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A B S T R A C T

Although existing deep learning compressed-sensing-based Magnetic Resonance Imaging (CS-MRI) methods
have achieved considerably impressive performance, explainability and generalizability continue to be chal-
lenging for such methods since the transition from mathematical analysis to network design not always natural
enough, often most of them are not flexible enough to handle multi-sampling-ratio reconstruction assignments.
In this work, to tackle explainability and generalizability, we propose a unifying deep unfolding multi-sampling-
ratio interpretable CS-MRI framework. The combined approach offers more generalizability than previous
works whereas deep learning gains explainability through a geometric prior module. Inspired by the multigrid
algorithm, we first embed the CS-MRI-based optimization algorithm into correction-distillation scheme that
consists of three ingredients: pre-relaxation module, correction module and geometric prior distillation module.
Furthermore, we employ a condition module to learn adaptively step-length and noise level, which enables the
proposed framework to jointly train multi-ratio tasks through a single model. The proposed model not only
compensates for the lost contextual information of reconstructed image which is refined from low frequency
error in geometric characteristic k-space, but also integrates the theoretical guarantee of model-based methods
and the superior reconstruction performances of deep learning-based methods. Therefore, it can give us a
novel perspective to design biomedical imaging networks. Numerical experiments show that our framework
outperforms state-of-the-art methods in terms of qualitative and quantitative evaluations. Our method achieves
3.18 dB improvement at low CS ratio 10% and average 1.42 dB improvement over other comparison methods
on brain dataset using Cartesian sampling mask.
1. Introduction

Magnetic Resonance Imaging (MRI) is one kind of widely used
medical imaging modalities for clinical diagnosis, which requires a
long scan time and has the risk of motion-related artifacts in the
reconstructed image. CS-MRI that only requires much lower sampling
rate than Nyquist sampling theory has been proposed to reconstruct
image from the sparse characteristics of signals. Although it may cause
aliasing artifacts in a spatial domain, the quality of reconstructed image
is not significantly reduced.

Classical CS-MRI methods can learn directly more flexible sparse
representation from under-sampled data by restricting solution in a
specific transformation domain [1,2] or in a generic dictionary-based
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subspace [3]. Discrete wavelet transform [4] and discrete cosine trans-
form [5] have been used for CS-MRI reconstruction. Due to simple
and effective, Total Variation (TV) regularization has been widely used
in MRI reconstruction although it introduces staircase artifacts in re-
constructed image [6]. Some sophisticated non-local sparsity methods
that use groups of local similar patches to exploit the non-local self-
similarity properties, can capture more texture priors and improve sig-
nificantly CS reconstruction performance, e.g., patch-based directional
wavelets (PBDW) [7], patch-based nonlocal operator (PANO) [8]. The
BM3D denoiser [9] has been integrated into CS reconstruction as a new
approximate message passing (AMP) framework. Many studies formu-
late CS a reconstruction problem as the sparsity-regularized optimiza-
tion problem and then solve it by using different iterative algorithms
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such as Iterative Shrinkage Threshold Algorithm (ISTA) [10], Primal–
Dual algorithm [11] and Alternating Direction Multiplier Method
(ADMM) [12] etc. All the above methods that are based on strongly
interpretable and well predefined sparsity image prior, have the ad-
vantages of theoretical support and strong convergence. However,
they usually require expensive computations and face the problems
of selecting suitable regularizers and model parameters. Consequently,
the reconstructed results of the classical CS-MRI methods are usually
unsatisfactory.

Recently, deep learning (DL) has achieved great success in computer
vision community [13]. A deep Convolutional Neural Network (CNN)
has been proposed to reconstruct MRI from under-sampled data [14].
Based on learning a direct inversion of image inverse problem, the
network [15] combines multi-resolution decomposition and residual
learning to remove artifacts while preserving image structure. Re-
fineGAN is a variant of fully-residual convolutional auto-encoder and
generative adversarial networks (GANs) with cyclic data consistency
loss for CS-MRI [16]. DAGAN couples adversarial loss with an inno-
vative content loss to better preserve texture and edges in CS-MRI,
and also incorporates frequency-domain information to enforce simi-
larity in both the image and frequency domains [17]. A generalized
double-domain GAN is exploited to reconstruct undersampled multi-
contrast MRI [18]. SynDiff based on adversarial diffusion modeling is
proposed to improve performance in medical image translation [19].
The first adaptive diffusion prior for MRI reconstruction named AdaDiff
is proposed to improve performance and reliability against domain
shifts [20]. W-net can work both in 𝑘-space and in image domain
for CS-MRI [21], which is composed of a complex-valued residual U-
net in 𝑘-space, an iFFT operation, and a real-valued U-net in image
domain. DuDoRNet with deep embedded T1 prior simultaneously re-
covers 𝑘-space information and image for accelerating the acquisition
of MRI [22]. These existing DL-based CS-MRI methods are data-driven
based on a large amount of training data and without any model prior.

Deep unfolding learnable framework of inheriting the merits of
model-based and DL-based CS-MRI methods, has sufficient theoretical
support and also good performance [23–25]. It is first proposed to learn
optimal sparse codes in the Learned Iterative Shrinkage-Thresholding
Algorithm (LISTA) [26]. Later, Yang et al. [27] presented a novel
deep ADMM-Net framework to supervise data flow graph in image
reconstruction network. A cascaded dilated dense network with two-
step data consistency operation in 𝑘-space is designed for CS-MRI
reconstruction [28]. A novel parallel-stream fusion model (PSFNet) syn-
ergistically fuses scan-specific and scan-general priors for performant
MRI reconstruction from Scratch in low-data regimes [29]. Also a con-
jugate gradient image reconstruction with a CNN-based regularization
prior is employed to build MoDL architecture [30]. Then by unfolding
the iterative process of variable splitting optimization scheme, Duan
et al. proposed a novel end-to-end trainable deep neural network
(DNN) denoted as VS-Net [31]. DC-CNN [32] using a deep cascade of
CNNs with data consistency layers is proposed to reconstruct MRI from
under-sampled data. ISTA-Net+ is designed by mapping ISTA into deep
CNN framework to learn proximal mapping [33]. To embedded FISTA
algorithm [34] into a deep network, FISTA-Net [35] that consists of
three-step update blocks including gradient descent, proximal mapping,
and acceleration is designed.

Recently, the techniques of solving linear/nonlinear system have
been widely used to design effective DNNs. ResNet [36] is partly
motivated by the hierarchical correction of residual in classical iterative
algorithm [37]. PolyNet designs a PolyInception module to enhance
feature extraction of network [38]. RevNet [39] and LM-ResNet [40]
can be interpreted as different reversible Euler-type discrete dynamic
systems of ordinary differential equations (ODEs). A deep multigrid
method is proposed to optimize restriction and prolongation opera-
tions in two-grid scheme, and is straightforwardly extended to the
geometric multigrid method [41]. A multigrid extension of CNNs is
2

proposed to improve accuracy and computational efficiency on CIFAR
and ImageNet classification tasks [42]. MgNet is also designed for
image classification to explore the connection between multigrid and
CNNs [43]. These models can be effective for improvements of deep
learning models, and in particular for the mathematical understanding
and analysis of network architecture.

