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3D Orientation-Preserving Variational Models for Accurate Image Registration\ast 
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Abstract. The Beltrami coefficient from complex analysis has recently been found to provide a robust constraint
for obtaining orientation-preserving and diffeomorphic transformations for registration of planar
images. There exists no such concept of the Beltrami coefficient in three or higher dimensions,
although a generalized theory of quasi-conformal maps in high dimensions exists. In this paper, we
first propose a new algebraic measure in three dimensions (3D) that mimics the Beltrami concept
in two dimensions (2D) and then propose a corresponding registration model based on it. We
then establish the existence of solutions for the proposed model and further propose a converging
generalized Gauss--Newton iterative method to solve the resulting nonlinear optimization problem. In
addition, we also provide another two possible regularizers in 3D. Numerical experiments show that
the new model can produce more accurate orientation-preserving transformations than competing
state-of-the-art registration models.
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1. Introduction. Image registration, also called image matching, image wrapping, or im-
age fusion, has become one of the most important tasks in the image processing domain.
It aims to find an optimal geometric transformation to align the corresponding image data,
which are taken at different times, from different imaging machinery, or from different per-
spectives. Nowadays, image registration has a wide range of applications, such as computer
vision, biological imaging, remote sensing, and medical imaging [7, 27, 33, 35, 38, 44, 53].
For registering images which differ by a small deformation or by a relative simple parametric
(e.g., linear) transformation, there exist many well-known and mature methods to be em-
ployed [39, 40]. Here, we consider image registration in a variational framework to cope with
the more challenging task of modeling large nonparametric deformable problems, especially
the question of preserving orientation in three dimensions (3D).

In general, image registration involves two or more images. By convention, we define two
related monomodality images, R : \Omega \subset \BbbR d \rightarrow \BbbR as the reference and T : \Omega \subset \BbbR d \rightarrow \BbbR as the
template, where R and T are compactly supported in \Omega and d is the dimension of the images.
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In this work, we are primarily concerned with the case d = 3. The aim of image registration
is to find a transformation \bfity (\bfitx ) : \Omega \subset \BbbR 3 \rightarrow \BbbR 3 such that

(T \circ \bfity )(\bfitx ) = T (\bfity (\bfitx ))

is similar to R(\bfitx ), where \bfitx = (x1, x2, x3) and \bfity (\bfitx ) = (y1(\bfitx ), y2(\bfitx ), y3(\bfitx )). In order to
measure the difference between T (\bfity (\bfitx )) and R(\bfitx ), under the monomodality case, the most
widely used fidelity term is the sum of squared differences (SSD) [39, 40] defined by

(1) \scrD (T \circ \bfity , R) := 1

2

\int 
\Omega 
(T (\bfity (\bfitx )) - R(\bfitx ))2d\bfitx =

1

2
\| T \circ \bfity  - R\| 2,

where \| \cdot \| 2 denotes the square of the L2-norm. For the multimodality case, there are some
other typical distance measures, including normalized cross correlation, mutual information,
normalized gradient fields [24, 26, 34, 39, 40], and especially the more recent model [45]. As
the paper places greater emphasis on the quality of the transformation \bfity , the presentation is
mainly for the monomodality case, but the results are applicable to the multimodality case
after a change of fidelity terms.

Minimizing \scrD (T \circ \bfity , R) for image registration is ill-posed in the sense of Hadamard since
it is not sufficient to ensure the uniqueness and continuity of the solution [43]. In order to
overcome this problem, regularization is indispensable. Combining the distance measure with
the regularizer, we can obtain the variational model for image registration:

(2) min
\bfity 
\scrJ (\bfity ) = \scrD (T \circ \bfity ), R) + \alpha \scrS (\bfity ),

where \scrS (\bfity ) is the regularizer which can rule out the unwanted solutions and \alpha > 0 is a positive
parameter to balance these two terms.

There exist many different regularizers which lead to many nonlinear registration models,
such as the elastic model [6], fluid model [12], diffusion model [19], total variation (TV) model
[22], MTV (modified TV) model [13], linear curvature model [20, 21], mean curvature model
[14], Gaussian curvature model [28], and total fractional-order variation model [51]. These
models can produce different registration transformations since they are inspired by different
physical properties [44], each having advantages in its class of problems, though not all of
these models have been tested in registration of 3D images.

