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Abstract1

Selective segmentation is an important application of image processing. In contrast to global2

segmentation in which all objects are segmented, selective segmentation is used to isolate spe-3

cific objects in an image and is of particular interest in medical imaging – permitting segmen-4

tation and review of a single organ. An important consideration is to minimise the amount of5

user input to obtain the segmentation; this differs from interactive segmentation in which more6

user input is allowed than selective segmentation. To achieve selection, we propose a selective7

segmentation model which uses the edge-weighted geodesic distance from a marker set as a8

penalty term. It is demonstrated that this edge-weighted geodesic penalty term improves on9

previous selective penalty terms. A convex formulation of the model is also presented, allowing10

arbitrary initialisation. It is shown that the proposed model is less parameter dependent and11

requires less user input than previous models. Further modifications are made to the edge-12

weighted geodesic distance term to ensure segmentation robustness to noise and blur. We can13

show that the overall Euler-Lagrange equation admits a unique viscosity solution. Numerical14

results show that the result is robust to user input and permits selective segmentations that are15

not possible with other models.16

Keywords. Variational model, partial differential equations, image segmentation, additive op-17

erator splitting, viscosity solution, geodesic.18

1. Introduction19

Segmentation of an image into its individual objects is one incredibly important application20

of image processing techniques. Segmentation can take two forms; firstly global segmentation21

for isolation of all foreground objects in an image from the background and secondly, selective22

segmentation for isolation of a subset of the objects in an image from the background. A com-23

prehensive review of selective segmentation can be found in [7, 19] and in [45] for medical image24

segmentation where selection refers to extraction of single organs.25

Approaches to image segmentation broadly fall into two classes; region-based and edge-based.26

Some region-based approaches are region growing [1], watershed algorithms [40], Mumford-27

Shah [29] and Chan-Vese [11]. The final two of these are partial differential equations (PDEs)-28

based variational approaches to the problem of segmentation. There are also models which29
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mix the two classes to use the benefits of the region-based and edge-based approaches and will30

incorporate features of each. Edge-based methods aim to encourage an evolving contour towards31

the edges in an image and normally require an edge detector function [8]. The first edge-based32

variational approach was devised by Kass et al. [22] with the famous snakes model, this was33

further developed by Casselles et al. [8] who introduced the Geodesic Active Contour (GAC)34

model. Region-based global segmentation models include the well known works of Mumford-35

Shah [29] and Chan-Vese [11]. Importantly they are non-convex and hence a minimiser of these36

models may only be a local, not the global, minimum. Further work by Chan et al. [10] gave rise37

to a method to find the global minimiser for the Chan-Vese model under certain conditions.38

This paper is mainly concerned with selective segmentation of objects in an image, given a set of39

points near the object or objects to be segmented. It builds in such user input to a model using a40

set M = {(xi, yi) ∈ Ω, 1 ≤ i ≤ k} where Ω ⊂ R2 is the image domain [4, 5, 17]. Nguyen et al.41

[30] considered marker sets M and A which consist of points inside and outside, respectively,42

the object or objects to be segmented. Gout et al. [17] combined the GAC approach with the43

geometrical constraint that the contour passes through the points of M. This was enforced44

with a distance function which is zero at M and non-zero elsewhere. Badshah and Chen [4]45

then combined the Gout et al. model with [11] to incorporate a constraint on the intensity in46

the selected region, thereby encouraging the contour to segment homogeneouss regions. Rada47

and Chen [36] introduced a selective segmentation method based on two-level sets which was48

shown to be more robust than the Badshah-Chen model. We also refer to [5, 23] for selective49

segmentation models which include different fitting constraints, using coefficient of variation50

and the centroid of M respectively. None of these models have a restriction on the size of51

the object or objects to be detected and depending on the initialisation these methods have the52

potential to detect more or fewer objects than the user desired. To address this and to improve53

on [36], Rada and Chen [37] introduced a model combining the Badshah-Chen [4] model with a54

constraint on the area of the objects to be segmented. The reference area used to constrain the55

area within the contour is that of the polygon formed by the markers in M. Spencer and Chen56

[39] introduced a model with the distance fitting penalty as a standalone term in the energy57

functional, unbounding it from the edge detector term of the Gout et al. model.58

All of the above selective segmentation models discussed are non-convex and hence the final59

result depends on the initialisation. Spencer and Chen [39], in the same paper, reformulated60

the model they introduced to a convex form using convex relaxation and an exact penalty term61

as in [10]. Their model uses Euclidean distance from the marker set M as a distance penalty62

term, however we propose replacing this with the edge-weighted geodesic distance fromM (we63

call this simply the geodesic distance). This distance increases at edges in the image and is more64

intuitive for selective segmentation. The proposed model is given as a convex relaxed model with65

exact penalty term and we give a general existence and uniqueness proof for the viscosity solution66

to the PDE given by its Euler-Lagrange equation, which is also applicable to a whole class of PDEs67

arising in image segmentation. We note that the use of geodesic distance for segmentation has68

been considered before [6, 34], however the models only use geodesic distance as the fitting term69

within the regulariser, so are liable to make segmentation errors for poor initialisation or complex70

images. Here we take a different approach, by including geodesic distance as a standalone fitting71

term, separate from the regulariser, and using intensity fitting terms to ensure robustness.72

In this paper we only consider 2D images, however for completion we remark that 3D seg-73

mentation models do exist [25, 44] and it is simple to extend the proposed model to 3D. The74

contributions of this paper can be summarised as follows:75
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• We incorporate the geodesic distance as a distance penalty term within the variational76

framework.77

• We propose a convex selective segmentation model using this penalty term and demonstrate78

how it can achieve results which cannot be achieved by other models.79

• We improve the geodesic penalty term, focussing on improving robustness to noise and80

improving segmentation when object edges are blurred.81

• We give an existence and uniqueness proof for the viscosity solution for the PDEs associated82

with a whole class of segmentation models (both global and selective).83

We find that the proposed model gives accurate segmentation results for a wide range of param-84

eters and, in particular, when segmenting the same objects from the same modality images, i.e.85

segmenting lungs from CT scans, the parameters are very similar from one image to the next86

to obtain accurate results. Therefore, this model may be used to assist the preparation of large87

training sets for deep learning studies [32, 41, 42] that concern segmentation of particular objects88

from images.89

The paper is structured as follows; in §2 we review some global and selective segmentation90

models. In §3 we discuss the geodesic distance penalty term, propose a new convex model and91

also address weaknesses in the naïve implementation of the geodesic distance term. In §4 we92

discuss the non-standard AOS scheme, introduced in [39], which we use to solve the model.93

In §5 we give an existence and uniqueness proof for a general class of PDEs arising in image94

segmentation, thereby showing that for a given initialisation the solution to our model is unique.95

In §6 we compare the results of the proposed model to other selective segmentation models, show96

that the proposed model is less parameter dependent than other models and is more robust to97

user input. Finally, in §7 we provide some concluding remarks.98

2. Review of Variational Segmentation Models99

Although we focus on selective segmentation, it is illuminating to introduce some global segmen-100

tation models first. Throughout this paper we denote the original image by z(x, y) with image101

domain Ω ⊂ R2.102

2.1. Global Segmentation103

The model of Mumford and Shah [29] is one of the most famous and important variational104

models in image segmentation. We will review its two-dimensional piecewise constant variant,105

commonly known as the Chan-Vese model [11], which takes the form106

FCV(Γ, c1, c2) = µ · length(Γ) + λ1

∫
Ω1

|z(x, y)− c1|2 dΩ + λ2

∫
Ω2

|z(x, y)− c2|2 dΩ (1)

where the foreground Ω1 is the subdomain to be segmented, the background Ω2 = Ω\Ω1 and107

µ, λ1, λ2 are fixed non-negative parameters. The values c1 and c2 are the average intensities of108

z(x, y) inside Ω1 and Ω2 respectively. We use a level set function109

φ(x, y) =


> 0, (x, y) ∈ Ω1,
0, (x, y) ∈ Γ,
< 0, otherwise,
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to track Γ = {(x, y) ∈ Ω | φ(x, y) = 0} (an idea popularised by Osher and Sethian [31]) and110

reformulate (1) as111

FCV(φ, c1, c2) =µ
∫

Ω
|∇Hε(φ)|dΩ + λ1

∫
Ω
(z(x, y)− c1)

2Hε(φ)dΩ

+ λ2

∫
Ω
(z(x, y)− c2)

