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Abstract28

Purpose: Perfusion parameters such as cerebral blood flow (CBF) and Tmax have29

been proven to be useful in the diagnosis and prognosis for Ischemic stroke. Arterial30

input function (AIF) is required as an input to estimate perfusion parameters. This31

makes the AIF selection paradigm of clinical importance.32

Methods: This study proposes a new technique to address the problem of AIF selec-33

tion, based on a variational segmentation model that combines geometric constraint in34

a distance function. The modified model uses discrete total variation in the distance35

term and via minimizing an energy locates the arterial regions. Matrix analysis is36

utilized to identify the AIF with maximum peak height within the segmented region.37

Results: Group mean differences indicate that overall the AIF selected by purposed38

method has better arterial features of higher peak position (16.7 a.u and 26.1 a.u) and39

fast attenuation (1.08 seconds and .9 seconds) as compared to the other state of the40

art methods. Utilizing the selected AIF, mean CBF and Tmax values were estimated41

higher than the traditional methods. Ischemic regions were precisely located through42

the perfusion maps.43

Conclusions: This AIF segmentation framework worked on perfusion images at levels44

superior to the current clinical state of the art. Consequently, the perfusion parameters45

derived from AIF selected by the purposed method were more accurate and reliable.46

The proposed method could potentially be considered as part of the calculation for47

perfusion imaging in general.48

49

keywords : Cerebral perfusion imaging, dynamic susceptibility contrast, cerebral blood50

flow, variation model, AIF measurements.51
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I. Introduction52

Ischemic stroke may result in dysfunctions, disorders and death1. Diagnosis and treatment53

of stroke rely on accurate measurement of cerebral perfusion done after the injection of MR54

paramagnetic contrast agent2,3,4. Cerebral perfusion refers to rate of blood delivery to the55

brain tissues4. Among different MRI methods Dynamic Susceptibility Contrast (DSC) MRI56

perfusion imaging method is preferred for diagnosis due to the features of fast acquisition57

time and optimal contrast-to-noise ratio4,5. Perfusion model based on indicator dilution58

theory is fitted on the information obtained from perfusion data sets to obtain certain perfu-59

sion parameters as an output result3,4,6. Output from PWI include the Cerebral blood flow60

(CBF), cerebral blood volume, perfusion-diffusion mismatch, which are used to identify the61

infarct core and tissue at risk or the penumbra7.62

63

DSC perfusion data sets posses the information of concentration of contrast agent64

present in the brain tissues in the form of concentration -time curves2,6,8. According to65

the perfusion model concentration -time curves are considered as a convolution of the re-66

sponse function with the Arterial Input Function (AIF), which is the concentration of the67

contrast agent over time in a brain-feeding artery8. To analyze blood flow in the ischemic68

tissue, deconvolution of concentration -time curves with the AIF is necessary. The AIF is a69

key reference curve used in the deconvolution model to obtain quantitative CBF, CBV and70

perfusion-diffusion mismatch estimation. Selection of the AIF curve influences the result of71

the deconvolution operation and this makes AIF a key aspect of CBF quantification using72

DSC MRI4,9.73

74

There has been plenty of progress in recent years regarding how and where to measure75

AIF4. Although the AIF should, in principle, be measured from inside an artery (or at76

least from a voxel that contains primarily arterial contributions), but many studies in past77

often considered measuring the AIF from the region outside or from a region in the vicinity78

of an artery4. Also, from a practical point of view, due to the coarse spatial resolution of79

DSC- (the typical voxel size is 2x2x5 mm3) it is difficult to measure the signal from inside a80

small artery10. Usually in MR-PWI studies suitable AIF voxels are chosen by inspecting the81

peak shape characteristics (e.g., arrival time, height, width, etc.) in a region in and around82
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arteries. The name given to this input function is generally Arterial Input function (AIF).83

