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Abstract. In this work we propose a variational model for multi-modal image registration. It minimizes a new1

functional based on using reformulated normalized gradients of the images as the fidelity term and2

higher-order derivatives as the regularizer. We first present a theoretical analysis of the proposed3

model. Then, to solve the model numerically, we use an augmented Lagrangian method (ALM) to4

reformulate it to a few more amenable subproblems (each giving rise to an Euler-Lagrange equation5

that is discretized by finite difference methods) and solve iteratively the main linear systems by6

the fast Fourier transform; a multilevel technique is employed to speed up the initialisation and7

avoid likely local minima of the underlying functional. Finally we show the convergence of the ALM8

solver and give numerical results of the new approach. Comparisons with some existing methods are9

presented to illustrate its effectiveness and advantages.10
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1. Introduction. Image registration consists in finding a reasonable spatial geometric14

transformation between given two images of the same object taken at different times or15

acquired using different devices. It is a challenging task required in diverse fields of as-16

tronomy, optics, biology, chemistry, medical imaging and remote sensing and particularly in17

medical imaging. For an overview of image registration methodology and approaches, we18

refer to [11, 23, 24, 31]. Here, we focus on deformable image registration for multi-modality19

images using variational approaches which belong to the class of the widely used methods20

([2, 5, 7, 14, 21, 22, 36]) and aim to find a better gradients-based model than the standard21

gradient models.22

It is informative to illustrate the notation of the image registration modelling by consid-23

ering a pair of mono-modal images: Given a fixed image (also called reference) and a moving24

image (also called template), which are represented by scalar functions T,R : Ω ⊂ Rd −→ R,25

find a reasonable geometric transformation ϕ(u)(x) = x + u(x), u : Rd −→ Rd such that:26

(1.1) T [ϕ(u)] = T (x + u(x)) = R.

This is an equation of the unknown displacement field u, which is supposed to be sought in27

a properly chosen functional space. The reconstruction model (1.1) is an ill-posed inverse28

problem and thus regularisation techniques are needed to overcome ill-posedness. Generally,29

the regularisation technique turns an ill-posed problem such as model (1.1) into a well-posed30

one which minimizes an energy compromised of a regularisation term (mostly a semi-norm of31
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a functional space that is fixed a priori) and a data fidelity term. In summary, the desired32

displacement u, in some appropriate space H, is a minimizer of the following joint energy33

functional:34

(1.2) min
u∈H
{J (u) = S(u) +

λ

2
D(T (u), R)}.

This model may be used for registering both mono-modality and multi-modality images.35

Here in (1.2), the first term S(u) is a regularisation term which controls the smoothness of36

u and reflects our expectations by penalising unlikely transformations. Many works tackled the37

question of how to choose the best regularisation term that gives the more possible plausible38

transformation. Various regularizers have been proposed, such as first-order derivatives based39

on total variation [4, 16], diffusion [9] and elastic regularizer registration models and higher-40

order derivatives-based on linear curvature [10], mean curvature [6] and Gaussian curvature41

[17] models; we can refer also to [5, 22, 39, 40, 41].42

The second term D(T (u), R) is a fidelity measure, which quantifies distance or similarity43

of the transformed template image T (u) and the reference R, whereas λ is a positive weight44

which controls the trade-off between them. In the case of mono-modal images, the fixed and45

the moving images have similar features and same intensity ranges. Thus, either the L1−46

distance (Sum of Absolute Differences) D = ‖T −R‖1 or the well-known choice L2− distance47

(Sum of Squared Differences) between R and T (u) i.e. D = ‖T −R‖22 =
∫

Ω(T (u)−R)2dx may48

be used as a similarity measure. Clearly such a measure only makes sense for mono-modal49

images.50

For a pair of multi-modal images T,R (generated from independent imaging techniques),51

unfortunately, one cannot minimize ‖T −R‖ since values of T,R are not directly comparable.52

That is, only the patterns of T,R bear some resemblance to each other, not their values (so53

called intensity values). Therefore, intensities of the same object in different images are not54

similar which makes the problem much harder than the mono-modality case. Hence many55

good models as from [23] for mono-modal images and also the elegant mathematical approach56

of optimal transport [8] cannot be used. For multi-modal images, varous similarity measures57

have been used and include Mutual Information [20, 26, 33] and Normalised Gradient Field58

[15, 18, 30]. Recently [3] proposed a cross-correlation similarity measure based on reproducing59

kernel Hilbert spaces and found advantages over Mutual Information. Below, we briefly review60

these two commonly used measures: mutual information and normalized gradient fields.61

Mutual Information (MI). It takes its origin from the theory of information and was firstly62

proposed in [33]. Several variants of MI approach were proposed in recent years (see [20,63

26]), showcasing its great capability as well as limitations. The basic idea behind MI is the64

comparison of the histograms of the two images instead of comparing their intensities. The65

Mutual information between the two images if given by the following quantity:66

(1.3) DMI(T (u), R) = −
∫
R2

pT,R(t, r) log
pT,R(t, r)

pT (t)pR(r)
dtdr,

where pR, pR are probability distributions of the gray values in R and T , whereas pT,R is the67

joint probability of the gray values which can be derived from the joint histogram. As the68

MI measure involves histograms, its inherent disadvantages are how to choose the size of bins69
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and how to remedy the lack of spatial relationships to avoid mis-registrations. In addition,70

the measure also fails when features with different intensities in the first image have similar71

intensities in the second one [19], which is the case in perfusion imaging.72

Normalised Gradient Field (NGF). The basic idea of the Normalised Gradient Field (NGF)73

[15, 18, 30] is the use of a derived information from the image intensity, i.e, the gradient.74

Similarity measures depending in the gradients or geometry of the images, which naturally75

encode information about the shape, can be better. The key idea behind the NGF measure is76

to align the gradients ∇T (u) and ∇R by minimizing the cosines distance between them. More77

precisely, on each point x ∈ Ω, try to find a displacement u(x) such that cos Θ = 1 where Θ78

is the angle between ∇T (x+u(x)) and ∇R(x). Therefore, the NGF consists in minimization79

of the following energy:80

(1.4) DNGF (T (u), R) =

∫
Ω

(1− (cos Θ)2) dx =

∫
Ω

(1− (∇nT (u) · ∇nR)2) dx,

where ∇nT (u) = ∇T (u)/‖∇T (u)‖ and ∇nR = ∇R/‖∇R‖ are normalised unit vectors. As81

the NGF uses the product scalar between the two vectors ∇nR and ∇nT (u), it will not work82

well when the gradients are null or very weak. In other words, suppose that in a large region83

of the image T , we have ∇T ⊥ ∇R and then 1 − (∇nT · ∇nR)2) ≈ 1, which means that84

solving the optimization problem (1.2) is equivalent to only smoothing the deformation u in85

this region whereas the similarity measure does not play a role in the energy, which is not86