2(1− Hε(φ))dΩ,
(2)

with Hε(φ) a smoothed Heaviside function such as Hε(φ) =
1
2 + 1

π arctan( φ
ε ) for some ε, we set112

ε = 1 throughout. We solve this in two stages, first with φ fixed we minimise FCV with respect to113

c1 and c2, obtaining114

c1 =

∫
Ω Hε(φ) · z(x, y)dΩ∫

Ω Hε(φ)dΩ
, c2 =

∫
Ω(1− Hε(φ)) · z(x, y)dΩ∫

Ω(1− Hε(φ))dΩ
, (3)

and secondly, with c1 and c2 fixed we minimise (2) with respect to φ. This requires the calculation115

of the associated Euler-Lagrange equations. A drawback of the Chan-Vese energy functional (2)116

is that it is non-convex. Therefore a minimiser may only be a local minimum and not the global117

minimum and the final segmentation result is dependent on the initialisation. Chan et al. [10]118

reformulated (2) using an exact penalty term to obtain an equivalent convex model – we use this119

same technique in §2.2 for the Geodesic Model.120

2.2. Selective Segmentation121

Selective segmentation models make use of user input, i.e. a marker set M of points near the122

object or objects to be segmented. Let M = {(xi, yi) ∈ Ω, 1 ≤ i ≤ k} be such a marker set. The123

aim of selective segmentation is to design an energy functional where the segmentation contour124

Γ is close to the points ofM.125

Early work. An early model by Caselles et al. [8], commonly known as the Geodesic Active126

Contour (GAC) model, uses an edge detector function to ensure the contour follows edges, the127

functional to minimise is given by128 ∫
Γ

g(|∇z(x, y)|)dΓ.

The term g(|∇z(x, y)|) is an edge detector, one example is g(s) = 1/(1 + βs2) with β a tuning129

parameter. It is common to smooth the image with a Gaussian filter Gσ where σ is the kernel130

size, i.e. use g(|∇ (Gσ ∗ z(x, y)) |) as the edge detector. This mitigates the effect of noise in the131

image, giving a more accurate edge detector. Gout et al. [25] built upon the GAC model by132

incorporating a distance term D(x, y) into this integral, i.e. the integrand is D(x, y)g(|∇z|). The133

distance term is a penalty on the distance from M, this model encourages the contour to be134

near to the set M whilst also lying on edges. However this model struggles when boundaries135

between objects and their background are fuzzy or blurred. To address this, Badshah and Chen136

[4] introduced a new model which adds the intensity fitting terms from the Chan-Vese model (1)137

to the Gout et al. model. However, their model has poor robustness [36]. To improve on this,138

Rada and Chen [37] introduced a model which adds an area fitting term into the Badshah-Chen139

model and is far more robust.140
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The Rada-Chen model [37]. We first briefly introduce this model, defined by141

FRC(φ, c1, c2) =µ
∫

Ω
D(x, y)g(|∇z(x, y)|)|∇Hε(φ)|dΩ

+ λ1

∫
Ω
(z(x, y)− c1)

2Hε(φ)dΩ + λ2

∫
Ω
(z(x, y)− c2)

2(1− Hε(φ))dΩ

+ γ

[ (∫
Ω

Hε(φ)dΩ− A1

)2
+

(∫
Ω
(1− Hε(φ))dΩ− A2

)2 ]
,

(4)

where µ, λ1, λ2, γ are fixed non-negative parameters. There is freedom in choosing the distance142

term D(x, y), see [37] for some examples. A1 is the area of the polygon formed from the points143

of M and A2 = |Ω| − A1. The final term of this functional puts a penalty on the area inside a144

contour being very different to A1. One drawback of the Rada-Chen model is that the selective145

fitting term uses no location information from the marker set M. Therefore the result can be146

a contour which is separated over the domain into small parts, whose sum area totals the area147

fitting term.148

Nguyen et al. [30]. This model is based on the GAC model and uses likelihood functions as149

fitting terms, it has the energy functional150

FNG(φ) =µ
∫

Ω
g(|∇z(x, y)|)|∇Hε(φ)|dΩ

+ λ
∫

Ω
α (PB(x, y)− PF(x, y)) + (1− α) (1− 2P(x, y)) φ dΩ

where PB(x, y) and PF(x, y) are the normalised log-likelihoods that the pixel (x, y) is in the fore-151

ground and background respectively. P(x, y) is the probability that pixel (x, y) belongs to the152

foreground, α ∈ [0, 1] and minimisation is constrained, requiring φ ∈ [0, 1], so FNG(φ) is convex.153

This model is good for many examples, see [30], however fails when the boundary of the object154

to segment is non-smooth or has fine structures. Also, the final result is sometimes sensitive to155

the marker sets used.156

The Spencer-Chen model [39]. The authors introduced the following model157

FSC(φ, c1, c2) =µ
∫

Ω
g(|∇z(x, y)|)|∇Hε(φ)|dΩ + λ1

∫
Ω
(z(x, y)− c1)

2Hε(φ)dΩ

+ λ2

∫
Ω
(z(x, y)− c2)

2(1− Hε(φ))dΩ + θ
∫

Ω
DE(x, y)Hε(φ)dΩ,

(5)

where µ, λ1, λ2, θ are fixed non-negative parameters. Note that the regulariser of this model158

differs from the Rada-Chen model (4) as the distance functionD(x, y) has been separated from the159

edge detector term and is now a standalone penalty term DE(x, y). The authors use normalised160

Euclidean distance DE(x, y) from the marker set M as their distance penalty term. We will161

discuss this later in §3 as it is one of the key improvements we make to the Spencer-Chen model,162

replacing the Euclidean distance term with a geodesic distance term.163

Convex Spencer-Chen model [39]. Spencer and Chen use the ideas of [10] to reformulate (5)164

into a convex minimisation problem. It can be shown that the Euler-Lagrange equations for165

FSC(φ, c1, c2) have the same stationary solutions as for166

FSC1(u, c1, c2) =µ
∫

Ω
g(|∇z(x, y)|)|∇u|dΩ +

∫
Ω

[
λ1(z(x, y)− c1)

2 − λ2(z(x, y)− c2)
2
]

u dΩ

+ θ
∫

Ω
DE(x, y)u dΩ,

(6)
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with the minimisation constrained to u ∈ [0, 1]. This is a constrained convex minimisation which167

can be reformulated to an unconstrained minimisation using an exact penalty term ν(u) :=168

max{0, 2|u− 1
2 | − 1} in the functional, which encourages the minimiser to be in the range [0, 1].169

In [39] the authors use a smooth approximation νε(u) to ν(u) given by170

νε(u) = Hε

(√
(2u− 1)2 + ε− 1

) [√
(2u− 1)2 + ε− 1

]
, (7)

and perform the unconstrained minimisation of171

FSC2(u, c1, c2) =µ
∫

Ω
g(|∇z(x, y)|)|∇u|dΩ +

∫
Ω

[
λ1(z(x, y)− c1)

2 − λ2(z(x, y)− c2)
2
]

u dΩ

+ θ
∫

Ω
DE(x, y)u dΩ + α

∫
Ω

νε(u)dΩ.
(8)

When α > 1
2

∣∣∣∣[λ1(z(x, y)− c1)
2 − λ2(z(x, y)− c2)

2]+ θDE(x, y)
∣∣∣∣

L∞ , the above functional has the172

same set of stationary solutions as FSC1(u, c1, c2). It permits us to choose arbitrary u initialisation173

to obtain the desired selective segmentation result due to its complexity.174

Convex Liu et al. model [26]. Recently, a convex model was introduced by Liu et al. which175

applies a weighting to the data fitting terms, the functional to minimise is given by176

FLIU(u) =µ
∫

Ω
|∇u|dΩ + µ2

∫
Ω
|∇u|2 dΩ + λ

∫
Ω

ω2(x, y) |z− u|2 dΩ, (9)

where µ, µ2, λ are non-negative parameters and ω(x, y) = 1−D(x, y)g(|∇z|) where D(x, y) is a177

distance function from marker setM (see [26] for examples).178

3. Proposed Convex Geodesic Selective Model179

We propose an improved selective model, based on the Spencer-Chen model, which uses geodesic180

distance from the marker setM as the distance term, rather than the Euclidean distance. Increas-181

ing the distance when edges in the image are encountered gives a more accurate reflection of the182

true similarity of pixels in an image from the marker set. We propose minimising the convex183

functional184

FCG(u, c1, c2) =µ
∫

Ω
g(|∇z(x, y)|)|∇u|dΩ +

∫
Ω

[
λ1(z(x, y)− c1)