84

To improve reliability, quality, and reproducibility of the AIF selection several automatic85

and semiautomatic methods have been proposed3,10,11,12. The majority of the toolboxes pre-86

installed in MR scanners use either manual, clustering or arterial likelihood methods for AIF87

estimation. For manual AIF selection, a trained clinical operator based on his experience88

and judgement selects a small number of pixels containing region of one of the principal89

arterial vessels13. Manual location of AIF is not preferred as this reduces the procedure90

reproducibility10. Low spatial resolution of MR-PWI data also makes manual selection dif-91

ficult on contrast-MRI-PWI images3,11.92

93

Automatic methods were developed to overcome the shortcomings of the manual AIF se-94

lection procedure3,12,13. The clustering based method uses the middle cerebral artery (MCA)95

as a elliptical region of interest (ROI) and then utilizes a recursive cluster analysis to select96

the arterial voxels3. Inefficient AIF selection usually occurs in the cases where the elliptical97

ROI does not segment the MCA precisely and some of the arterial voxels are left on the98

boundary or in the vicinity of the elliptical marker.99

100

Some softwares use arterial likelihood methods so as to select the potential AIF to101

match the arterial features11. This includes minimizing the bolus arrival time, peak width102

and maximize the peak height. AIF detection algorithm searches for locations or voxels103

with signals of above-average amplitude or height along with below-average width and early104

bolus-arrival time using a cost function. Final AIF locations are selected in a region with105

the highest sum of the clustered values of cost function. Incorrect or flawed selection in this106

method arises from the weighting factors used as the penalty factor used for peak height is107

much lower than the other penalty factors used in calculation of cost function. This results108

in selection of an AIF voxel with a shallow or low peak height. Apart from these methods109

several studies use different approaches, like a local AIF extraction method was introduced110

to replace the global AIF9,14,15. Despite of the presence of multiple studies to select AIF,111

in this study we mainly focus to use to a model to select a AIF with higher amplitude and112

early time to peak.113
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To overcome the limitation of past methods, we purpose an improved convex segmentation114

model. The PWI images are usually of low contrast which makes detection of edges difficult4.115

To solve this problem we use a new idea of discrete Total Variation (TV) in a convex116

geodesic model. This TV helps in locating the boundary of arterial regions to separate117

homogeneous regions or intensity jumps16. The modified segmentation model via minimizing118

an energy can locate the arterial regions more accurately. After segmenting the arterial119

region, we use matrix analysis to find the voxel with maximum peak height within the120

contour to overcome the problem associated with shallow or low peak height AIF selection.121

Furthermore, to demonstrate better accuracy and arterial features obtained by the proposed122

model, a statistical comparison based on PWI dataset of 15 patients is made between the123

present method and the previous methods.124

II. Methods125

In the proposed method, we focus on the selective segmentation or specifying the location126

of the potential voxels which could be used as AIF in the vicinity of an artery. Initially a127

contour representing a region of interest (ROI) is drawn in the surrounding of the arterial128

location (Figure 1). For this purpose, convex based geodesic selective model is used to draw129

the contour on the middle slice of the brain axial images17. The advantage with a contour-130

based selective segmentation is exclusion of the CSF region as the contour model segments131

the ROI region based on homogeneous intensity values. After the segmentation of the ROI,132

the matrix analysis is used to find the potential voxel with maximum peak height within the133

contour (Figure 1). This ensures that the location or pixel with maximum height within the134

contour is selected as the potential AIF.135

II.A. Proposed contour based AIF Segmentation method136

The energy functional of convex geodesic selective model differs from initial segmentation137

models as it includes intensity fitting terms as well as distance penalty term which uses138

geodesic distance from the marker set rather than the Euclidean distance17,18,19. Here, we139

utilise a Total Variation function in the distance term of the model for denoising the image140

(cf.16 for more information on the Discrete TV utilised in the model). The contour model141
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involves a convex function and is to be minimized to achieve segmentation. The minimizer142

of this function specifies the criteria to segment selective objects. The minimizer of the143

function is in the form of partial differential equation. The definition of the function is -144

Let z(x, y) represent the input PWI image, defined on a image domain Ω ⊂ R2 . u145

represents the level set of initial contour . c1, c2 are average intensities of z inside and146

outside u. The functional is in the following form-147

148

149
150

151

152

F(u, c1, c2) = µ

∫

Ω

g(|∇z(x, y)|)|∇u|dΩ+153

154 ∫

Ω

[λ1(z(x, y)− c1)
2 − λ2(z(x, y)− c2)