However, there are still two main shortcomings: (1) the derivation
from mathematical theory to network design is not always natural
enough for these existing deep unfolding methods. ISTA-Net and FISTA-
Net directly replace the nonlinear transformation by several convolu-
tion layers, but no reasonable explanation is given. The proximal-point
sub-problem has not well been analyzed and explained in DC-CNN,
MoDL, and VS-Net. It leads that CNN is directly used to reconstruct the
low CS-ratio image; (2) most of existing CS-MRI methods are not flexi-
ble enough to handle multi-sampling-ratio reconstruction assignments.
For each CS ratio, these methods usually have to train an independent
model by considering it as a single task, which results in expensive
training cost and large storage space. And this is often contradicted with
the fact that real scenarios often contain different CS ratios.

To overcome such drawbacks, inspired by efficient correction of
multigrid technique in multiple resolutions, we start from classical
CS-MRI optimization problem, and embed it into a two-scale correction-
distillation architecture which consists of pre-relaxation, correction and
geometric prior distillation. Firstly, the derivation from mathematical
theory to network design is more natural than the existing deep unfold-
ing methods, to deliver the expected generalizability of deep learning.
Secondly, we learn the proximal-point sub-problem to distill features of
different geometric characteristic domains. Finally, the proposed frame-
work can handle multi-sampling-ratio CS-MRI tasks in a single model
to avoid expensive training cost and large storage, while the existing
CS-MRI methods have to train an independent model for each CS ratio.
The major differences between this work and the previous work [44]
are that we propose an interpretable DL framework to train/predict
multi-sampling-ratio CS-MRI tasks in a single model, and two-grid-
cycle correction and geometric priors are refined to design network
architecture for further promoting reconstruction performance. The
main contributions of this work can be summarized as follows

(1) A novel deep unfolding unified framework which enjoys much
flexibility to conduct multi-sampling-ratio CS-MRI through a sin-
gle model is proposed.

(2) A multi-grid inspired unfolding correction-distillation scheme
which can not only incorporate frequency-domain information to
compensate for low-frequency error in 𝑘-space, but also learn geo-
metric priors of MR image by adding a geometric prior distillation
module. The proposed method gives us a novel perspective on
designing biomedical imaging network architectures.

(3) A condition module is employed to transmit CS sampling ratio to
step-length and to characterize noise level in every stage.

(4) A linkage of model-based and learning-based methods which
integrates the theoretical guarantee of model-based methods and
the superior reconstruction performances of DL-based methods, to
deliver the expected generalizability of deep learning.

(5) A learning framework to make all physical-model parameters
learnable to ensure that suitable choices are automated, as shown
in extensive experiments in favorably comparing with state-of-
the-art methods in terms of visualizations and quantitative eval-
uations on flexibility and stability.

The rest of paper is organized as follows. In Section 2, the proposed
correction-distillation CS-MRI framework is introduced in detail. The
experimental results are shown in Section 3. The conclusion of this
paper is presented in Section 4.

2. Methodology

The general sampling equation in Fourier space can be formulated
as follows
 𝒙 = 𝒚, (1)
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Fig. 1. The overall architecture of the proposed unifying multi-sampling-ratio CS-MRI framework with two-grid-cycle correction and geometric prior distillation (CGPD-CSNet). It
consists of three major ingredients, i.e. pre-relaxation module 𝓁 , correction module 𝓁 , and geometric prior distillation module 𝓁 .
where 𝒙 ∈ R𝑑 (𝑑 = 𝑚𝑛) is a target MRI,  = 𝑃𝐹 ∈ R𝑞×𝑑 is an under-
sampled Fourier measurement matrix, 𝑃 is an under-sampling matrix
and 𝐹 is a discrete Fourier transform, 𝒚 ∈ R𝑞(𝑞 ≪ 𝑑) is the under-
sampled 𝑘-space data. It is well known that the problem (1) is ill-posed,
therefore, the classical CS-MRI optimization of image reconstruction
can be given by

min
𝒙

{(𝒙) ∶= (𝒙; 𝒚) + 𝛾(𝒙)} , (2)

where (𝒙; 𝒚) = 1
2 ‖ 𝒙 − 𝒚‖22 is a data fidelity term, (𝒙) is a reg-

ularizer with either a known or unknown geometric prior, 𝛾 is a
regularization parameter that balances data fidelity term and regular-
izer.

In this section, we aim to design an explainable unifying deep
learning CS-MRI reconstruction framework, which is denoted as CGPD-
CSNet. Our method inherits the main advantages of model-based and
DL-based methods. The overall architecture of the proposed network,
which is inspired for learning a unified multi-sampling-ratio CS-MRI
minimization, is shown in Fig. 1, and more details are provided here-
after.

2.1. Proposed learnable CS-MRI unrolled framework

The problem presented in (2) can be effectively resolved using a
two-step optimization procedure, which not only avoids time-
consuming numerical optimization but also reconstructs more spatial-
frequency geometric priors. In details, we split (2) into two subprob-
lems as follows

(P1) linear reconstruction subproblem:

𝒎𝓁 ∈ {𝒙 ∶  𝒙 = 𝒚};

(P2) geometric prior reconstruction subproblem:

𝒙𝓁 ∶= argmin
𝒙

{1
2
‖𝒙 −𝒎𝓁‖

2
2 + 𝜆𝓁(𝒙)

}

.

To learn more detailed information about many specific features
that are invariant to contextual information and uninformative
intensity-variations, we consider a generative feature correction mod-
ule to solve the linear system (1), which involves a two-grid-cycle
scheme of classical multi-grid algorithm [45,46] with an initial value
𝒙̄ℎ and right-hand side 𝒚ℎ on fine grid ℎ denoted by

𝒙ℎ ← MGℎ (𝒙̄ℎ, 𝒚ℎ,  ℎ) ,
3

and the above linear reconstruction solution can be given by the
following steps:
Step 1. (pre-relaxation): Perform 𝜈0 sweeps to approximate the solu-
tion 𝒙ℎ𝑙 of  ℎ𝒙ℎ = 𝒚ℎ with initial value 𝒙̄ℎ;
Step 2. (coarse grid solution): Compute 𝒓ℎ = 𝒚ℎ −  ℎ𝒙ℎ𝑙 and 𝒓2ℎ =
𝐼2ℎℎ 𝒓ℎ, and then seek an approximation 𝑒2ℎ to the solution of  2ℎ𝒆2ℎ =
𝒓2ℎ;
Step 3. (coarse grid correction): Let 𝒙ℎ𝑚 ← 𝒙ℎ𝑙 + 𝐼ℎ2ℎ𝒆

2ℎ;
Step 4. (post-relaxation): Run 𝜈1 sweeps to approximate the solution
𝒙ℎ𝑟 of  ℎ𝒙ℎ = 𝒚ℎ with initial value 𝒙ℎ𝑚, where 𝜈0 and 𝜈1 are the numbers
of relaxation sweeps to be done before and after nested process on fine
grid 𝛺ℎ, respectively. The update solutions with subscripts 𝑙 and 𝑚
denote the results of the pre-relaxation step and coarse grid correction
step, respectively. ℎ and 2ℎ represent the fine and coarse grid cycles,
respectively. 𝐼2ℎℎ is a restriction operator which restricts residual from
fine to coarse grid, and 𝐼ℎ2ℎ is a prolongation operator which restricts
the corrected residual from coarse to fine grid.

In the following we bridge the correspondences between well es-
tablished principles in conventional modeling methods and CNN recon-
struction networks.