2 − λ2(z(x, y)− c2)
2
]

u dΩ

+ θ
∫

Ω
DM(x, y)u dΩ + α

∫
Ω

νε(u)dΩ,
(10)

where DM(x, y) is the edge-weighted geodesic distance from the marker set. In Figure 1, we185

compare the normalised geodesic distance and the Euclidean distance from the same marker186

point (i.e. setM has one point in it); clearly the former gives a more intuitively correct distance187

penalty than the latter. We will refer to this proposed model as the Geodesic Model.188

3.1. Computing the Geodesic Distance Term DM(x, y)189

The geodesic distance from the marker set M is given by DM(x, y) = 0 for (x, y) ∈ M and190

DM(x, y) = D0
M(x,y)

||D0
M(x,y)||L∞

for (x, y) 6∈ M, where D0
M(x, y) is the solution of the following PDE191

|∇D0
M(x, y)| = f (x, y), D0

M(x0, y0) = 0, (x0, y0) ∈ M. (11)
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Figure 1: Comparison of distance measures. (i) Simple binary image with marker point; (ii) normalised Euclidean
distance from marker point; (iii) edge map function f (x) for the image; (iv) normalised geodesic distance
from marker point.

where f (x, y) is defined later on with respect to the image contents.192

If f (x, y) ≡ 1 (i.e. |∇D0
M(x, y)| = 1) then the distance penalty DM(x, y) is simply the normalised193

Euclidean distance DE(x, y) as used in the Spencer-Chen model (5). We have free rein to design194

f (x, y) as we wish. Looking at the PDE in (11), we see that when f (x, y) small this results in195

a small gradient in our distance function and it is almost flat. When f (x, y) is large, we have a196

large gradient in our distance map. In the case of selective image segmentation, we want small197

gradients in homogeneous areas of the image and large gradients at edges. If we set198

f (x, y) = εD + βG|∇z(x, y)|2 (12)

this gives us the desired property that in areas where |∇z(x, y)| ≈ 0, the distance function199

increases by some small εD ; here image z(x, y) is scaled to [0, 1]. At edges, |∇z(x, y)| is large200

and the geodesic distance increases here. We set value of βG = 1000 and εD = 10−3 throughout.201

In Figure 1, we see that the geodesic distance plot gives a low distance penalty on the triangle,202

which the marker indicates we would like segmented. There is a reasonable penalty on the203

background, and all other objects in the image have a very high distance penalty (as the geodesic204

to these points must cross two edges). This contrasts with the Euclidean distance, which gives205

a low distance penalty to some background pixels and maximum penalty to the pixels furthest206

away.207

3.2. Comparing Euclidean and Geodesic Distance Terms208

We briefly give some advantages of using the geodesic distance as a penalty term rather than209

Euclidean distance and a remark on the computational complexity for both distances.210

1. Parameter Robustness. The Geodesic Model is more robust to the choice of the fitting211

parameter θ, as the penalty on the inside of the shape we want segmented is consistently212

small. It is only outside the shape where the penalty is large. Whereas with the Euclidean213

distance term we always have a penalty inside the shape we actually want to segment. This214

is due to the nature of the Euclidean distance which does not discriminate on intensity –215

this penalty can also be quite high if our marker set is small and doesn’t cover the whole216

object.217

2. Robust to Marker Set Selection. The geodesic distance term is far more robust to point218

selection, for example we can choose just one point inside the object we want to segment219
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and this will give a nearly identical geodesic distance compared to choosing many more220

points. This is not true of the Euclidean distance term which is very sensitive to point221

selection and requires markers to be spread in all areas of the object you want to segment222

(especially at extrema of the object).223

Remark 1 (Computational Complexity.). The main concern of using the geodesic penalty term, which224

we obtain by solving PDE (11), would be that it takes a significant amount of time to compute compared225

to the Euclidean distance. However, using the fast marching algorithm of Sethian [38], the complexity226

of computing DM(x, y) is O(N log(N)) for an image with N pixels. This is is only marginally more227

complex than computing the Euclidean distance which has O(N) complexity [28].228

3.3. Improvements to Geodesic Distance Term229

We now propose some modifications to the geodesic distance. Although the geodesic distance230

presents many advantages for selective image segmentation, we have three key disadvantages of231

this fitting term, which the Euclidean fitting term does not suffer.232

1. Not robust to noise. The computation of the geodesic distance depends on |∇z(x, y)|2 in233

f (x, y) (see (11)). So, if an image contains a lot of noise, each noisy pixel appears as an edge234

and we get a misleading distance term.235

2. Objects far from M with low penalty. As the geodesic distance only uses marker set M236

for its initial condition (see (11)), this can result in objects far fromM having a low distance237

penalty, which is clearly not desired.238

3. Blurred edges. If we have two objects separated by a blurry edge and we have marker239

points only in one object, the geodesic distance will be low to the other object, as the edge240

penalty is weakly enforced for a blurry edge. We would desire low penalty inside the object241

with markers and a reasonable penalty in the joined object.242

In Figure 2, each column shows an example for each of the problems listed above. We now243

propose solutions to each of these problems.244

Problem 1: Noise Robustness. A naïve solution to the problem of noisy images would be to245

apply a Gaussian blur to z(x, y) to remove the effect of the noise, so we change f (x, y) to246

f̃ (x, y) = εD + βG|∇Gσ ∗ z(x, y)|2 (13)

where Gσ is a Gaussian convolution with standard deviation σ. However, the effect of Gaussian247

convolution is that it also blurs edges in the image. This then gives us the same issues described248

in Problem 3. We see in Figure 3 column 3, that the Gaussian convolution reduces the sharpness249

of edges and this results in the geodesic distance being very similar in adjacent objects – therefore250

we see more pixels with high geodesic distance. Our alternative to Gaussian blur is to consider251

anisotropic TV denoising. We refer the reader to [9, 33] for information on the model, here we252

just give the PDE which results from its minimisation:253

µ̃∇ ·
(

g(|∇z(x, y)|) ∇u
|∇u|ε2

)
+ ι(z(x, y)− u) = 0, (14)

where µ̃, ι are non-negative parameters (we fix throughout µ̃ = 10−3, ι = 5× 10−4). It is proposed254

to apply a relatively small number of cheap fixed point Gauss-Seidel iterations (between 100 and255
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Noisy Image and Marker Set

Geodesic Distance Based on Noisy Image

0

0.2

0.4

0.6

0.8

1

CT Image with Markers

CT Image Geodesic Distance Map

0

0.2

0.4

0.6

0.8

1

Zoomed CT Image and Markers

Geodesic Distance Map for Blurred Edge

0

0.2

0.4

0.6

0.8

1

Figure 2: Examples of images showing the problems discussed and the resulting geodesic distance maps. Column 1
shows the lack of robustness to noise, column 2 shows that outside the patient we have unreasonably low
distance penalty, column 3 shows how the blurred edge under the aorta leads to the distance term being very
low throughout the heart.

Clean Image

Edge Map

10% Gaussian Noise

Edge Map Edge Map

Aniso-TV Gauss-Seidel Smoothed

Edge Map

Geodesic Distance Map

0

0.2

0.4

0.6

0.8

1

Geodesic Distance Map

0

0.2

0.4

0.6

0.8

1

Geodesic Distance Map

0

0.2

0.4

0.6

0.8

1

Geodesic Distance Map

0

0.2

0.4

0.6

0.8

1

Figure 3: The edge maps and geodesic distance maps. (Left to right:) the clean image, the image with 10% Gaussian
noise, the noisy image with Gaussian convolution applied (σ = 5) and for the noisy image with 100
iterations of anisotropic-TV Gauss-Seidel smoothing. The setM is shown on the top row, it is the same for
each image.

200) to the discretised PDE. We cycle through all pixels (i, j) and update ui,j as follows256

ui,j =
Ai,jui+1,j + Bi,jui−1,j + Ci,jui,j+1 + Di,jui,j−1

Ai,j + Bi,j + Ci,j + Di,j + ι
(15)

where Ai,j =
µ̃

h2
x

g(|∇z(x, y)|)i+1/2,j, Bi,j =
µ̃

h2
x

g(|∇z(x, y)|)i−1/2,j, Ci,j =
µ̃

h2
y

g(|∇z(x, y)|)i,j+1/2 and257
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Di,j =
µ̃

h2
y

g(|∇z(x, y)|)i,j−1/2. We update all pixels once per iteration and solve the PDE in (11)258

with f (x, y) replaced by259

f1(x, y) = εD + βG|∇Sk(z(x, y))|2 (16)

where S represents the Gauss-Seidel iterative scheme and k is the number of iterations performed260

(we choose k = 100 in our tests). In the final column of Figure 3 we see that the geodesic distance261

map more closely resembles that of the clean image than the Gaussian blurred map in column262

3 and in Figure 4 we see that the segmentation results are qualitatively and quantitatively better263

using the anisotropic smoothing technique.