2]udΩ + θ

∫

Ω

DM(x, y)udΩ + α

∫

Ω

νϵ(u)dΩ (1)155

156

(1)

157

158

159

θ,µ,λ1, λ2 are non negative parameters. The term g(|∇z|) is the edge detector which is160

g(s) = 1/1 + βs2 where β is tuning parameter. The last term is an exact penalty term due161

to convex formulation of the functional, where v(u)= max{0, 2|u− 1
2
| − 1}. This is done to162

achieve unconstrained minimization as this encourages the minimizer to be in range [0,1].163

We refer the reader to17,18,20 for more information on the model. Next we illustrate the164

calculation of Geodesic term DM .17.165

The geodesic distance from the marker set M is given by DM(x, y) = 0 for (x, y) ∈ M166

and DM(x, y) =
D0

M (x,y)

||D0
M ||L∞ for (x, y) ̸∈ M , where D0

M(x, y) is the solution of the following167

PDE:168

|∇D0
M(x, y)| = f(x, y), D0

M(x0, y0) = 0, (x0, y0) ∈ M. (2)169

To improve noise robustness and qualitative nature of segmentation results, we considered170

TV denoising by utilising the new definition of TV. The formulation of the discrete TV to171
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be used in the geodesic term is16 -172

TVp(x) = min{||v↕||1,2 + ||v↔||1,2 + ||v.||1,2 : L∗
↕v↕ + L∗

↔v↔ + L∗
. v. = Dx} (3)173

174

Here, v is the whole gradient field, which is the concatenation of v↕, v↔, v. vector fields175

solution to above equation. Its elements v↕(n1, n2), v↔(n1, n2), v.(n1, n2) are vectors located176

at positions (n1 +
1
2
, n2), (n1, n2 +

1
2
), (n1, n2). The proposed TV is the l1,2 norm of the177

gradient field v associated to the image x, defined on a grid three times more dense than178

the one of x16. Defining it on a three times finer grid allow this TV to detect edges in low179

contrast regions, when used in segmentation model (cf.16 for more information). The new f180

is formulated as -181

f(x, y) = ϵD + βG|∇Sp(z(x, y))|2 + νDE(x, y) (4)182

Here ∇Sp z(x, y) represents the gradient field achieved after denoising is done with the183

new purposed TV and DE is the euclidean distance. We use calculus of variation and solve184

above equation (1) with respect to c1 and c2 with u fixed ( cf.18 for more information on185

solving the equation). This leads to-186

187

c1(u) =

∫
Ω
u.z(x, y))dΩ∫

Ω
udΩ

(5)188

189

c2(u) =

∫
Ω
(1− u).z(x, y))dΩ∫

Ω
(1− u)dΩ

(6)190

191

Using calculus of variation and solving above equation with respect to u with fixed c1 and192

c2 leads to Euler’s equation18,20
193

194

µ∇(g(|∇z(x, y)|) ∇u

|∇u|ϵ2
)− [λ1(z(x, y)−c1)

2−λ2(z(x, y)−c2)
2]−θDG(x, y)−αν

′
ϵ(u) = 0 (7)195

We also have Neumann boundary conditions δu
δn

= 0 on δΩ where n is the outward unit nor-196

mal vector. The Numerical solution of the above equation decides the contour that segments197

the Arterial region (cf.17,21 for information on the numerical solution and the scheme used).198

199
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II.B. Purposed Matrix analysis to find the potential AIF within200

the contour201

Matrix analysis was utilized to select the potential AIF voxels out of all the voxels in the202

contour. The steps used to select appropriate voxels inside the segmented region were as203

following-204

205

1) The coordinates (i, j) of segmented region inside contour represented by u were formed206

into a array A.207

A =
(
(i1, j1) (i2 j2) ...(in, jn)

)T
(8)208

209

2) Matrix C had the information of concentration of contrast agent at each (x, y, z, t) of the210

brain images, where x, y were location of coordinates in brain image, z was the slice selected211

for AIF extraction and t represented time points.212

C =
(
x, y, z, t

)
(9)213

214

3) For the the n segmented (i,j) coordinates in the A array, we form following 1 × n row215

vector C1,C2,..Ck at different time points k.216

Ck =
(
Conc(i1, j1, z, k) Conc(i2, j2, z, k) ..............Conc(in, jn, z, k)