reliable. As an example, we consider the images in the Fig 1(a-b) where ∇nT · ∇nR = 0 a.e87

in Ω due to one of ∇nT, ∇nR being zero, we see that if we use the NGF in (1.2), there is88

no change in the template image because of the reason mentioned before, so T (u), obtained89

using the NGF as measure, shown in Fig 1(c) is not correct. If we use the ratio #N of the90

number of pixels where ∇nT · ∇nR 6= 0 over the total number of pixels, we have observed the91

current NGF would not give a good registration result if #N ≤ 25%. In this work, believing92

in the elegance of geometric fitting, we aim to improve the above NGF for these cases. we93

are primarily motivated to explore the potential of normalised gradients beyond its standard94

form. Our question is whether or not a better normalised gradients-based model than the95

well-known form [15, 18, 30] is possible.96

The outline of the paper is as follows. In Section 2, we propose our variational model which97

minimizes an energy with new similarity measures and we prove by variational techniques the98

existence of a minimizer. Section 3 is dedicated to the numerical solution of the proposed99

model by an augmented Lagrangian approach and analysis of convergence. Finally, Section 4100

concerns the implementation and the presentation of several numerical examples to test the101

efficiency and robustness of the proposed approach.102

2. The new multi-modality model. Since our formulation consists of two building blocks:103

a similarity measure D and a regularization term S, we now discuss our choice of regularizers104

and the distance measure. Because our emphasis is on the latter, almost all regularizers105

suitable for variational registration models of mono-modal images may also be used.106

Choice of Similarity Measure. To motivate our proposed measure D, consider the the
NGF example in Fig 1. For this specific example, note that where ∇nT · ∇nR = 0 we have
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Figure 1. Example of Reference and Template images where ∇nT · ∇nR = 0 (or one of ∇nT, ∇nR is
zero) a.e in Ω.

‖∇nT −∇nR‖ 6= 0. This suggests a revised NGF model

min
u
{S(u) +

λ

2
DGF (T (u), R)},

with the new measure DGF replacing the standard NGF measure DNGF :

DGF (T (u), R) =

∫
Ω
GF(T (u), R)dx, where GF(T (u), R) = |∇nT −∇nR|2.

As expected, such a model can solve the example from Fig 1(a-b) with acceptable registration107

result shown in Fig 1(d). This suggests that a better choice of normalised gradients as sim-108

ilarity measure is possible for multi-modal registration scenario. Moreover, to enhance this109

idea, we use Fig. 2 to show that alignment of two vectors X = ∇T, Y = ∇R from a large110

discrepancy on the left to the small discrepancy on the right amounts to minimization of the111

distance |X|+ |Y | − |X + Y | (which is similar to minimizing cos θ(X,Y ) as in DNGF ). Below112

we shall combine the ideas of minimizing both |X − Y | and |X|+ |Y | − |X + Y |.

Figure 2. Three examples of the triangle inequality for triangles with sides X, Y and Z. The left example
shows a case where |Z| is much less than the sum |X|+ |Y | of the other two sides, and the right example shows
a case where |Z| is only slightly less than |X|+ |Y |.
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Choice of a Regularizer. As mentioned, there is a large class of possible regularizers that113

we could choose from. Here we choose a robust regulariser that allows large and smooth114

deformation, comprised of both first order and second order derivatives for the deformation115

field.116

Based on the new measure, we propose to register the two functions R, T from different117

image modalities by solving the following minimization problem:118

(2.1)

min
u∈W
{J1(u) = S(u) +

λ

2
DGF (T (u), R) +

λ

2
DTM (T (u), R)},

w.r.t C(u) = det (I +∇u) > 0,

where W = W 1,2
0 (Ω) ∩W 2,2(Ω), C(u) = (1 +

∂u1

∂x
(1 +

∂u2

∂y
)− ∂u1

∂y

∂u2

∂x
and119

S(u) =
α

2

∫
Ω
|∇u|2dx +

α1

2

∫
Ω
|∇2u|2dx,(2.2)

DGF (T (u), R) =

∫
Ω
GF(T (u), R)dx,(2.3)

DTM (T,R) =

∫
Ω
TM(T (u), R) dx.(2.4)

where TM(T (u), R) = (|∇T (u)|+ |∇R| − |∇T (u) +∇R|)2. Here in the term DGF , we must120

use the normalized gradients rather than the usual gradients because the difference in the121

magnitude of gradients of R and T (u) is large in multi-modality images. Moreover, we can122

easily prove that minimizing the length of TM(T (u), R) = |∇T (u)|+ |∇R| − |∇T (u) +∇R|123

is equivalent to minimize the angle θ between the vectors ∇T (u) and ∇R, which leads to the124

alignment of the edges of R and T (u); note that an alternative to minimizing the above TM125

is to minimize TMn(T (u), R) = |∇nT (u)| + |∇nR| − |∇nT (u) +∇nR| based on normalized126

gradients. However, this will lead to a more difficult problem to solve numerically due to127

higher non-linearity. Our primary choice for regularization is the diffusion model [9] which128

uses first-order derivatives and promotes smoothness. As affine linear transformations are not129

included in the kernel of the H1-regularizer, we desire a regularizer which can penalize such130

transformation. As such, we add the regularizer based on second-order derivatives (LLT) to131

the model which allows to remove the need of any preregistration step of affine transformation.132

The second-order derivatives allows also getting smooth transformations [41]. The constraint133

C(u) > 0 on the determinant in the minimization problem (2.1) guarantees that the resulting134

deformation field ϕ = x + u suffers no mesh folding and thus is physically plausible; see also135

[12, 13, 28]. Different alternatives were proposed to ensure invertibility by adding another136

regularisation term depending on the determinant of the transformation to the registration137

objective function; see [2].138

Mathematical analysis of the proposed model. Most registration models are non-139

convex with respect to u and consequently, if solutions exist, there are local minimizers or140

solutions are generally not unique. Below we prove the existence of a minimizer for problem141

(2.1). Before stating the main result, we first consider the concept of Carathéodory functions.142
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Definition 2.1. Let Ω ⊂ Rd be an open set and let f : Ω×Rn×Rd×n×Rd×d×n → [0,+∞).143

Then f is a Carathéodory function if:144

1. f(x, ·, ·, ·) is continuous for almost every x ∈ Ω.145

2. f(x,u, ψ,Θ) is measurable in x for every (u, ψ,Θ) ∈ Rn × Rd×n × Rd×d×n.146

We will use some theory about integrals of higher-order. It also sets up assumptions with147

which our optimisation problem (2.1) admits a minimiser.148

Lemma 2.2 ([42]). Let Ω ⊂ Rd be an open set and f : Ω×Rn×Rd×n×Rd×d×n → [0,+∞)149

satisfies the following assumptions:150

(i) f is a Carathéodory function.151

(ii) f(x,u, ψ,Θ) is quasi-convex with respect to Θ.152

(iii) 0 ≤ f(x,u, ψ,Θ) ≤ a(x) + C(|ψ|p + |Θ|p) where a(x) ∈ L1(Ω), C > 0.153

Then J (u) is weak lower semi-continuous (denoted by wlsc) in W.154

To analyse the proposed model (2.1), it is convenient to rewrite the energy J (·) by merging
all terms under one integral in the following form:

J (u) =

∫
Ω
f(x,u,∇u,∇2u) dx,

where f(x,u, ψ,Θ) =
α

2
|ψ|2 +

α1

2
|Θ|2 +

λ

2
|∇nT (u)−∇nR|2155

+
λ

2
(|∇T (u)|+ |∇R| − |∇T (u) +∇R|)2,

To apply the Lemma 2.2, we assume that |∇R| and |∇T (u)| are bounded almost everywhere156

by a constant c > 0. Then, we have the following result:157

Lemma 2.3. The energy functional J (·) is coercive and wlsc in W.158

Proof. The coercivity can easy obtained using the Poincaré inequality. In fact, the later
guarantees that

‖u‖W =
(
‖∇u‖22 + ‖∇2u‖22

)1/2
defines a norm in the space W. Using the positivity of DGF (T (u), R) and DTM (T (u), R), we
have:

J (u) ≥ min(α, α1)

2
‖u‖2W ,

which directly gives the coercivity of J (·). For the weak lower semi-continuity, we now verify159

that the functions f(·) fulfils the assumptions in Lemma 2.2:160

i) Since the gradient of the fixed and the moving image ∇R and ∇T (u) are assumed to be161

continuous, f(·) is Carathéodory function.162

ii) It is easy to check that f(x,u, ψ,Θ) are convex with respect to Θ, clearly implying that it163

is quasi-convex.164

iii) For condition (iii), we have |∇nT (u)| ≤ 1 and |∇nR| ≤ 1, which means that:165

(2.5)
λ

2
|∇nT (u)−∇nR|2 ≤

λ

2
(|∇nT (u)|+ |∇nR|)2 ≤ 2λ.
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Moreover, using the fact that |∇R| and |∇T (u)| are bounded almost everywhere by a constant166

c > 0, we get167

(2.6)
λ

2
(|∇T (u)|+ |∇R| − |∇T (u) +∇R|)2 ≤ λ

2
(|∇T (u)|+ |∇R|)2 ≤ 2λc2.

Therefore, using inequalities (2.5) and (2.6), we have:168

f(x,u, ψ,Θ) =
α

2
|ψ|2 +

α1

2
|Θ|2 +

λ

2
|∇nT (u)−∇nR|2

+
λ

2
(|∇T (u)|+ |∇R| − |∇T (u) +∇R|)2

≤ α

2
|ψ|2 +

α1

2
|Θ|2 + 2λc2 + 2λ.

Then, the function f(·) fulfils the condition (iii) of Lemma 2.2 with a(x) ≡ λc2 + 2λ which169

implies that the energy J (·), is wlsc in W.170

We are now ready to prove the existence of a solution for the minimization model (2.1).171

Based on Lemma 2.2 and Lemma 2.3, we have the following result:172

Proposition 2.4. The minimization problem (2.1) admits at least one solution in the space173

A = {u ∈ W; Cε(u) ≥ 0} where ε > 0 is a small parameter, Cε(u) = C(u) − ε, and C(·) is174

given in (2.1).175

Proof. Consider a minimizing sequence (un)n ⊂ A of J (·) , i.e.,

J (un) −→
n→∞

inf
u∈A
J (u).

The coercivity of J (·) guarantees that the sequence (un)n∈N is uniformly bounded W. Thus,176

there exists a subsequence, still denoted (un)n∈N, such that un ⇀
n→∞

u weakly in W. Using177

the weak lower semi-continuity of J (·), we obtain that the limit u is a minimizer of J (·).178

It remains to prove that u fulfils the constraint C(u) > 0. Now, we show that A is weakly179

closed subset of W. Let uk be a weakly convergent sequence to u in W. From the definition180

of the space W, we have that uk is weakly convergent to u in W 1,2(Ω) and uk is weakly181

convergent to u in W 2,2(Ω). Moreover, as the sets A1 = {u ∈ W 1,2(Ω); Cε(u) ≥ 0} and182

A2 = {u ∈ W 2,2(Ω); Cε(u) ≥ 0} are weakly closed for W 1,2-topology and W 1,2-topology183

(see [27]), respectively, we get that u ∈ A1 and u ∈ A2. Then, the limit u belongs to the184

intersection A = A1 ∩ A2 and thus A is weakly closed. Therefore, the minimizer u belongs185

to the set A, i.e., C(u) ≥ ε > 0, which finishes the proof.186

3. Augmented Lagrangian method (ALM). The energies J (·) are highly non-linear, and187

their numerical resolution is a non-trivial task. Thus, we propose an Augmented Lagrangian188

Method (ALM) which is often used for solving constrained minimization problems by replacing189

the original problem by an unconstrained problem. The method is similar to the penalty190

method where the constraints are incorporated in the objective functional and the problem191

is solved using alternating minimization of the sub-problems; see [1, 29, 32, 35, 43, 44] for192

various successful applications.193
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3.1. ALM iterations. Introducing three intermediate variables K, p and n to reformulate194

(2.1), we solve the following constrained minimization problem:195

(3.1)

 min
u,K,p,n

{S(u) +
λ

2

∫
Ω

(n−∇nR)2dx +
λ

2

∫
Ω

(|p|+ |∇R| − |m|)2 dx},

w.r.t K = T (u), p = ∇K, |p|n = p, m = p +∇R, Cε(u) ≥ 0.

Then, the augmented Lagrangian functional corresponding to the constrained optimization196

problem (3.1) is defined as follows:197

L1(u,K,p,n,m, λ1, λ2, λ3, λ4, λ5)

= S(u) +
λ

2

∫
Ω

(n−∇nR)2dx +
λ

2

∫
Ω

(|p|+ |∇R| − |m|)2 dx

+
r2

2

∫
Ω

(p−∇K)2dx +
r3

2

∫
Ω

(p− |p|n)2dx +
r4

2

∫
Ω

(p +∇R−m)2dx

+

∫
Ω

(T (u)−K)λ1dx +

∫
Ω

(p−∇K) · λ2dx +

∫
Ω

(p− |p|n) · λ3dx

+

∫
Ω

(p +∇R−m) · λ4 dx +
r1

2

∫
Ω

(T (u)−K)2dx +
1

2σ

∫
Ω
Cs(u, λ5) dx,

(3.2)

where198

(3.3) Cs(u, λ5) = [min{0, σCε(u)− λ5})]2 − λ2
5,

σ > 0 and λi, (i = 1, · · · , 5) are the Lagrange multipliers. Since the optimisation prob-199

lem (2.1) admits a minimizer, the previous augmented Lagrangian admits a saddle point200