2.1.1. Proposed correction-distillation architecture
Inspired by the excellent performance of multigrid in multi-scale

error correction, we propose a learnable correction-distillation frame-
work which is embedded to quickly extract low frequency increment in
𝑘-space (see Fig. 1(a)). At each stage 𝓁, we thus construct two modules
based on Steps 1 – 3 to generate solution iterations for subproblem
(P1) as follows

𝒉𝓁 = 𝒙𝓁−1 − 𝜂𝓁 𝐻 ( 𝒙𝓁−1 − 𝒚), (3)

𝒆2ℎ𝓁 = 𝐹𝐻𝓁𝑅
𝓁 (𝒚 −  𝒉𝓁), (4)

𝒎𝓁 = Concat(𝒉𝓁 ,𝑃
𝓁 𝒆

2ℎ
𝓁 ,𝛽𝓁

𝓁 ), (5)

where 𝒙0 is computed by the transformation 𝒙0 =  𝐻𝒚 as one of the
initial inputs of the Stage 1 and 𝜈0 = 1, 𝜂𝓁 is a learnable step-length,
𝐹𝐻 is an inverse discrete Fourier transform. Concat(⋅, ⋅, ⋅) is a correction
operation, and 𝛽𝓁

𝓁 is filled with noise level 𝛽𝓁 learned from condition
module .

To solve  ℎ𝒙ℎ = 𝒚ℎ or subproblem (P1) at Stage 𝓁, we only denote
the inner iteration update in two-grid-cycle scheme Steps 1 – 4, where
the initial value 𝒙̄𝑚 in the pre-relaxation step of the Stage 𝓁 (outer
iteration) is the output 𝒙 of the previous Stage 𝓁 − 1, and the initial
𝓁−1
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value in the post-relaxation step of Stage 𝓁 (outer iteration) is the
update 𝒙ℎ𝑚 of the coarse grid correction step. In fact, these initial values
of other Stages do not need to be manually given except Stage 1.

More importantly, we observed that correction step (4) with error-
based solution operator 𝓁 (see Fig. 1(e)) can effectively learn signifi-
cant details to yield improved solution of subproblem (P1). It turns out
that the results have almost no significant differences with or without
using the post-relaxation Step 4. To this end, we set the unifying
CS-MRI framework without post-relaxation as default in this work.

However, if we incorporate the learnable geometric prior distillation
stage (P2) into the solution fidelity of image inverse problem (1), the
network can learn the expected MR image priors. For this purpose, we
add the geometric prior fidelity module (see Fig. 1(d)) in our network,

hich is designed by solving the equation

𝐼 − )(𝒙𝓁) =∶ 𝒙𝓁 − (𝒙𝓁) = 𝒎𝓁 , (6)

here the nonlinear function  (𝒙) = −𝜆 𝜕(𝒙)
𝜕𝒙 denotes the geometric

haracteristics of 𝒙.
The above correction-distillation architecture (3)–(6) can be per-

ormed by a pre-relaxation module 𝓁 , a correction module 𝓁 , and a
eometric prior distillation module 𝓁 . It is well known that the module
𝓁 often results in heavy artifacts, while the correction module 𝓁 is

used to quickly generate the low frequency correction in 𝑘-space. Then
the explainable module 𝓁 is learned to produce more texture priors.

2.1.2. Pre-relaxation module 𝓁

At each stage 𝓁, to provide the basis-solution guarantee in high-
requency layer, we can obtain an approximate solution 𝒉𝓁 of subprob-

lem (P1) by solving the least-square problem

min
𝒙

{

(𝒙; 𝒚) = 1
2
‖ 𝒙 − 𝒚‖22

}

.

Especially, the gradient descent (3) with the parameter 𝜂𝓁 is imple-
mented to perform a linear reconstruction, which is also called as the
pre-relaxation module 𝓁 defined by

𝒉𝓁 = 𝓁(𝒙𝓁−1, 𝜂𝓁 , 𝒚,  )

= 𝒙𝓁−1 − 𝜂𝓁 𝐻 ( 𝒙𝓁−1 − 𝒚).
(7)

The module 𝓁 corresponding to Eq. (7) is directly used to generate
the preliminary approximation from the previous 𝒙𝓁−1 (see Fig. 1(b)).
Setting 𝒙0 =  𝐻𝒚 as the initial guess of Stage 1 (not all stages) has been
widely used in MRI reconstruction and CS tasks [7,8,35]. In this work,
we also suggest that 𝒙0 =  𝐻𝒚 is an input of the Stage 1 and 𝒙𝓁−1 is
one of the inputs of Stage 𝓁. It is well known that the step-length 𝜂𝓁
should be positive, and decrease smoothly as the increase of iterations
in traditional model-based methods. While the classical model-based
methods usually face the problems of either hardly selecting suitable
fixed step-length 𝜂𝓁 or requiring expensive computation costs deter-
mined by line search. Consequently, the reconstructed results of the
classical CS-MRI methods are usually unsatisfactory. Setting the step-
length 𝜂𝓁 to be learnable, which has been widely used in deep unfolding
methods [33,35,47], is reasonable and appropriate. Especially, the pa-
rameters of the learnable step-length 𝜂𝓁 (429 parameters) is negligible
in comparing with the total parameters (4.4 million parameters) in the
proposed framework. Moreover, such a learned model could implement
multiple CS ratios CS-MRI through a single model when processing
medical data with multi-sampling-ratio. To enhance network flexibility,
we set the step-length 𝜂𝓁 to be learnable during iterations. There are
a variety of ways to use training data to learn step-length 𝜂𝓁 . Here,

e adopt the learned step-length 𝜂𝓁 from condition module  in
4

Section 2.1.5.
2.1.3. Correction module 𝓁
The proposed correction module corresponds strictly to a compo-

sition of coarse grid solution (4) and coarse grid correction (5) in
two-grid-cycle update scheme. The implementation process of solution
correction 𝓁 is shown in Fig. 1(c).

Similar to Step 2 in classical two-grid-cycle scheme, we first design
the reconstruction residual block in 𝑘-space as

𝒓ℎ𝓁 = 𝒚ℎ −  ℎ𝒉ℎ𝓁 .

Then we restrict the reconstructed 𝑘-space residual 𝒓ℎ𝓁 on fine level to
𝒓2ℎ𝓁 on the coarse level, which is denoted by

𝒓2ℎ𝓁 = 𝑅
𝓁 𝒓

ℎ
𝓁 = 𝑅

𝓁 (𝒚
ℎ −  ℎ𝒉ℎ𝓁) ∶= 𝑅

𝓁 (𝒚 −  𝒉𝓁),

where a convolution 𝑅
𝓁 with stride 2 pixel and 2 × 2 kernel is learnt

to exploit the restriction operator 𝐼2ℎℎ . Note that 𝑅
𝓁 and 𝐼2ℎℎ have the

similar meaning but the former is for learning implementation while
the latter is for mathematical description.