10% Gaussian Noise Non-Smoothed TC = 0.9192 Smoothed TC = 0.9417

20% Gaussian Noise Non-Smoothed TC = 0.8538 Smoothed TC = 0.9055

30% Gaussian Noise Non-Smoothed TC = 0.7321 Smoothed TC = 0.9151

Figure 4: Segmentation results and Tanimoto Coefficients (see §6) for images with 10%, 20% and 30% Gaussian
Noise with and without smoothing, λ1 = λ2 = 5, θ = 3.

264

Problem 2: Objects far fromM with low penalty.265

In Figure 2 column 2 we see that the geodesic distance to the outside of the patient is lower than266

to their ribs. This is due to the fact that the region outside the body is homogeneous and there is267

almost zero distance penalty in this region. Similarly for Figure 3 column 4, the distances from268

the marker set to many surrounding objects is low, even though their Euclidean distance from269

the marker set is high. We wish to have the Euclidean distance DE(x, y) incorporated somehow.270

Our solution is to modify the term f1(x, y) from (16) to271

f2(x, y) = εD + βG|∇Sk(z(x, y))|2 + ϑDE(x, y). (17)

In Figure 5 the effect of this is clear, as ϑ increases, the distance function resembles the Euclidean272

distance more. We use value ϑ = 10−1 in all experiments as it adds a reasonable penalty to pixels273

far from the marker set.274

Problem 3: Blurred edges.275

If there are blurred edges between objects in an image, the geodesic distance will not increase276

significantly at this edge. Therefore the final segmentation result is liable to include unwanted277

objects. We look to address this problem through the use of anti-markers. These are markers278
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0

0.2

0.4

0.6

0.8

1

Figure 5: Displayed is DM(x, y) using f2(x, y) for various ϑ values. The marker set is the same as that used in
Figure 3.

which indicate objects that we do not want to segment, i.e. the opposite of marker points, we279

denote the set of anti-marker points by AM. We propose to use a geodesic distance map from

Marker and Anti-Marker SetOriginal Image Anti-Marker Distance Function

0

0.2

0.4

0.6

0.8

1
Segmentation With Anti-MarkersSegmentation Without Anti-Markers

Figure 6: (Left to right:) original image, M (green) and AM (pink), segmentation result just using marker set,
DAM(x, y) using anti-markers, segmentation result using anti-markers. For these µ = 1, λ1 = λ2 =
5, θ = 25.

280

the set AM denoted by DAM(x, y) which penalises pixels near to the set AM and doesn’t add281

any penalty to those far away. We could naïvely choose DAM(x, y) = 1 − D̃GAM(x, y) where282

D̃GAM(x, y) is the normalised geodesic distance from AM. However this puts a large penalty283

on those pixels inside the object we actually want to segment (as D̃GAM(x, y) to those pixels is284

small). To avoid this problem, we propose the following anti-marker distance term285

DAM(x, y) =
exp

(
−α̃D̃GAM(x, y)

)
− exp (−α̃)

1− exp (−α̃)

where α̃ is a tuning parameter. We choose α̃ = 200 throughout. This distance term ensures286

rapid decay of the penalty away from the set AM but still enforces high penalty around the287

anti-marker set itself. See Figure 6 where a segmentation result with and without anti-markers is288

shown. As DAM(x, y) decays rapidly from AM, we do require that the anti-marker set be close289

to the blurred edge and away from the object we desire to segment.290

3.4. The new model and its Euler-Lagrange equation291

The Proposed Geodesic Model. Putting the above 3 ingredients together, we propose the model292
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293 min
u,c1,c2

{
FGEO(u, c1, c2) =

∫
Ω

[
λ1(z(x, y)− c1)

2 − λ2(z(x, y)− c2)
2
]

u dΩ

+ µ
∫

Ω
g(|∇z(x, y)|)|∇u|dΩ + θ

∫
Ω
DG(x, y)u dΩ + α

∫
Ω

νε(u)dΩ
}

,
(18)

where DG(x, y) = (DM(x, y) +DAM(x, y)) /2 and DM(x, y) is the geodesic distance from the294

marker set M. We compute DM(x, y) using (11) where f (x, y) = f2(x, y) defined in (17). Using295

Calculus of Variations, solving (18) with respect to c1, c2, with u fixed, leads to296

c1(u) =

∫
Ω u · z(x, y)dΩ∫

Ω u dΩ
, c2(u) =

∫
Ω(1− u) · z(x, y)dΩ∫

Ω(1− u)dΩ
, (19)

and the minimisation with respect to u (with c1 and c2 fixed) gives the PDE297

µ∇ ·
(

g(|∇z(x, y)|) ∇u
|∇u|ε2

)
−
[
λ1(z(x, y)− c1)

2 − λ2(z(x, y)− c2)
2
]

− θDG(x, y)− αν′ε(u) = 0
(20)

in Ω, where we replace |∇u| with |∇u|ε2 =
√

u2
x + u2

y + ε2 to avoid zero denominator; we choose298

ε2 = 10−6 throughout. We also have Neumann boundary conditions ∂u
∂n = 0 on ∂Ω where n is299

the outward unit normal vector.300

Next we discuss a numerical scheme for solving this PDE (20). However it should be remarked301

that updating c1(u), c2(u) should be done as soon as u is updated; practically c1, c2 converge very302

quickly since the object intensity c1 does not change much.303

4. An additive operator splitting algorithm304

Additive Operator Splitting (AOS) is a widely used method [14, 27, 43] as seen from more recent305

works [2, 3, 4, 5, 37, 39] on the diffusion type equation such as306

∂u
∂t

= µ∇ · (G(u)∇u)− f . (21)

AOS allows us to split the two dimensional problem into two one-dimensional problems, which307

we solve and then combine. Each one dimensional problem gives rise to a tridiagonal system308

of equations which can be solved efficiently, hence AOS is a very efficient method for solving309

diffusion-like equations. AOS is a semi-implicit method and permits far larger time-steps than310

the corresponding explicit schemes would. Hence AOS is more stable than an explicit method311

[43]. We rewrite the above equation as312

∂u
∂t

= µ

(
∂x (G(u)∂xu) + ∂y

(
G(u)∂yu

) )
− f .

and after discretisation, we can rewrite this as [43]313

uk+1 =
1
2

2

∑
`=1

(
I − 2τµA`(uk)

)−1 (
uk + τ f

)
where τ is the time-step, A1(u) = ∂x(G(u)∂x) and A2(u) = ∂y(G(u)∂y). For notational conve-314

nience we write G = G(u). The matrix A1(u) can be obtained as follows315 (
A1(uk)uk+1

)
i,j
=

(
∂x

(
G∂xuk+1

))
i,j
=

(
Gi+ 1

2 ,j

h2
x

)
uk+1

i+1,j +

(
Gi− 1

2 ,j

h2
x

)
uk+1

i−1,j −
(

Gi+ 1
2 ,j + Gi− 1

2 ,j

h2
x

)
uk+1

i,j
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and similarly to [37, 39], for the half points in G we take the average of the surrounding pixels,316

e.g. Gi+ 1
2 ,j =

Gi+1,j+Gi,j
2 . Therefore we must solve two tridiagonal systems to obtain uk+1, the317

Thomas algorithm allows us to solve each of these efficiently [43]. The AOS method described318

here assumes f does not depend on u, however in our case it depends on ν′ε(u) (see (20)) which319

has jumps around 0 and 1, so the algorithm has stability issues. This was noted in [39] and320

the authors adapted the formulation of (20) to offset the changes in f . Here we repeat their321

arguments for adapting AOS when the exact penalty term ν′ε(u) is present (we refer to Figures 7322

and 8 for plots of the penalty function and its derivative, respectively).323

The main consideration is to extract a linear part out of the nonlinearity in f = f (u). If we324

evaluate the Taylor expansion of ν′ε(u) around u = 0 and u = 1 and group the terms into the325

constant and linear components in u, we can respectively write ν′ε(u) = a0(ε) + b0(ε)u +O(u2)326

and ν′ε(u) = a1(ε) + b1(ε)u +O(u2). We actually find that b0(ε) = b1(ε) and denote the linear327

term as b from now on. Therefore, for a change in u of δu around u = 0 and u = 1, we can328

approximate the change in ν′ε(u) by b · δu. To focus on the jumps, define the interval in which

-1 0 1 2

0

1

2

(a) ν(u).

-1 0 1 2

0

1

2

(b) νε(u) for ε = 1.

-1 0 1 2

0

1

2

(c) νε(u) for ε = 0.1.

Figure 7: (a) The exact penalty function ν(u) and (b,c) νε(u) for different ε values.

