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Abstract

Euler’s elastica digital inpainting model of Chan, Kang and Shen introduced in [SIAM
J. Appl. Math., 63(2):564–592, 2002] is well known for its attractive features of recon-
necting contours along large distances and reconstructing the curvature of missing parts
of objects and its ability to denoise outside the inpainting region. Since the underlying
Euler Lagrange partial differential equation (PDE) is of fourth order and highly nonlin-
ear, unfortunately, the usual numerical algorithm to find the solution is a very slow time
marching method (due to stability restriction). In this paper we address this fast solu-
tion issue by progressively proposing first a new unconditionally stable time marching
method and then a novel fixed point method. The latter turns out to be two orders of
magnitude faster than the time marching method. Moreover, taking this new fixed point
method as a smoother, we develop an even faster nonlinear multigrid method for opti-
mal performance. Numerical results will be presented to illustrate the improved results
obtained.

Keywords: Image inpainting, variational models, curvature, elastica energy, 4th order
PDE, regularization, multilevel methods.
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1 Introduction

Image inpainting offers a very useful technique to restore the missing or damaged parts
of an image using available features present in the same image. This technique is basically
image interpolation in a nonlinear manner [6,12,31,32,34]. Although its initial purpose was
to restore old photographs and disocclusion, nowadays, it has found wide applications in
video editing [5], medical imaging [27], super-resolution [16], error concealment in digital
communication [18], and satellite image reconstruction [7] just to mention a few examples.

The first author thanks for the support to this work by a CONACYT (El Consejo Nacional de Ciencia y
Tecnologı́a) scholarship from México.
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In the last few years, a number of PDE-based variational inpainting models (similar
to [6]) have appeared. These include the total variation (TV) model [16], the curvature-
driven diffusion model [15], Euler’s elastica model [14], the Cahn-Hilliard equation based
model [7], the complex Ginzburg-Landau equation based model [26], and the Mumford-
Shah and Mumford-Shah-Euler models [22].

Of the above mentioned models, only two models respectively in [14] and [22] can
do the following at the same time: reconnection of level curves along large distances,
curvature reconstruction and noise elimination. The model from [7] is limited to high
contrast or binary images while the other models [15, 16, 26] do not recover the curvature
of the objects. The associated PDE of Euler’s elastica model [14] is of fourth order and
highly non-linear and therefore its efficient numerical solution is non-trivial. In this paper,
we focus on developing fast numerical algorithms for solving this Euler’s elastica model.

The paper is organized as follows. Section 2 introduces the variational inpainting for-
mulation using the TV model. Section 3 reviews Euler’s elastica model and its discretiza-
tion. Section 4 reviews the current numerical methods for its solution. Section 5 introduces
our novel numerical methods for Euler’s elastica model: two unconditionally stable time
marching schemes and a fixed point scheme. Section 6 studies the smoothing property of
this fixed point method using a local Fourier analysis before we introduce the framework
of a nonlinear multigrid method in Section 7. Section 8 shows through experimental results
the excellent efficiency of the multigrid method, and finally Section 9 illustrates the flex-
ibility and easy adaptability of our methods to solve the similar models [2, 3], before our
conclusions in Section 10.

2 Inpainting formulation and TV model

Assume that we are given a possibly noisy image z = z(x, y) defined on a domain
Ω ⊆ R2 and there exists a subset D ⊂ Ω (even disconnected) where the pixel intensity
values of z are missing or damaged. The purpose of inpainting is to reconstruct those
intensity values of z in D from the available information on Ω\D; see Figure 2.1. The
image inpainting problem has been studied by many researchers; see [17] and the references
therein for a historical account. Most models allow z to have some unknown Gaussian noise
η = η(x, y) present in Ω\D such that z = u + η, where u is the image to be restored (or
found).

Within the variational formulation, all models achieve the objective of inpainting by
minimizing some suitable energy functional. For instance, the TV model minimizes

∫

Ω

|∇u| dxdy +
λ

2

∫

Ω\D
(u− z)2 dxdy

on u, which leads to solving a second order nonlinear PDE [16]. This model has the
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Figure 2.1: Illustration of a typical inpainting problem.

unfortunate properties of creating artificial corners and not reconnecting parts of broken
objects along large distances [14, 16]. This is illustrated in Figures 3.2 and 3.3.

3 Euler’s elastica inpainting model and its discretization

Euler’s elastica model by Chan, Kang, and Shen [14] reviewed here is a better varia-
tional model than the above TV model as it offers us the capability of inpainting delicate
fine features by respecting curvature. We shall refer to this model from now on as the
elastica model for simplicity.

3.1 The elastica model

The elastica model [14] minimizing the Euler elastica energy is the following

min
u

{
J(u) =

∫

Ω

(a + b |κ|p) |∇u| dxdy +
λ

2

∫

Ω\D
(u− z)2 dxdy

}
(3.1)

where a and b are arbitrary positive constants, λ > 0 is a penalty parameter, p = 2 is usually
chosen, u = u(x, y) is the true image to be restored and κ = κ(x, y) ≡ ∇ · ∇u

|∇u| is the
curvature. The virtue of (3.1) is that the regularization using the Euler elastica energy [29]
penalizes the integral of the square of the curvature along edges instead of only penalizing
the length of edges as the TV model (if taking b = 0) does [9,17]. Consequently the model
can reconnect contours along large distances and recover the curvature of objects at the
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(a) (b) (c) (d)

Figure 3.2: The circle problem. (a) A black circle occluded by a noisy square. (b) The
mask of the inpainting domain. (c) The TV inpainting result (d) Euler’s Elastica inpainting
result.

(a) (b) (c) (d)

Figure 3.3: The broken bars problem. (a) Two broken bars with different sizes for the
occluding noisy squares. (b) The mask of the inpainting domain. (c) The TV inpainting
result (d) Euler’s Elastica inpainting result.

same time. The associated Euler-Lagrange (EL) equation is given [14] by

∇ ·
[(

a + bκ2
) ∇u

|∇u| −
2b

|∇u|3∇
⊥u∇(κ|∇u|)∇⊥u

]
+ λE(z − u) = 0 in Ω, (3.2)

with
∂u

∂~n
= 0 and

∂((a + bκ2)|∇u|)
∂~n

= 0 on ∂Ω, (3.3)

λE =

{
λ > 0, (x, y) ∈ Ω\D,

0, (x, y) ∈ D,

where ~n is the unit outward normal on ∂Ω, ∇u = (ux, uy) and ∇⊥u = (−uy, ux) are the
normal and tangential vectors to the level sets of u respectively.

