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Fast Multi-Grid Methods for Minimizing
Curvature Energies

Zhenwei Zhang , Ke Chen , Ke Tang , Fellow, IEEE, and Yuping Duan , Member, IEEE

Abstract— The geometric high-order regularization methods
such as mean curvature and Gaussian curvature, have been
intensively studied during the last decades due to their abilities in
preserving geometric properties including image edges, corners,
and contrast. However, the dilemma between restoration quality
and computational efficiency is an essential roadblock for
high-order methods. In this paper, we propose fast multi-grid
algorithms for minimizing both mean curvature and Gaussian
curvature energy functionals without sacrificing accuracy for
efficiency. Unlike the existing approaches based on operator
splitting and the Augmented Lagrangian method (ALM),
no artificial parameters are introduced in our formulation, which
guarantees the robustness of the proposed algorithm. Meanwhile,
we adopt the domain decomposition method to promote parallel
computing and use the fine-to-coarse structure to accelerate
convergence. Numerical experiments are presented on image
denoising, CT, and MRI reconstruction problems to demonstrate
the superiority of our method in preserving geometric structures
and fine details. The proposed method is also shown effective in
dealing with large-scale image processing problems by recovering
an image of size 1024 × 1024 within 40s, while the ALM-based
method requires around 200s.

Index Terms— Mean curvature, gaussian curvature, multi-grid
method, domain decomposition method, image denoising, image
reconstruction.

I. INTRODUCTION

IMAGE restoration is a fundamental task in image
processing, which aims to recover the latent clean

image u from the observed noisy image f : � → R
defined on an open bounded domain � ⊂ R2. The total
variation (TV) proposed by Rudin, Osher, and Fatemi is
the most successful regularization used for image denoising
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problem [1], which minimizes the total lengths of all level
sets of the image. Although the Rudin-Osher-Fatemi model
has been proven to effectively remove noise and preserve
sharp edges, it also suffers from some unfavorable properties
including loss of image contrast and staircase effect [2].
High-order regularization methods have been investigated for
image restoration problems to overcome the drawback of TV
regularization including the fourth-order partial differential
equation (PDE) [3], total generalized variation [4], Euler’s
elastica [5], mean curvature [6] and total roto-translational
variation [7] etc.

The curvature regularization methods achieved great success
by minimizing curvature-dependent energies, which are well-
known for their good geometric interpretability and strong
priors in the continuity of edges and has been applied to
various data processing tasks such as image decomposition [8],
graph embedding [9], and missing data recovery [10] etc.
Considering the associated image surface characterized by
(x, f (x)) for x ∈ �, the image restoration problem is to find
a piecewise smooth surface (x, u(x)) to approximate the noisy
surface and simultaneously remove the outliers. The curvature
minimization problem can be formulated as follows

min
u∈V

∫
�

|κ(u)|dx +
α

2

∫
�

(u − f )2dx, (1)

where κ(u) can be either the mean curvature or Gaussian
curvature of the image surface, and V is a function space.
The definitions of mean curvature and Gaussian curvature are
described in Table I. To the best of our knowledge, one has
not identified the proper function to formulate problem (1),
which should be a subset of L2(�).

The minimization of curvature energies is more challenging,
such that efficient algorithms for solving the model (1) are
still limited. Originally, the gradient descent method [6] was
presented to solve the mean curvature model, which has to
solve fourth-order nonlinear evolution equations. Liu et al. [19]
developed a fast numerical algorithm for solving the high-
order variational models based on the split Bregman method.
Zhu et al. [11] developed the augmented Lagrangian method
(ALM) for the mean curvature model. Brito-Loeza and
Chen [12] propose a multi-grid algorithm for solving the mean
curvature model, which is based on an augmented Lagrangian
formulation with a special linearized fixed point iteration. The
situation is even worse for Gaussian curvature minimization
since no fast algorithms are developed yet. There are not
many studies of effective numerical algorithms for Gaussian
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TABLE I
THE MEAN CURVATURE AND GAUSSIAN CURVATURE REGULARIZATION TERMS CAN BE USED IN THE IMAGE RESTORATION MODEL (1)

curvature minimization. Alboul and Damme [20] used the
total absolute Gaussian curvature in the different contexts of
connectivity optimization for the triangulated surfaces. Gong
and Sbalzarini [21] proposed a variational model using the
local weighted Gaussian curvature as a regularization term,
which was effectively solved by the closed-form solution.
Elsey and Esedoglu [17] introduced the Gaussian curvature
regularization for surface processing as the natural analog of
the total variation, which was discretized on a triangulated
surface for reducing the difficulty of solution. Brito-Loeza
and Chen [18] presented a two-step method based on vector
field smoothing and gray level interpolation for solving the
Gaussian curvature minimization problem.

Zhong et al. [15] formulated the following curvature
regularization model by minimizing either Gaussian curvature
or mean curvature over image surfaces

min
u

∫
�

g(κ)

√
1 + |∇u|2dx +

λ

2

∫
�

(u − f )2dx, (2)

where g(·) denotes a certain function of the curvature. In [15],
the minimization problem (2) was regarded as a re-weighted
minimal surface model and handled by the alternating
direction method of multipliers (ADMM). Although the
curvature function can be explicitly evaluated using the current
estimation, one nonlinear sub-minimization problem has to
be computed by the Newton method resulting in rising
computational costs.

Gong and Sbalzarini [14] developed the curvature filters
by minimizing either Gaussian curvature or mean curvature
to smooth the noisy images. Rather than solving the higher-
order PDEs, the pixel-wise solutions were presented to find
the locally developable and minimal surfaces, which give zero
Gaussian curvature and zero mean curvature, respectively. The
idea of curvature filters was further studied in [22] and [13].
However, the curvatures lack rigorous definitions, which
limits their performance in real applications. Besides, when
combined with the data fidelity term, gradient descent was
used to estimate the solution leading to the slow convergence.

The multi-grid method is a fast numerical method
for solving large-scale linear and nonlinear optimization
problems [23], [24], [25], [26] and has been successfully
applied to image processing models. Chen and Tai [27]
proposed a nonlinear multi-grid method for the total variation
minimization based on the coordinate descent method. Savage
and Chen [28] presented a nonlinear multi-grid method based
on the full approximation scheme for solving the total variation
model. Chan and Chen [29] proposed a fast multilevel
method using primal relaxations for the total variation image

denoising and analyzed its convergence. Zhang et al. [30]
developed a multi-level domain decomposition method for
solving the total variation minimization problems, which used
the piecewise constant functions to ensure fast computation.
Tai et al. [31] proposed a multi-phase image segmentation
method by solving the min-cut minimization problem under
the multi-grid method framework. For the high-order model,
Brito-Loeza and Chen [12] presented a new multi-grid method
based upon a stabilized fixed point method for dealing
with the mean curvature model. The nonlinear multi-grid
method was applied to fourth-order models to accelerate the
convergence in [32]. However, these methods require very high
computational costs to solve the high-order PDEs and result
in low efficiency.