To compute a more accurate correction 𝒆2ℎ𝓁 as the solution of
 2ℎ
𝓁 𝐞2ℎ𝓁 = 𝒓2ℎ𝓁 and reduce the computational costs, we propose to learn

an error-based solution operator 𝓁 to quickly generate low frequency
correction 𝓁𝒓2ℎ𝓁 in 𝑘-space, and then use 𝐹𝐻 to convert corrected error
from 𝑘-space to image space. Mathematically, we can formulate it as

𝒆2ℎ𝓁 = 𝐹𝐻𝓁𝒓2ℎ𝓁 ,

where the operation 𝓁 is composed of four residual blocks (Res-
Blocks) [36] with 𝑝 channels, two 3 × 3 convolution layers with 𝑝
channels and a skip connection as shown in Fig. 1(e). Obviously,
the block 𝐹𝐻𝓁 can be seen as an approximation to inverse op-
eration ( 2ℎ

𝓁 )−1. As we all know, solving inverse operator ( 2ℎ
𝓁 )−1

mathematically (e.g., conjugate gradient method) requires expensive
computational costs. Although setting 𝓁 to be learnable will increase
the training complexity of the network, it is more convenient than
solving the inverse operator mathematically in the testing stage. In
addition, the amount of training data in this work is sufficient to
effectively train such solution operator 𝓁 . We also remark that Batch
Normalization (BN) is not adopted because some recent papers showed
that BN layer is more likely to yield undesirable representations when
the network becomes deeper and more complex [48,49].

Next, we interpolate the correction 𝒆2ℎ𝓁 on coarse level to the fine
level by

𝒆ℎ𝓁 = 𝑃
𝓁 𝒆

2ℎ
𝓁 ,

where 𝑃
𝓁 is implemented by a learnable transpose convolution with

stride 2 pixel to represent the prolongation operator 𝐼ℎ2ℎ.
Using channel concatenation to add contextual information 𝒆ℎ𝓁 has

been widely used in traditional CNN architectures. According to Step
3, we thus apply a concatenate operation Concat(⋅, ⋅, ⋅) to produce the
refined correction module 𝓁 as

𝒎𝓁 = 𝓁(𝒉𝓁 , 𝒚,  ,𝑅
𝓁 ,𝓁 ,𝑃

𝓁 , 𝛽𝓁)

= Concat(𝒉𝓁 , 𝒆ℎ𝓁 ,
𝛽𝓁
𝓁 ) = Concat(𝒉𝓁 ,𝑃

𝓁 𝒆
2ℎ
𝓁 ,𝛽𝓁

𝓁 ),

where the additional noise level map 𝛽𝓁
𝓁 , which is filled with the

output 𝛽𝓁 of condition module  [47,50], has the same size as 𝒉𝓁 and
can make network more flexible to train multi-sampling-ratio CS-MRI
task.

2.1.4. Geometric prior distillation module 𝓁
We employ a geometric prior distillation module 𝓁 [44] to refine

the compromised image structure and geometric features (see Fig. 1(d)).
Actually, the geometric texture information in different sparse (ge-

ometric) domains can be represented by the partial derivatives  (𝒙) =
−𝜆 𝜕(𝒙)

𝜕𝒙 of the geometric prior (𝒙) of MRI image 𝒙.  (𝒙𝓁) represents
the geometric characteristics of 𝒙𝓁 [33], and  𝑘(𝒎𝓁) extracts the 𝑘-
order geometric characteristics of 𝒎𝓁 [33]. In this part, we hope that
the geometric characteristics  (𝒙 ) can be approximated by a linear
𝓁
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combination of  (𝒎𝓁),… , 𝑘(𝒎𝓁), 𝑅( 𝑘). Unfortunately, it is difficult
to directly obtain the close-form solution 𝒙𝓁 = (𝐼 −  )−1(𝒎𝓁) of the
optimal condition (6) of the geometric prior distillation stage (P2). It
is well-known that the refined correction solution 𝒎𝓁 can be employed
to restore high-resolution 𝒙𝓁 by optimizing the problem (P2) or solving
the nonlinear equation 𝒙𝓁− (𝒙𝓁) = 𝒎𝓁 . Fortunately, if the operator 
satisfies the contraction condition ‖‖ < 1, (𝐼− )−1 can be simplified
by using series expansion as follows

𝒙𝓁 = (𝐼 − )−1(𝒎𝓁) =

( 𝑘
∑

𝑖=0
 𝑖 + 𝑅( 𝑘)

)

(𝒎𝓁), (8)

which means

𝒙𝓁 ∈ span(𝒎𝓁 , (𝒎𝓁),… , 𝑘(𝒎𝓁), 𝑅( 𝑘)),

where 𝑅( 𝑘) is the remainder and can be approximated by  𝑘+1(𝒎𝓁).
A more flexible representation of the non-linear operation  𝑗 in

(8) could be approximated by CNN block  𝑗
,𝓁 with many embedded

convolution blocks and ReLU layers, where 𝓁,𝑘 is designed to replace
 for learning multi-scale geometric priors of 𝒙𝓁 . Finally, a 1 × 1
convolution 𝓁 =

{

𝓁,𝑗
}𝑘
𝑗=0 is used to fuse features 𝓁,𝑘, i.e.

𝒙𝓁 = 𝓁(𝒎𝓁) = 𝓁,0 ∗ 𝒎𝓁 +
𝑘
∑

𝑗=1
 𝑗

,𝓁

(

𝒎𝓁
)

= 𝓁,0 ∗ 𝒎𝓁 +
𝑘
∑

𝑗=1

(

𝓁,𝑗 ∗ 𝑗−1
𝓁 (𝓁(𝒎𝓁))

)

(9)

= 𝓁 ∗ 𝓁,𝑘

= 𝓁 ∗ Concat
(

𝓁,𝑘−1,𝓁,𝑘 ∗ 𝓁,𝑘−1
)

,

where 𝓁 and 𝓁 are two learnable blocks with the 3 × 3 convolution
𝜿 and ReLU such that 𝓁(⋅) ∶= ReLU(𝜿(⋅)) ∶ R𝑚×𝑛 → R𝑚×𝑛×𝑝,
𝓁(⋅) ∶= ReLU(𝜿(⋅)) ∶ R𝑚×𝑛×𝑝 → R𝑚×𝑛×𝑝, 𝑘−1

𝓁 = 𝓁◦… ◦𝓁
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝑘−1

, 𝓁,𝑘 =

(𝓁 ,𝓁 ,… ,𝓁
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

𝑘

), each 1 × 1 convolution 𝓁,𝑗 in 𝓁 =
(

𝓁,0,𝓁,1,… ,

𝓁,𝑘
)

is a linear combination of
{

𝓁,𝑗
}𝑘
𝑗=0. We also refer the interested

readers to [44] for more details.

2.1.5. Condition module 
The pre-relaxation reconstruction step (3) involves choosing/tuning

hyper-parameter 𝜂𝓁 that significantly affects model performance. A
suitable step-length 𝜂𝓁 can achieve a satisfactory reconstruction as long
as the CS 𝑘-space sampling-ratio is fixed. However, it is generally diffi-
cult to determine a suitable 𝜂𝓁 without which the reconstructed image
can be unsatisfactory, especially when switching to other medical data
with multi-sampling-ratio or other sampling masks. In general, manual
tuning to determine optimal task-specific hyper-parameters require
high computational costs and often lead to sub-optimal results.