)
(10)217

This is done to form a final k × n concentration matrix F which represents information of218

concentration of contrast agent in all the selected voxels inside contour at different time219

point in a row wise manner.220

F =
(
C1 C2 ..Ck

)T
(11)221

4) Maximum of F matrix will be the highest amplitude of concentration curves among222

all time points and all the voxels. This purposed analysis is used to trace back the spatial223

location of the best potential AIF voxels. Finally, global AIF for perfusion analysis is repre-224

sented by the contrast agent concentration of the selected AIF voxel.225

226

Last edited Date :II.B. Purposed Matrix analysis to find the potential AIF within the contour
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II.C. Perfusion Data acquisition227

During the diagnostic MR procedure, fifteen ischemic stroke patients underwent perfusion228

imaging. A clinical 1.5 T MR scanner at the Tri-service General Hospital, Taipei (Signa;229

General Electric) was used to acquire contrast-enhanced T2*-weighted images. Single-shot230

gradient-echo EPI sequence was utilised (TR : 1800 ms, TE : 40 ms). During Perfusion231

imaging, bolus injection (Magnevist; gadopentetate dimeglumine, Bayer Health Care phar-232

maceuticals Inc.) was injected with the speed of 5 ml/sec and quantity was 20 ml. After233

the contrast agent passes through the tissues, the decrease in signal intensity depends on234

the contrast agent concentration, which is considered as a proxy for perfusion. The acquired235

time series data are then postprocessed to obtain perfusion maps with different parameters.236

The additional benefit of using this type of dataset is to accentuate local magnetic homo-237

geneity effects to aid in the detection of hemorrhage, core and better segmentation22. This238

study was granted IRB approval from the Tri-Service General Hospital, Taipei, Taiwan.239

240

II.D. Statistical analysis and Perfusion parameter estimation241

Statistical analysis242

AIF location on the brain axial slices was decided by utilising different methods: clustering243

method, arterial likelihood method and contour based AIF segmentation method. Due to244

the different patient conditions, physical condition, severity of the disease, the contrast injec-245

tion time, and due to variable time to start the scan, statistical comparisons are only made246

by using the differences of the curve parameters10. These curve parameters are amplitude247

(peak), the center position of the peak of concentration curve or time to peak, the differ-248

ences are represented by ∆ amplitude (a.u), ∆ center (sec). One-way ANOVA statistical249

test was used to establish whether there is a significant difference in terms of amplitude of250

AIF selected by the different three methods.251

252

Perfusion Parameter estimation253

Perfusion DSC model was used to compute the Perfusion parameters (CBF and Tmax)254

with the global AIFs deduced from different methods: clustering method, arterial likelihood255

Last edited Date : II.C. Perfusion Data acquisition
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method and contour based AIF segmentation method. Perfusion analysis was done once256

global AIF was decided by the AIF selection methods. On the lines on past perfusion257

studies in ischemic stroke, perfusion analysis was done by deconvolution of the tracer kinetic258

equation8,23,24,25.259

Ct = Ca ⊗R(t) (12)260

All the image analysis were implemented in MATLAB. (Mathworks, Natick, MA). Here261

Ct(t) denotes the tissue concentration curve at each pixel, Ca(t) is the AIF either using one of262

the three AIF selection methods described above, symbol ⊗ represents the convolution oper-263

ator and R(t) represents the residue impulse response function. Deconvolution of Eq. [12] to264

estimate CBF, Tmax was done using the singular value decomposition method (SVD)8,26,27.265

Deconvolution of Eq. [12] for known values of Ca(t) , Ct(t) at each pixel of axial slices leads266

to evaluation of the residue function R(t). CBF is measured as the maximum of R(t)11.267

Tmax is the time t for which R(t) attains maximum value11,25. After estimating CBF and268