This work presents the efficient multi-grid method for
solving the highly nonlinear curvature regularization models.
We formulate a patch-based correction strategy from the
fine grid layer to coarse grid layers and then interpolate
the correction to each point nodal belonging to the patch.
We proposed a forward-backward splitting scheme [33], [34]
to solve the curvature minimization problem and prove its
convergence theoretically. More specifically, we first obtain
analytical solutions to the mean curvature/Gaussian curvature
minimization based on the local geometry property. In what
follows, we solve a convex optimization problem to estimate
the patch-wise update. To further improve the efficiency,
we use the four-color domain decomposition method on each
layer to enable all subproblems in the same color can be
solved in parallel. Numerous numerical experiments on both
image restoration and image reconstruction are presented to
demonstrate the efficiency and effectiveness of our algorithm
in dealing with large-scale image processing problems. To sum
up, our contributions are concluded as follows

• We propose an efficient multi-grid method based on
subspace correction method for solving the curvature
minimization problem (1), where the whole space is
transferred into small-size local patches;

• We use the forward-backward splitting scheme to solve
the non-convex patch-wise minimization problems, where
subproblems can be efficiently handled by the closed-
form solutions;

• The non-overlapping domain decomposition method is
applied to circumvent the dependencies between the
adjacent patches, which enables the parallel computation
for these subproblems;

• We develop a GPU-based curvature minimization pack-
age by utilizing the parallel computation ability of
a GPU card, which is desirable for high-speed real
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Algorithm 1 The Coordinate Descend Method for Solving the Minimization Problem (3)

applications. All our codes and data are available at
https://github.com/Duanlab123/MGMC.

• The application of the mean curvature minimization is
extended to CT and MR reconstruction problems to prove
our approach can well balance the image quality and
computational efficiency.

The rest of the paper is organized as follows. In Sect. II,
the coordinate descend method is proposed to solve the mean
curvature minimization problem and the coarse layers are
introduced to achieve a fast multi-grid algorithm. We extend
the idea to Gaussian curvature minimization problem in
Sect. III. Numerical experiments are conducted to illustrate the
advantages by comparing with the curvature filters and other
curvature-related methods in Sect. IV. In Sect. V, our curvature
methods are extended to solve image reconstruction problems
including both CT and MR reconstruction. We conclude the
paper in Sect. VI with some remarks and future works.

II. THE MEAN CURVATURE MINIMIZATION PROBLEM

Without loss of generality, a gray-scale discrete image u
of size m × n has its pixel values u[k1, k2] defined at the
locations [k1, k2] in the domain � = {1, . . . , m} × {1, . . . , n},
where k1 and k2 are the row and column indices, respectively.
Then the discrete mean curvature energy of (1) can be given
as

min
u

F(u) :=

m∑
k1=1

n∑
k2=1

|H(u[k1, k2])|

+
α

2
(u[k1, k2] − f [k1, k2])

2, (3)

where H(u[k1, k2]) =
1
2 (κmin(u[k1, k2]) + κmax(u[k1, k2]))

denotes the mean curvature of the pixel (k1, k2, u[k1, k2]).
We introduce a series of basis functions φk1,k2(x) on each
pixel [k1, k2] ∈ � as follows

φk1,k2(x) =

{
1, if x = [k1, k2];

0, if x ̸= [k1, k2].

Relying on the above basis functions, the minimization
problem (3) can be considered as finding the best correction
to minimize the curvature-related energy. Referred to [27],

Algorithm 2 The Forward-Backward Splitting Method for
Solving the Local Minimization Problem (5)

we choose an initial value u0 and set l = 0. For k1 = 1, . . . , m,
k2 = 1, . . . , n, we update u using the correction c ∈ R over
each pixel as follows

ul+1 = ul +

m∑
k1=1

n∑
k2=1

cφk1,k2(x). (4)

Relying on the coordinate descend method [27], [30], [35], the
correction equation (4) is transferred into a sequence of the
one-dimensional minimization problems, the details of which
is described as Algorithm 1.

The core issue becomes how to solve (5) effectively.
Here, we use the forward-backward splitting (FBS) method
to reformulate the local problem (5) into a couple of
sub-minimization problems. The forward-backward splitting
algorithm is a popular choice for the minimization problem
with a smooth data fidelity; see for instance [36], [37]. The
detailed algorithm is provided as Algorithm 2.

Solution to the Sub-Minimization Problem (6): We can use
the geometric interpretation to estimate the correction in a
local window according to well-known Bernstein’s theorem.
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Fig. 1. Illustration of the eight tangent planes located in a 3 × 3 local patch.

Proposition 1: Let dℓ be the distances of (k1, k2, u[k1, k2])

on the image surface leaving from the tangent planes.
Supposing that the correction c is defined as c =

1
ι

∑ι
ℓ=1 dℓ

with ι being the total number of tangent planes, the mean
curvature energy |H(u[k1, k2] + c)| decreases.

Proof: According to Bernstein’s theorem, a graph of
a real function on R2 is a minimal surface, which should
be a plane in R3. Thus, the flatter the image surface, the
smaller the mean curvature regularization term. Suppose
there are ι tangent planes and the corresponding distances
of (k1, k2, u[k1, k2]) to its tangent planes are denoted by
dℓ, ℓ = 1, . . . , ι. To make the image surface as flat as possible,
we consider the following quadratic minimization problem

min
c∈R

ι∑
ℓ=1

(c − dℓ)
2,

where the optimal correction is c =
1
ι

∑ι
ℓ=1 dℓ.

As shown in Fig. 1, we enumerate total 8 local tangent
planes in a 3×3 window, which are denoted as T1 to T8 located
pairwise centrosymmetric and passed through the center point
to avoid the grid bias. Note that we can use more tangent
planes to obtain accurate principal curvatures, but this also
increases the calculation cost. Therefore, we later introduce
more tangent planes on the coarse layers in the multi-grid
framework to balance the effectiveness and efficiency.