3.2 Discretization by finite differences

To discretizes (3.2) along with (3.3), we use the finite difference method as in [14].
For brevity, we define a vector field V =

〈
V 1, V 2

〉
by V =

(
a + bκ2

) ∇u
|∇u| −
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Figure 3.4: On the left side an x-half-point and on the right side a y-half-point.

2b
|∇u|3∇⊥u∇(κ|∇u|)∇⊥u, i.e.

V 1 = (a + bκ2)
∂xu

|∇u| +
2b

|∇u|3 [−∂yu ∂x(κ|∇u|) + ∂xu ∂y(κ|∇u|)] ∂yu,

V 2 = (a + bκ2)
∂yu

|∇u| −
2b

|∇u|3 [−∂yu ∂x(κ|∇u|) + ∂xu ∂y(κ|∇u|)] ∂xu,

where ∂ω denotes the derivative with respect to ω. Then with the above notation and after
defining α = 1/λ and χ as the indicator function of Ω\D, (3.2) becomes

α∇ · V + χ(z − u) = 0.

Next to approximate ∇ · V = ∂
∂xV 1 + ∂

∂y V 2 at pixel (i, j), we use central differences
between ghost half-points; see Figure 3.4. That is

∇ · Vi,j =

(
V 1

i+ 1
2 ,j
− V 1

i− 1
2 ,j

)

h
+

(
V 2

i,j+ 1
2
− V 2

i,j− 1
2

)

h
,

where h is the spatial step-size that for convenience was chosen to be the same in both
Cartesian directions. The next step is to approximate all the involved quantities at half-
points. First, to approximate V 1

i+ 1
2 ,j

and V 1
i− 1

2 ,j
, we do the computations as follows :

Curvature terms. These are approximated by the min-mod of two adjacent whole pixels.

κi+ 1
2 ,j = min-mod(κi+1,j , κi,j) and κi− 1

2 ,j = min-mod(κi,j , κi−1,j)

where min-mod (α, β) =
(

sgn α+sgn β
2

)
min(|α|, |β|).

Partial Derivatives in x. By the central differencing of two adjacent whole pixels

∂x(ui+ 1
2 ,j) = 1

h (ui+1,j − ui,j),
∂x(ui− 1

2 ,j) = 1
h (ui,j − ui−1,j),

∂x(κ|∇u|)i+ 1
2 ,j = 1

h (κi+1,j |∇u|i+1,j − κi,j |∇u|i,j) and
∂x(κ|∇u|)i− 1

2 ,j = 1
h (κi,j |∇u|i,j − κi−1,j |∇u|i−1,j) .

Here |∇u|i,j = 1
2h

√
(ui+1,j − ui−1,j)2 + (ui,j+1 − ui,j−1)2 + 4h2ε

where a small regularization parameter ε > 0 is used to avoid division by zero when
|∇u|i,j is in the denominator.
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Partial Derivatives in y. By the min-mod of ∂y’s at two adjacent whole points

∂y(ui+ 1
2 ,j) = min-mod

(
1
2h (ui+1,j+1 − ui+1,j−1), 1

2h (ui,j+1 − ui,j−1)
)
,

∂y(ui− 1
2 ,j) = min-mod

(
1
2h (ui,j+1 − ui,j−1), 1

2h (ui−1,j+1 − ui−1,j−1)
)
,

∂y(κ|∇u|)i+ 1
2 ,j = min-mod (α, β) with

α = 1
2h (κi+1,j+1|∇u|i+1,j+1 − κi+1,j−1|∇u|i+1,j−1) and

β = 1
2h (κi,j+1|∇u|i,j+1 − κi,j−1|∇u|i,j−1) .

∂y(κ|∇u|)i− 1
2 ,j = min-mod (α, β) with

α = 1
2 (κi,j+1|∇u|i,j+1 − κi,j−1|∇u|i,j−1) and

β = 1
2 (κi−1,j+1|∇u|i−1,j+1 − κi−1,j−1|∇u|i−1,j−1) .

Here |∇u| is approximated using

|∇u|i+ 1
2 ,j =

√
(∂x(ui+ 1

2 ,j))2 + (∂y(ui,j+ 1
2
))2 + ε and

|∇u|i− 1
2 ,j =

√
(∂x(ui− 1

2 ,j))2 + (∂y(ui,j− 1
2
))2 + ε.

Then by a similar procedure we can obtain approximations for V 2
i,j+ 1

2
and V 2

i,j− 1
2

.
Finally, Neumann’s boundary condition on ∂Ω is treated as

ui,0 = ui,1, ui,n+1 = ui,n, u0,j = u1,j , um+1,j = um,j .

We remark that the inpainting domain D is mathematically understood as an open set, i.e.,
not including its boundary and therefore located away from ∂Ω.

4 Review of numerical methods for the solution of the elastica model

Whilst the quality of reconstruction of the elastica model is out of discussion, its ef-
ficient numerical realization is still an open problem. In this section, we review the only
two methods proposed so far for its solution: a time marching scheme from [14] and a
texture-synthesis-based algorithm from [33].

4.1 An accelerated time marching method

An easy method of solving (3.2) is by solving its associated parabolic equation to
steady-state

∂u

∂t
= r(u), r(u) = α∇ · V + χ(z − u), (4.1)

with initial condition u(x, y, 0) = z(x, y) and an explicit Euler method for the time deriva-
tive i.e. uk+1

i,j = uk
i,j −∆t r(uk

i,j) with k = 0, 1, . . . , and ∆t the time-step. This numerical
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scheme, accurate to O(∆t), is expected to have a Courant-Friedrichs-Lewy (CFL) stability
condition ∆t ∼ O(h4), see [39], for fourth order equations such as (3.2). In fact, for (3.2)
due to its high nonlinearity, we have to use much smaller time-steps than h4.

The idea of how to speed up a time marching scheme from [30] may be applied here by
multiplying r(u) by |∇u| with the purpose of reducing stiffness [14] i.e.