(u∗,K∗,p∗,n∗,m∗, λ∗1, λ
∗
2, λ
∗
3, λ
∗
4, λ
∗
5).201

3.2. Discretization and sub-problems. The images and the displacement fields are dis-202

cretized on a uniform mesh using vertex centred discretization. We assume that the discrete203

solution ui,j = u(xi, yj), i = 1, · · · , l, j = 1, · · · , c have l × c pixels, where l and c are the204

numbers of rows and columns in the image, respectively. Other quantities are set up similarly.205

For sake of simplicity, we use a generic notation u for discussing discretization. For the206

discrete differential operators, we assume periodic boundary conditions for u. By choosing207

periodic boundary conditions, the action of each of the discrete differential operators can208

be regarded as a circular convolution of u and allows the use of fast Fourier transform (see209

[25, 34, 38] for more details). The discrete gradient is an operator from Rl×c to R, given by210

∇u = (∂xu, ∂yu) where ∂x and ∂y are forward difference operators defined as follows:211

∂xu =

{
u(i+ 1, j)− u(i, j) 1 ≤ i < l, 1 ≤ j ≤ c,
u(1, j)− u(i, j) i = l, 1 ≤ j ≤ c,

∂yu =

{
u(i, j + 1)− u(i, j) 1 ≤ i ≤ l, 1 ≤ j < c,

u(i, 1)− u(i, j) 1 ≤ i ≤ l, j = c.

The discrete divergence is an operator from Rl×c to R and, for n = (n1, n2), given by divn =212
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←−
∂ xn1 +

←−
∂ yn2 where backward difference operators are defined by213

←−
∂ xu =

{
u(i, j)− u(i− 1, j) 1 < i ≤ l, 1 ≤ j ≤ c,
u(i, j)− u(l, j) i = 1, 1 ≤ j ≤ c,

←−
∂ yu =

{
u(i, j)− u(i, j − 1) 1 ≤ i ≤ l, 1 < j ≤ c,
u(i, j)− u(i, c) 1 ≤ i ≤ l, j = 1.

Then, the discrete Laplace operator is given by ∆u = div (∇u). Similarly, we define the214

following (forward and backward) second-order discrete differential operators:215

∂xxu =
←−
∂ xxu =


u(l, j)− 2u(i, j) + u(i+ 1, j) i = 1, 1 ≤ j ≤ c,
u(i− 1, j)− 2u(i, j) + u(i+ 1, j) 1 < i < l, 1 ≤ j ≤ c,
u(i− 1, j)− 2u(i, j) + u(1, i) i = l, 1 ≤ j ≤ c,

216

∂yyu =
←−
∂ yyu =


u(i, c)− 2u(i, j) + u(i, j + 1) 1 ≤ i ≤ l, j = 1,

u(i, j − 1)− 2u(i, j) + u(i, j + 1) 1 ≤ i ≤ l, 1 < j < c,

u(i, j − 1)− 2u(i, j) + u(i, 1) 1 ≤ i ≤ l, j = c,
217

∂xyu = ∂yxu =


u(i, j)− u(i+ 1, j)− u(i, j + 1) + u(i+ 1, j + 1) 1 ≤ i < l, 1 ≤ j < c,

u(i, j)− u(1, j)− u(i, j + 1) + u(1, j + 1) i = l, 1 ≤ j < c,

u(i, j)− u(i+ 1, j)− u(i, 1) + u(i+ 1, 1) 1 ≤ i < l, j = c,

u(i, j)− u(1, j)− u(i, 1) + u(1, 1) i = l, j = c,

218

←−
∂ xyu =

←−
∂ yxu


u(i, j)− u(i, c)− u(l, j) + u(l, c) i = l, j = 1,

u(i, j)− u(i, j − 1)− u(l, j) + u(l, j − 1) i = 1, 1 ≤ j < c,

u(i, j)− u(i, c)− u(i− 1, j) + u(i− 1, c) 1 < i < l, j = 1,

u(i, j)− u(i, j − 1)− u(i− 1, j) + u(i− 1, j − 1) 1 < i < l, 1 < j ≤ c.

Based on the above operators, we define the following fourth-order differential operator:219

div2.∇2u =
←−
∂ xx∂xxu+

←−
∂ yy∂yyu+

←−
∂ xy∂xyu+

←−
∂ yx∂yxu.

Thus the first version of an ALM algorithm is shown in Algorithm 3.1.220

In order to solve the optimisation problem (3.4) more efficiently, we now consider a decou-221

pled version of all main variables for the solution. The minimization problem is decomposed222

into a number of sub-problems, each of which can be solved quickly. In particular, we split223

the problem into four (main) sub-problems. Then, an alternating minimization and itera-224

tive procedure is obtained and shown in Algorithm 3.2. We discuss next how to solve these225

sub-problems.226

The u-subproblem. Fixing Kk, pk, nk, mk and λki (i = 1, . . . , 5), the u-subproblem227

consists in finding uk+1 from solving the following minimization problem:228

(3.10) min
u
{S(u) +

r1

2

∫
Ω

(T (u)−Kk)2dx +

∫
Ω

(T (u)−Kk)λk1dx +
1

2σ

∫
Ω
Cs(u, λk5) dx}.
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Algorithm 3.1 Augmented Lagrangian method

1. Initialization: u0, K0, p0, n0,m0 and λ0
1, λ0

2, λ0
3, λ0

4 and λ0
5.

2. Iterate for k = 1, 2, . . . until a required tolerance:
— compute an approximate minimizers uk+1, Kk+1, pk+1, nk+1 and mk+1 of the
augmented Lagrangian functional with the fixed Lagrange multipliers λk1, λk2, λk3, λk4
and λk5: [

uk+1,Kk+1,pk+1,nk+1,mk+1
]

=

argminu,K,p,n L1(u,K,p,n,m, λk1, λ
k
2, λ

k
3, λ

k
4, λ

k
5).

(3.4)

— Update Lagrange multipliers

λk+1
1 = λk1 + r1(T (uk+1)−Kk+1),(3.5)

λk+1
2 = λk2 + r2(pk+1 −∇Kk+1),(3.6)

λk+1
3 = λk3 + r3(pk+1 − |pk+1|nk+1),(3.7)

λk+1
4 = λk4 + r4(mk+1 − pk+1 −∇R),(3.8)

λk+1
5 = max{0, λk5 − σCε(uk+1)},(3.9)

Algorithm 3.2 An more efficient solution procedure for alternating iterations

1. Initialization: ũ0 = uk, K̃0 = Kk, p̃0 = pk,ñ0 = nk and m̃0 = mk.
2. Iterate for k = 1, 2, . . . until a required tolerance:

— Set the Lagrange multipliers
λ1 = λk1, λ2 = λk2, λ3 = λk3, λ4 = λk4 and λ5 = λk5,

— Solve for l = 1, · · · , L the following problems:

ũl+1 = argminu L1(u, K̃ l, p̃l, ñl,mk, λ1, λ2, λ3, λ4, λ5),

K̃ l+1 = argminK L1(ũl+1,K, p̃l, ñl,mk, λ1, λ2, λ3, λ4, λ5),

p̃l+1 = argminp L1(ũl+1, K̃ l+1,p, ñl,mk, λ1, λ2, λ3, λ4, λ5),

ñl+1 = argminn L1(ũl+1, K̃ l+1, p̃l+1,n,mk, λ1, λ2, λ3, λ4, λ5),

m̃l+1 = argminn L1(ũl+1, K̃ l+1, p̃l+1,nl+1,m, λ1, λ2, λ3, λ4, λ5).