Similar to our previous work [15], we compute the distances
dℓ, ℓ = 1, . . . , 8, as illustrated in Fig. 2. More specifically, let
the plane XY Z be a tangent plane of O and n be the normal
vector. The directed distance from O to the tangent plane can
be calculated by d =

−→
X O · n as follows (8), as shown at the

bottom of the page, where n is defined by the cross product of
the vector

−→
X Z and

−→
XY , i.e., n =

−→
X Z ×

−→
XY . The computation

of dℓ, ℓ = 1, . . . , 8, can be implemented in the same way.
And the update of ct+ 1

2
can be estimated as

ct+ 1
2

=
1
8

8∑
ℓ=1

dℓ. (9)

Solution to the Sub-Minimization Problem (7): We are
facing a quadratic minimization problem, which is formulated
as

min
c

α

2

(
c − f ∗

l [k1, k2]
)2

+
1

2ηt
(c − ct )

2
+

1
2ηt

(c − ct+ 1
2
)2.

(10)

Fig. 2. Illustration for the computation of the directed distance d from the
center point O to the tangent plane XY Z .

The minimization problem (10) can be solved by the closed-
form solution as follows

ct+1 =
1

2 + αηt

(
ct + ct+ 1

2
+ αηt f ∗

l

)
. (11)

A. Convergence Analysis of Algorithm 2

In the subsection, we present a brief discussion to show
the energy diminishing of Algorithm 2. Let c∗

∈ R denote
a minimizer of model (5), the mean curvature term and date
fidelity term are denoted by f (c) = |H(ul [k1, k2] + c)| and
r(c) =

α
2 (c − f ∗

[k1, k2])
2, respectively. The next lemma

provides a key tool for deriving convergence. For more details,
please refer to the forward-backward splitting scheme in [38].

Lemma 1 (Bounding Step Differences): Assume that the
norm of the gradient of r(c) and f (c) are bounded as

∥∇r(c)∥2
≤ G2, ∥∂ f (c)∥2

≤ D2,

where G, D are the Lipschitz constant of ∇r(c) and ∂ f (c),
respectively. We have

2ηt

(
f (ct ) + r(ct+1) − J (̃c)

)
≤ ∥ct − c̃∥2

− ∥ct+1 − c̃∥2
+ η2

t (5G2
+ 3D2). (12)

Proof: The proof is sketched in Appendix.
Based on Lemma 1, we can prove the following result, which
is important to derive the convergence results.

Lemma 2: Assuming that the norm of ∥̃c∥2
≤ E2 with E

being a positive constant, we sum the residuals (12) over t
from 1 through T and get a telescoping sum

T∑
t=1

ηt

[
f (ct ) + r(ct ) − J (̃c)

]
≤ G̃,

where G̃ = E2
+ 3

∑T
t=1 η2

t (G
2
+ D2).

Proof: The proof is similar to Theorem 2 in [38].
Therefore, a direct consequence of Lemma 2 can be obtained
when running Algorithm 2 with ηt ∝ 1/

√
t or with non-

summable step sizes decreasing to zero.

d =
−→
X O · n =

(u[k1, k2 − 1] + u[k1, k2 + 1] − 2u[k1, k2])√
(u[k1, k2 − 1] + u[k1, k2 + 1] − 2u[k1 − 1, k2])2 + (u[k1, k2 + 1] − u[k1, k2 − 1])2 + 4

, (8)
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Theorem 1: Assume that the conditions of Lemma 2 hold
and the step size ηt satisfy ηt → 0 and

∑
∞

t=1 ηt = ∞. Then
we have

lim inf
t→∞

J (ct ) − J (c∗) = 0.

Proof: For the first T iterations, Lemma 2 gives

min
t∈{0,...,T }

(
f (ct ) + r(ct ) − J (̃c)

) T∑
t=1

ηt

≤

T∑
t=1

ηt

[
f (ct ) + r(ct ) − J (̃c)

]
.

Let c̃ = c∗, we have

lim inf
t→∞

J (ct ) − J (c∗)≤
E2∑
∞

t=1 ηt
+

3
∑

∞

t=1 η2
t (G

2
+ D2)∑

∞

t=1 ηt
→0.

Remark 1: The step size η can be a constant or diminishing
with iterations, e.g., ηt = 1/

√
t .

Remark 2: Since the mean curvature minimization subprob-
lem can be explicitly solved by (9), we simply set t = 0 in
Algorithm 2 for all numerical experiments.

B. Our Multi-Grid Algorithm

Regarding problem (5) as the finest grid, we can use a larger
local window and generate the multi-grid algorithm for solving
the mean curvature minimization problem. Without loss of
generality, we assume the initial grid T consists of m ×n grid
points. Starting from the finest grid T1 = T , we consider a
sequence of coarse structure, T1, T2, . . . , TJ , with J being the
total number of layers. Our multi-grid structure is constructed
by gathering the grids point into non-overlapping patches of
different sizes. Specifically, the size of the patch set τ j on the
j th coarse layer is (2 j

−1)×(2 j
−1), and T j contains m j ×n j

patches with

m j = ⌈m/(2 j
− 1)⌉, n j = ⌈n/(2 j

− 1)⌉,

where ⌈·⌉ is a rounding up function. Then there are
N j = m j×n j patches on the j th coarse layers and the partition
can be expressed as T j = {τ i

j }
N j
i=1. In order to ensure each

patch is complete, we prolongate the image domain before
the partition using boundary conditions. It is straightforward
to define V j as a finite element space

V j = {v : v|τ j ∈ Pc(τ j ), ∀τ j ∈ T j },

where Pc denotes the space of all piecewise constant functions.
We equip the piecewise constant function space V j with a set
of basis functions {φi

j }
N j
i=1, which is defined as

φi
j (x) =

{
1, if x ∈ τ i

j ;

0, if x /∈ τ i
j ;

i = 1, . . . , N j .

Associated with each basis function, we define the one
dimensional subspace V i

j = span{φi
j }. Then, the whole space

V can be expressed as V =
∑J

j=1
∑N j

i=1 V i
j .

On the coarse grids, we consider a larger local patch
including more local tangent planes to be enumerated.

Fig. 3. Illustration of the eight tangent planes T9−T16 together with T1−T8 in
Fig. 1 form a coherent whole for a 5 × 5 patch on the first coarse layer.

We can come up with a recurrence formula for the number
of tangent planes on the j th layer as ι = 2 j+2. For
example, we enumerate the total of 16 triangular planes
for patches on the first coarse layer, half of which are the
same as the finest layer and the left ones are displayed in
Fig. 3. Correspondingly, we define one-dimensional subspace
minimization problem (7) over the subspace V i

j , i =

1, . . . , N j , j = 1, . . . , J as follows

min
c∈R

1
2

(
c −

1
ι

ι∑
ℓ=1

dℓ

)2
+

αs
2

(
c − f ∗

l
)2

,

where f ∗

l =
∑

[k1,k2]∈τ i
j

( f [k1, k2]−ul [k1, k2])/s, s =
∑

x∈τ i
j

φi
j (x).