∂u

∂t
= |∇u|r(u), (4.2)

which is further solved by an explicit Euler method. We will refer to this method as the
accelerated time marching (ATM) method. Although (4.2) is better than (4.1), still a huge
number of iterations is required to converge up to a prescribed accuracy. Hence, this method
is not appropriate for large images. As an example, for the circle problem of Figure 3.2, the
maximum stable time-step we were able to use was ∆t = 10−5 (using ε = 10−2, λ = 100,
a = 1, b = 20) for which convergence was obtained in 1.4× 106 iterations and 20.7 hours
of CPU-time for an image sized 32 × 32 pixels only. Here the inpainting domain D is a
block of 12× 12 pixels, initialized with random noise.

4.2 Texture-synthesis-based algorithm

The second method we review is an algorithm which approximates the solution of the
elastica model by turning the underlying EL equation into a constrained combinatorial
optimization problem [33]. In [33], the proposed algorithm is based on the assumption
that the intensity values of missing pixels in D are likely to exist in the known region of the
image Ω\D and therefore some of these known values can be used to fill in a missing pixel.
Similar to texture synthesis methods, the algorithm uses confidence and priority maps and
proceeds from the boundary of the inpainting domain inward by filling in the missing pixels
with the candidate that minimizes the elastica energy of a local neighborhood of the missing
pixel. This process carries on until a steady-state solution is reached. We refer the interested
reader to Ni’s thesis [33] for a detailed explanation of this method.

In [33], it was reported that this algorithm is two orders of magnitude faster than the
ATM scheme. Nevertheless, we see two disadvantages of this algorithm: 1) it is not robust
to noisy levels; 2) since the obtained local solution is only a rough approximation to the
real global solution of the elastica energy, it is likely to fail to deliver a good reconstruction
for large D.

5 New numerical methods for the elastica model

We now proceed to present three unilevel, new and fast numerical schemes for the
solution of (3.2). They are two unconditionally stable time marching (USTM) schemes and
a fixed point method. USTM schemes for high order inpainting have already been tested for
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the Cahn-Hilliard model [7] and very recently extended to other high order models in the
excellent work of Schönlieb and Bertozzi [37] where a rigorous mathematical analysis of
this technique is carried out. A given discrete time stepping algorithm is said to be gradient
stable if the free energy E(u) of the system is nonincreasing i.e. E(uk+1) ≤ E(uk) for
any k. Therefore unconditionally gradient stable algorithms are those for which gradient
stability holds for any size time step ∆t .

5.1 USTM schemes

USTM schemes are designed to solve gradient systems of the form

∂u

∂t
= −∇E(u), u(0) = u0

where u : R+ → Rp is in class C1, E(u) : Rp → R is in class C2, ∇E(u) is the gradient
of E(u) and the energy functional E(u) satisfies the following conditions:





E(u) > 0 ∀ u ∈ Rp

E(u) →∞ as ‖u‖ → ∞
〈H(u)u, u〉 ≥ µ ∀ u ∈ Rp

(5.1)

where ‖u‖ =
√
〈u, u〉 is the usual norm in Rp defined by the inner product 〈·, ·〉, H(u) is

the Hessian matrix of E(u) and µ ∈ R. We note that the numerical approximation of the
elastica energy J(u) satisfies (5.1) when using |∇u|ε =

√
|∇u|2 + ε.

The Eyre’s technique [23, 24] called convexity splitting (CS) consists of first splitting
the above given energy E(u) into E1(u) − E2(u) where both E1(u), E2(u) are strictly
convex and second evolving the gradient flow for the EL equation using a semi-implicit
time stepping scheme in which the convex part of the energy is implicit and the concave
part explicit. In simple words, the equation

∂u

∂t
= −∇E(u) = −∇E1(u) +∇E2(u), u(0) = u0

is solved in a semi-implicit way

uk+1 − uk

∆t
= −∇E1(uk+1) +∇E2(uk).

Under suitable conditions, this CS scheme leads to an unconditionally stable time-
discretization scheme, allowing for arbitrarily large time steps, as previously applied in [7]
for a different inpainting model based on the Cahn-Hilliard equation. Of course finding
a suitable decomposition of the energy E(u) is the essential part of the CS technique and
usually requires a deep understanding of the energy under consideration.
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5.1.1 USTM1

The first USTM scheme we present is a straightforward application of the Eyre’s tech-
nique. Our contribution here is a working splitting of (3.1) leading to a USTM scheme.

The elastica energy (3.1) can be naturally divided (depending upon the norm) in two
parts as J(u) = J1(u) + J2(u) with

J1(u) =
∫

Ω

(a + bκ2)|∇u| dxdy and J2(u) =
λ

2

∫

Ω\D
(u− z)2 dxdy.

We note that J1(u) yields the gradient flow

〈∂u

∂t
, v〉TV = −〈∇J1(u), v〉TV ≡ − ∂

∂t
J1(u + tv) |t=0

where − ∂
∂tJ1(u + tv) |t=0= −∇ ·

((
a + bκ2

) ∇u
|∇u| − 2b

|∇u|3∇⊥u∇(κ|∇u|)∇⊥u
)

and
〈·, ·〉TV denotes the inner product in the total variation space of functions. Similarly using
the L2 norm in J2(u) yields the gradient flow

〈∂u

∂t
, v〉L2 = −〈∇J2(u), v〉L2 ≡ − ∂

∂t
J2(u + tv) |t=0

where − ∂
∂tJ2(u + tv) |t=0= −λ(u− z). However J(u) by itself is not strictly a gradient

flow under any norm. Nevertheless, as we shall show, we still can apply the CS method
successfully. As remarked, for the Cahn-Hilliard inpainting model which is also not strictly
a gradient flow, it was found that the CS method was successful [7].