— Prepare for the next iteration by setting
[uk+1,Kk+1,pk+1,nk+1,mk+1] = [ũl+1, K̃ l+1, p̃l+1, ñl+1, m̃l+1].

It is clear that the above minimization problem admits at least a solution u = (u1, u2) by229

solving the following system of PDEs in Ω:230

(3.11)


−α∆uk+1

1 + α1div2.∇2uk+1
1 + r1(T (uk+1)−Kk)∂xT (uk+1)

+λk1∂xT (uk+1) + ∂u1Cs(uk+1, λk5) = 0,

−α∆uk+1
2 + α1div2.∇2uk+1

2 + r1(T (uk+1)−Kk)∂yT (uk+1)

+λk1∂yT (uk+1) + ∂u2Cs(uk+1, λk5) = 0
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with the periodic boundary conditions on ∂Ω. To solve the previous non-linear PDEs, we use231

a fast time marching method, i. e., find uk+1 = (uk+1
1 , uk+1

2 ) which solves232

(3.12)

{
uk+1

1 − dt[α∆uk+1
1 + α1div2.∇2uk+1

1 ] = F1(uk+1
old ), in Ω,

uk+1
2 − dt[α∆uk+1

2 + α1div2.∇2uk+1
2 ] = F2(uk+1

old ), in Ω,

where dt is the time step, uk+1
old is the solution at the previous iteration for the time marching

method and

F1(u) = −dt[r1(T (u)−R)∂xT (u)− λk1∂xT (u)− ∂u1Cs(u, λk5)] + u1,

F2(u) = −dt[r1(T (u)−R)∂yT (u)− λk1∂yT (u)− ∂u2Cs(u, λk5)] + u2.

To solve the above fourth-order equations in each time step iteration, we use the 2-dimensional233

discrete Fourier transforms. In fact, we have:234

L�F(uk+1
1 ) = F(F1(uk+1

old )), and L�F(uk+1
2 ) = F(F2(uk+1

old )),

where L = I + αdtF(∆·) + α1dtF(div2.∇2·). The operator F(·) is the Fourier transform and235

“� ” means point-wise multiplication of matrices. Therefore, the discrete solutions u1 and u2236

can be obtained by applying the inverse of the discrete two-dimensional Fourier transform to237

the previous equation and we have:238

(3.13) uk+1
1 = F−1

(
F(F1(uk+1

old ))� L
)

and uk+1
2 = F−1

(
F(F2(uk+1

old ))� L
)
,

where “� ” means point-wise division of matrices.239

Remark 1. We emphasizes that computing the determinant is a non-trivial task. A dis-240

cretization which well ensures that the map is diffeomorphic is discussed in [2, 13] and is based241

on finite element method. In our case, we are not using this discretization in the numerical242

computation as we are solving a system of PDEs defined only on the nodal points. However,243

the discretization is used for computing the determinant after getting the solution to check if244

the obtained map is diffeomorphic.245

The K-subproblem. Fixing uk+1, pk, nk, mk and λki (i = 1, · · · , 5), the K-problem246

involves the minimization of the following energy:247

min
K

{r1

2

∫
Ω

(T (uk+1)−K)2dx +
r2

2

∫
Ω

(pk −∇K)2dx

+

∫
Ω

(T (uk+1)−K)λk−1
1 dx +

∫
Ω

(pk −∇K) · λk2dx
}
.

This minimization problem is solved through its optimality condition:248

(3.14) − r2∆Kk+1 + r1K
k+1 = r1T (uk+1)− r2divpk − divλk2 + λk1.

We take advantage from the use of the 2-dimensional discrete Fourier transforms to compute249

K. In fact, applying the Fourier transforms to250

LS �F(K) = F(RS),
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where “� ” means point-wise multiplication of matrices, RS is the right side of (3.14) and251

LS = −r2F(∆·) + r1I.

Therefore, the discrete solution is given by:252

(3.15) K = F−1 (F(RS)� LS) ,

where F−1(·) is the inverse of the discrete two-dimensional Fourier transform.253

The p-subproblem. Fixing uk+1, Kk+1, nk, mk and λki (i = 1, · · · , 5), the p-subproblem254

consists in minimizing, w.r.t., p, the following energy:255

r2

2

∫
Ω

(p−∇Kk+1)2dx +
r3

2

∫
Ω

(p− |p|nk)2dx +
r4

2

∫
Ω

(p +∇R−mk)2

256

+

∫
Ω

(p−∇Kk+1) · λk2dx +

∫
Ω

(p− |p|nk) · λk3 +

∫
Ω

(p +∇R−mk) · λk4 dx

+
λ

2

∫
Ω

(|p|+ |∇R| − |m|)2 dx.

(3.16)

It is challenging to solve the above p-minimization problem due to the non-differentiability of257

|p| in the quadratic term. To alleviate this situation, we consider a fixed-point formulation258

by lagging |pk|nk in the kth iteration instead of the constraint p = |p|nk. Thus, a simple259

reformulation rewrites the above problem as an equivalent minimization problem:260

(3.17) min
p

∫
Ω
β|p| dx +

r2 + r3 + r4 + λ

2

∫
Ω

(p− C)2dx +Res,

where the quantity Res does not depend on p, β = −λk3 · nk − λ(|mk| − |∇R|) and261

(3.18) C =
r2∇Kk + r3|pk|nk + r4(mk −∇R)− λk2 − λk3 − λk4

r2 + r3 + r4 + λ
.

The minimization problem (3.17) has a closed from solution which is explicitly given by the262

following shrinkage-like formula:263

(3.19) pk+1 = max

{
1− β

(r2 + r3 + r4 + λ)|C|
, 0

}
C.

The n-subproblem. Fixing uk+1, Kk+1 and pk+1 and λki (i = 1, · · · , 5), the n-problem
consists in solving the following minimization problem:

min
n

λ

2

∫
Ω

(n−∇nR)2dx +
r3

2

∫
Ω

(pk+1 − |pk+1|n)2dx +

∫
Ω

(pk+1 − |pk+1|n) · λk3dx.