The closed-form solution is defined as follows

ci
j =

1
2 + αs

(1
ι

ι∑
ℓ=1

dℓ + αs f ∗

l

)
.

Then, the correction c j = (c1
j , . . . , ci

j , . . . , c
N j
j ) on the j th

layer is reshaped into a matrix of size m j × n j as follows

c j =



· · ·
...

...
... · · ·

... ci1−1,i2−1
j ci1−1,i2

j ci1−1,i2+1
j

...

... ci1,i2−1
j ci1,i2

j ci1,i2+1
j

...

... ci1+1,i2−1
j ci1+1,i2

j ci1+1,i2+1
j

...

· · ·
...

...
... · · ·


m j ×n j

,

where i1 = 1, . . . , m j , i2 = 1, . . . , n j , and m j , n j are the
number of patches in the row direction and column direction,
respectively. Because we use the piecewise constant basis
function over the support set, we can define an interpolation
matrix L j : Rm j n j → Rmn to update the solution on the finest
layer, i.e.

L j c j =



· · ·
...

...
...

...
... · · ·

... ci1−1,i2−1
j · · · ci1−1,i2

j · · · ci1−1,i2+1
j

...

... ci1,i2−1
j ci1,i2

j · · · ci1,i2
j ci1,i2+1

j
...

· · ·
... · · ·

... · · ·

... ci1,i2−1
j ci1,i2

j · · · ci1,i2
j ci1,i2+1

j
...

... ci1+1,i2−1
j ci1+1,i2

j · · · ci1+1,i2
j ci1+1,i2+1

j
...

· · ·
...

...
...

...
... · · ·


m×n

.

Then the solution can be defined as ul+1 = ul +
∑J

j=1 L j c j .
We use the V-cycle to solve the minimization model from

the finest layer V1 to the coarsest layer VJ , and then from
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Fig. 4. Illustration of 4-color domain decomposition for a domain of size
9 × 9, where the subproblems of the same color can be computed in parallel.

the coarsest layer to the finest layer. In practice, we find
that half of the V-cycle is sufficient for the decrease of the
energy functional, while the other half of the V-cycle does
little improvement. Thus the coarse to fine subspace correction
can be omitted.

C. The Domain Decomposition Strategy

The domain decomposition method (DDM) is another
promising technique to deal with large-scale problems, which
divides the large-scale problem into smaller problems for
parallel computation. In the following, we will apply the non-
overlapping domain decomposition method to enable parallel
computation.

Fig. 4 displays the four-color decomposition on the finest
layer and the second layer, respectively. More specifically,
we divide the basis function {φi

j }
N j
i=1 into four groups

∪
4
k=1{φ

i
j : i ∈ Ik} to reduce the dependency on the order of

basis functions and improve the parallelism for subproblems
on each layer, where Ik contains the indexes with the same
color. This decomposition guarantees that neighboring patches
in a 4-connected neighborhood are in different subsets. We can
see that the support of the basic functions {φi

j : i ∈ Ik} are non-
overlapping for each k = 1, 2, 3, 4, and the minimization of
F(u + ci

jφ
i
j ) for i ∈ Ik can be solved in parallel. In particular,

four subproblems are solved in consecutive order

min
δu∈V (k)

j

F(u + δu), for k = 1, 2, 3, 4,

where V (k)
j = span{φi

j : i ∈ Ik} and V j =
∑4

k=1 V (k)
j . It is

readily checked that

min
δu∈V (k)

j

F(u + δu) = min
c∈R|Ik |

F(u +

∑
i∈Ik

ci
jφ

i
j ). (13)

We denote c j,k = (c1
j , c2

j , . . . , c|Ik |
j ) as the solution to (13),

where |Ik | is the total number of elements in Ik and
N j =

∑4
k=1 |Ik |. Then, the implementation of the algorithm

to solve the mean curvature minimization problem (3) is
summarized in Algorithm 3.

D. Complexity Analysis

In this section, the floating point operations (FLO) are
used to evaluate the complexity of the algorithm. The cost
of our method is mainly related to the following two parts.
The first is the distances to the tangent planes dℓ, which

Algorithm 3 The Multi-Grid Method for Solving the Mean
Curvature Minimization Model (3)

is about 4 × 2 j+2 floating point operations (FLO) on each
patch set τ i

j . Therefore, the total cost on the coarse level j
is about O(4m j n j 2 j+2) ≈ O(4mn/(2 j

− 1)). The second
cost is the interpolation operator L j , which is about mn FLO.
The computation of f ∗ is about 2(2 j

− 1)(2 j
− 1)m j n j ≈

2mn. Then the number of FLOs over all J levels should be
O(

∑J
j=1(3+4/(2 j

−1))mn). In particular, the computational
complexity of our multi-grid algorithm with 3 layers is about
O(12mn).

As a point of reference, the mean curvature method [11]
contains three sub-problems, which can be solved by either the
shrinkage operation or the FFT with the total computational
complexity of O(6mn log2 mn + 8mn). The computational
complexity of the total absolute mean curvature model [15]
and Euler’s elastica model [5] can be obtained similarly,
which are O(2mn log2 mn+3mn) and O(6mn log2 mn+4mn),
respectively. It is shown that our multi-grid algorithm is with
much low computational complexity compared to the existing
high order methods.

III. THE GAUSSIAN CURVATURE MINIMIZATION PROBLEM

We can directly extend the proposed multi-grid method to
solve the following Gaussian curvature minimization problem

min
u

F(u) :=

m∑
k1=1

n∑
k2=1

|K (u[k1, k2])|

+
α

2
(u[k1, k2] − f [k1, k2])

2, (14)

where K (u[k1, k2]) = κmin(u[k1, k2])κmax(u[k1, k2]) is the
Gaussian curvature over pixel (k1, k2, u[k1, k2]). The one-
dimensional problem for the Gaussian curvature minimization
problem over the finest grid is given as follows

min
c∈R

|K (u[k1, k2] + c)| +
α

2

(
c − f ∗

[k1, k2]
)2

. (15)

Similarly, we use the FBS scheme to solve the local problem
(15). The only difference is how to estimate the minimizer
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of curvature regularization term. Supposing that ι tangent
planes are enumerated, we can estimate ι normal curvatures
κℓ, ℓ = 1, 2, . . . , ι in the local patch. According to differential
geometry theory, the normal curvature can be calculated as
the quotient of the second fundamental form and the first
fundamental form as follows

κℓ =
II
I

≈
dℓ

ds2 ,

where dℓ denotes the distance of a neighboring point to
the tangent plane and ds denotes the arc-length between
the neighboring point and the central point. Then Gaussian
curvature can be defined by the two principal curvatures,
where the principal curvatures are obtained by κmin =

min{κℓ(u[k1, k2])}, κmax = max{κℓ(u[k1, k2])} for ℓ =

1, . . . , ι. We further denote κ∗(u[k1, k2]) = min{|κmin|, |κmax|}

be the principal curvature with the smaller absolute value, and
T ∗ be the corresponding tangent plane. Thereupon, we have
the following proposition to estimate the analytical solution
for Gaussian curvature minimization.