To make multi-sampling-ratio tasks more flexible in our unifying
model and tackle the inefficiency of hyper-parameter tuning (which
includes both adaptive model parameters and hyper-parameters), we
learn the step-length 𝜂𝓁 and noise level 𝛽𝓁 in our condition module
. We remark that CS sampling-ratio 𝛼 influences the degree of
ill-posedness, so it is suitable as the input of condition module ,
resulting in the commonly used parameter prediction module [47], i.e.,

[𝜼, 𝜷] = (𝛼), (10)

where 𝜼 = [𝜂1, 𝜂2,… , 𝜂𝑛𝑠 ] and 𝜷 = [𝛽1, 𝛽2,… , 𝛽𝑛𝑠 ].  module
is composed of three hidden fully connected layers with 𝑝 neurons,
ReLU is employed as the first two activation functions. Since the pre-
relaxation module 𝓁 will not work when the step-length 𝜂𝓁 = 0, so
5

softplus [51] is used as the last activation function.
2.1.6. Loss function
For the training data pairs

{(

𝒚𝑖,𝒙𝑖
)}𝑛𝑡

𝑖=1 (with 𝑛𝑡 the total number of
samples), under-sampled 𝑘-space data 𝒚 and initialization 𝒙0 are used as
inputs, the final output 𝒙𝑛𝑠 is obtained by the proposed framework. The
loss function is commonly employed to seek the real target image 𝒙∗
by minimizing the distance measure between 𝒙𝑛𝑠

and 𝒙. Here we adopt
𝓁1-loss rather than 𝓁2-loss which is insufficient to capture perceptually
relevant components (e.g., high-frequency geometric details) [52] to
enlarge the original loss.

Inspired by deep supervision technique [53], we add an auxiliary
constraint on a network branch to supervise the trunk network to make
the optimization process more flexible. The total loss is defined as
follows

 = 1
𝑛𝑡𝑚𝑛

𝑛𝑡
∑

𝑖=1

(

‖

‖

‖

𝒙𝑖𝑛𝑠 − 𝒙𝑖‖‖
‖1

+ ‖

‖

‖

𝒙𝑖𝑛𝑠 − 𝒙𝑖‖‖
‖1

)

, (11)

where 𝑛𝑠 =
𝑛𝑠+1
2 , 𝑚𝑛 is the size of 𝒙𝑖 from (9), and 𝑛𝑠 is the total stage

number of the proposed framework. 𝒙𝑖𝑛𝑠 and 𝒙𝑖𝑛𝑠 are two outputs of the
sample 𝒙𝑖 on stages 𝑛𝑠 and 𝑛𝑠, respectively.

2.1.7. Parameters and initialization
The three modules in stage 𝓁 of the proposed framework strictly

implement our correction-distillation updates ((3) to (6)). The learnable
parameter set 𝛩 =

{

𝜂𝓁 , 𝛽𝓁 ,𝓁 ,𝓁 ,𝓁 ,𝑅
𝓁 ,𝓁 ,𝑃

𝓁

}𝑛𝑠

𝓁=1
consists of step-

length 𝜂𝓁 , noise level 𝛽𝓁 , CNN blocks 𝓁 and 𝓁 with 3 × 3 convolution
and ReLU, 1 × 1 convolution 𝓁 , restriction operator 𝑅

𝓁 , solution
operator 𝓁 and prolongation operator 𝑃

𝓁 . All these parameters are
learned as neural network parameters by minimizing the loss (11).

Similar to traditional model-based method, the proposed framework
also requires an initial input 𝒙0 =  𝐻𝒚. The convolution network
is initialized with Kaiming Initialization [54]. The model parameters
{𝑝, 𝑘, 𝑛𝑠} are initialized as {32, 8, 13} respectively.

3. Experiments and results

In this section, we verify the advantages of the proposed CGPD-
CSNet in comparing with the state-of-the-art methods through various
experiments. Peak Signal to Noise Ratio (PSNR) and Structural Similar-
ity Index Measure (SSIM) are employed to evaluate their performances,
the values (M-PSNR and M-SSIM) are all obtained by averaging on
tested data.

3.1. Implementation details

We evaluate the performance of the proposed and the popular
methods on the widely used brain MR dataset [27,33] using three
classical types of sampling masks [23]. The brain MR dataset consists
of 100 images for training and 50 images for testing, which are T1-
weighted 2D images from health and Alzheimer’s disease patients from
different devices. The training data is augmented to 800 by conducting
horizontal and vertical flipping. The brain MR dataset is randomly
selected from the MICCAI 2013 SATA Challenge [55], which consists
of 35 training and 12 testing T1-weighted scans of 1 mm thick cortical
slices from the OASIS project [56] with corresponding manually created
reference labels for 14 deep brain structures.

Besides, we employ a cardiac dataset [28], which is established
based on [57] and contains 4480 cardiac real-valued MR images from
33 patients, to further evaluate the performance of comparison meth-
ods. The first 30 patients’ samples of 4180 MR images are set as training
set while the last 3 patients’ of 300 MR images are set as testing set.
The training data is augmented by conducting horizontal and vertical
flipping. The cardiac dataset is provided by the Department of Diagnos-
tic Imaging of the Hospital for Sick Children in Toronto, Canada [57].
The images are scanned with a GE Genesis Signa MR scanner using the

FIESTA scan protocol. Most of the subjects display a variety of heart
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Table 1
Quantitative assessment with M-PSNR values of different stage number 𝑛𝑠 and different geometric distillation depths 𝑘 using Cartesian sampling brain dataset with different CS
ratios.

CS Ratio Stage number 𝑛𝑠 Geometric distillation depths 𝑘

5 7 9 11 13 15 4 5 6 7 8 9

10% 32.54 33.59 33.80 34.16 34.23 34.25 33.69 33.91 34.02 34.22 34.23 34.37
20% 37.43 38.31 38.61 38.88 39.02 39.00 38.46 38.65 38.75 38.93 39.02 39.02
30% 39.56 40.46 40.76 41.01 41.16 41.15 40.64 40.83 40.89 41.10 41.16 41.14
40% 43.45 44.38 44.71 44.92 45.07 45.08 44.71 44.84 44.80 44.99 45.07 45.01
50% 45.99 46.72 47.05 47.19 47.31 47.38 47.05 47.13 47.10 47.28 47.31 47.29
T .
abnormalities such as cardiomyopathy, aortic regurgitation, enlarged,
etc.

We employ Pytorch to implement the proposed framework. We use
Adam optimization [58] with a learning rate of 0.0001 and batch size 1
to train network for 500 epochs to ensure convergence. In our unifying
multi-sampling-ratio CS-MRI framework, the mixed CS sampling ratios
are set as {10%, 20%, 30%, 40%, 50%} for Cartesian sampling mask and
pseudo radial sampling mask, and are set as {5%, 10%, 20%, 30%, 40%}
for 2D random sampling mask. All experiments are performed on a
workstation with Intel Xeon CPU E5-2630 and Nvidia Tesla V100 GPU.

3.2. Intra-method evaluation

We first conduct four groups of experiments to investigate the role
of different network components in our CGPD-CSNet on reconstruction
performance, including stage number 𝑛𝑠, geometric prior distillation
depths 𝑘, as well as ablation study about the proposed correction
module 𝓁 and condition module , different shared settings of
CGPD-CSNet.