The above problem has a closed from solution which is is explicitly given by:264

(3.20) n =
λ∇nR+ r3|pk+1|pk+1 + |pk+1|λk3

λ+ r3
.
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The m-subproblem. To find the optimal value of mk+1, we solve the following optimisa-265

tion sub-problem:266

min
m

λ

2

∫
Ω

(|pk+1|+ |∇R| − |m|)2 dx +
r4

2

∫
Ω

(pk+1 +∇R−m)2 dx

+

∫
Ω

(pk+1 +∇R−m) · λk4 dx.
(3.21)

The above problem is equivalent to minimizing the following energy:

min
m
−λ
∫

Ω
(|pk+1|+ |∇R|)|m| dx +

λ+ r4

2

∫
Ω

(m− C)2dx +Res,

where both Res and C do not depend on p, with C given by:

C =
r4(pk+1 +∇R) + λk4

λ+ r4
.

The solution is explicitly given by:267

(3.22) mk+1 = max

{
1 +

λ(|pk+1|+ |∇R|)
(λ+ r4)|C|

, 0

}
C.

268

Lemma 3.1 ([37]). Let f : R→ R be a closed, proper and convex function. Let (wn)n∈N be269

a sequence of distinct functions in domf converging to w∗ ∈ int(domf) and let Sn ∈ ∂f(wn).270

Then there exists a subsequence (Snk)k∈N that converges to the point S∗, where S∗ ∈ ∂f(w∗).271

In the sequel, we give a partial result about the limit behaviour of the solutions generated
by the ALM method. Let us consider the space:

X = W̃ ×W 1,2
0 (Ω)× L2

div(Ω)× L2
div(Ω)× L2(Ω)× L2

div(Ω)× L2
div(Ω)× L2

div(Ω)× L2(Ω),

where W̃ = {u ∈ W, div2.∇2u ∈ L2(Ω)} and

L2
div(Ω) = {w ∈ (L2(Ω))2, divw ∈ L2(Ω)}.

Proposition 3.2. If the sequence (uk,Kk,pk,nk, λk1, λ
k
2, λ

k
3, λ

k
4, λ

k
5) ∈ X , generated by the

ALM method, converges to a point (u∗,K∗,p∗,nk, λ∗1, λ
∗
2, λ
∗
3, λ
∗
4, λ
∗
5) ∈ X , then the limit point

satisfies the following first-order optimality conditions:

−α∆u∗1 + α1div2.∇2u∗1 + λ1∂xT (u∗) + ∂u1Cs(u∗, λ∗5) = 0, in Ω,

−α∆u∗2 + α1div2.∇2u∗2 + λ1∂xT (u∗) + ∂u2Cs(u∗, λ∗5) = 0, in Ω,

divλ∗2 − λ∗1 = 0, −β∗S∗p +
∑4

i=2 λ
∗
i = 0,

λn∗ − λ∇nR− |p∗|λ∗3 = 0, −λ(|p∗|+ |∇R|)S∗m + λm∗ − λ∗4 = 0

min(λ∗5, σF(u∗)) = 0, T (u∗) = K∗, p∗ = ∇K∗,
m∗ = p∗ +∇R, p∗ = |p∗|n∗,

where β∗ = −λ∗3 · n∗ − λ(|m∗| − |∇R|). Consequently u∗ = (u∗1, u
∗
2) is a stationary point of272

model (2.1).273
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Proof. By (3.5), (3.6), (3.7) and (3.8), we have:274

lim 1
r1

(λk+1
1 − λk1) = lim(T (uk+1)−Kk+1) = T (u∗)−K∗ = 0,(3.23)

lim 1
r2

(λk+1
2 − λk2) = lim(pk+1 −∇Kk+1) = p∗ −∇K∗ = 0,(3.24)

lim 1
r3

(λk+1
3 − λk4) = lim(nk+1 − |pk+1nk+1) = n∗ − |p∗|n∗ = 0.(3.25)

lim 1
r4

(λk+1
4 − λk4) = lim(mk+1 − |pk+1| − ∇R) = m∗ − p∗ −∇R = 0.(3.26)

From (3.8), we get:275

(3.27) 0 = lim(λk+1
5 − λk5) = lim max{−λk5,−σFε(uk+1)} = min{λ∗5, σFε(u∗)}.

Back to the optimality condition for the u-subproblem in (3.11), taking the limit in (3.11)
over k and considering equalities (3.24) and (3.26), we get:{

−α∆u∗1 + α1div2.∇2u∗1 + λ1∂xT (u∗) + ∂u1Cs(u∗, λ∗5) = 0, in Ω,

−α∆u∗2 + α1div2.∇2u∗2 + λ1∂xT (u∗) + ∂u2Cs(u∗, λ∗5) = 0, in Ω.

Now, we consider the optimality conditions for the K-subproblem and take the limit over k:276

− r2(∆Kk+1 − divpk) + r1(Kk+1 − T (uk+1)) + divλk2 − λk1 = 0, i.e.

− r2div(∇K∗ − p∗) + r1(K∗ − T (u∗)) + divλ∗2 − λ∗1 = 0

where we used div∇K∗ = ∆K∗. Using the equalities (3.23) and (3.24), ∇K∗ − p∗ = 0 and
K∗−T (u∗) = 0. Then divλ∗2−λ∗1 = 0. The optimality condition for the modified p-subproblem
(3.17) leads to:

−βSk+1
p + r2(pk+1 −∇Kk+1) + r3(pk+1 − |pk|nk)) + r4(p +∇R−mk) +

4∑
i=2

λki ,

where Sk+1
p ∈ ∂|pk+1| and β is given in (3.18). By Lemma 3.1, there exists a subsequence,

still denoted by Skp ∈ ∂|pk|, converging to S∗p ∈ ∂|p∗|. Taking the limit over k and taking into
account equalities (3.24) and (3.25), we obtain:

−β∗S∗p +
4∑
i=2

λ∗i = 0.

For the n-subproblem, the optimality conditions give:

λ(nk+1 −∇nR) + r3(pk+1 − |pk+1|nk+1)2 + λk3dx = 0

Considering the limit over k (3.25), we get:

λn∗ − λ∇nR− |p∗|λ∗3 = 0.

The same analysis applied to the optimality condition for the m-subproblem (3.21) leads to
the equality:

−λ(|p∗|+ |∇R|)S∗m + λm∗ − λ∗4 = 0, S∗m ∈ ∂|m∗|.

277

Finally we remark on getting the initializations by a multiresolution technique, also to278
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avoid local minima and to speed up registration. We use a scale space approach by resizing279

the original images to a sequence of coarser ones where computations are cheap and register280

these smaller images (see Fig. 3). Then starting from the coarsest level, we interpolate the281

obtained transformation fields to get a starting guess on finer (next) levels until the original282

resolution on the finest level is reached.

Figure 3. Example of a multilevel representation of images.