However, in all of these models, folding will appear when the deformation is large or
the regularization parameter is small if we impose no constraint on the transformation. Few
models have built-in capabilities to impose such constraints. A transformation with folding
implies that the obtained transformation itself is not a valid or acceptable solution. According
to the inverse function theorem, the transformation \bfity is locally bijective when det\nabla \bfity > 0,
where det\nabla \bfity is the Jacobian determinant of the transformation \bfity . Hence, constraining the
Jacobian determinant of \bfity larger than 0 is a key factor to reduce or avoid folding [8, 15, 23, 25].
We know that the geometric meaning of the Jacobian determinant of the transformation is
the ratio of the change of the volume. But for some applications, it is tough for users to
decide the upper bound and lower bound of the Jacobian determinant of the transformation.
Only controlling the Jacobian determinant of the transformation to approximate 1 sometimes
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will affect the accuracy of the registration [50]. Another effective way to avoid the folding
is to control the Beltrami coefficient [31, 50]. The quasi-conformal theory shows that if the
infinity norm of the Beltrami coefficient \mu is smaller than 1, the corresponding mapping is a
homeomorphism, i.e., | \mu | < 1 \leftrightarrow det\nabla \bfity > 0. Normally, the Beltrami coefficient is defined
in the complex space, and for two dimensional (2D) image registration, we can consider the
transformation as a complex mapping and control its Beltrami coefficient to get an orientation-
preserving transformation. However, since the Beltrami coefficient has no definition in 3D, we
cannot directly apply the notion of the Beltrami coefficient to 3D image registration. Although
it is possible to construct models [32] that are based on quasi-conformal maps [18, Ch. 6],
[37], there is no such definition of | \mu | that satisfies | \mu | < 1 \leftrightarrow det\nabla \bfity > 0 and can be used in
a minimization model.

In this paper, first, we propose a new measure in 3D that mimics the norm of the Beltrami
coefficient in 2D and study its properties. Second, combining with regularization, we propose
the new registration model which can cope with large deformation registration problems and
generate orientation-preserving transformations. The existence of the solution of the proposed
model is established. In addition, we also provide another two possible regularizers in 3D. Fi-
nally, an effective numerical scheme is presented, and numerical experimental results also show
that the new registration model can deliver good performances and accurate transformations
and can be competitive with the other state-of-the-art registration models.

The rest of the paper is organized as follows. In section 2, we briefly review related
works. In section 3, we propose our new regularizer and new registration model for 3D image
registration. The existence of the solution and numerical implementation are also illustrated.
In section 4, another two possible regularizers are given. Numerical experimental results are
shown in section 5, and finally, a conclusion is summarized in section 6.

2. Related works. There exist several 3D variational models, though not as many as in
2D, which can produce orientation-preserving transformations for image registration. In this
section, we briefly review three representative models to highlight the outstanding challenges.

2.1. Hyperelastic models. The hyperelastic regularizer in image registration was first
used by Droske and Rumpf [15] in 2004. Their formulation of type (2) takes the form

(3) \scrS (\bfity ) = \scrS \mathrm{h}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}(\bfity ) :=
\int 
\Omega 
W (\nabla \bfity , cof\nabla \bfity ,det\nabla \bfity )d\bfitx ,

where W : \BbbR 3,3 \times \BbbR 3,3 \times \BbbR \rightarrow \BbbR is a convex function. Here, \scrS \mathrm{h}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}(\bfity ) is assumed to penalize

volume shrinkage, i.e., W (L, S, V )
V\rightarrow 0 - \rightarrow \infty . This latter assumption (or choice) will enable us

to successfully control singularity sets. In [8], W (\nabla \bfity , cof\nabla \bfity , det\nabla \bfity ) is defined as follows:

(4) W (\nabla \bfity , cof\nabla \bfity ,det\nabla \bfity ) := \alpha l\phi l(\nabla \bfity ) + \alpha s\phi s(cof\nabla \bfity ) + \alpha v\phi v(det\nabla \bfity ),

where \phi l(X) = \| X  - I\| 2\mathrm{F}/2, \phi s(X) = max\{ \| X\| 2\mathrm{F}  - 3, 0\} 2/2, \phi v(x) = ((x  - 1)2/x)2, and
\| \cdot \| F denotes the Frobenius norm. Here, since \phi v(x) goes to \infty when v goes to 0 or \infty and
\phi v(x) = \phi v(1/x), \phi v(x) controls the volume such that shrinkage and growth have the same
price. Hence, \scrS \mathrm{h}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r} restricts the Jacobian determinant of the transformation \bfity close to 1,
which is suitable for certain applications (such as functional MRIs) but is too strong as a
constraint in other applications (e.g., [50] shows an example in 2D).
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2.2. LDDMM. The variational formulation of large deformation diffeomorphic metric
mapping (LDDMM) [4, 16, 36, 48] is a widely used technique for image registration, defined
by