3.2.1. Test of stage number 𝑛𝑠
To evaluate the effectiveness of different stage number on recon-

struction performance, we tune the stage number 𝑛𝑠 from 5 to 15 at 2
intervals. Using the CNN architectures with different stage number 𝑛𝑠
to Cartesian sampling brain dataset with different CS sampling ratios,
the M-PSNR values of the reconstructed results are summarized in
Table 1. We can observe that the reconstruction performance gradually
improves with the increase of stage number 𝑛𝑠 while the M-PSNR
value becomes stable after 𝑛𝑠 ≥ 13. Based on this observation, the 13-
stage configuration is a preferable setting to balance the reconstruction
performance and computational costs, and we fix 𝑛𝑠 = 13 throughout
all the experiments.

3.2.2. Test of geometric distillation depths 𝑘
To explore the relationship between different geometric prior distil-

lation depths and reconstruction performance, we tune the geometric
distillation depths 𝑘 from 4 to 9. The M-PSNR values of the recon-
structed images on brain dataset using different geometric distillation
depths and different Cartesian CS sampling ratios are summarized in
Table 1. The reconstruction performance improves slowly after 𝑘 ≥ 8.

onsidering the tradeoff between network complexity and reconstruc-
ion performance, we set geometric distillation depths 𝑘 = 8 in all
onfigurations.

.2.3. Ablation study
Next, we conduct a group of ablation studies to better evaluate the

ffectiveness of correction module 𝓁 and condition module  on
he CS-MRI reconstruction performance. The comparisons are shown
n Table 2.

Using condition module  with two learnable parameters, our
ethod enjoys the flexibility of handling CS-MRI problems with dif-

erent sampling ratios through a single model. Contrast to the single
ariant (a) trained with the same Cartesian sampling masks without
ondition module , variant (b) with the proposed condition module
6

 consistently outperforms variant (a) across all five CS ratios and
Table 2
Quantitative assessment with M-PSNR values of different combinations of correction
module 𝓁 and condition module  using Cartesian sampling mask on brain dataset.

he best and second places are highlighted in Bold font and underline ones, respectively
Variant 𝓁  CS Ratio

𝜂𝓁 𝛽𝓁 10% 20% 30% 40% 50%

(a) – – – 32.53 38.32 40.63 44.60 46.66
(b) – + + 32.61 38.40 40.69 44.80 47.16
(c) + – – 33.54 38.54 40.76 44.66 46.89
(d) + – + 33.90 38.63 40.81 44.78 47.11
(e) + + – 34.00 39.00 41.13 45.04 47.30
(f) + + + 34.23 39.02 41.16 45.07 47.31

Table 3
Quantitative assessment with M-PSNR values with different shared settings of proposed
CGPD-CSNet using Cartesian sampling mask on brain dataset. Bold font in the table is
the best of the variants.

Variant Shared setting CS Ratio

10% 20% 30% 40% 50%

(a) Shared 𝓁 , 𝓁 32.84 38.31 40.55 44.65 47.02
(b) Shared 𝓁 33.55 38.55 40.76 44.79 47.09
(c) Shared 𝓁 33.56 38.71 40.93 44.91 47.17
(d) Unshared (default) 34.23 39.02 41.16 45.07 47.31

brings average 0.18 dB improvement. When the proposed correction
module 𝓁 is embedded in reconstruction model, variant (f) with
condition module  can further improve reconstruction performance
than variant (c) without condition module  and increases average
0.48 dB. Furthermore, comparison between variants (a) and (c) can
also demonstrate the advantage of the proposed correction module
𝓁 . Especially in low sampling rate 10%, reconstruction performance
improves 1.01 dB.

From variants (c) and (d), it is clear to descript that noise level 𝛽𝓁
learned from condition module  can improve the M-PSNR value
by 0.17 dB. We can also observe from variants (c) and (e) that step-
length 𝜂𝓁 learned from condition module  can greatly boost the
reconstruction performance across all five CS ratios and achieve av-
erage 0.42 dB improvement. Compared with variant (a), our variant
(f) combining with correction module 𝓁 and condition module 
can achieve average 0.81 dB improvement across all five sampling
ratios and 1.7 dB in low CS ratio 10% especially. These comparisons
adequately verify the effectiveness of the proposed correction module
𝓁 and condition module .

3.2.4. Module sharing configurations
To demonstrate the flexibility of the proposed framework that does

not have to be the same network parameter configurations in different
stages, we conduct several variants of CGPD-CSNet that have different
shared settings among stages. Table 3 lists the M-PSNR values for
different shared architectures in case of using Cartesian sampling mask
on brain dataset. Note that the best M-PSNR scores are achieved when
using the default unshared version (d), which is the most flexible with
largest number of parameters. The variant (a) that shares both 𝓁 and
𝓁 in all stages is least flexible with smallest number of parameters and

achieves the worst performance. Especially if only 𝓁 or 𝓁 is shared,
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Table 4
Quantitative assessment with M-PSNR and M-SSIM values using Cartesian sampling mask with different CS ratios on brain and cardiac datasets. The best and second best results
are highlighted in Bold font and underlined ones, respectively.

Dataset Method CS Ratio Time (s)

10% 20% 30% 40% 50% CPU/GPU

Brain

Zero-filling [59] 23.85/0.5743 26.40/0.6611 28.64/0.7249 31.12/0.7863 32.93/0.8230 0.0019/—
TV [34] 25.56/0.6685 29.92/0.7939 32.88/0.8582 37.19/0.9285 39.91/0.9472 1.2330/—
SIDWT 25.19/0.6782 28.96/0.7782 31.87/0.8476 36.50/0.9234 39.70/0.9493 18.033/—
PBDW[7] 26.82/0.7355 32.42/0.8661 35.04/0.9116 39.76/0.9599 42.52/0.9727 65.1656/—
PANO[8] 28.98/0.7897 34.64/0.8934 36.79/0.9244 41.54/0.9661 44.14/0.9733 38.2577/—
DC-CNN[32] 30.00/0.8232 35.73/0.9204 38.48/0.9493 42.87/0.9765 45.53/0.9842 —/0.0161
ISTA-Net[33] 30.28/0.8256 36.59/0.9334 39.14/0.9566 43.93/0.9820 46.77/0.9885 —/0.0189
ISTA-Net+[33] 30.86/0.8455 37.05/0.9356 39.62/0.9597 44.24/0.9826 46.78/0.9882 —/0.0200
FISTA-Net[35] 31.06/0.8444 37.27/0.9395 39.86/0.9607 44.50/0.9835 46.99/0.9889 —/0.0297
CGPD-CSNet 34.23/0.9126 39.02/0.9553 41.16/0.9685 45.07/0.9852 47.31/0.9897 —/0.0721

Cardiac

Zero-filling [59] 20.29/0.5286 22.99/0.6059 25.50/0.6698 28.05/0.7371 29.97/0.7736 0.0017/—
TV [34] 22.26/0.6139 27.94/0.7786 31.32/0.8535 36.27/0.9274 38.87/0.9486 1.2446/—
SIDWT 21.56/0.6233 26.23/0.7480 29.62/0.8279 35.02/0.9102 37.97/0.9416 21.1174/—
PBDW[7] 23.73/0.7123 30.46/0.8666 33.18/0.9122 38.58/0.9642 41.20/0.9761 69.8070/—
PANO[8] 25.94/0.7606 32.45/0.8809 34.61/0.9155 40.81/0.9697 43.07/0.9730 39.0812/—
DC-CNN[32] 26.31/0.7863 33.51/0.9153 36.29/0.9484 42.56/0.9836 45.25/0.9888 —/0.0131
ISTA-Net[33] 27.81/0.8185 34.23/0.9299 36.70/0.9557 43.94/0.9892 47.51/0.9941 —/0.0134
ISTA-Net+[33] 27.84/0.8236 34.57/0.9339 37.20/0.9589 44.56/0.9903 48.07/0.9946 —/0.0145
FISTA-Net[35] 27.74/0.8280 34.70/0.9347 37.41/0.9600 44.83/0.9905 48.37/0.9949 —/0.0229
CGPD-CSNet 28.05/0.8516 35.32/0.9433 37.99/0.9649 45.47/0.9919 48.66/0.9952 —/0.0539
the variants (b) and (c) increase average 0.27 dB and 0.38 dB over the
variant (a). So we adopt the default unshared version (d) to perform
the following experiments.