Proposition 2: The correction c on each point
(k1, k2, u[k1, k2]) ∈ � to minimize the Gaussian curvature
|K (u[k1, k2]+c)| is given as c = d∗, where d∗ is the distance
of (k1, k2, u[k1, k2]) to the tangent plane T ∗.

Proof: Since the point (k1, k2, u[k1, k2] + d∗) is on
the tangent plane w.r.t. the principle curvature, we have
0 =

∣∣K (u[k1, k2] + d∗)
∣∣ ≤

∣∣K (u[k1, k2])
∣∣.

Then, we can use Algorithm 2 to solve the patch problem (15),
and both the multi-grid method and domain decomposition
method can be applied to solve the Gaussian curvature
minimization problem (14) without much effort. Therefore,
we omit the details here.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of the proposed
multi-grid algorithm on the image denoising problem. The
qualities of the denoised images are measured by both
the Peak Signal to Noise Ratio (PSNR) and the Structural
Similarity Index Measure (SSIM). All of the experiments are
implemented in a MATLAB R2016a environment on a desktop
with an Intel Core i9 CPU at 3.3 GHz and 8 GB memory.

A. The Effect of the Multi-Grid Method

The choice of the maximal number of layers is important
in our multi-grid method, which affects the numerical conver-
gence of the curvature minimization problems. We implement
both multi-grid mean curvature (MGMC) model and multi-grid
Gaussian curvature (MGGC) model on test images shown in
Fig. 5, which are corrupted by white Gaussian noise with zero
mean and standard deviation σ = 10. In the experiment, the
regularization parameter varies as α ∈ {0.1, 0.06, 0.03} and
the number of layers changes as J ∈ {1, 2, 3, 4, 5, 6}. Both
MGMC and MGGC are stopped when the following relative
error of the numerical energy is smaller than the predefined
tolerance

Rel Err
(
F(ul+1)

)
= |F(ul+1) − F(ul)|/|F(ul+1)| ≤ ϵ, (16)

which is set as ϵ = 10−6.

Fig. 5. The test images used in the numerical experiments, where the image
‘Triangle’ and ‘Peppers’ are of size 512 × 512, image ‘Parrot’ and ‘Man’ are
of size 1024 × 1024.

Table II displays the number of iterations, CPU time, and
numerical energies for different combinations of the number
of grid layers J and regularization parameter α. As can be
seen, both MGMC and MGGC converge to similar numerical
energies for a fixed value of α. Besides, we also conclude the
following two observations

• Introducing the coarse layers can greatly reduce the outer
iterations. Much CPU time is saved by increasing the
maximum layers from J = 1 to J = 3. However, the
CPU time increases as J keeps increasing to J = 6 for
all examples.

• The advantage of the multi-grid method is dominant
when the regularization parameter α becomes smaller
and smaller. The computational time of the single layer
method is almost doubled as α decreases from α = 0.1 to
α = 0.03, while the growth of the multi-grid method is
much smaller.

Thus, the number of layers is fixed as J = 3 for both MGMC
and MGGC in the following experiments.

B. Complexity Discussion

We verify the linear convergence of our multi-grid method
on both images ‘Triangle’ and ‘Parrot’, the size of which varies
as {128 × 128, 256 × 256, 512 × 512, 1024 × 1024, 2048 ×

2048}. All images are corrupted by Gaussian noises with
zero mean and standard deviation σ = 10. We set the
regularization parameter as α = 0.06 and the error tolerance
as ϵ = 10−5. We implement both V-cycle (fine-to-coarse-to-
fine) and half V-cycle (fine-to-coarse). The comparison results
of the number of iterations, PSNR, CPU(s), and CPU ratio
are recorded in Table III. By CPU ratio, it can be checked
that the computational time of both the V-cycle and half of
the V-cycle is proportional to the size of image N , and of
complexity O(N ). For different sizes of images, half of the
V-cycle algorithm always consumes fewer costs than the V-
cycle one, especially for images of size 2048 × 2048 down
by a sixth, without sacrificing any accuracy. Therefore, the
fine-to-coarse structure is used in our experiments.
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TABLE II
THE DENOISING RESULTS ON TEST IMAGES TO DIFFERENT NUMBERS OF LAYERS FOR THE NOISE LEVEL σ = 10

TABLE III
THE COMPARED RESULT OF THE NUMBER OF ITERATIONS, PSNR, CPU(S), AND CPU RATIO FOR DIFFERENT

SIZE IMAGES WITH V-CYCLE AND HALF OF THE V-CYCLE (DENOTED BY H-V-CYCLE)

TABLE IV
THE COMPARISON OF IMAGE DENOISING BETWEEN THE MULTI-GRID METHOD AND MEAN CURVATURE FILTER FOR THE NOISE LEVEL σ = 10
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Fig. 6. The denoising results of the smooth images A1 and A2 (from top to bottom) obtained by the Euler‘s elastica [5] and our Gaussian curvature model,
where we set the regularization parameter as α = 0.06 and the error tolerance as ϵ = 10−4.

Fig. 7. The image surfaces of the clean images and restoration images were obtained by Euler’s elastic regularization model [5] and our Gaussian curvature
regularization model.

C. Properties of Curvature Regularization

Both mean curvature and Gaussian curvature are well-
known for their abilities in preserving image contrast and
structural features [6], [18]. Now we use our Gaussian
curvature regularization model as an example and compare
it with the Euler’s elastica regularization model on two
synthetic images. As shown in Fig. 6, both images are
corrupted by Gaussian noise with zero mean and standard
deviation σ = 20. The restoration images demonstrate that
our model outperforms Euler’s elastica [5] in preserving
edges and corners. Moreover, the residual images obtained by
Euler’s elastica also contain more image information than ours,
which confirms Gaussian curvature regularization is better at
maintaining image contrast. In addition, we display the image
surface plots of clean images and restored images of Euler’s
elastica and MGGC in Fig. 7, where our Gaussian curvature
regularization model effectively keeps the sharp corners and
jumps.