To apply the CS method to here, we start by splitting J1(u) = J11(u)− J12(u) with

J11(u) = a

∫

Ω

|∇u| dxdy + C1

∫

Ω

|∇u| dxdy (5.2)

and J12(u) = −b

∫

Ω

κ2|∇u| dxdy + C1

∫

Ω

|∇u| dxdy, (5.3)

and likewise we split J2(u) = J21(u)− J22(u) with

J21(u) =
C2

2

∫

Ω\D
|u|2 dxdy and (5.4)

J22(u) = −λ

2

∫

Ω\D
(u− z)2 dxdy +

C2

2

∫

Ω\D
|u|2 dxdy. (5.5)

Further, our USTM1 scheme is to solve

uk+1 = uk + ∆t
( −∇(Jk+1

11 − Jk
12)−∇(Jk+1

21 − Jk
22)

)

which leads to the numerical scheme

uk+1 − uk

∆t
=

(
α∇ ·

(
(a + C1)

∇uk+1

|∇uk+1|
)
− C2u

k+1

)
+

α∇ ·
(

(bκ2 − C1)∇uk

|∇uk| − 2b∇⊥u∇(κ|∇uk|)∇⊥uk

|∇uk|3
)

+ χ(z − uk) + C2u
k (5.6)
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Here the positive and stabilizing constants C1 and C2 are needed to ensure that the
energies J11(u) and J21(u) are convex. Experimentally we found that a good choice is
50 ≤ C1 ≤ 200 and C2 ∼ λ. Actually for convexity splitting to work on (3.1) we
might not need to carry out the last splitting since J2(u) is already a convex functional;
however it is beneficial to do so. Experimentally we found that if the splitting of J2(u)
is not made effective, i.e. C2 = 0, then C1 needs to be increased to such large values
that USTM1 would be much slower to converge even though the scheme USTM1 remains
unconditionally stable for any C1 and any ∆t.

To solve (5.6) at each time-step, we construct a fixed-point type method by linearizing
the term |∇u|−1 on the left-hand side of (5.6). Therefore, after applying the discretization
process (Section 3.2) we obtain the following linear system of equations

uk+1
i,j Si,j − uk+1

i+1,j

(
Ck

i+ 1
2 ,j

)
− uk+1

i−1,j

(
Ck

i− 1
2 ,j

)
− uk+1

i,j+1

(
Ck

i,j+ 1
2

)

−uk+1
i,j−1

(
Ck

i,j− 1
2

)
= fi,j(uk, λ, ∆t, C1, C2) (5.7)

where

Ck
(i+ 1

2 ,j) =
α∆t (a + C1)
h2|∇uk|(i+ 1

2 ,j)

and so on, and

Si,j = (1 + ∆t C2) + Ck
i+ 1

2 ,j + Ck
i− 1

2 ,j + Ck
i,j+ 1

2
+ Ck

i,j− 1
2
.

Then such a fixed point method amounts to solving (5.7) as a linear system

A(uk)uk+1 = f(uk),

where uk = [uk
1,1, u

k
2,1 . . . , uk

n,1, uk
1,2, . . . , u

k
n,m] and f contains all explicit terms in (5.6).

In this case, A(uk) is a sparse, symmetric and positive definite matrix.
The USTM1 scheme (5.6) is tested for a model problem, with comparative results with

ATM shown in Table 5.1; it is evident that it is many times faster than the ATM.

5.1.2 USTM2

Convexity splitting guarantees unconditional stability of USTM1 by treating the ex-
panding term of the elastica energy i.e. −∇J12(u) explicitly. In this section, we shall show
that further partitioning

J12(u) = JA
12(u) + JB

12(u) (5.8)

in such a way that

JA
12(u) =

∫

Ω

g1(u)g2(u) dxdy (5.9)
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with g1(u) = −bκ2 and g2(u) = C1|∇u| can be implicitly treated, allows us to treat J2(u)
fully implicitly without losing the property of unconditional stability and to eliminate C2

from the scheme. Numerical experiments showed that the resulting new scheme which we
name as USTM2 is as fast as USTM1 to converge but more importantly there is no need to
use a second parameter C2.

Theorem 5.1. If J11(u) and J12(u) are strictly convex functionals satisfying (5.2)-(5.3)
and J12(u) satisfies (5.1) with 〈HJ12(u)u, u〉 > µ ≥ 0, i.e. all the eigenvalues of the
Hessian matrix HJ12 are strictly nonnegative values, then for any initial condition, and
provided C1 > 0 is sufficiently large, the numerical scheme

uk+1 − uk

∆t
= ∇J11(uk+1)−∇g1(uk)g2(uk)− g1(uk+1)∇g2(uk+1)−∇JB

12(u
k),

(5.10)

is gradient stable for all ∆t > 0.

Proof. Assuming J1(u) satisfies (5.1) and expanding it about uk+1 up to second order
using Taylor’s theorem, the following inequality holds

δJ ≡ J1(uk+1)− J1(uk) ≤ 〈∇J1(uk+1), uk+1 − uk〉+ |µ|‖uk+1 − uk‖2.

Now, first we replace ∇J1(uk+1) above by ∇J11(uk+1)−∇J12(uk+1) to get

δJ ≤ 〈∇J11(uk+1)−∇J12(uk+1), uk+1 − uk〉+ |µ|‖uk+1 − uk‖2

and then add the term −〈 1
∆t (u

k+1 − uk) + ∇J11(uk+1) − ∇g1(uk)g2(uk) −
g1(uk+1)∇g2(uk+1) − ∇JB

12(u
k), uk+1 − uk〉 from (5.10) which accounts for nothing

but helps in the proof. This way,

δJ ≤ 〈∇J11(uk+1)−∇J12(uk+1), uk+1 − uk〉+ |µ|‖uk+1 − uk‖2

− 〈 1
∆t

(uk+1 − uk) +∇J11(uk+1)−∇g1(uk)g2(uk)

− g1(uk+1)∇g2(uk+1)−∇JB
12(u

k), uk+1 − uk〉.

It is immediate to see that the terms ∇J11(uk+1) cancel out. The next step is
to use ∇J12(uk+1) = ∇JA

12(u
k+1) + ∇JB

12(u
k+1) and further ∇JA

12(u
k+1) =

∇g1(uk+1)g2(uk+1) + g1(uk+1)∇g2(uk+1) which can be derived from (5.8) and (5.9)
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to obtain

δJ ≤− 〈∇g1(uk+1)g2(uk+1) + g1(uk+1)∇g2(uk+1) +∇JB
12(u

k+1), uk+1 − uk〉
+ 〈∇g1(uk)g2(uk) + g1(uk+1)∇g2(uk+1) +∇JB

12(u
k), uk+1 − uk〉

+
(
|µ| − 1

∆t

)
‖uk+1 − uk‖2

= −〈∇g1(uk+1)g2(uk+1)−∇g1(uk)g2(uk), uk+1 − uk〉

− 〈∇JB
12(u

k+1)−∇JB
12(u

k), uk+1 − uk〉+
(
|µ| − 1

∆t

)
‖uk+1 − uk‖2

after cancelation of some terms. Now from the convexity of JB
12(u) = C1

∫
Ω
|∇u| dxdy

there exists µ̂ such that 〈∇JB
12(u

k+1) − ∇JB
12(u

k), uk+1 − uk〉 ≥ µ̂(C1)‖uk+1 − uk‖2
where µ̂(C1) indicates that µ̂ depends on C1. Hence we have that

δJ ≤− 〈g1(uk+1)∇g2(uk+1)− g2(uk)∇g1(uk), uk+1 − uk〉

+
(
|µ| − |µ̂(C1)| − 1

∆t

)
‖uk+1 − uk‖2 ≤ 0,

where the last inequality is satisfied provided C1 is chosen large enough.