Tmax for all brain tissues, CBF and Tmax are represented visually on axial slices. Tissue269

at risk was identified by thresholding the Tmax values by Tmax >6 seconds.270

271

III. Results272

III.A. Statistical analysis of Curve Characteristics273

Subjectively, the concentration curve of AIF extracted by contour based AIF segmentation274

method confirmed to the arterial characteristics, such as large amplitude, small width, fast275

attenuation, and gamma-like shape (Figure 2). In terms of AIF location, it is visible that the276

location selected by contour based AIF segmentation method is quite close or in proximity277

of the AIF location selected by arterial likelihood method (Figure 2). In terms of curve278

characterstics comparison, contour based AIF segmentation method selects AIF curve with279

larger amplitude or higher peak position and with fast attenuation represented by early time280

to peak or positive ∆ center (Figure 2, Figure 4). We also calculated the similarity of the281

AIF concentration curves. The similarity was calculated by Correlation Coefficient, which282

indicates that the curves are positively correlated (Table 1, Table 2, Table 3).283

284
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The AIF curve characterstics of all other subjects are represented in the form of sta-285

tistical tables (Table 1, Table 2). We also show the Group mean differences between the286

contour based peak height AIF method and the previous AIF selection methods to get a287

group overview. The group mean differences indicate that overall the AIF selected by con-288

tour based AIF segmentation method has better arterial features of higher peak position289

(Figure 5(a)), and fast attenuation as compared to the other AIF selection methods (Table290

3). A one-way ANOVA (Figure 4) revealed that there was a statistically significant difference291

in AIF amplitude (peak) between the three AIF selection methods (F(2, 42) = 5.66, p =292

.0067).293

294

The clustering method and arterial likelihood methods have the same peak for patients 12-15295

(Tables 1 and 2). The contour-based method uses a matrix based approach to ensure that296

out of all the potential AIF voxels in the marked contour the selected AIF voxel has the297

maximum peak concentration. In subjects 12-15 the other two methods miss out AIF with298

maximum peak which is a feature of utilizing the matrix analysis post selection of ROI for299

AIF by contour-based model.300

301

In figure 2 we have shown the cases where the contour method selects AIF with better302

arterial features i.e., high peak and early time to peak than the latter two methods. In303

figure 3, both the methods select a similar AIF voxel and this represents that in some cases304

both arterial likelihood method and contour-based method may yield the same result for305

AIF i.e. in this case arterial likelihood method may not miss out the peak AIF voxel. In306

contrast, for all other subjects both the AIF locations are quite close but the arterial like-307

lihood method misses out the location with highest peak (Figure 2). This could be due to308

the varying physical conditions, severity of the disease, noise associated with signals and309

the variability of contrast injection time among different patients. Although we processed310

all the samples, considering the number of samples, we only showed selected AIF location311

and corresponding concentration curve of three of them. For a patient, the contour method312

yields an AIF curve after 14 s (seconds). Time taken by the clustering method and arterial313

likelihood method for the AIF estimation was 9 s and 13 s. (Intel I5/Ram :8gb/ MATLAB314

2020(a)).315

316
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III.B. Perfusion maps317

We derived the Perfusion parameters (CBF, Tmax) corresponding to the AIF given by all318

three methods in each pixel in each sample. For comparison we used a similar SVD decon-319

volution method with the optimal standard threshold26. The perfusion maps were accessed320

by an experienced clinical from veterans hospital. Based on the feedback investigators con-321

cluded that perfusion parameter maps could be utilised for diagnosis.322

323

The distribution of CBF and Tmax maps based on the AIF selected by all three meth-324

ods is basically the same, however ischemic regions or tissues at risk can be clearly located325

through the perfusion maps given by contour based segmentation method (Figure 5, Figure326

6). The mean and standard deviation of perfusion parameters (CBF and Tmax) over a327

cohort of all patients are shown in Table 4. The other two AIF selection methods estimate328

lower Tmax and higher CBF values, which misleads us in terms of severity of Ischemia and329

the size of tissue at risk. The mean CBF values obtained by our method are in general330

lower than those obtained by the other two methods (Figure 5, Table 4). The mean Tmax331

values obtained by Contour based AIF selection method are higher than those obtained by332

the other two methods (Table 4). Higher Tmax and lower CBF values reported are due to333

the early time to peak and the larger peak value of the AIF curve.334

335

With the help of a sample example of a stroke patient we illustrate that tissue at risk336

was clearly located with improved visual specificity (Figure 6). The clustering based AIF337

method failed to estimate the tissue at risk in this case (Figure 6). Contour based method338

estimated the size and volume of tissue at risk similar to the size estimated by a widely used339

commercial software considered as golden standard for perfusion processing outcome.340