D. Comparison With Curvature Filters

In what follows, we verify the advantages of the proposed
multi-grid method by comparing it with the multi-grid method
in [12] and curvature filter [22]. Note that the domain
decomposition method has been applied to the curvature filter
for a fair comparison. We degrade the test images in Fig. 5
by the white Gaussian noises with zero mean and standard
deviation σ = 10. The regularization parameter α are set as
α ∈ {0.1 0.06 0.03} and error tolerance is fixed as ϵ = 10−6

for all methods. There are no other parameters for the mean
curvature filter (CFMC) and Gaussian curvature filter (CFGC),
where both methods are solved by gradient flow as presented
in [22]. The parameters of multi-grid method [12] (denoted

by MG) are set as: the total number of iterations is 10, the
maximal level is 3, the stopping condition is set as (16), and
all other parameters are set as suggested by the paper.

Table IV records the PSNR, the number of iterations,
CPU time, and the numerical energies obtained by different
approaches. As can be seen, our method always achieves
higher PSNR and smaller energies than the curvature filter,
while providing better or similar PSNR as the MG method.
More importantly, much CPU time can be saved by our
fine-to-coarse strategy, especially for images of large scales
and regularization parameters. We notice that multi-grid
method [12] is very time consuming for solving the high-order
PDEs. Obviously, our multi-grid method can well balance
efficiency and effectiveness.

More than that, we compare the performance of our multi-
grid methods with curvature filters on images corrupted by
different noise levels, i.e., σ ∈ {10, 20, 30}, where α is chosen
to achieve the best restoration results. As provided in Table V,
our multi-grid method always outperforms the curvature filter
in both image quality and computational efficiency. The main
reason behind this is that both mean curvature and Gaussian
curvature in our model are estimated by the definitions in
differential geometry. To make it more clear, we present
one representative restoration result in Fig. 8, where the
results of the one-layer multi-grid methods are also illustrated
for comparison. It can be observed the one-layer multi-grid
methods produce much better results than curvature filters with
much smoother details. And the multi-grid strategy can further
improve the restoration quality.

E. Comparison Study and GPU Implementation

In this subsection, we compare our mean curvature method
with several state-of-the-art image denoising methods on a
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TABLE V
THE COMPARISON BETWEEN THE MULTI-GRID METHOD AND CURVATURE FILTER WITH DIFFERENT NOISE LEVELS OF σ = 10, 20, 30, RESPECTIVELY

Fig. 8. The denoised results obtained by curvature filter and our method on
image ‘Pepper’ with noise level σ = 30.

dataset containing 30 gray images as shown in Fig. 9, where
all images are degraded by white Gaussian noise of zero mean
and standard deviation σ = 20. All methods are terminated by

the relative error in u as given below

Rel Err(ul+1) = ∥ul+1 − ul∥1/∥ul+1∥1 ≤ ϵ, (17)

where ϵ is fixed as ϵ = 10−4. The parameters of the
comparison methods are provided as follows

1) CFMC [22]: The regularization parameter is set as
α = 0.05.

2) Hybrid first and second order model (TVTV2) [39]: The
parameters are set as α = 0.2, β = 0.2, p1 = 1,
p2 = 2 and p3 = 20.

3) Total generalized variation (TGV) method [4]: The
parameters are selected as suggested in the correspond-
ing papers, which are set as α0 = 1.5, r4 = 1.5×105 and
λ = 10.

4) Euler’s elastica model (denoted as Euler) [5]: The
parameters of ALM are fixed as a = 1, b = 10, µ = 10,
η = 200, r1 = 2, r2 = 200, r4 = 250.

5) Mean curvature model (denoted as MC) [11]: The
parameters of ALM are set as ε = 0.4, λ = 1600,
r1 = 200, r2 = 200, r3 = 1 × 104 and r4 = 1 × 104.

6) Total absolute mean curvature model (denoted as
TAC) [15]: The model is solved by the ADMM-based
algorithm with the parameters given by a = 1, b = 0.4,
λ = 0.09, and r = 2.

7) MGMC: The regulation parameter is set as α = 0.05.
The iteration number for solving the sub-problem J (c)
is fixed as 15.

Table VI records both PSNR and SSIM obtained by different
methods, where our method gives the best restoration qualities.
We also display two representative restoration results, i.e.,
image #15 and #21, in Fig. 10. By observing the results
of image #15, our proposed method can preserve very good
textural structures, while other methods have smoothed out
the fine details. The reason behind this is that we use more
neighboring points to estimate the update for the central
point; see the examples in Fig. 11. Next, we compare the
numerical energy and relative error of CFMC [22], MC [6],
one-layer MGMC and MGMC on both image #15 and #21 in
Fig. 12, which are corrupted by Gaussian noise with the
noise level σ = 20. As shown, with the same regularization
parameter, our MGMC provides lower numerical energy and
faster convergence than the ALM-based algorithm in [11].
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Fig. 9. The test dataset includes 30 gray images, where the size of images #1 − #15 is 512 × 512 and the size of images #16 − #30 is 1024 × 1024.

Fig. 10. The denoised results were obtained by different methods on image #15 and #21 with the noise level of σ = 20.

Fig. 11. The illustration of points used to estimate the update for the central
point (blue one), where the red points are used for calculation.

Since the sub-minimization problems of the same color in
Algorithm 3 are independent, we can use the GPU computa-
tion to improve its efficiency. The GPU implementation was
carried out on a computer with an Intel(R) Core i9 CPU at
3.30 GHz and Nvidia GeForce GTX 1050TI GPU card. Fig. 13
displays the running time of different methods, where the left
plot contains images numbered from #1 to #15 with the size of
512 × 512 and the right plot contains images numbered from
#16 to #30 with the size of 1024 × 1024. It can be observed,
among the curvature minimization approaches, our MGMC
method is the fastest one followed by CFMC, TAC, Euler’s
elastica, MC, TGV, and TVTV2 model. Furthermore, both
MC and Euler’s elastica model spend similar computational
time, more than TAC, which is in accord with our complexity
analysis. Moreover, GPU implementation also accelerates
efficiency. For images of size 1024 × 1024, the computational

time is improved from the 40s to 25s, which is very important
for real applications. In summary, our multi-grid algorithm
achieves the best performance on image restoration problems
with very high efficiency, which does not trade accuracy for
speed.

V. APPLICATION TO IMAGE RECONSTRUCTION

In this section, we extend the curvature regularization
method and multi-grid algorithm to more general inverse
problems. The task is to recover u ∈ R2 from the observed
data defined by

b = Au + ν, (18)

where ν is the random noise and A is a linear and bounded
operator varying with different image processing tasks. To be
specific, A represents the Radon transform and Fourier
transform for CT and MRI reconstruction, respectively.