Using Theorem 5.1 we obtain our USTM2 scheme

uk+1 −∆t

(
α∇ ·

(
(a + C1 + bκ2)

∇uk+1

|∇uk+1|
)

+ χuk+1

)

= uk + ∆t

(
α∇ ·

(
−C1

∇uk

|∇uk| −
2b

|∇uk|3∇
⊥u∇(κ|∇uk|)∇⊥uk

)
+ χz

)
. (5.11)

We remark that USTM2 is only slightly faster than USTM1 as can be seen from Table
5.1 if the latter is supplied with an optimized C2; however in other cases USTM2 works
fine while USTM1 having a wrong parameter C2 slows down its convergence or is even
divergent.

5.2 A working fixed point method

The main virtue of the above two USTM schemes is that the value of ∆t is not an issue
due to the unconditional stability property they share. Of course selecting very small ∆t

will yield a very slow to converge algorithm and selecting very large ∆t will be prohibited
if the accuracy of the solution needs to be bounded at every iteration, see for instance
[25, 38, 41]. For the elastica formulation (3.1) the aim is to find its minimum, therefore the
value of ∆t is less relevant since only the accuracy of the final solution is important and
not at every iteration. This observation prompts us to construct a fixed point method from
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(5.11) for a steady state solution (i.e. taking an infinity time-step ∆t). This suggests to
solve

−α∇ ·
(

(a + C1 + bκ2)
∇uk+1

|∇uk+1|
)

+ χuk+1

= α∇ ·
(
−C1

∇uk

|∇uk| −
2b

|∇uk|3∇
⊥u∇(κ|∇uk|)∇⊥uk

)
+ χz. (5.12)

At the present time a rigorous mathematical proof of the convergence of this fixed point
scheme is not at hand although we expect this to be true since (5.12) inherits this prop-
erty from the USTM2 scheme. Nonetheless numerical experiments over a wide range of
problems have shown (5.12) to be a convergent and fast algorithm provided C1 is properly
selected.

To solve (5.12), we linearize the left-hand side and obtain a linear system of equations:

uk+1
i,j Si,j − uk+1

i+1,j

(
Ck

i+ 1
2 ,j

)
− uk+1

i−1,j

(
Ck

i− 1
2 ,j

)
− uk+1

i,j+1

(
Ck

i,j+ 1
2

)

−uk+1
i,j−1

(
Ck

i,j− 1
2

)
= fi,j(uk, λ, C1)

(5.13)

where Ck
(i+ 1

2 ,j)
= α(a+C1+bκ2)

h2|∇uk|(i+ 1
2 ,j)

and so on, and Si,j = χ + Ck
i+ 1

2 ,j
+ Ck

i− 1
2 ,j

+ Ck
i,j+ 1

2
+

Ck
i,j− 1

2
. Note (5.13), also representable by A(uk)uk+1 = f(uk), has similar represen-

tation to (5.7). Now since the new matrix A(uk) is semi-positive definite and weakly
diagonally dominant, we use a lexicographic Gauss-Seidel (GSLEX) method to partially
solve the system and call this fixed point method based on GSLEX inner iterations the
FPGS algorithm.

A remark is due here. Re-write (5.12) as

−α
(∇ · N k+1 + C1T V(uk+1)

)
+ χuk+1 = α

(∇ · T k + C1T V(uk)
)

+ χz, (5.14)

after defining T V(u) ≡ ∇ · ∇u
|∇u| , and splitting V = N + T further (along normal and

tangent directions) with N = (a + bκ2) ∇u
|∇u| and T = − 2b

|∇u|3∇⊥u∇(κ|∇u|)∇⊥u. Then
taking C1 = 0 yields the natural fixed point for (3.2) in the spirit of [4, 20, 42]. However,
experimental tests showed that this scheme with C1 = 0 simply does not work. Possible
refinements (still with C1 = 0) from taking some part from ∇ · N to the right-hand side
or taking some contribution from ∇ · T into A(uk) failed to make any improvement. Our
experiments showed that the first option is not helpful, and the second is not much better
because diagonal dominance cannot be guaranteed due to ∇(κ|∇u|) changing its sign and
consequently A(uk) may not be even weakly diagonally dominant. One explanation of
the failure of (5.14) when C1 = 0 may be that the domain of convergence of the scheme is
very small and therefore it fails to converge for a bad initial guess. On the other hand, when
the positive constant C1 is large enough , the T V term drives to convergence the algorithm
when ‖uk+1 − uk‖ is large (at the beginning of iterations), however once ‖uk+1 − uk‖
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Method # iterations CPU PSNR
ATM 1.4× 106 74, 578 55

USTM1 6,500 120 60
USTM2 6,000 112 60
FPGS 3,500 73 60

Table 5.1: Performance of the two algorithms for the circle problem of Figure 3.2 with
m = n = 32. The following parameters were used for each one of them a = 1, b = 20,
β = 10−2, λ = 100. For ATM ∆t = 10−5 and for USTM ∆t = 1. Finally, 10 GS steps
were used in FPGS.

starts decreasing then the T V terms on both sides of (5.14) tend to cancel each other and
gradually (5.14) with C1 = 0 takes over.

5.3 Comparisons

In Table 5.1 we present a performance summary of the three unilevel algorithms we
have presented so far (USTM1, USTM2, FPGS) against the ATM method. Here the Peak-
Signal-to-Noise-Ratio (PSNR) between images u and u0 of size m× n is defined as

PSNR = 20 log10

(
255

RMSE(u, u0)

)
, RMSE(u, u0) =

√∑
i,j(ui,j − u0

i,j)2

mn
,

for a model problem where the true image u0 is known and u is the restored image. The
larger a PSNR is, the better the restored image is. Clearly, even for this small image of
32 × 32, the FPGS algorithm is many times faster than ATM. However it still can take
long time to inpaint large images. As an optimal algorithm, the multigrid method has
proved to be successful in solving a number of different image processing problems; see
[4, 9, 20, 35, 36]. In the following, first we shall show that FPGS is a good smoother and
then we shall proceed to develop a multigrid method for the elastica model (3.2).