341
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IV. Discussion342

IV.A. AIF and contour based models343

Contour based segmentation models have been widely used for object segmentation in images344

with noise and in homogeneous intensities17,28,29. They are usually based on a functional and345

the minimizer of this functional decides the accuracy of segmentation18,20,29. However,up to346

date this has not yet been applied for AIF estimation in PWI studies. Experimental and347

comparison results suggest that the discussed method performs better in terms of AIF esti-348

mation as compared to earlier methods. The present method has been proved to be robust349

to detect voxels with large amplitudes, small width, fast attenuation, and gamma-like shape350

as potential AIF. The utilization of discrete TV allows the contour model to deal with noisy351

data sets as well as with in homogeneous intensities.352

353

Recent studies utilized a deep convolutional neural network (CNN) to automatically iden-354

tify AIFs in computed tomography perfusion (CTP) and perfusion-weighted MRI (PWI)355

datasets10,30. These studies concluded that CNN network models could be potentially viable356

as the cross-correlation values of manual AIFs with CNN AIFs were observed higher than357

the AIF decided by the traditional methods30. The CNN-derived AIFs for the PWI data-sets358

showed marginally greater peak heights and early time to peak. CNN models require the359

choice of ground truth as an input and this ground truth is mainly a manual selected AIF.360

Here, to provide ground truth user has to inspect each voxel which is inside the Arterial361

ROI. This might be time consuming and there are high chances of missing a voxel which362

could represent a AIF with better arterial features. Comparatively, the purposed method363

is selective and just requires a single click to set a marker point or to localize the Arterial364

region as region of interest (ROI) and find a suitable AIF voxel.365

IV.B. Tissue at risk and limitations366

Tissue at risk or Ischemic penumbra denotes the stroke region that is at risk of progressing367

to infarction but is still salvageable11,31. Ischemic penumbra is usually located around an368

infarct core which represents the infarcted or blocked necrotic tissue32. Cerebral perfusion369
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in terms of parameters is the key information that helps to locate the penumbra around the370

infract core10,32,33. AIF plays a central role in cerebral perfusion estimation. PWI studies371

proved that AIF measured with a lower amplitude, large width and slow attenuation could372

produce a four times blood flow overestimation along with inaccurate ischemic penumbra34.373

We could observe that (Figure 6) difference in AIF selection makes a substantial bias in the374

estimation of ischemic penumbra.375

376

With the help of an example (Figure 6) we demonstrate that the accuracy and visual377

reliability to identify tissue at risk with our model is promising. Among the three methods,378

contour-based AIF method has the closest prediction of the tissue at risk in comparison379

to a commercial software. Detection of ischemic infraction is important because of narrow380

window of therapeutic efficacy. Inclusion of this fast and efficient AIF selection algorithm381

presented in this study in clinical settings may optimise the delivery of stroke care. The382

proposed method could potentially be considered as part of the calculation for perfusion383

imaging in general.384

385

This study has several limitations. In this study, we used MR-PWI data set of 15386

patients. In clinical settings, collecting the data-sets for a broader patient cohort is chal-387

lenging due to the restricted access to urgent MR-PWI and the contraindications (e.g.,388

uncharacterized metallic foreign bodies) related to MR-PWI acquisition35. Recent studies389

have demonstrated that Computed Tomography perfusion (CTP) can provide information390

related to treatment decision making at a level similar to MR-PWI35. Due to the greater391

accessibility of CTP, further CTP studies on a large data set with variability of onset of392

stroke are required to demonstrate the consistency of purposed AIF selection method. Also,393

it would be worth to see if the proposed model can deal with the noise and in-homogeneity394

in the CT perfusion images.395

396
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V. Conclusion397

This study proposed a contour-based segmentation model for estimating AIF curves in brain398