We use the mean curvature as the regularization term and
are concern with the following image reconstruction problem

min
u

1
2

∥∥Au − b
∥∥2

2 + α
∑
x∈�

∣∣H(u(x))
∣∣,

which is solved by the aforementioned multi-grid method.
Similarly, we implement the non-overlapping domain decom-
position method on each layer to make the subproblems
become independent and can be solved in parallel. The
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TABLE VI

THE COMPARISON OF SSIM AND PSNR (dB) AMONG THE CFMC, TVTV2 , TGV, EULER’S ELASTICA, MEAN CURVATURE (MC),
TOTAL ABSOLUTE MEAN CURVATURE (TAC) AND OUR MGMC ON 30 TEST IMAGES

Fig. 12. The decays of the numerical energy and relative error for image #15 and #21 corrupted by Gaussian noise of level σ = 20.

sub-minimization problems belonging to the same color are
gathered as follows

min
c j ∈RNk

1
2

∥∥∥A(u +

∑
i∈Ik

ci
jφ

i
j ) − b

∥∥∥2

2

+ α
∑
i∈Ik

∑
x∈τ i

j

∣∣H(u(x) + ci
jφ

i
j (x))

∣∣.
According to Proposition 1, the above subproblem can be
further reformulated into the following quadratic problem

min
c j ∈RNk

1
2

∥∥∥A(u +

∑
i∈Ik

ci
jφ

i
j ) − b

∥∥∥2

2
+ α

∑
i∈Ik

(
ci

j − d i
j

)2
,

where the closed-form solution is given as



L1,1 · · · ⟨Aφ1
j , Aφ

Nk
j ⟩

⟨Aφ2
j , Aφ1

j ⟩ · · · ⟨Aφ2
j , Aφ

Nk
j ⟩

...
...

...

⟨Aφ
Nk−1
j , Aφ1

j ⟩ · · · ⟨Aφ
Nk−1
j , Aφ

Nk
j ⟩

⟨Aφ
Nk
j , Aφ1

j ⟩ · · · L Nk ,Nk





c1
j

c2
j

...

cNk−1
j

cNk
j



=



r1
j

r2
j

...

r Nk−1
j

r Nk
j

 , (19)
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TABLE VII
THE COMPARISON IN TERMS OF PSNR, SSIM, CPU TIME, THE NUMBER OF ITERATIONS (DENOTED BY #) AND CPU TIME PER ITERATION (DENOTED

BY CPU/I) FOR CT RECONSTRUCTION WITH PROJECTION NUMBERS OF Np = 18 AND 36, WHERE IMAGE INTENSITY IS PROJECTED TO [0, 1]

Fig. 13. The computational time comparison among different methods on
the 30 test images.

with

L i,i = ⟨Aφi
j , Aφi

j ⟩ + 2α, and r i
j = ⟨b − Au, Aφi

j ⟩ + 2αd i
j ,

for i = 1, . . . , Nk . For such a symmetric linear system, we can
implement the conjugate gradient as the numerical solver.

A. CT Reconstruction

The CT reconstruction algorithms can be roughly divided
into two categories [40]: the analytic algorithms and the
iterative algorithms. The latter is known to be able to
provide better reconstruction images especially when the
inverse problem (18) becomes ill-posed [41]. The total
variation regularization [30], TV stokes model [42] and total
generalized variation (TGV) [43], [44] have been studied as
the regularization and was shown effective for sparse CT
reconstruction problems. Besides, the multi-grid method has
also been applied for CT reconstruction to achieve better
reconstruction results [30], [45].

Now we discuss the numerical examples of the proposed
multi-grid algorithm for CT reconstruction problem. Two
phantom images ‘Shepp-Logan’ and ‘Forbild-gen’ with the
size of 512 × 512 and 1024 × 1024, are used to evaluate the
performance. We adopt the parallel-beam geometry for both
images in the experiments and set the projection numbers to
be Np = 18 and 36.

In what follows, we evaluate the effectiveness and efficiency
of the proposed multi-grid method by comparing it with the
total variation model [30], which is also implemented by the
multi-grid method. The implementation details are described
as follows

Fig. 14. The comparison results on ‘Forbild-gen’ with the size of
1024 × 1024 and projection numbers be Np = 18, while the second row
is the result with noise level 0.005 and the projection numbers be Np = 36.

1) The multi-grid total variation model (MGTV) [30]: The
parameters are set as α = 3.5 × 10−5 and 2 × 10−5

for projection number Np = 18 and 36, respectively,
and β = 10−6 for noiseless experiments. We set
α = 3 × 10−4 and 5 × 10−4 for Np = 18 and 36 on
the noise level σ = 0.005, where the image intensity is
projected to [0, 1].

2) The multi-grid mean curvature model (MGMC): The
parameters are set as α = 4 × 10−3 and 3 × 10−3 for
projection number Np = 18 and 36, respectively. We set
α = 1 × 10−4 and 2 × 10−4 for Np = 18 and 36 on the
noise level σ = 0.005.

Both multi-grid methods are stopped using the relative error
of the numerical energy (16) for ϵ = 10−4 and the stopping
criteria for the linear system (19) is when the iteration number
reaches the maximum iteration number of 10. The number of
layers is set as J = 4 for both algorithms.

The comparison results of PSNR, SSIM, CPU time, the
number of iterations, and CPU time per iteration are all
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TABLE VIII
THE COMPARISON IN TERMS OF PSNR, SSIM, CPU TIME, THE NUMBER OF ITERATIONS (DENOTED BY #) AND CPU TIME PER ITERATION (DENOTED

BY CPU/I) AMONG DIFFERENT METHODS FOR COMPRESSED SENSING MRI RECONSTRUCTION PROBLEMS, WHERE THE ZERO-MEAN GAUSSIAN
NOISE WITH NOISE LEVEL OF σ = 10 IS INTRODUCED INTO BOTH DATA

Fig. 15. MRI reconstruction results and residual images of the brain image and foot image under 12.65% radial sampling patterns and Gaussian noise of
σ = 10. Note that the residual images are displayed in [0, 0.2] and [−0.4, 0.4] for brain and foot images, respectively.

recorded in Table VII. For different combinations of images
and projection numbers, our MGMC always gives higher
PSNR and SSIM than MGTV, which benefits from the
strong priors of the curvature regularization. In terms of
computational efficiency, because our local minimization
problem has an analytical solution, the computational
efficiency of our MGMC is quite high, which is verified by the
CPU time per iteration. On the other hand, it requires solving a
nonlinear PDE on the local problems for the TV regularization
model, which is time consuming. The advantages of our
method become stronger for the large-scale problems that
our curvature regularization model performs faster than TV
model. Finally, we present the selective reconstruction results
in Fig. 14. As can be seen, our MGMC outperforms the MGTV
method, which produces homogeneous results with fine details
and small structures.