283

4. Numerical experiments. In this section, we assess the performance of the proposed284

model (denoted by “New Model” below) and its algorithm. We compare the proposed model285

with two other multimodality models:286

• A MI model (denoted by MI below) that combines the regulariser (2.2) and the MI287

similarity measure (1.3);288

• A NGF model (denoted by NGF below) that combines the regulariser (2.2) and the289

standard NGF similarity measure (1.4).290

To measure the quality of the registered images, the following quantity291

(4.1) GFer =
F (∇T (u),∇R)

F0

is used as the relative reduction of the dissimilarity, where for two vectors x = (x1, x2) and
y = (y1, y2), we have

F (x, y) = ‖ xt
‖xt‖

− yt
‖yt‖
‖1, xt = (x1, x2), yt = (y1, y2).
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Here, F0 = F (∇T (u),∇R) if u = 0. For additional criteria to measure the goodness of292

registration, we also use the relative normalized gradient fields293

(4.2) NGFer =
DNGF (T (u), R)

NGF0

where NGF0 = DNGF (T (u), R) if u = 0, and non-negative mutual information measure294

(4.3) MIer = −DMI(T (u), R).

For all the numerical experiments presented here, we summarise the comparative results in a295

table where we give the error computed using formulas (4.1)-(4.2). To measure mesh validity,296

we compute C(u) = det (I +∇u) from (2.1) and monitor if it is positive.297

In order to reduce the number of parameters to tune, we set r1 = 5 , r2 = 10 and
r3 = r4 = 100 in all numerical experiments unless stated otherwise. We consider Nmax = 70
the maximum number of iterations for New Model from Algorithm 3.2 and we stop the
iterations before reaching Nmax = 70 if the following stopping criterion

‖pk +∇R−mk‖L1√
l × c

≤ τ

is satisfied for a given tolerance τ = 10−3, where l and c are the numbers of rows and columns298

in the image. Though we can use all equations from Algorithm 3.1 to stop iterations, we299

find that the above stopping criterion based on its 4th equation is sufficient as it includes300

information about the gradients of both images. Thus, it can control the ALM iterations and301

the quality of registration at the same time. For each variable u1 and u2, we computed the302

residual via finite differences approximation and the global residual is taken as the sum. The303

residual is given by the quantity304

(4.4) Ser =
1

l × c

l∑
i=1

c∑
j=1

∣∣∣ (∂J1(uk)

∂uk1

)
i,j

∣∣∣ +
1

l × c

l∑
i=1

c∑
j=1

∣∣∣ (∂J1(uk)

∂uk2

)
i,j

∣∣∣
where (

∂J1(uk)

∂uk1
)i,j =

J(uk)− J(ukij)

uk1(i, j)− uk−1
1 (i, j)

, ukij = (ukij1 , uk2) and ukij1 takes the same values of305

uk1 on each point of the discrete domain, except on the position (i, j) where it takes the values306

of the old ALM solution uk−1
1 (i, j). The term (

∂J1(uk)

∂uk2
)i,j is defined in a similar way. We307

also plot the curve of the quantity308

(4.5) Dm =
DGF (T (u), R)

DGF (T,R)
+
DTM (T (u), R)

DTM (T,R)

which represents the relative errors for the new similarity measures as function of the ALM309

iterations.310

For the NGF and MI similarity measures, the numerical experiments are performed using311

the publicly available image registration toolbox flexible algorithms for image registration312

(FAIR)1, where the implementation is based on the Gauss-Newton method. The constraint313

1http://www.siam.org/books/fa06/
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on the determinant det(I + ∇u) > 0 is explicitly included in FAIR’s models; in fact, a line314

search method is used in FAIR and the new descent direction is chosen such that the constraint315

det(I +∇u) > 0 is verified.316

As we shall see, in almost all experiments, the New Model outperforms the standard317

NGF and the New Model also outperforms MI in examples where dominating gradients318

represent main image features or they correspond to each other, while the New Model319

performs similarly to MI for other examples (e.g. Example 6).320

Example 1. In the first example, we consider a synthetic image to illustrate the type of321

images where mutual information (MI) and the normalized gradient field (NGF) models are322

at disadvantages. We obtain a good result using New Model as seen in Fig.4. Here, the323

NGF and MI models were tested for different regularization parameters. The optimal choices324

are considered by making different tests where we set α1 = 1, α = 0.01α1 and we vary λ such325

that α1
λ ∈ {10−5, 5× 10−5, 10−4, 5× 10−4, 10−3, 10−2} for MI, and α1

λ ∈ {2.5, 2, 1.5, 1, 0.5, 0.1}326

for NGF. The optimal parameters were α1
λ = 10−4 and α1

λ = 10−4 = 0.5 for MI and NGF,327

respectively. They were chosen such that the registered image is very close to the reference328

and the transformations does not suffer from mesh folding. For comparison, we used the329

Jaccard similarity coefficient (JSC) which is defined as follows:330

(4.6) JSC =
|ST ∩ SR|
|ST ∪ SR|

,

where ST and SR represent, respectively, the segmented regions of interest (with red contour)331

in the deformed template (after registration) and the reference.332

Examples 2 and 3. In Fig 5, we consider a reference image from photon density weighted333

MRI and a template image which represent MRI-T2, both of size 256× 256. A seocnd set of334

examples is shown in Fig 6. We compare with the different multi-modal registration models.335

For each model, we display registered templates. We can see that all models perform well for336

both examples and give satisfactory results. The results of the NGF and MI are broadly337

comparable. In both examples with all models, the results for the registration look visually338

identical. We display an overlay in alternating squared patches of the registered and the339

reference image (to possibly see major discontinuities of features). We quantify the quality of340

registration using the GFer, MIer and NGFer errors which confirm that New Model; e.g.341

at the top left (second box down) of Fig 5, gives better alignments than compared models.342

For the run runtime comparison with the MI and NGF models, we tested all models for343

the pair images in 5 for different resolutions. The FAIR’s models are always slightly faster344

because they are optimized (based on Gauss-Newton method)345

Example 4. In Fig. 8, we present the result of registering two diffusion-MRI images of346

size 256× 256 with respectively high and low b-value diffusion. Since the intensity values for347

different b-values are not comparable, conventional non-modality registration models (that348

rely on matching the images based on the intensity values) will fail. We show the registration349

results by our compared 3 models in Fig. 8. We notice that NGF and MI models give350

comparable results. However, our New Model gives the best result comparing to the other351

two and visually, the reference and the transformed template are well aligned in all regions.352

Since C(u) > 0, all transformed grids have no mesh folding.353
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(a) The reference R
(with a bright circle)

(b) The template T
(with a gray ellipse)

(c) T (u) by New
Model, JSC= 0.938
(Success: a gray circle)

(d) T (u) using NGF,
JSC=0.498 (Failure)

(e) T (u) using MI,
JSC=0.717 (Failure)

(f) x + u(x) using New
Model

(g) x+u(x) using NGF (h) x+ u(x) using MI

Figure 4. Example 1: Comparison of three different models. Clearly only Our Model works while NGF,
MI fail completely.