-1 0 1 2

-2

0

2

(a) ν′(u).

-1 0 1 2

-2

0

2

(b) ν′ε(u) for ε = 1.

-1 0 1 2

-2

0

2

(c) ν′ε(u) for ε = 0.1.

Figure 8: (a) ν′(u) (discontinuities shown in red) and (b,c) ν′ε(u) for different ε values.

329

ν′ε(u) jumps as330

Iζ := [0− ζ, 0 + ζ] ∪ [1− ζ, 1 + ζ]

and refine the linear function by331

b̃k
i,j =

{
b, uk

i,j ∈ Iζ

0, else.
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Using these we can now offset the change in ν′ε(uk) by changing the formulation (21) to332

∂u
∂t

= µ∇ · (G(u)∇u)− αb̃ku +
[
αb̃ku− f

]
or in AOS form uk+1 = uk + τµ∇ · (G(uk)∇uk+1)− ταb̃kuk+1 +

[
ταb̃kuk − f k] which, following333

the derivation in [39], can be reformulated as334

uk+1 =
1
2

2

∑
`=1

(
I + B̃k − 2τµA`

(
uk
))

︸ ︷︷ ︸
Q1

−1 ((
I + B̃k

)
uk + τ f k

)

where B̃k = diag(ταb̃k). We note that Q1 is invertible as it is strictly diagonally dominant. This335

scheme improves on (21) as now, changes in f k are damped. However, it is found in [39] that336

although this scheme does satisfy most of the discrete scale space conditions of Weickert [43]337

(which guarantee convergence of the scheme), it does not satisfy all of them. In particular the338

matrix Q1 doesn’t have unit row sum and is not symmetrical. The authors adapt the scheme339

above to the equivalent340

uk+1 =
1
2

2

∑
`=1

(
I − 2τµ

(
I + B̃k

)−1
A`

(
uk
))

︸ ︷︷ ︸
Q2

−1 (
uk + τ

(
I + B̃k

)−1
f k
)

, (22)

where the matrix Q2 does have unit row sum, however the matrix is not always symmetrical. We341

can guarantee convergence for ζ = 0.5 (in which case Q2 must be symmetrical) but we desire to342

use a small ζ to give a small interval Iζ . We find experimentally that convergence is achieved343

for any small value of ζ, this is due to the fact that at convergence the solution u is almost344

binary [10]. Therefore, although initially Q2 is asymmetrical at some pixels, at convergence all345

pixels have values which fall within Iζ and I + B̃k is a matrix with all diagonal entries 1 + ταb.346

Therefore we find that at convergence Q2 is symmetrical and the discrete scale space conditions347

are all satisfied. In all of our tests we fix ζ = 0.01.

Algorithm 1: Solution of the Geodesic Model

Set µ, λ, θ. Compute g(|∇z(x, y)|) = 1
1+βG |∇z(x,y)|2 and DG(x, y) = D0

G(x,y)
||D0

G(x,y)||L∞
,

with D0
G(x, y) the solution of (11). Initialise u(0) arbitrarily.

for iter = 1 to max_iterations do
Calculate c1 and c2 using (19).
Calculate r = λ1(z− c1)

2 − λ2(z− c2)
2 + θDG.

Set α = ||r||L∞ .
Calculate f k = r + αν′ε(uk).
Update uk to uk+1 using the AOS scheme (22).

end for
u∗ ← uk.

348

5. Existence and Uniqueness of the Viscosity Solution349

In this section we use the viscosity solution framework and the work of Ishii and Sato [20] to350

prove that, for a class of PDEs in image segmentation, the solution exists and is unique. In351
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particular, we prove the existence and uniqueness of the viscosity solution for the PDE which352

is determined by the Euler-Lagrange equation for the Geodesic Model. Throughout, we will353

assume Ω is a bounded domain with C1 boundary.354

From the work of [12, 20], we have the following Theorem for analysing the solution of a partial355

differential equation of the form F(x, u, Du, D2u) = 0 where F : Rn ×R×Rn ×M n → R, M n
356

is the set of n× n symmetric matrices, Du is the gradient of u and D2u is the Hessian of u. For357

simplicity, and in a slight abuse of notation, we use x := x for the vector of a general point in Rn.358

Theorem 2 (Theorem 3.1 [20]). Assume that the following conditions (C1)–(C2) and (I1)–(I7) hold. Then359

for each u0 ∈ C(Ω) there is a unique viscosity solution u ∈ C([0, T)×Ω) of (23) and (24) satisfying360

(25).361

∂u
∂t

+ F(t, x, u, Du, D2u) = 0 in Q = (0, T)×Ω, (23)

362

B(x, Du) = 0 in S = (0, T)× ∂Ω, (24)

363

u(0, x) = u0(x) for x ∈ Ω. (25)

Conditions (C1)–(C2).364

(C1) F(t, x, u, p, X) ≤ F(t, x, v, p, X) for u ≤ v.365

(C2) F(t, x, u, p, X) ≤ F(t, x, u, p, Y) for X, Y ∈M n and Y ≤ X.366

Conditions (I1)–(I7). Assume Ω is a bounded domain in Rn with C1 boundary.367

(I1) F ∈ C
(
[0, T]×Ω×R× (Rn\{0})×M n).368

(I2) There exists a constant γ ∈ R such that for each (t, x, p, X) ∈ [0, T]×Ω× (Rn\{0})×M n
369

the function u 7→ F(t, x, u, p, X)− γu is non-decreasing on R.370

(I3) F is continuous at (t, x, u, 0, 0) for any (t, x, u) ∈ [0, T]×Ω×R in the sense that371

−∞ < F∗(t, x, u, 0, 0) = F∗(t, x, u, 0, 0) < ∞

holds. Here F∗ and F∗ denote, respectively, the upper and lower semi-continuous envelopes372

of F, which are defined on [0, T]×Ω×R×Rn ×M n.373

(I4) B ∈ C (Rn ×Rn) ∩ C1,1 (Rn × (Rn\{0})), where C1,1 is the Hölder functional space.374

(I5) For each x ∈ Rn the function p 7→ B(x, p) is positively homogeneous of degree one in p, i.e.375

B(x, λp) = λB(x, p) for all λ ≥ 0 and p ∈ Rn\{0}.376

(I6) There exists a positive constant Θ such that 〈n(x), DpB(x, p)〉 ≥ Θ for all x ∈ ∂Ω and377

p ∈ Rn\{0}. Here n(x) denotes the unit outward normal vector of Ω at x ∈ ∂Ω.378

(I7) For each R > 0 there exists a non-decreasing continuous function ωR : [0, ∞) → [0, ∞)379

satisfying ωR(0) = 0 such that if X, Y ∈M n and µ1, µ2 ∈ [0, ∞) satisfy380 [
X 0
0 Y

]
≤ µ1

[
I −I
−I I

]
+ µ2

[
I 0
0 I

]
(26)

then381

F(t, x, u, p, X)− F(t, y, u, q,−Y) ≥−ωR

(
µ1

(
|x− y|2 + ρ(p, q)2

)
+ µ2 + |p− q|

+ |x− y| (max(|p|, |q|) + 1)
)
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for all t ∈ [0, T], x, y ∈ Ω, u ∈ R, with |u| ≤ R, p, q ∈ Rn\{0} and ρ(p, q) = min
(

|p−q|
min(|p|,|q|) , 1

)
.382

5.1. Existence and uniqueness for the Geodesic Model383

We now prove that there exists a unique solution for the PDE (20) resulting from the minimisation384

of the functional for the Geodesic Model (18).385

Remark 3. It is important to note that although the values of c1 and c2 depend on u, they are fixed when386

we solve the PDE for u and therefore the probem is a local one and Theorem 2 can be applied. Once we387

update c1 and c2, using the updated u, then we fix them again and apply Theorem 2. In practice, as we388

near convergence, we find c1 and c2 stabilise so we typically stop updating c1 and c2 once the change in389

both values is below a tolerance.390

To apply the above theorem to the proposed model (20), the key step will be to verify the nine391

conditions. First, we multiply (20) by the factor |∇u|ε2 , obtaining the nonlinear PDE392

−µ|∇u|ε2∇ ·
(

G(x,∇z)
∇u
|∇u|ε2

)
+ |∇u|ε2

[
λ1(z(x, y)− c1)

2 − λ2(z(x, y)− c2)
2

+ θDG(x, y) + αν′ε(u)
]
= 0

(27)

where G(x,∇z) = g(|∇z(x, y)|). We can rewrite this as393

F(x, u, p, X) = −µ trace (A(x, p)X)− µ〈∇G(x,∇z), p〉+ |p|k(u) + |p| f (x) = 0 (28)

where f (x) = λ1(z(x) − c1)
2 − λ2(z(x) − c2)