6 Local Fourier analysis for the fixed point method

To construct a convergent multigrid (MG) method for a nonlinear problem such as the
elastica PDE (3.2), the key is to find a good smoother and this is by no means trivial. For
an iterative algorithm to be a good smoother, it needs to reduce the high frequencies of the
underlying error. To evaluate this, a very useful tool is the local Fourier analysis (LFA);
see [40]. Theoretically LFA is designed to study linear problems with constant coefficients
on an infinite grid. Regardless of this strong limitation, by extending the grid to an infinite
grid to neglect boundary conditions and locally linearizing the discrete operator, LFA is still
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a recommended tool [1, 8, 28, 43] for analysis of discrete nonlinear operators. Examples of
image processing problems where LFA was used for this purpose can be found in [4,9,13].
Hence in this section we use LFA to show that the linearized fixed point algorithm (5.13)
certainly reduces the high frequency components with a good rate and therefore is a suitable
smoother for a MG method.

For simplicity we consider the case of a square image of size m ×m. Let k represent
the superscript for the outer iterations and p the same for the inner (GSLEX) ones of the
FPGS scheme respectively. Let the inner local error functions ep+1

i,j and ep
i,j be defined as

ep+1
i,j = ūi,j − up+1

i,j and ep
i,j = ūi,j − up

i,j where ūi,j is the exact solution at grid point
(i, j). LFA involves expanding

e
(p+1)
i,j =

m/2∑

θ1,θ2=−m/2

ψp+1
θ1,θ2

Bθ1,θ2(xi, yj), e
(p)
i,j =

m/2∑

θ1,θ2=−m/2

ψp
θ1,θ2

Bθ1,θ2(xi, yj)

in Fourier components Bθ1,θ2(xi, yj), with α1 = 2θ1π/m, α2 = 2θ2π/m ∈ [−π, π],
defined as

Bθ1,θ2(xi, yj) = exp
(

iα1
xi

h
+ iα2

yj

h

)
= exp

(
2iθ1xiπ

m
+

2iθ2xjπ

m

)
.

Since the local inner iterations of (5.13) can be represented by (for p ≥ 0)

1
h2




0 0 0
−Ck

i− 1
2 ,j

Sk
i,j 0

0 −Ck
i,j+ 1

2
0


up+1 = fk

i,j −
1
h2




0 −Ck
i,j− 1

2
0

0 0 −Ck
i+ 1

2 ,j

0 0 0


up,

we have that

−(χ + Ci+ 1
2 ,j + Ci− 1

2 ,j + Ci,j+ 1
2

+ Ci,j− 1
2
)ep+1

i,j + Ci+ 1
2 ,j ep

i+1,j + Ci− 1
2 ,j ep+1

i−1,j

+Ci,j+ 1
2

ep
i,j+1 + Ci,j− 1

2 ,j ep+1
i,j−1 = 0.

Therefore the local amplification factor for µi,j =
∣∣∣ψp+1

θ1,θ2
/ψp

θ1,θ2

∣∣∣ = µi,j(α1, α2) is de-
fined by

µi,j =

∣∣∣Ci+ 1
2 ,j eiα1 + Ci,j+ 1

2
eiα2

∣∣∣
∣∣∣χ + Ci+ 1

2 ,j + Ci− 1
2 ,j + Ci,j+ 1

2
+ Ci,j− 1

2
− Ci− 1

2 ,j e−iα1 − Ci,j− 1
2

e−iα2

∣∣∣

and the maximum rate at this kth step µ̄i,j = maxα1,α2 µi,j(α1, α2) in the high frequency
range (α1, α2) ∈ [−π, π] \ [−π/2, π/2]. Note that at the kth outer step, the nonlinear
coefficients C(·,·) remain frozen (fixed) across all inner iterations.

Then we have an m×m rate matrix M̄k, for the kth step, with entry µ̄i,j representing the
local smoothing rates at (i, j) grid point. As done in [9], in order to evaluate effectiveness,
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we evaluate the accumulated rate based on consecutive smoothing rates µ̄i,j . That is to say,
suppose we have completed K (accumulated) inner relaxation steps. Let M̄k denote the
corresponding rate matrix (for 1 ≤ k ≤ K); then define

µ̂K = max
i,j

(M̄1)i,j(M̄2)i,j · · · (M̄K)i,j

as the accumulated smoothing rate of a relaxation step (over K accumulated inner itera-
tions). This makes perfect sense when the coefficients are constant which happens to be
true towards the end of convergence of the algorithm.

To illustrate the rate for an example, we present in Table 6.2 the smoothing rates µ̄ and
accumulated smoothing rates µ̂K inside the inpainting domain D and outside it in Ω\D,
computed for five outer iterations for the circle problem of Figure 3.2 with 20% of additive
Gaussian noise. Clearly, the accumulated rates for FPGS are quite good for K ≤ 50.

D Ω\D
Outer iterations ν µ̄ µ̂K µ̄ µ̂K

1 0.6267 0.6267 0.8850 0.8850
2 0.7049 0.4417 0.8882 0.7861
3 0.7559 0.3339 0.8680 0.6823
4 0.8220 0.2745 0.8582 0.5856
5 0.9115 0.2502 0.8445 0.4945

Table 6.2: Illustration of smoothing rates for the FPGS smoother. (Note K = gsiter ν,
where gsiter is the number of inner iterations). Here a = 1, b = 20 and gsiter = 10 were
used.

7 A nonlinear multigrid for Euler’s elastica model

Here we shall show how to implement a multigrid algorithm for the elastica formulation
(3.2). To begin with, we denote by (Nu)i,j = χzi,j the nonlinear operator equation

−α∇ ·
((

a + bκ2
i,j

)∇ui,j

|∇u|i,j − 2b∇⊥ui,j∇(κi,j |∇u|i,j)∇⊥ui,j

|∇u|3i,j

)
+ χui,j = χzi,j ,

which will be approximated on grids of different sizes. We will denote by Nhuh = χzh

the discrete equation defined on the finest grid Ωh of size h and similarly by N2hu2h =
χz2h the same on the coarser grid Ω2h which is obtained by standard coarsening, i.e., the
nonlinear operator N2h which results from defining the above equation on the cell-centered
grid Ω2h with grid spacing 2h. Likewise we can generate a sequence of L coarse levels
2h, 4h, 8h, . . . , 2Lh.
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7.1 The MG components

We briefly discuss how we choose the three main components of a multigrid algorithm.
For the restriction and interpolation operators R2h

h and Ih
2h respectively, full weighting

(FW) and bilinear interpolation operators for cell-centered grids are used; see [40] for
details. No difference in convergence was noticed by using higher order operators like
bi-cubic interpolation.

