying that M-1

and M-2 are unable to detect the selected object in the given image.

The figure 7 exhibits a real eye image and the performance of all of the three models

by detecting a black region. The figure 7(k) shows the successful detection by M-3 of the

desired region. Figures 7(c) and 7(g) show that M-1 and M-2 are unable to complete the

tasks. A real heart image can viewed in figure 8. Successful detection of selected portion

in real heart image by the proposed M-3 can be seen in figure 8(k), where as figures 8(g)

and 8(c) show inaccurate detection of M-1 and M-2. In figure 9 a real abdominal image

can be viewed. Using that real abdominal image, the detected results of the three models

are displayed. With simple observation of figures 9(k), 9(g) and 9(c) it can be easily

interpreted that M-3 successfully complete the task, whereas the remaining two models

M-1 and M-2 are unable to complete the task. The figure 10 exhibits the performance of
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M-3 in fog images. This idea can be extended to video segmentation to utilize it in many

applications.

In summary, it has been observed from the experiments that, while performing selective

segmentation on the challenging images having nearly equal intensity regions or fuzzy

edges, the performance of M-2 is less effective, as in such cases it is often observed that

the active contour crosses the boundary of an object of interest in the image and therefore

the existing model is unable in detecting the actual boundary and consequently the region

of interest in the image. In contrast, the proposed new M-3 outperforms all existing

methods.

6 Conclusions

In this paper a new active contour model for selective image segmentation based on

coefficient of variation is presented. This model works better in segmenting images having

objects whose edges are not prominent, than previous work. It has ability of detecting

objects with overlapping boundaries having homogeneous intensities and also can detect

objects having non homogeneous intensities. In future we plan to develop fast multigrid

methods for solution of differential equations arisen from minimization of the model and

will extend these results to segmenting 3D images.
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(a) Initial Contour (b) 2 iterations of M-1 (c) After 45 iterations (d) Segmented Result

(e) Initial Contour (f) 2 iterations of M-2 (g) After 10 iterations (h) Segmented Result

(i) Initial Contour (j) 2 iterations of M-3 (k) After 10 iterations (l) Segmented Result

Figure 1: Simple example of segmenting synthetic image, where M-1, M-2 and M-3 have
completed the task. M-1 took 19 seconds and both M-2 and M-3 took 4 seconds to
complete the task. For M-2 and M-3 model parameters used are: λ = 1, µ = 2562/400
and for all the three models α = −0.1. The performance of M-1, M-2 and M-3 model can
be seen in row first, second and third respectively.
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(a) Initial Contour (b) 20 iterations of M-1 (c) After 10000 iterations (d) M-1 Result

(e) Initial Contour (f) 50 iterations of M-2 (g) After 200 iterations (h) M-2 Result

(i) Initial Contour (j) 50 iterations of M-3 (k) After 200 iterations (l) M-3 Result

Figure 2: A comparison of M-1, M-2 and the proposed M-3 on segmenting a synthetic
image. M-3 successfully detected the selected region. For M-3 model parameters used
are: λ = 20, µ = 2562/5000 and α = 0. Figures 2(c), 2(d), 2(g) and 2(h) are displaying
that M-1 and M-2 are unable to detect the selected object in the given image.
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(a) Initial Contour (b) 20 iterations of M-1 (c) After 1200 iterations (d) M-1 Result

(e) Initial Contour (f) 30 iterations of M-2 (g) After 200 iterations (h) M-2 Result

(i) Initial Contour (j) 20 iterations of M-3 (k) After 35 iterations (l) M-3 Result

Figure 3: Comparison of M-1 in figure 3(c) which took 1200 iterations to converge final
solution with M-3 in figure 3(k) converging to final solution in only 35 iterations. By
observing the figures 3(g), 3(h) the comparison between M-2 (failing this example) and
M-3 is simple. For M-3, the model parameters used are: λ = 15, µ = 2562/5000 and
α = 0.
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(a) Initial Contour (b) 20 iterations of M-1 (c) After 5000 iterations (d) Segmented Result

(e) Initial Contour (f) 50 iterations of M-2 (g) After 800 iterations (h) Segmented Result