2, k(u) = αν′ε(u), p = (p1, p2) = |∇u|ε2 , X is the394

Hessian of u and395

A(x, p) =

 G(x,∇z) p2
2
|p|2 −G(x,∇z) p1 p2

|p|2

−G(x,∇z) p1 p2
|p|2 G(x,∇z) p2

1
|p|2

 (29)

Theorem 4 (Theory for the Geodesic Model). The parabolic PDE ∂u
∂t + F(t, x, u, Du, D2u) = 0 with396

u0 = u(0, x) ∈ C(Ω), F as defined in (28) and Neumann boundary conditions has a unique solution397

u = u(t, x) in C([0, T)×Ω).398

Proof. By Theorem 2, it remains to verify that F satisfies (C1)–(C2) and (I1)–(I7). We will show399

that each of the conditions is satisfied. Most are simple to show, the exception being (I7) which400

is non-trivial.401

(C1): Equation (28) only has dependence on u in the term k(u), we therefore have a restriction on402

the choice of k, requiring k(v) ≥ k(u) for v ≥ u. This is satisfied for k(u) = αν′ε(u) with ν′ε(u)403

defined as in (7).404

(C2): We find for arbitrary s = (s1, s2) ∈ R2 that sT A(x, p)s ≥ 0 and so A(x, p) ≥ 0. It follows405

that −trace(A(x, p)X) ≤ −trace(A(x, p)Y), therefore this condition is satisfied.406

(I1): A(x, p) is only singular at p = 0, however it is continuous elsewhere and satisfies this407

condition.408

(I2): In F the only term which depends on u is k(u) = αν′ε(u). With ν′ε(u) defined as in (7), in409

the limit ε → 0 this function is a step function from −2 on (∞, 0), 0 on [0, 1] and 2 on (0, ∞). So410

we can choose any constant ε < −2. With ε 6= 0 there is smoothing at the end of the intervals,411

however there is still a lower bound on L for ν′ε(u) and we can choose any constant γ < L.412
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(I3): F is continuous at (x, 0, 0) for any x ∈ Ω because F∗(x, 0, 0) = F∗(x, 0, 0) = 0. Hence this413

condition is satisfied.414

(I4): The Euler-Lagrange equations give Neumann boundary conditions415

B(x,∇u) =
∂u
∂n

= n · ∇ u = 〈n,∇u〉 = 0

on ∂Ω, where n is the outward unit normal vector, and we see that B(x,∇u) ∈ C1,1 (Rn ×Rn\{0})416

and therefore this condition is satisfied.417

(I5): By the definition above, B(x, λ∇u) = 〈n, λ∇u〉 = λ〈n,∇u〉 = λB(x,∇u). So this condition418

is satisfied.419

(I6): As before we can use the definition, 〈n(x), DpB(x, p)〉 = 〈n(x), n(x)〉 = |n(x)|2. So we can420

choose Θ = 1 and the condition is satisfied.421

(I7): This is the most involved condition to prove and uses many other results. For clarity of the422

overall paper, we postpone the proof to Appendix A. 2423

5.2. Generalisation to other related models424

Theorems 2 and 4 can be generalised to a few other models. This amounts to writing each425

model as a PDE of the form (28) where k(u) is monotone and f (x), k(u) are bounded. This is426

summarised in the following Corollary:427

Corollary 5. Assume that c1 and c2 are fixed, with the terms f (x) and k(u) respectively defined as follows428

for a few related models:429

• Chan-Vese [11]: f (x) = fCV(x) := λ1(z(x)− c1)
2 − λ2(z(x)− c2)

2, k(u) = 0.430

• Chan-Vese (Convex) [10]: f (x) = fCV(x), k(u) = αν′ε(u).431

• Geodesic Active Contours [8] and Gout et al. [25]: f (x) = 0, k(u) = 0.432

• Nguyen et al. [30]: f (x) = α (PB(x, y)− PF(x, y)) + (1− α) (1− 2P(x, y)), k(u) = 0.433

• Spencer-Chen (Convex) [39]: f (x) = fCV(x) + θDE(x), k(u) = αν′ε(u).434

Then if we define a PDE of the general form435

−µ∇ ·
(

G(x)
∇u
|∇u|ε2

)
+ k(u) + f (x) = 0

with436

(i) Neumann boundary conditions ∂u
∂n = 0 (n the outward normal unit vector)437

(ii) k(u) satisfies k(u) ≥ k(v) if u ≥ v438

(iii) k(u) and f (x) are bounded; and439

(iv) G(x) = Id or G(x) = f (|∇z(x)|) = 1
1+|∇z(x)|2 ,440

we have a unique solution u ∈ C([0, T)×Ω) for a given initialisation. Consequently we conclude that all441

above models admit a unique solution.442
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Proof. The conditions (i)–(iv) are hold for all of these models. All of these models require Neu-443

mann boundary conditions and use the permitted G(x). The monotonicity of ν′ε(u) is discussed444

in the proof of (C1) for Theorem 4 and the boundedness of f (x) and k(u) is clear in all cases. 2445

Remark 6. Theorem 4 and Corollary 5 also generalise to cases where G(x) = 1
1+β|∇z|2 and to G(x) =446

D(x)g(|∇z|) where D(x) is a distance function such as in [15, 16, 17, 39]. The proof is very similar to447

that shown in §5.1, relying on Lipschitz continuity of the function G(x).448

Remark 7. We cannot apply the classical viscosity solution framework to the Rada-Chen model [37] as449

this is a non-local problem with k(u) = 2ν
(∫

Ω Hε(u)dΩ− A1
)
.450

6. Numerical Results451

In this section we will demonstrate the advantages of the Geodesic Model for selective image452

segmentation over related and previous models. Specifically we shall compare453

• M1 — the Nguyen et al. (2012) model [30];454

• M2 — the Rada-Chen (2013) model [37];455

• M3 — the convex Spencer-Chen (2015) model [39];456

• M4 — the convex Liu et al. (2017) model [26];457

• M5 — the reformulated Rada-Chen model with geodesic distance penalty (see Remark 8);458

• M6 — the reformulated Liu et al. model with geodesic distance penalty (see Remark 8);459

• M7 — the proposed convex Geodesic Model (Algorithm 1).460

Remark 8 (A note on M5 and M6). We include M5 – M6 to test how the geodesic distance penalty461

term can improve M2 [37] and M4 [26]. These were obtained as follows:462

• we extend M2 to M5 simply by including the geodesic distance function DG(x, u) in the functional.463

• we extend M4 to M6 with a minor reformulation to include data fitting terms. Specifically, the464

model M6 is465

min
u,c1,c2

{
FCVω(u, c1, c2) =

∫
Ω

ω2(x, y)
[
λ1(z(x, y)− c1)

2 − λ2(z(x, y)− c2)
2
]

u dΩ

+µ
∫

Ω
g(|∇z|))|∇u|dΩ + θ

∫
Ω
DG(x, y)u dΩ + α

∫
Ω

νε(u)dΩ
} (30)

for µ, λ1, λ2 non-negative fixed parameters, α and νε(u) as defined in (7) and ω as defined for the466

convex Liu et al. model. This is a convex model and is the same as the proposed Geodesic Model M7467

but with weighted intensity fitting terms.468

Four sets of test results are shown below. In Test 1 we compare models M1 – M6 to the proposed469

model M7 for two images which are hard to segment. The first is a CT scan from which we470

would like to segment the lower portion of the heart, the second is an MRI scan of a knee and we471

would like to segment the top of the Tibia. See Figure 9 for the test images and the marker sets472

used in the experiments. In Test 2 we will review the sensitivity of the proposed model to the473

main parameters. In Test 3 we will give several results achieved by the model using marker and474

anti-marker sets. In Test 4 we show the initialisation independence and marker independence of475

the Geodesic Model on real images.476
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For M7, we denote by ũ the thresholded u > γ̃ at some value γ̃ ∈ (0, 1) to define the segmented477

region. Although the threshold can be chosen arbitrarily in (0, 1) from the work by [10, Thm 1]478

and [39], we usually take γ̃ = 0.5.479

Quantitative Comparisons. To measure the quality of a segmentation, we use the Tanimoto Coeffi-480

cient (TC) (or Jaccard Coefficient [21]) defined by481

TC(ũ, GT) =
|ũ ∩ GT|
|ũ ∪ GT|

where GT is the ‘ground truth’ segmentation and ũ is the result from a particular model. This482

measure takes value one for a segmentation which coincides perfectly with the ground truth and483

reduces to zero as the quality of the segmentation gets worse. In the other tests, where a ground484

truth is not available, we use visual plots.485

Parameter Choices and Implementation. We set µ = 1, τ = 10−2 and vary λ = λ1 = λ2 and θ.486