To coarsen the interfaces, which is unique for inpainting problems, we use the same
method as described in [9]. Briefly we represent the inpainting domain by a binary mask
Mh and coarsen this mask similarly to grid coarsening.

As stated before, our chosen smoother is the FPGS algorithm (Section 5.2), that is,
(5.13). It is stated in Algorithm 7.1.

Algorithm 7.1 [FPGS Smoother] uh ← FPGS(uh, zh, gsiter ,Mh)
1: Choose an initial guess u0

h for (5.13)
2: for k = 1 to gsiter do
3: Apply gsiter Gauss Seidel iterations to the linear system Ah(uk

h)uk+1
h = zh

4: end for

7.2 The MG algorithm

Multigrid schemes are designed to obtain fast solution of PDE’s similar to (3.2). In
particular when the PDE to solve is nonlinear as with here, the full approximation scheme
(FAS) [40] is highly efficient. This FAS method which we have adapted for the inpainting
case and is described in Algorithm 7.3, operates a hierarchy of discretization levels where
at each level the error equation is partially solved or smoothed (step 2) and the new ap-
proximation transported to next coarser level (step 3). This process is recursively applied
until reaching the coarsest level where exact but computationally cheap solution is obtained
(step 1). Then the process moves backwards on the hierarchical structure transporting the
more accurate error (step 7) and updating the approximate solution at each level (step 8),
then taking this new approximate solution as initial guess and smoothing again (step 9)
repeating the process until reaching the finest level again. With standard coarsening the
number of variables is halved at each coarse level in each spatial dimension.

Now we state our V-cycling nonlinear MG in Algorithm 7.2, meaning that just one re-
cursive call to the algorithm is made on each level to approximately solve a coarse grid
problem. Here gsiter represents the number of inner Gauss-Seidel iterations at each pre or
post-smoothing FPGS step. Finally, we remark that when implementing the MG method,
the parameter λ and the balance at coarse levels between N and T defined by the parame-
ters a and b need to be kept the same.
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Algorithm 7.2 [Nonlinear Multigrid Method]
1: Select an initial guess uh on the finest grid h

2: Set k = 0 and err = tol + 1
3: while err < tol do
4: uk+1

h ← FAS(uk
h, Nk

h , zh,Mh, ν0, ν1, ν2, gsiter)
5: err = ‖uk+1

h − uk
h‖2, k = k + 1

6: end while

Algorithm 7.3 [FAS] uh ← FAS(h, uh, Nh, zh,Mh, ν0, ν1, ν2, gsiter)

1: If Ωh = coarsest grid, solve Nhuh = χzh accurately (i.e. ν0 iterations by FPGS) and
return Else continue with step 2.

2: Pre-smoothing: Do ν1 steps of uh ← FPGS(uh, zh, gsiter,Mh)
3: Restrict to the coarse grid, M2h ← R2h

h Mh and u2h ← R2h
h uh

4: Set the initial solution for the next level, ū2h ← u2h

5: Update the right hand side χz2h ← R2h
h (χzh −Nhuh) + N2hu2h

6: Solve N2hu2h = χz2h by implementing
u2h ← FAS2h(2h, u2h, N2h, z2h,M2h, ν0, ν1, ν2, gsiter)

7: Compute the error e2h = u2h− ū2h and move it back to the next grid by eh ← Ih
2he2h

8: Add the residual correction, uh ← uh + e2h

9: Post-smoothing: Do ν2 steps of uh ← FPGS(uh, zh, gsiter,Mh)

7.3 Full Multigrid

In order to provide an automatic and yet suitable initial guess, we shall adopt the Full
Multigrid method (FMG) as described in [19, 40] which is based on the idea of nested
iteration. That is, given the coarse grid ΩH , one can apply a multigrid cycle (say a V-cycle)
to obtain an approximate solution uH at this level, then this uH is interpolated to the next
finer grid ΩH/2 to be used as an initial guess for another multigrid cycle to solve for uH/2

at this fine level. This process is repeated until reaching the finest level.

Notice that in FMG the solution uH and not the error eH which is interpolated to the
next finer level. Usually the operator used to interpolate the solution is denoted by ΠH

H/2

and is of higher accuracy (third order in our Algorithm 7.4) than the interpolation operators
used within the multigrid iteration. Here uFMG

h denotes the resulting FMG approximation
on grid Ωh. As expected, much better (faster) results are obtained as can be seen from the
last two columns of Table 8.3 from testing all four inpainting problems.
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Algorithm 7.4 Full Multigrid
On the coarsest ΩH with mesh size H = 2L,
Solve NHuH = zH , providing uFMG

H = uH .
for ` = 1 to L do

u0
h ← Πh

HuFMG
H with h = H/2

uFMG
h ← FAS(h, u0

h, Nh, zh,Mh, ν0, ν1, ν2, gsiter).
Set H = h

end for

8 Numerical results

In this section, we test the performance of Algorithm 7.2 to inpaint four problems. The
problems and the MG restored results are shown in Figures 10.5, 10.6, 10.7 and 10.8 for
m = 256.

Quality of reconstruction. Clearly from Figures 10.5-10.8, the restoration obtained
with Algorithm 7.2 is visually pleasing in all of them. For instance, Figure 10.5 shows
a very good reconstruction of the missing edges in the ear, nose and cheek of the girl.
In Figure 10.6 we observe the reconnection of the thin piece of hair initially occluded
by the letter ”G” and in general the fair recovering of the geometrical structure of the
missing regions. Figures 10.7 and 10.8 show the smooth reconstruction of curvy missing
regions and in particular the latter illustrates the virtue of the elastica model in denoising
and inpainting at the same time; a feature only shared with the TV model.

For completeness, in Table 8.3 we present the PSNR values obtained from the restored
images. In the first two problems, the high PSNR values indicate good reconstructions. In
the last two, they are not that high due to texture not recovered (requiring a new model) in
the first case of grapes problem and strong noise present in the second one of noisy circles.