min
\scrT ,v
\scrD (\scrT (\cdot , 1), R) + \alpha \scrS (v)

s.t. \partial t\scrT (\bfitx , t) + v(\bfitx , t) \cdot \nabla \scrT (\bfitx , t) = 0 and \scrT (\bfitx , 0) = T,
(5)

where v : \Omega \times [0, 1] \rightarrow \BbbR 3 is the velocity and \scrT : \Omega \times [0, 1] \rightarrow \BbbR is a series of images. Here,
LDDMM regularizes the velocity v, and we can compute its corresponding transformation \bfity 
by using the information of v. When v is sufficiently smooth, it can lead to a diffeomorphic
transformation \bfity , namely det\nabla \bfity > 0. However, since LDDMM involves the transport equa-
tion, the time t is introduced, and the dimension of the original problem is increased. Hence,
designing an efficient solver for LDDMM is highly nontrivial; this fact is also observed in a
more recent study [9].

2.3. LLL model. Lee, Lam, and Lui (LLL) [32] proposed the notion of a standard con-
formality distortion (see also [18, 37]) for a mapping in \BbbR 2 to \BbbR n(n \geq 3) and used it to define
a variational model involving this distortion to deal with the landmark-matching problem in
higher dimensional spaces. Before presenting this notion of the conformality distortion in \BbbR n,
we first review the fundamental theory of quasi-conformal mapping.

Definition 1. A complex map f(z) : \BbbC \rightarrow \BbbC is quasi-conformal if it has continuous partial
derivatives and satisfies the following Beltrami equation:

(6)
\partial f

\partial z
= \mu (z)

\partial f

\partial z

for some complex-valued Lebesgue measurable \mu (z) : \BbbC \rightarrow \BbbC satisfying \| \mu \| \infty < 1, where \mu is
called the Beltrami coefficient [5], 2\partial f\partial z = \partial f

\partial x1
 - \bfiti \partial f\partial x2 , and 2\partial f\partial z = \partial f

\partial x1
+ \bfiti \partial f\partial x2 at z = x1 + \bfiti x2.

Here f(z) = y1(x1, x2) + \bfiti y2(x1, x2) links a complex map to our transformation \bfity .
Consider a simple linear map of the complex form f(z) = az+ bz, with complex constants

a and b. If f is orientation-preserving, then the determinant is | a| 2  - | b| 2 > 0 and the
formulae can be rewritten as f(z) = a(z + \mu z), where the complex number \mu = b/a is the
Beltrami coefficient; | a| 2  - | b| 2 > 0 means that | \mu | < 1. In this form, f is the stretch map
S(z) = z + \mu z post-composed by a multiplication of a (which is conformal and consists of a
rotation through the angle arg a and magnification by the factor | a| ). The distortion caused
by f is expressed by \mu , and, from it, we can find that the angle of maximal magnification is
(arg\mu )/2 with magnifying factor 1+ | \mu | , and the angle of maximal shrinking is the orthogonal
angle (arg\mu  - \pi )/2 with shrinking factor 1 - | \mu | . Naturally, motivated by this simple example,
we can define by Kd the dilatation

(7) Kd(f) =
1 + | \mu | 
1 - | \mu | 

to express the ratio of the largest singular value of the Jacobian of f divided by the smallest
singular value.
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The dilatationKd in (7) cannot be directly used in nD (n \geq 3) since the Beltrami coefficient
is not defined in nD (n \geq 3). To find a quantity in nD resemblingKd of (7) in 2D, we start with
the nD conformal mapping. For nD, let \bfitf (x1, . . . , xn) = (y1(x1, . . . , xn), . . . , yn(x1, . . . , xn))
with \nabla \bfitf its n \times n Jacobian matrix. An orientation-preserving condition [29] for mapping \bfitf 
to be conformal is

(8) \nabla \bfitf T\nabla \bfitf = (det\nabla \bfitf )2/nI,

where I is the identity matrix. Suppose that \lambda j 's with 0 \leq \lambda 1 \leq \cdot \cdot \cdot \leq \lambda n are the eigenvalues
of \nabla \bfitf T\nabla \bfitf . Then we have \| \nabla \bfitf \| 2F = \lambda 1 + \cdot \cdot \cdot + \lambda n and det\nabla \bfitf = (\lambda 1 \cdot \cdot \cdot \lambda n)1/2. By the
eigendecomposition of \nabla \bfitf T\nabla \bfitf , we know that (8) holds if and only if \lambda 1 = \cdot \cdot \cdot = \lambda n.