(i) Initial Contour (j) 50 iterations of M-3 (k) After 800 iterations (l) Segmented Result

Figure 4: The quality of detection of M-2 and M-3 can easily be compared by observing
figures 4(g), 4(h), 4(k) and 4(l). Figure 4(c) reveals that M-1 (failing this example) is
unable to complete the task. For M-3 parameters used are: λ = 4, µ = 2562/10000 and
α = 0.
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(a) Initial Contour (b) 150 iterations of M-1 (c) After 800 iterations (d) Segmented Result

(e) Initial Contour (f) 50 iterations of M-2 (g) After 500 iterations (h) Segmented Result

(i) Initial Contour (j) 50 iterations of M-3 (k) After 380 iterations (l) Segmented Result

Figure 5: M-3 Successfully detects a white spot in real breast image. In figure 5(g) its
clear that active contour of M-2 has crossed the boundary of the region of interest. For
M-3 parameters used are: λ = 20, µ = 2562/5000 and α = 0.
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(a) Initial Contour (b) 100 iterations of M-1 (c) After 5000 iterations (d) Segmented Result

(e) Initial Contour (f) 20 iterations of M-2 (g) After 370 iterations (h) Segmented Result

(i) Initial Contour (j) 20 iterations of M-3 (k) After 400 iterations (l) Segmented Result

Figure 6: Successful detection of M-3 of selected region in synthetic image can be viewed
in figure 6(k). Figures 6(c), 6(g) are displaying that M-1 and M-2 are unable to detect the
selected object in the given image. For M-3 parameters used are: λ = 150, µ = 2562/4000
and α = 0
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(a) Initial Contour (b) 100 iterations of M-1 (c) After 10000 iterations (d) Segmented Result

(e) Initial Contour (f) 20 iterations of M-2 (g) After 1000 iterations (h) Segmented Result

(i) Initial Contour (j) 20 iterations of M-3 (k) After 1200 iterations (l) Segmented Result

Figure 7: These experiments exhibit the performance of all of the three models by detect-
ing a black region in real eye image. Figure 7(k) shows the successful detection by M-3 of
the desired region. Figures 7(c) and 7(g) show that M-1 and M-2 are unable to complete
the tasks. For M-3 parameters used are: λ = 0.4, µ = 2562/20000 and α = −0.00125.
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(a) Initial Contour (b) 500 iterations of M-1 (c) After 10000 iterations (d) Segmented Result

(e) Initial Contour (f) 30 iterations of M-2 (g) After 500 iterations (h) Segmented Result

(i) Initial Contour (j) 170 iterations of M-3 (k) After 340 iterations (l) Segmented Result

Figure 8: Successful detection of selected portion in real heart image by the proposed
M-3 can be seen in figure 8(k). For M-3 parameters used are: λ = 20, µ = 2562/5000 and
α = 0. In contrast with M-3, the uncompleted tasks by M-1 and M-2 can also be seen
clearly in 8(c) and 8(g).
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(a) Initial Contour (b) 500 iterations of M-1 (c) After 10000 iterations (d) Segmented Result

(e) Initial Contour (f) 14 iterations of M-2 (g) After 370 iterations (h) Segmented Result

(i) Initial Contour (j) 60 iterations of M-3 (k) After 135 iterations (l) Segmented Result

Figure 9: Using this real abdominal image, the detected results of the three models
are displayed. With simple observation of figures 9(k), 9(g) and 9(c) it can be easily
interpreted that M-3 successfully completed the task. For M-3 parameters used are:
λ = 2, µ = 2562/1500 and α = −0.01.
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(a) Initial Contour (b) After 20 iterations (c) After 115 iterations (d) Segmented Result

(e) Initial Contour (f) After 25 iterations (g) After 65 iterations (h) Segmented Result

(i) Initial Contour (j) After 2 iterations (k) After 10 iterations (l) Segmented Result

Figure 10: Performance of M-3 in fog images. For fog man image (c) M-3 parameters
used are: λ = 0.01, µ = 5 and α = −0.00000151, for figure (g) λ = 0.01, µ = 0.5 and
α = 0.00151 and for figure (k) λ = 0.5, µ = 2 and α = −0.0007.
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