Actually, we attribute the superiority of our method to the following
three factors. Firstly, our method has a correction module 𝓁 which
can compensate the low frequency of reconstruction error in 𝑘-space.
Secondly, the additional noise level 𝛽𝓁 learned from condition module
 adds the anti-interference, and the geometric prior distillation
module 𝓁 distills the lost contextual details. Thirdly, the learnable
step-length 𝜂𝓁 can be adapted and optimized according to different CS
sampling ratios, such that multi-sampling-ratio CS-MRI can be jointly
learnt through a single model.

3.3. Comparison to the state-of-the-art methods

Since our proposed CGPD-CSNet framework merges the advan-
tages of traditional methods and modern deep learning methods, it is
necessary to compare with related methods from both categories on
performances and hence generalizability.

We compare our framework with the state-of-the-art methods in-
cluding traditional methods (Zero-filling [59], TV [34], SIDWT1),
patch-based methods (PBDW [7], PANO [8]), and deep unfolding meth-
ods (DC-CNN [32], ISTA-Net [33], ISTA-Net+ [33], FISTA-Net [35].
Following [33,44], the stage number of ISTA-Net, ISTA-Net+ and
FISTA-Net is configured as 11. Following [32], the stage number of
DC-CNN is configured as 5. Cartesian sampling mask which is widely
used in clinic [7,34] is employed to acquire under-sampling 𝑘-space
data. Apart from other comparison methods that have to train different
model according to every CS sampling ratio, we cast the training
process for five different CS sampling ratios as a unified joint learning
throughout all the experiments.

3.3.1. Quantitative evaluation
The M-PSNR/M-SSIM scores of the proposed and comparison meth-

ods using Cartesian sampling mask with different CS ratios on brain
and cardiac datasets are listed in Table 4. As a result, a significant
increase of all M-PSNR/M-SSIM scores compared to the other methods
across all CS ratios can be observed. In particular, our method achieves
3.18 dB improvement (10.22%) at low CS ratio 10% and average

1 https://github.com/ricedsp/rwt
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1.42 dB improvement (3.55%) over other comparison methods on
brain dataset. And our method achieves average 0.47 dB improvement
(1.21%) over other comparison methods on cardiac dataset. Thanks
to Nesterov acceleration and learning nonlinear transformations with
deeper convolutional layers, FISTA-Net outperforms ISTA-Net+ across
all CS ratios. The reconstruction results of all deep unfolding methods
are better than traditional CS-MRI methods and patch-based methods.
In addition, Table 4 lists the average testing time (in seconds) of
reconstructing a 256 × 256 image for all methods. Our method achieve
consistently better reconstruction performance while maintaining a fast
reconstruction real-time speed.

3.3.2. Qualitative evaluation
The visual comparisons of all methods using Cartesian sampling

mask with CS ratio 10% on brain CS-MRI and CS ratio 30% on cardiac
CS-MRI are shown in Fig. 2. We can observe that our method is able
to restore more details (e.g., sharper edges, texture) which yield much
better visual quality and achieve much higher PSNR scores than the
comparison methods.

It is interesting and meaningful to qualitatively analyze the pre-
sentations of the pre-relaxation module 𝓁 and the geometric prior
distillation module 𝓁 in different stages. Fig. 3 shows the intermediate
visualizations of the proposed method at different stages by using Carte-
sian sampling mask with CS ratio 10% on brain dataset and CS ratio
30% on cardiac dataset. We can observe that the details of intermediate
results become gradually more complete and that the reconstruction
performance become better as iterations increase. It shows that both
modules 𝓁 and 𝓁 can facilitate each other for alternating artifact
removal and details recovery. These performances are also due to the
deep supervision loss, which ensures that the reconstruction results can
be steadily improved even with a large number of iterations.

In summary, from the perspectives of visualization and objective
evaluations, our method can achieve a prominent improvement across
all CS ratios on different datasets by using widely used Cartesian
sampling mask for clinical 𝑘-space data acquisition. More importantly,
such excellent performance can be achieved by reconstructing mul-
tiple CS ratios tasks through a single model. Apparently, it can be
attributed to the decoupling of prior term and the bonus of two-grid-
cycle architecture that quickly generate the low frequency correction
in 𝑘-space.

https://github.com/ricedsp/rwt
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Fig. 2. Qualitative comparisons of our method with other popular methods using three sampling masks on brain and cardiac datasets.
4. Discussions

MRI is widely used for clinical diagnosis, while high-resolution
MRI requires a long scan time and has the risk of motion-related
artifacts in the reconstructed image. CS-MRI has been proposed to
reconstruct image from the sparse characteristics of signals and the re-
constructed image’s quality is relatively high. Deep unfolding learnable
framework inheriting the merits of model-based and DL-based CS-
MRI methods has not only sufficient theoretical support but also good
performance [23–25]. However, there are still two main shortcomings:
8

(1) the derivation from mathematical theory to network design is not
always natural enough for these existing deep unfolding methods. The
proximal-point sub-problem has not well been analyzed and explained;
(2) most of existing CS-MRI methods are not flexible enough to handle
multi-sampling-ratio reconstruction assignments.

We transform the proximal-point sub-problem to distill features of
different geometric characteristic domains, and the derivation from
mathematical theory to network design is more natural than the exist-
ing deep unfolding methods. Furthermore, the proposed framework can
handle multi-sampling-ratio CS-MRI tasks in a single model to avoid
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Fig. 3. Stage representations of the proposed method using three sampling masks on brain and cardiac datasets.
expensive training cost and large storage, while the existing CS-MRI
methods have to train an independent model for each CS ratio. We also
propose a multi-grid inspired unfolding correction-distillation scheme
which can not only incorporate frequency-domain information to com-
pensate for low-frequency error in 𝑘-space, but also learn geometric
priors of MR image by adding a geometric prior distillation module.

To achieve comprehensive evaluations, we conduct four groups
of experiments to analyze the sensitivity of the proposed framework,
including CS-MRI with untrained CS sampling ratio 𝛼, CS-MRI with
9

different sampling masks (pseudo radial sampling mask and 2D random
sampling mask), different initialization 𝒙0 (𝒙0 =  𝐻𝒚 and 𝒙0 = 0), and
CS-MRI with Gaussian noise.