Following [10] we let α = ||λ1(z− c1)
2 − λ2(z− c2)

2 + θDG(x, y)||L∞ . To implement the marker487

points in MATLAB we use roipoly for choosing a small number of points by clicking and also488

freedraw which allows the user to draw a path of marker points. The stopping criteria used489

is the dynamic residual falling below a given threshold, i.e. once ||uk+1 − uk||/||uk|| < tol the490

iterations stop (we use tol = 10−6 in the tests shown).491

Test 1 – Comparison of models M1 – M7.492

In this test we give the segmentation results for models M1 – M7 for the two challenging test im-493

ages shown in Figure 9. The marker and anti-marker sets used in the experiments are also shown494

in this figure. After extensive parameter tuning, the best final segmentation results for each of495

the models are shown in Figures 10 and 11. For M1 – M4 we obtain incorrect segmentations496

in both cases. In particular, the results of M2 and M4 are interesting as the former gives poor497

results for both images, and the latter gives a reasonable result for Test Image 1 and a poor result498

for Test Image 2. In the case of M2, the regularisation term includes the edge detector and the499

distance penalty term (see (4)). It is precisely this which permits the poor result in Figures 10(b)500

and 11(b) as the edge detector is zero along the contour and the fitting terms are satisfied there501

(both intensity and area constraints) – the distance term is not large enough to counteract the502

effect of these. In the case of M4, the distance term and edge detector are separated from the503

regulariser and are used to weight the Chan-Vese fitting terms (see (9)). The poor segmentation504

in Figure 11(b) is due to the Chan-Vese terms encouraging segmentation of bright objects (in this505

case), weighting ω enforces these terms at all edges in the image and near M. In experiments,506

we find that M4 performs well when the object to segment is of approximately the highest or507

lowest intensity in the image, however when this is not the case, results tend to be poor. We see508

that, in both cases, models M5 and M6 give much improved results to M2 and M4 (obtained by509

incorporating the geodesic distance penalty into each). The proposed Geodesic Model M7 gives510

an accurate segmentation in both cases. It remains to compare M5, M6 and M7. We see that511

M5 is a non-convex model (and cannot be made convex [39]), therefore results are initialisation512

dependent. It also requires one more parameter than M6 and M7, and an accurate setM to give513

a reasonable area constraint in (4). These limitations lead us to conclude M6 and M7 are better514

choices than M5. In the case of M6, it has the same number of parameters as M7 and gives good515

results. M6 can be viewed as the model M7 with weighted intensity fitting terms (compare (18)516

and (30)). Experimentally, we find that the same quality of segmentation result can be achieved517

with both models generally, however M6 is more parameter sensitive than M7. This can be seen518
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ε2 Knee Segmentation (Figure 12) Circle Segmentation (Figure 13)
10−10 0.97287 1.00000
10−8 0.97287 1.00000
10−6 0.97235 1.00000
10−4 0.96562 1.00000
10−2 0.94463 1.00000
100 0.90660 1.00000
102 0.89573 1.00000
104 0.89159 1.00000

Table 1: The Tanimoto Coeffcient for various ε2 values, segmenting the images in Figures 12 and 13.

in the parameter map in Figure 12 with M7 giving an accurate result for a wider range of param-519

eters than M6. To show the improvement of M7 over previous models, we also give an image520

in Figure 13 which can be accurately segmented with M7 but the correct result is never achieved521

with M6 (or M3). Therefore we find that M7 outperforms all other models tested M1 – M6.522

Remark 9. Models M2 – M7 are coded in MATLAB and use exactly the same marker/anti-marker set. For523

model M1, the software of Nguyen et al. requires marker and anti-marker sets to be input to an interface.524

These have been drawn as close as possible to match those used in the MATLAB code.525

(i) (ii) (iii) (iv)

Figure 9: Test 1 setting: (i) Image 1; (ii) Image 1 with marker and anti-marker set shown in green and pink respec-
tively; (iii) Test Image 2; (iv) Image 2 with marker set shown.

Test 2 – Test of M7’s sensitivity to changes in its main parameters. In this test we demonstrate526

that the proposed Geodesic Model is robust to changes in the main parameters. The main pa-527

rameters in (20) are µ, λ1, λ2, θ and ε2. In all tests we set µ = 1, which is simply a rescaling of the528

other parameters, and we set λ = λ1 = λ2. In the first example, in Figure 12, we compare the TC529

value for various λ and θ values for segmentation of a bone in a knee scan. We see that the seg-530

mentation is very good for a larger range of θ and λ values. For the second example, in Figure 13,531

we show an image and marker set for which the Spencer-Chen model (M3) and modified Liu et532

al. model M6 cannot achieve the desired segmentation for any parameter range, but which can533

be attained for the Geodesic Model for a vast range of parameters. The final example, in Table 1,534

compares the TC values for various ε2 values with fixed parameters λ = 2 and θ = 2. We use535

the images and ground truth as shown in Figures 12 and 13: on the synthetic circles image we536

obtain a perfect segmentation for all values of ε2 tested, and in the case of the knee segmentation537

the results are almost identical for any ε2 < 10−6, above which the quality slowly deteriorates.538

Test 3 – Further Results from the Geodesic Model M7. In this test we give some medical539

segmentation results obtained using the Geodesic Model M7. The results are shown in Figure 14.540
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(a) M1 (Left to right:) Test Image 1 with markers (red) and anti-markers (blue), foreground segmentation and background seg-
mentation (we used published software, no parameter choice required).

(b) M2 λ = 1, γ = 10. (c) M3 λ = 5, θ = 3. (d) M4 λ = 1/4.

(e) M5 λ = 5, γ = 3, θ = 1
10 . (f) M6 λ = 15, θ = 3. (g) M7 λ = 10, θ = 1.

Figure 10: Visual comparison of M1 – M7 results for Test Image 1. M1 segmented part of the object, M2 – M4
failed to segment the object, M5 gave a reasonable result (though not accurate) and, M6 and M7 correctly
segmented the object.

In the final two columns we use anti-markers to demonstrate how to overcome blurred edges541

and low contrast edges in an image. These are challenging and it is pleasing to see the correctly542

segmented results.543

Test 4 – Initialisation and Marker Set Independence. In the first example, in Figure 15, we see544

how the convex Geodesic Model M7 gives the same segmentation result regardless of initialisa-545

tion, as expected of a convex model. Hence the model is flexible in implementation. From many546

experiments it is found that using the polygon formed by the marker points as the initialisation547

converges to the final solution faster than using an arbitrary initialisation. In the second exam-548

ple, in Figure 16, we show intuitively how Model M7 is robust to the number of markers and the549

location of the markers within the object to be segmented. The Euclidean distance term, used in550

the Spencer-Chen model M3, is sensitive to the position and number of marker points, however,551
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(a) M1 (Left to right:) Test Image 2 with markers (red) and anti-markers (blue), foreground segmentation and background seg-
mentation (we used published software, no parameter choice required).

(b) M2 λ = 1, γ = 15. (c) M3 λ = 5, θ = 1. (d) M4 λ = 1/8.

(e) M5 λ = 1, γ = 15, θ = 1
10 . (f) M6 λ = 15, θ = 1. (g) M7 λ = 10, θ = 1.

Figure 11: Visual comparison of M1 – M7 results for Test Image 2. M1 segmented part of the object, M2 – M4 failed
to segment the object, M5, M6 and M7 correctly segmented the object.

regardless of where the markers are chosen, and how many are chosen, the geodesic distance552

map will be almost identical.553

7. Conclusions554

In this paper a new convex selective segmentation model has been proposed, using geodesic555

distance as a penalty term. This model gives results that are unachievable by alternative selective556

segmentation models and is also more robust to the parameter choices. Adaptations to the557

penalty term have been discussed which make it robust to noisy images and blurry edges whilst558

also penalising objects far from the marker set (in a Euclidean distance sense). A proof for559

the existence and uniqueness of the viscosity solution to the PDE given by the Euler-Lagrange560

equation for the model has been given (which applies to an entire class of image segmentation561

PDEs). Finally we have confirmed the advantages of using the geodesic distance with some562
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(a) Original Image. (b) Ground Truth Segmentation.

(c) M3 TC values for various λ and θ values. (d) M6 TC values for various λ and θ values. (e) M7 TC values for various λ and θ values.

Figure 12: Parameter maps for M3, M6 and M7

(a) Original image with marker set. (b) Ground truth segmentation.