In other experiments, we have compared with the TV model using the code from [21].
For problems with a long and thin inpaiting domain D (e.g. Figure 10.7), the TV model
gives a good restoration but for other problems with large D (e.g. Figure 10.5) the TV
model cannot inpaint at all; see [9, 14] for more discussions on the weakness of the TV
model for inpainting.

Speed comparison to other algorithms. We have already shown in Table 5.1 how slow
the ATM can be (even for a small image), taking not thousands but millions of iterations
to converge. This kind of slow convergence suggests that unilevel algorithms are barely
enough for inpainting small images and definitely not suitable for large ones. A quick
review of Table 5.1 also reveals that our FPGS as a standalone method is two orders of
magnitude faster than ATM for the circle problem and this speedup was confirmed through
other experiments and different problems we tested. On the other hand, we present the
results obtained with MG in Table 8.3, from which it can be seen that our MG can be used
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to obtain very fast inpaintings for large images.

MG FMG
Problem Image Size MG cycles CPU MG cycles CPU PSNR

128×128 10 171 2 27 91
Child 256×256 7 400 2 130 90

512×512 6 1538 2 613 90
128×128 7 59 2 23 95

Lena 256×256 6 268 2 103 94
512×512 5 998 2 502 96
128×128 7 55 2 22 70

Grapes (*) 256×256 5 219 2 101 70
512×512 5 972 2 440 71
128×128 6 125 2 57 70

Noisy Circles 256×256 4 356 2 193 71
512×512 4 1514 2 851 70

Table 8.3: MG results and further improvements by the FMG. (*) results from inpainting
the first (red) channel of the color image.

Finally, we remark on comparisons to the texture-synthesis-based method [33]. First
while [33] claims a speed up of two orders of magnitude over ATM, our FMG can accelerate
convergence by three orders of magnitude over ATM so our method is faster. Further, the
method of [33] is not robust to inpaint noisy images (while our method is) and only finds
an approximate local solution to the problem. Our method finds a global solution which
guarantees a true minimization of (3.1) for large inpainting domains.

9 Generalization to other inpainting models

Finally we briefly comment on the generalization of our numerical algorithms. In the
literature, there are two closely related works to our studied elastica model, namely, the
filling-in and disocclusion model of Ballester, Bertalmio, Caselles, Sapiro and Verdera
proposed in [2] and a later model by Ballester, Caselles and Verdera in [3]. For convenience
we shall refer to the model of [2] as the BBCSV model and to the model of [3] as BCV.
These two models differ from the elastica model in that they diffuse a vector field and gray
levels at the same time within the missing regions.
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In the BBCSV model, the functional

min
u,θ

{∫

D

(a + b|∇K ∗ u|)|∇ · θ|p dxdy

}

θ ≤ 1, ‖u‖ ≤ M,

|∇u| − ∇u · θ = 0 in D, (9.1)

u = z in B (a band surrounding D),

θ · νD|∂D = θ0 · νD|∂D

where a, b, p, D are defined as before, K a convolution kernel, M = ‖z‖L∞(B), θ0 is
any vector field satisfying θ0 · ∇z = |∇z| and νD denotes the outer unit normal to D, is
minimized by evolving in time a system of PDE’s of order three.

In [3], the authors relaxed some conditions and introduced new terms proposing the
BCV model which reads

min
u,θ

{∫

D

(a + b|∇K ∗ u|) |∇ · θ|p dxdy + α

∫

D

|∇u| dxdy (9.2)

−α

∫

∂D

g0u + γ

∫

B

|u− z|q dxdy

}
,

θ ≤ 1, |∇u| − ∇u · θ = 0 in D,

θ · νD|∂D = g0, (9.3)

where g0 = θ0 · νD|∂D, α, γ > 0, q ≥ 1. Then using an elegant approach they proved the
convergence of minima of BCV to minima of the functional

min
u

∫

D

(a + b|∇K ∗ u|)
∣∣∣∣∇ ·

( ∇u

ε2 + |∇u|
)∣∣∣∣

p

dxdy + α

∫

D

|∇u| dxdy

−α

∫

∂D

g0u + γ

∫

B

|u− z|q dxdy,

∇u

ε2 + |∇u| · ν
D =

∇z

ε2 + |∇z| · ν
D, (9.4)

as ε → 0 establishing a connection between the numerical approaches of elastica [14] and
BCV models. The major difference between them may be that BCV is equipped with a
relatively fast semi-implicit steepest descent method while for elastica only the very slow
ATM has been reported for its solution [14]. Here we shall show how easily our numerical
methods can be adapted to minimize the BCV energy. This is, we show a feasible stabilized
fixed point method (FPGS-type) for the equivalent of the BCV energy (9.4) for the case
p = q = 2. Thus our FPGS-type algorithm for BCV reads

−α∇ ·
(

D1(uk)
∇uk+1

|∇uk+1|
)

+ χuk+1 = f(uk, α), (9.5)
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where

D1(u) = C1 + a + bκ2 +
∇u · ∇(2κ)
|∇u|3 ,

f(u, α) = α∇ ·
(
−C1

∇u

|∇u| −
∇(2κ)
|∇u| −

2b

|∇u|3∇
⊥u∇(κ|∇u|)∇⊥u

)
+ χz.

This scheme was successfully tested for a number of problems. For instance, the test
problem in Figure 3.2 was solved in only 3, 700 iterations which is comparable to that
obtained for the elastica model for the same problem and this fast convergence is also
observed in other tests. The quality of reconstruction between both models is also very
similar and no visual difference between the outcomes from elastica and BCV models was
appreciated. A similar scheme can be developed and used to solve the BBCSV model.

10 Conclusions

Euler’s elastica inpainting model is attractive due to its ability of reconnecting far apart
parts of broken objects and recovering the curvature of the missing parts of objects. So
far, the lack of a fast numerical algorithm for this model represented a strong limitation
for the range of its applications and wider use. In this paper we first introduced three fast
unilevel numerical algorithms (USTM1, USTM2 and FPGS) than the existing accelerated
time marching method (ATM). Then adopting our FPGS as a smoother, we were able to
develop a fast and efficient nonlinear MG algorithm for solving this Euler’s elastica model.
A local Fourier analysis was done to demonstrate the effectiveness of our smoother. Nu-
merical results confirmed that our multigrid method is very efficient. For our related work
of multigrid methods for curvature denoising, refer to [10, 11].
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