B. MRI Reconstruction

Similarly, different higher-order regularization terms have
been used for compressed sensing MRI reconstruction prob-
lems, such as total generalized variation and shearlet transform
(TGVST) [46], BM3D-MRI [47], Euler’s elastica [48], and
nonlocal elastica regularization [49] etc. These methods can
effectively recover the missing details and preserve geometric
information. We also apply the proposed MGMC method
for compressed sensing MRI problem, where A becomes a
composite operator defined as A = PF with P being the
selection operator and F being the Fourier transform.

In the following part, we use two MR images as examples,
one brain image and one foot image of size 256 × 256.

Both Cartersian sampling pattern and radial sampling pattern
are chosen for evaluation. We also introduced the zero-
mean complex Gaussian noise with the standard variation of
σ = 10 into the under-sampled data. The performance of
MGMC is compared with state-of-the-art variational methods
including the TGVST [46] and BM3D method [47], the
implementation detail of which are presented as follows:

1) TV [50]: The TV regularization model was solved by
primal dual method. The step size is given as τ =

1/(2L F ) and σ = L F/L2 for the primal and dual
variable, respectively, where L = ∥∇∥ and L F is
the Lipschitz constant of F(u) = ∥PFu − f ∥

2
2. The

regularization parameter is set as α = 3×10−3 for both
under-sampled patterns.

2) TGVST [46]: We implement the TGVST algorithm with
same parameters as the ones used in the original paper
such as β = 103, λ = 0.01, α0 is raised from 10−3 to
10−2 and α1 is fixed as 10−3.

3) BM3D-MRI [47]: The range of parameter for the
observation fidelity is λB M3D ∈ [0, 5]. The total iteration
number is set as 50 to balance the performance and
efficiency. Both the iteration number and relative error
ϵ = 1 × 10−4 are used as the terminating conditions.

4) MGMC: The parameters are set as α = 5 × 10−3 for
both under-sampled patterns.

Table VIII displays the PSNR, SSIM, and CPU time
of the comparison methods. As illustrated, all high-order
regularization methods produce higher PSNR and SSIM than
TV model. And our MGMC outperforms the TGVST and
BM3D-MRI in terms of PSNR, SSIM and CPU time. We also
exhibit reconstructed images and residual images in Fig. 15,
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which are consistent with quantitative results in Table VIII.
It can be observed that less structural information is presented
in the residual images obtained by our MGMC method.

VI. CONCLUSION

We proposed an efficient multi-grid algorithm for solving
the curvature-based minimization problems that rely on the
piecewise constant basic spanned subspace correction. The
original minimization was then transferred into a series of
local problems from the fine layer to the coarse layer, each of
which was solved by the forward-backward splitting scheme
with a convergence guarantee. More importantly, there existed
analytical solutions to the sub-minimization problems on
local patches, which can be solved very efficiently. We also
applied the non-overlapping domain decomposition method
on each layer to increase the parallelism for improving
computational efficiency. Furthermore, we implemented the
proposed algorithms by GPU computation to deal with large-
scale image processing tasks. Comparative experiments on
image denoising and reconstruction problems demonstrate the
efficient performance of the proposed method by comparing
it with several advanced denoising methods.

Although we proved the energy diminishing of the pixel-
wise minimization problem (5), it is difficult to show the
fine layer problem converges to a minimizer of (3) due
to the nonconvexity of the curvature energy. As far as we
know, the convergence analysis of curvature regularization
models has made some achievements, mainly for the Euler’s
elastica regularization model. In [7], [51], convex relaxation of
elastica energy via functional lifting was studied to establish
numerical algorithms with convergence guarantee. He, Wang
and Chen [52] proposed a penalty relaxation algorithm with
the theoretical guarantee to find a stationary point of Euler’s
elastica model. However, the convergent algorithms for solving
the mean curvature and Gaussian curvature energies are still
very limited, which we would like to study in the future. Other
future works include developing more efficient algorithms
for curvature-related minimization models and expanding the
applications of curvature regularization, e.g., improving the
robustness of deep neural network models [53], [54], [55].

APPENDIX A
PROOF OF LEMMA 1

Proof: We prove the lemma followed the Lemma 1
in [38]. The first-order optimality condition of Algorithm 2
gives

ct+1 = ct − ηt∂ f (ct+ 1
2
) − ηt∇r(ct+1).

The convexity of r(c) implies that for any c̃

r (̃c) ≥ r(ct+1) + ⟨∇r(ct+1), c̃ − ct+1⟩. (20)

Since there is ∥∇r(c)∥2
≤ G2 and ∥∂ f (c)∥2

≤ D2, we can
obtain the following inequality from the Cauchy-Shwartz
inequality

⟨∇r(ct+1), ct+1 − ct ⟩

= ⟨∇r(ct+1), −ηt∂ f (ct+ 1
2
) − ηt∇r(ct+1)⟩

≤ ηt (G2
+ G D). (21)

By expanding the squared norm of the difference between ct+1
and c̃, it gives

∥ct+1 − c̃∥2
= ∥ct − ηt∂ f (ct+ 1

2
) − ηt∇r(ct+1) − c̃∥2

= ∥ct − c̃∥2
− 2ηt ⟨∂ f (ct+ 1

2
), ct − c̃⟩

+ ∥ηt∂ f (ct+ 1
2
) + ηt∇r(ct+1)∥

2

− 2ηt [⟨∇r(ct+1), ct+1 − c̃⟩

− ⟨∇r(ct+1), ct+1 − ct ⟩].

We now use (20) and (21) to get

∥ct+1 − c̃∥2
≤ ∥ct − c̃∥2

− 2ηtr(ct+1) + 2ηtr (̃c)

+ η2
t (3G2

+ D2
+ 4G D)

+ 2ηt ⟨∂ f (ct+ 1
2
), c̃ − ct ⟩. (22)

By Proposition 1, we have f (ct+ 1
2
) ≤ f (c). Relying on the

definition of ∂ f (ct+ 1
2
), we can estimate the last term

⟨∂ f (ct+ 1
2
), c̃ − ct ⟩

= ⟨∂ f (ct+ 1
2
), c̃ − ct+ 1

2
⟩ + ⟨∂ f (ct+ 1

2
), ct+ 1

2
− ct ⟩

≤

〈 f (ct+ 1
2
) − f (̃c)

ct+ 1
2

− c̃
, c̃ − ct+ 1

2

〉
+

〈 f (ct+ 1
2
) − f (ct )

ct+ 1
2

− ct
, ct+ 1

2
− ct

〉
≤ f (̃c) − f (ct ). (23)

By substituting (23) into (22), we can obtain

2ηt

(
f (ct ) + r(ct+1) − J (̃c)

)
≤ ∥ct − c̃∥2

− ∥ct+1 − c̃∥2
+ η2

t (5G2
+ 3D2).

which completes the proof.
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