(c) M3 TC values for various λ and θ values. (d) M6 TC values for various λ and θ values. (e) M7 TC values for various λ and θ values.

Figure 13: Parameter maps for M3, M6 and M7

experimental results. Future works will look for further extension of selective segmentation to563

other frameworks such as using high order regularizers [46, 13] where only incomplete theories564

exist.565
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Figure 14: Three further test results obtained using our Geodesic Model M7, all with parameters θ = 5, λ = 5.
The first row shows the original image with the marker set (plus anti-marker set), the second row the final
segmentation result and the final row shows the residual history.
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(i) (ii) (iii) (iv) (v)

Figure 15: Test 4 on M7’s initialisations (θ = 5, λ = 5). (i) The original image with marker set indicated; (ii)
Initialisation 1 using the image itself; (iii) Segmentation result from Initialisation 1; (iv) Initialisation 2
away from the object to be segmented; (v) Segmentation 2 from initialisation 2. Clearly M7 gives the same
result.

Figure 16: Test 4 on M7’s marker set (θ = 5, λ = 3). Row 1 shows the original image with 3 marker points, the
normalised geodesic distance map and the final segmentation result. Row 2 shows the original image with
1 marker point, the normalised geodesic distance map and the final segmentation result. Clearly the second
and third columns are the same for different marker points. Thus M7 is robust.

Acknowledgements566

The authors are grateful to Professor Joachim Weickert (Saarland, Germany) for fruitful discus-567

sions at the early stages of this work during a Newton programme in Cambridge.568

Appendix A — Proof that Condition (I7) Holds in Theorem 4569

Using the assumption in (26), we write570

(Xr, r) + (Ys, s) = rTXr + sTYs ≤ µ1
[
rT sT] [ I −I

−I I

] [
r
s

]
+ µ2

[
rT sT] [I 0

0 I

] [
r
s

]
= µ1|r− s|2 + µ2

(
|r|2 + |s|2

)
.
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Note that matrix A from (29) is a real symmetric matrix and decomposes as A = QDQT =571

QD1/2D1/2QT = BBT with Q orthonormal and B = QD1/2. Successively define r = B(p)ei and572

s = B(p)ei for all (ei), an orthonormal basis, and obtain573

(Xr, r) = rTXr = ∑
i
(Bei)

TX(Bei) = ∑
i

eT
i BTXBei = trace(BTXB) = trace(A(x, p)X).

Therefore, we can write574

trace(A(x, p)X) + trace(A(y, q)Y) = (XB(p)ei, B(p)ei) + (YB(q)ei, B(q)ei)

≤ µ1|B(p)ei − B(q)ei|2 + µ2

(
|B(p)ei|2 + |B(q)ei|2

)
= µ1trace

(
(B(p)− B(q))T (B(p)− B(q))

)
+ µ2 (G(x) + G(y)) .

We now focus on reformulating the first term, we start by decomposing A(x, p) as follows575

A(x, p) =

[ p1
|p| −

p2
|p|

p2
|p|

p1
|p|

] [
0 0
0 G(x)

] [ p1
|p|

p2
|p|

− p2
|p|

p1
|p|

]
=

[ p1
|p| −

p2
|p|

p2
|p|

p1
|p|

] [
0 0
0
√

G(x)

] [
0 0
0
√

G(x)

] [ p1
|p|

p2
|p|

− p2
|p|

p1
|p|

]

so we have A = BBT where576

B(p) =

[
0 − p2

|p|
√

G(x)

0 p1
|p|
√

G(x)

]
.

Using this we compute577

trace
(
(B(p)− B(q))T (B(p)− B(q))

)
=

∣∣∣∣ p
|p|

√
G(x)− q

|q|

√
G(y)

∣∣∣∣2 .

Substituting this in the overall trace sum we have578

trace(A(x, p)X) + trace(A(y, q)Y) ≤ µ1

∣∣∣∣ p
|p|

√
G(x)− q

|q|

√
G(y)

∣∣∣∣2 + 2µ2θ.

as G(x) < θ (G is bounded) for all x ∈ Ω. Focussing on the first term in this expression we579

compute580 ∣∣∣∣ p
|p|

√
G(x)− q

|q|

√
G(y)

∣∣∣∣2 =

∣∣∣∣ p
|p|

√
G(x)− p

|p|

√
G(y) +

p
|p|

√
G(y)− q

|q|

√
G(y)

∣∣∣∣2
≤ 2

(√
G(x)−

√
G(y)

)2
+ 2G(y)

∣∣∣∣ p
|p| −

q
|q|

∣∣∣∣2
≤ 2

(√
G(x)−

√
G(y)

)2
+ 8θρ(p, q)2

where ρ = min
(

|p−q|
min(|p|,|q|) , 1

)
. This uses inequality

∣∣∣ p
|p| −

q
|q|

∣∣∣2 ≤ 2ρ(p, q) (see [15, 16, 17, 18, 24,581

35]). We now note that g(s) = 1
1+s2 is Lipschitz continuous with Lipschitz constant 3

√
3

8 .582

Note. In the Geodesic Model we fix G(x) = g(|∇z|). Therefore, assuming G(x) and
√

G(x) as583

Lipschitz requires us to assume that the underlying z is a smooth function [16]. Thankfully, z is584

typically provided as a smoothed image after some filtering (e.g. Gaussian smoothing) and we585

can assume regularity of z.586
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Remark 10. It is less clear that
√

G(x) is Lipschitz, we now prove it explicitly. Firstly, it is relatively587

easy to prove that588 √
G(x)−

√
G(y) ≤ 2

3
√

3

∣∣∣∣ |∇z(x)| − |∇z(y)|
∣∣∣∣

by letting K(s) =
√

g(s) and we find sup
s
|K′(s)| = 2

3
√

3
. We now need to prove that |∇z(x)| is Lipschitz589

also. Take h(x) = |∇z(x)|, then by a remark in [16], we can conclude ∃ ζ < ∞ such that590 ∣∣∣∣ |∇z(x)| − |∇z(y)|
∣∣∣∣ ≤ ζ|x− y|

and so
√

G(x) is Lipschitz with constant 2
3
√

3
ζ.591

After some computations we obtain592 ∣∣∣∣ p
|p|

√
G(x)− q

|q|

√
G(y)

∣∣∣∣2 ≤ 2
(

2
3
√

3
ζ

)2

|x− y|2 + 8θρ(p, q)2 =
8

27
ζ2 |x− y|2 + 8θρ(p, q)2.

Following the results in [15, 16, 17, 18, 24, 35] we have593

|∇G(x)−∇G(y)| |p| < κ|p||x− y| ≤ κ max(|p|, |q|)|x− y|.

so overall594

〈∇G(x), p〉 − 〈∇G(y), q〉 ≤ κ max(|p|, |q|)|x− y|+ η|p− q|

where |∇G(y)| < η < ∞. Finally, we note that − (|p| − |q|) = |q| − |p| ≤
∣∣∣|q| − |p|∣∣∣ ≤ |p− q|. If595

we now write596

− (F(t, x, u, p, X)− F(t, y, u, q,−Y)) =µ (trace(A(x, p)X) + trace(A(y, q)Y))
+ µ (〈∇G(x), p〉 − 〈∇G(y), q〉)
− (|p| − |q|) k(u)− |p| f (x) + |q| f (y)

≤ µµ1

(
8
27

ζ2|x− y|2 + 8θρ(p, q)2
)
+ 2µµ2θ

+ µκ max(|p|, |q|)|x− y|+ µη|p− q|

− (|p| − |q|)
(

k(u) + 2 max
x∈Ω

f (x)
)

≤ µµ1

(
8

27
ζ2|x− y|2 + 8θρ(p, q)2

)
+ 2µµ2θ

+ µκ (max (|p|, |q|) + 1) |x− y|+ µη|p− q|+ C1|p− q|.

where C1 = max
x∈Ω

(
k(u) + 2 max

x∈Ω
f (x)

)
(we must assume k(u), f (x) are bounded). Hence we have597

F(t, x, u, p, X)− F(t, y, u, q,−Y) ≥

−max
{

8
27

ζ2µ, 8µθ, 2µθ, µη + C1, µκ

} [
µ1

(
|x− y|2 + ρ(p, q)2

)
+ µ2

+ |p− q|+ |x− y| (max(|p|, |q|) + 1)
]

and setting ωR = max
{ 8

27 ζ2µ, 8µθ, 2θ, η + C1, µκ
}

R, this is a non-decreasing continuous func-598

tion, maps [0, ∞) → [0, ∞) and ωR(0) = 0 as required. We have proven that condition (I7) is599

satisfied.600
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