Example 5. In the next experiment in Fig. 9, our aim is to investigate capabilities of354

the proposed models for registration of MRI-T1 and MRI-T2 images in higher resolution355

512× 512. We can observe from overlaying of the registered and the reference images that all356

models work fine in producing acceptable registration results, however the registered result357

by New Model produces the best alignment in all parts and gives the better similarity value358

than NGF (here identical to MI). We also show the resulting transformed grids for all models359

where there is no mesh folding due to C(u) > 0. For the above 4 examples (Ex.2–Ex.5), in360

Fig 10, we display the evolution of the error versus the ALM iteration to the final solution.361

We also plot the evolution of the residual for the energy (2.1) as a function of ALM iterations.362

Here we see that our ALM algorithm converges though the convergence is not monotone.363
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Example 6. Example 6 tests the registration of a MRI image to a PET with much noise364

In Fig. 12, we present the results obtained using the New Model, NGF and MI. Clearly,365

New Model and MI perform better than NGF in this case and in particular the New366

Model performs the best (even though it is slightly better than MI Model). We display an367

overlaying of the registered and the reference images which shows that the registered result368

by New Model produces the best alignment.369

Regularisation parameters dependence test. In Table 3, we compare the sensitivity of370

the proposed model with respect to varying the ratio α1
λ . The model was tested on Example371

2 where we set α1 = 1, α = 0.01α1 and we vary λ for all experiments. We can see a clear372

process of the changes of the relative error where the best error is obtained for α1
λ = 0.017373

and the error increases as the ratio decreases more than 0.017.374

Resolution
64× 64 128× 128 256× 256 512× 512

Time (s) for New Model 29.836 49.931 117.342 272.578

Time (s) for MI Model 14.794 21.437 48.881 76.398

Time (s) for NGF Model 22.003 42.845 100.961 264.388
Table 1

Run time comparison for all models for the pair of MRI images in Fig. 6

5. Conclusions. Image registration is an increasingly important and often challenging375

image processing task with a broad range of applications such as in astronomy, optics, biol-376

ogy, chemistry and medical imaging. In this paper to improve the multi-modality registration377

model based on the normalized gradients of the images, we propose a new gradients-based378

variational model using a regularisation term which combines first- and second-order deriva-379

tives of the displacement. After showing the solution existence, we present a fast ALM for380

its numerical implementation. Experimental tests confirm that our proposed model performs381

better in multi-modality images registration than compared models. It is pleasing to see382

much improved results over established models within the same modelling framework. Future383

work will consider generalizations to 3 dimensions and registration of images that do not have384

dominant gradients.385
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(a) The reference R (b) The template T (c) Overlay of R and T

(d) T (u) by
New Model,
GFer=0.247,MIer=1.206,
NGFer= 0.756

(e) T (u) using NGF,
GFer=0.636, MIer=1.17,
NGFer=0.640

(f) T (u) using
MI, GFer=0.490,
MIer=1.193,
NGFer=0.879

(g) Overlay of R, T (u) for
New Model

(h) Overlay of R and
T (u) for NGF

(i) Overlay of R and T (u)
for MI

(j) x + u(x) by New
Model, min C = 0.22

(k) x + u(x) using NGF,
min C = 0.19

(l) x + u(x) using MI,
min C = 0.45

Figure 5. Example 2: Comparison of different models to register T-1 and T2-MRI images. New Model
performs the best.
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(a) The reference R (b) The template T (c) Overlay of R and T

(d) T (u) by New
Model, GFer=0.278,
MIer=1.290,
NGFer=0.389

(e) T (u) using
NGF, GFer=0.336,
MIer=1.265,
NGFer=0.491

(f) T (u) using
MI, GFer=0.463,
MIer=1.265, NGFer=
0.579

(g) Overlay of R, T (u) for
New Model

(h) Overlay of R and
T (u) for NGF

(i) Overlay of R and T (u)
for MI

(j) x + u(x) by New
Model, min C = 0.31

(k) x + u(x) using
NGF, min C = 0.31

(l) x+u(x) using MI,
min C = 0.33

Figure 6. Example 3: Registration of a second pair of MRI images (T1 and T2). New Model performs
the best.
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Figure 7. Comparison of 3 different models to register the MRI images fin Fig. 6. Example 3 zoomed in
the red squares (see Fig. 6): From left to right; Zooms in the reference R and the registered T (u) using New
model, NGF and MI, respectively.
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(a) The reference R (b) The template T (c) Overlay of R and T

(d) T (u) using New
Model, GFer=0.674,
MIer=1.184,
NGFer=0.8

(e) T (u) using
NGF, GFer=0.901,
MIer=1.150,
NGFer=0.856

(f) T (u) using
MI, GFer=0.765,
MIer=1.154,
NGFer=0.849

(g) Overlay of R and
T (u) for new model

(h) Overlay of R and
T (u) for NGF

(i) Overlay of R and T (u)
for MI

(j) x + u(x) using New
Model, min C = 0.51

(k) x + u(x) using NGF,
min C = 0.42

(l) x + u(x) using MI,
min C = 0.43

Figure 8. Example 4: High-b- and Low-b-value Diffusion-weighted MRIs (of 256 × 256) using different
models. New Model performs the best.
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(a) The reference R (b) The template T (c) Overlay of R and T

(d) T (u) using
New Model,
GFer=0.454, MIer=1.170,
NGFer=0.623

(e) T (u) using
NGF, GFer=0.741,
MIer=1.163,
NGFer=0.656

(f) T (u) using
MI, GFer=0.454,
MIer=1.163,
NGFer=0.631

(g) Overlay of R and T (u)
for New Model

(h) Overlay of R and T (u)
for NGF

(i) Overlay of R and T (u)
for MI

(j) x + u(x) using New
Model, min C = 0.55

(k) x + u(x) using NGF,
min C = 0.25

(l) x + u(x) using MI,
min C = 0.95

Figure 9. Example 5: a pair of MRI images of higher resolution 512 × 512 by 3 different models. New
Model and MI perform identically, both better than NGF.
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Figure 10. Left: Log scale plot of the residual errors for u versus ALM iteration numbers for examples
2-5. Right: Plot of the error Ser values versus ALM iteration numbers for examples 2-5.

Figure 11. Left: Log scale plot of the distance Dm versus ALM iteration numbers for examples 2-5.
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(a) The reference R (b) The template T (c) The template T

(d) T (u) using New
Model, GFer=0.801,
MIer=1.341, NGFer=0.92

(e) T (u) using
NGF model,
GFer=0.952, MIer=1.187,
NGFer=0.957

(f) T (u) using MI model,
GFer=0.836, MIer=1.254,
NGFer=0.970

(g) Overlay of R and T (u)
for new model

(h) Overlay of R and T (u)
for NGF model

(i) Overlay of R and T (u)
for MI model

Figure 12. Example 6: Registering a PET image to an MRI vimage. New model performs better than
others in this example.
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