perfusion images. This segmentation framework worked on perfusion images at levels supe-399

rior to the current clinical state of the art. The model estimated AIF curves with higher400

amplitude and early time to peak along with a good performance in identifying the tissue401

at risk. Inclusion of this improved AIF selection methodology discussed in the study will402

facilitate prediction and localization of the ischemic penumbra ,which in turn may optimise403

the delivery of stroke care and surgical pharmaceutical treatments.404
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Figure 1: Model Pipeline used to estimate perfusion parameters after extracting AIF by a
contour based geodesic model.
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Figure 2: AIF voxels selected by the contour based AIF (green), arterial likelihood selection
method (yellow) and clustering method (red) (left column) (b) Zoomed in images of contour
(dark red) used for AIF selection demonstrates that the voxels selected for contour based AIF
(green), arterial likelihood selection method (yellow) were very close to each other. (central
column) (c) Concentration curves of the selected AIF voxels (Right column). contour based
AIF segmentation method (green curve) selects AIF curve with larger amplitude or higher
peak position, and fast attenuation represented by early time to peak or positive ∆ center
than the latter two methods. Each row demonstrates different patient
.
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Figure 3: Similar AIF voxel (Green) selected by the contour based AIF and arterial likelihood
selection method (left column) (b) Zoomed in images of contour (dark red) used for AIF
selection demonstrates similar voxel selected for contour based AIF (green) and arterial
likelihood selection method (central column). (c) AIF Concentration curves of the selected
AIF voxel (right column).
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Figure 4: Comparison of AIF amplitude for the AIF selected by the three methods in
the patient cohort. A one-way ANOVA revealed that there was a statistically significant
difference in AIF amplitude (peak) between the three AIF selection methods ( F value =
5.66 , P value = .0067).
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Figure 5: CBF maps estimated by AIF from (A) clustering (B) arterial likelihood method
and (C) contour based AIF from left to right. CBF values obtained from the contour based
AIF method are lower than the latter two methods due to the larger peak and lower time
to peak of the AIF. This allows to locate the core regions with decreased blood flow more
precisely and accurately.
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Figure 6: Tissue at risk (Red) maps estimated by AIF from (A) clustering (B) arterial
likelihood method and (C) contour based AIF from left to right. (D) Tissue at risk identified
by the commercial software. Tissue at risk is identified by Tmax> 6 sec and is overlaid on
brain masks. Among the three methods, contour based AIF method has the closest prediction
of Tissue at risk (168 mL) with the tissue at risk identified by the commercial software (175
mL) considered as golden standard for perfusion processing outcome.
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Table 1: The difference of curve characteristics between the arterial liklihood method and
contour based peak height AIF selection method.
Sample amplitude (a.u) center (s) Correlation

Contour based AIF Arterial likelihood ∆amplitude (a.u) Arterial likelihood Contour based AIF ∆center (s)
1 29 21 8 41.4 39.6 1.8 0.8
2 41.4 41.4 0 17.7 17.7 0 1
3 90.8 27 63.8 27 27 0 0.8
4 46 20 26 43.2 41.4 1.8 0.6
5 80.6 64.3 16.3 33.9 37.5 -3.6 0.8
6 12 4.3 7.7 50.4 45 5.4 0.7
7 36 19.6 16.4 48.6 46.8 1.8 0.9
8 59.7 13.2 46.5 43.2 45 -1.8 0.7
9 39.5 33.7 5.8 45 43.2 1.8 0.9
10 50.1 12.2 37.9 43.2 41.4 1.8 0.9
11 53.8 33.7 20.1 41.4 41.4 0 0.9
12 69.7 64.1 5.6 39.6 37.8 1.8 0.8
13 42.5 16.1 26.4 34.2 34.2 0 0.9
14 109.5 42.8 66.7 36 37.8 -1.8 0.7
15 56.5 10.8 45.7 41.4 36 5.4 0.8

Last edited Date :



A
cc
ep
te
d
A
rt
ic
le

This article is protected by copyright. All rights reserved.