4.1. Sensitivity analysis of untrained CS ratios

Fig. 4 depicts the test comparisons on Cartesian under-sampled
𝑘-space datasets with untrained CS ratios for brain and cardiac MR
images. Here all comparison methods trained five models according
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Fig. 4. Performance comparisons on Cartesian under-sampled k-space datasets with untrained CS ratios for brain dataset (a) and cardiac dataset (b). ‘‘-Left’’ denotes the reconstruction
of untrained CS ratio 15%, 25%, 35%, 45% sampled data with trained models of CS ratios 10%, 20%, 30%, 40%, respectively. ‘‘-Right’’ denotes the reconstruction of untrained
CS ratio 15%, 25%, 35%, 45% sampled data with trained models of CS ratios 20%, 30%, 40%, 50%, respectively.
Table 5
Quantitative assessment with M-PSNR values using pseudo radial and 2D random sampling mask on brain dataset with different CS ratios for CS-MRI. The best and second places
are highlighted in Bold font and underlined ones, respectively.

Method Pseudo radial CS Ratio 𝛼 2D random CS Ratio 𝛼

10% 20% 30% 40% 50% 5% 10% 20% 30% 40%

Zero-filling [59] 26.64 30.28 32.89 35.01 36.92 25.98 27.72 29.34 31.12 33.01
TV [34] 30.83 35.16 38.03 40.13 41.94 31.99 34.34 36.94 39.34 41.58
SIDWT 30.88 35.66 38.67 40.79 42.57 31.79 34.43 37.36 39.95 42.23
PBDW[7] 32.48 36.54 38.90 40.67 42.30 33.34 35.67 38.48 40.83 42.94
PANO[8] 33.61 37.02 39.28 41.05 42.72 34.31 36.62 39.57 42.04 42.94
ADMM-Net[27] — 37.17 39.84 41.56 43.00 — — — — —
DC-CNN[32] 34.30 38.43 40.74 42.51 44.07 35.01 37.65 40.80 43.34 45.56
ISTA-Net[33] 34.69 38.75 41.00 42.26 44.25 35.59 38.23 41.44 43.99 46.21
ISTA-Net+[33] 34.83 38.75 40.99 42.64 44.22 35.92 38.41 41.66 44.18 46.51
FISTA-Net[35] 35.09 39.05 41.20 42.85 44.42 35.92 38.36 41.74 44.27 46.69
CGPD-CSNet 36.22 39.54 41.52 43.08 44.58 36.72 39.08 42.10 44.52 46.84
to five CS ratios 10%, 20%, 30%, 40% and 50%, respectively, while
the proposed unifying framework jointly train a single model on the
above five CS ratios. Compared with other methods, our unifying
framework improves at least 2.49 dB, 1.56 dB, 0.59 dB, and 0.58 dB for
CS sampling ratio 15%,25%, 35%, 45% on brain dataset respectively,
with an average 1.30 dB improvement. And our unifying framework
achieves 0.55 dB, 0.76 dB, 0.43 dB improvement for CS ratio 25%, 35%,
45% on cardiac dataset. It is worth noting that our method can use
the single multi-sampling-ratio model to reconstruct more satisfactory
result from sampling data with any untrained CS ratio than other
comparison methods.

4.2. Sensitivity analysis of different sampling masks

Table 5 lists the M-PSNR values of various methods by using pseudo
radial sampling mask and 2D random sampling mask with different CS
sampling ratios on brain dataset. We can see that the proposed method
achieves optimal reconstruction results across all CS ratios. In general,
it can achieve average 0.47 dB improvement (1.15%) using pseudo
radial sampling mask and average 0.45 dB improvement (1.08%) using
2D random sampling mask. Furthermore, we can observe that our
method achieves much better visual quality and higher PSNR than
other comparison methods in Fig. 2, and that the details of interme-
diate results become gradually better as iterations increase in Fig. 3
using pseudo radial sampling mask with CS ratio 10% and 2D random
sampling mask with CS ratio 10% on brain dataset.
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Table 6
Quantitative assessment of different initial inputs 𝐱0 with M-PSNR values using
Cartesian sampling mask with different CS ratios on brain dataset.

Initialization CS Ratio

10% 20% 30% 40% 50%

𝐱0 =  𝐻𝐲 34.23 39.02 41.16 45.07 47.31
𝐱0 = 0 34.09 39.00 41.15 45.06 47.31

4.3. Sensitivity analysis of different initial inputs

In this part, we conduct experiments with two typical initialization
schemes, which are denoted by 𝒙0 =  𝐻𝒚 and 𝒙0 = 0 respectively, to
evaluate the influence of initialization. Table 6 lists the quantitative
assessment of different initial inputs 𝒙0 with M-PSNR values using
Cartesian sampling mask and different CS ratios on brain dataset. We
can find that the reconstruction performance of 𝒙0 = 0 is evidently
worse than 𝒙0 =  𝐻𝒚 at a low CS ratio (10%). Due to the efficient
correction of multigrid technique in multiple resolutions, all two ini-
tializations achieve similar and good performance at the other four CS
ratios. It demonstrates that the initialization we adopt is suitable.

4.4. Sensitivity analysis of the noise degradation

To show the robustness of the proposed method against image with
the Gaussian noise degradation, we test the under-sampled 𝑘-space data
𝑦 with Gaussian noise using the trained model and untrained model.
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Table 7
Quantitative assessment of Gaussian noise with M-PSNR values using Cartesian sampling
mask with different CS ratios on brain dataset.

Noise CS Ratio

10% 20% 30% 40% 50%

None 34.23 39.02 41.16 45.07 47.31
Gaussian (untrained) 34.17 38.89 40.98 44.68 46.78
Gaussian (trained) 34.23 38.88 41.02 44.82 46.98

Table 7 lists the quantitative assessment of Gaussian noise degradation
(mean value is 0 and the standard deviation is 0.1) with M-PSNR values
using Cartesian sampling mask and different CS ratios on brain dataset.
Thanks to the proposed two-grid-cycle correction architecture, we can
see that our method is robust to gaussian noise regardless of whether
it is trained. The reconstruction performance of the under-sampled
𝑘-space data with Gaussian noise will not drop too much.

Extensive numerical experiments also show that our framework out-
performs state-of-the-art methods in terms of visualizations and quan-
titative evaluations on flexibility and stability. Our method achieves
average 1.42 dB improvement on brain dataset and average 0.47 dB
improvement on cardiac dataset over other popular methods using
Cartesian sampling mask. It can achieve average 0.47 dB improvement
using pseudo radial sampling mask and average 0.45 dB improvement
using 2D random sampling mask on brain dataset. Otherwise, it is
worth noting that our method can use the single multi-sampling-ratio
model to reconstruct more satisfactory result from sampling data with
any untrained CS ratio than other comparison methods. Therefore, our
architecture has good generalizability for image reconstruction due to
the two-scale correction-distillation, and can be potentially applied to
other inverse problems in imaging.

5. Conclusions

In this study, we proposed a novel deep unfolding unified frame-
work that can deliver generalizability by flexibly handling multi-
sampling-ratio CS-MRI through a single model. Inspired by efficient
correction of multigrid technique, we start from classical CS-MRI
optimization problem and transform it into a two-grid-cycle correction
architecture which consists of pre-relaxation, correction and geometric
prior distillation. The proposed method inherits the merits of model-
based and DL-based CS-MRI methods, has sufficient theoretical support
and also good performance. It can give us a new perspective to design
the explainable network. Extensive experiments demonstrate that the
proposed framework outperforms other state-of-the-art methods in
terms of qualitative and quantitative evaluations.
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