Running title here: Printed January 26, 2022 page 25

Table 2: The difference of curve characteristics between the clustering method and contour
based peak height AIF selection method.
Sample amplitude (a.u) center (s) Correlation

Contour based AIF Clustering method ∆ amplitude (a.u) Clustering method Contour based AIF ∆center (s)
1 29 3.4 25.6 41.4 39.6 1.8 0.8
2 41.4 29.8 11.6 19.5 17.7 1.8 0.8
3 90.8 45.7 45.1 30.6 27 3.6 0.2
4 46 36 10 41.4 41.4 0 0.8
5 80.6 65.2 15.4 37.8 37.8 0 0.8
6 12 60.1 -48.1 50.4 45 5.4 0.7
7 36 61.7 -25.7 50.4 46.8 3.6 0.9
8 59.7 48.9 10.8 39.6 45 -5.4 0.7
9 39.5 10.2 29.3 43.2 43.2 0 0.9
10 50.11 36 14.11 39.6 41.4 -1.8 0.9
11 53.8 46.7 7.1 39.6 41.4 -1.8 0.9
12 69.7 64.1 5.6 41.4 37.8 3.6 0.8
13 42.5 16.1 26.4 36 34.2 1.8 0.8
14 109.5 42.8 66.7 37.8 37.8 0 0.7
15 56.5 10.8 45.7 39.6 36 3.6 0.8
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Table 3: Group mean difference between the Contour based peak height AIF method and
the previous AIF selection methods.

Method amplitude (a.u) center (s) Correlation coefficient

Clustering method 16.7 1.08 0.7
Arterial likelihood method 26.1 0.9 0.8
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Table 4: Perfusion parameters ( Tmax and CBF ) for different AIF selection methods.

Method Tmax (s) CBF (a.u)

Contour Based AIF Mean 1.87 81.9
SD 2.09 64.7

Arterial Likelihood method Mean 1.6 178.3
SD 3.01 139.9

Clustering method Mean 1.13 296.5
SD 2.8 229.6

515
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Figure legends516

517

Figure 1 : Model Pipeline used to estimate perfusion parameters after extracting AIF by a518

contour based geodesic model.519

520

Figure 2: AIF voxels selected by the contour based AIF (green), arterial likelihood selection521

method (yellow) and clustering method (red) (left column) (b) Zoomed in images of contour522

(dark red) used for AIF selection demonstrates that the voxels selected for contour based AIF523

(green), arterial likelihood selection method (yellow) were very close to each other. (central524

column) (c) Concentration curves of the selected AIF voxels (Right column). contour based525

AIF segmentation method (green curve) selects AIF curve with larger amplitude or higher526

peak position, and fast attenuation represented by early time to peak or positive ∆ center527

than the latter two methods. Each row demonstrates different patient528

529

Figure 3: Similar AIF voxel (Green) selected by the contour based AIF and arterial likeli-530

hood selection method (left column) (b) Zoomed in images of contour (dark red) used for531

AIF selection demonstrates similar voxel selected for contour based AIF (green) and arterial532

likelihood selection method (central column). (c) AIF Concentration curves of the selected533

AIF voxel (right column).534

535

Figure 4: Comparison of AIF amplitude for the AIF selected by the three methods in the536

patient cohort. A one-way ANOVA revealed that there was a statistically significant differ-537

ence in AIF amplitude (peak) between the three AIF selection methods ( F value = 5.66 ,538

P value = .0067).539

540

Figure 5: CBF maps estimated by AIF from (A) clustering (B) arterial likelihood method541

and (C) contour based AIF from left to right. CBF values obtained from the contour based542

AIF method are lower than the latter two methods due to the larger peak and lower time543

to peak of the AIF. This allows to locate the core regions with decreased blood flow more544
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precisely and accurately.545

546

Figure 6: Tissue at risk (Red) maps estimated by AIF from (A) clustering (B) arterial likeli-547

hood method and (C) contour based AIF from left to right. (D) Tissue at risk identified by548

the commercial software. Tissue at risk is identified by Tmax> 6 sec and is overlaid on brain549

masks. Among the three methods, contour based AIF method has the closest prediction of550

Tissue at risk (168 mL) with the tissue at risk identified by the commercial software (175551

mL) considered as golden standard for perfusion processing outcome.552
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