In addition, by the inequality of arithmetic and geometric means and noting \lambda j \geq 0
(j = 1 . . . , n), we have
(9)

(\lambda 1 \cdot \cdot \cdot \lambda n)1/n \leq 
\lambda 1 + \cdot \cdot \cdot + \lambda n

n
or

1

n

\biggl( 
\lambda 1 + \cdot \cdot \cdot + \lambda n

(\lambda 1 \cdot \cdot \cdot \lambda n)1/n

\biggr) 
\geq 1, i.e.,

1

n

\biggl( 
\| \nabla \bfitf \| 2F

(det\nabla \bfitf )2/n

\biggr) 
\geq 1,

where the sign of equalities holds if and only if \lambda 1 = \cdot \cdot \cdot = \lambda n. Combining these discussions,
we can see that

\bfitf is a conformal mapping \Leftarrow \Rightarrow 1
n

\Bigl( 
\| \nabla \bfitf \| 2F

(\mathrm{d}\mathrm{e}\mathrm{t}\nabla \bfitf )2/n

\Bigr) 
= 1.

Here comes the key idea. Since we aim for a quasi-conformal mapping, minimizing the quantity
\| \nabla \bfitf \| 2F

(\mathrm{d}\mathrm{e}\mathrm{t}\nabla \bfitf )2/n
makes sense as it measures how far away a mapping \bfitf is from conformality. This

idea is used in [32], where this quantity motivates the definition of a (generalized) conformality
distortion K(\bfitf ) in nD:

(10) K(\bfitf ) :=

\Biggl\{ 
1
n

\Bigl( 
\| \nabla \bfitf \| 2F

(\mathrm{d}\mathrm{e}\mathrm{t}\nabla \bfitf )2/n

\Bigr) 
if det\nabla \bfitf > 0,

+\infty otherwise.

To connect K(\bfitf ) to Kd in (7) for n = 2, note that the norm of the Beltrami coefficient \mu for
\bfitf is defined by
(11)

| \mu (\bfitf )| 2 =
\| \nabla \bfitf \| 2F  - 2 det\nabla \bfitf 
\| \nabla \bfitf \| 2F + 2det\nabla \bfitf 

or | \mu (\bfitf )| 2 =
\lambda 1 + \lambda 2  - 2(\lambda 1\lambda 2)

1/2

\lambda 1 + \lambda 2 + 2(\lambda 1\lambda 2)1/2
, i.e., | \mu (\bfitf )| = \lambda 

1/2
2  - \lambda 1/21

\lambda 
1/2
1 + \lambda 

1/2
2

,

where we assume all \lambda j > 0. Hence (7) becomes Kd(f) = 1+| \mu | 
1 - | \mu | = (\lambda 2/\lambda 1)

1/2, while (10)
reduces to

K(\bfitf ) =
1

2

\biggl( 
\lambda 1 + \lambda 2

(\lambda 1\lambda 2)1/2

\biggr) 
=

1

2

\Bigl( 
(\lambda 1/\lambda 2)

1/2 + (\lambda 2/\lambda 1)
1/2
\Bigr) 
.

Therefore, the new K(\bfitf ) in (10) is equivalent to the dilatation Kd in (7) for n = 2, though
not identical to the precise equivalence relationship from

(12) K(\bfitf ) \leq Kd(f) \leq 2K(\bfitf ).
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Based on this generalized conformality distortion, the LLL model is defined by

min
\bfity 
\| K(\bfity )\| 1 +

\alpha 

2
\| \Delta \bfity \| 22 s.t. \bfity (pi) = qi, 1 \leq i \leq m,(13)

where pi and qi are the prescribed m \geq (n + 1) landmark points. In (13), to get a quasi-
conformal map, the first term controls the minimal conformality distortion, and the second
term keeps the smoothness of the mapping with the constraints serving as the data fidelity.
To implement alternative minimization iterations in the numerical solution [32], an auxiliary
(matrix) variable \bfitv = \nabla \bfity is introduced. In the 3D case, the LLL model (13) takes the
following equivalent form:

min
\bfity 

1

3

\biggl( 
\| \nabla \bfity \| 2F

(det\bfitv )2/3

\biggr) 
+
\alpha 

2
\| \Delta \bfity \| 22 s.t. \bfitv = \nabla \bfity , det\bfitv > 0, and \bfity (pi) = qi, 1 \leq i \leq m.(14)

Then an alternating direction method with Lagrangian multipliers is applied to solve (14).
Note that this model is designed for landmark registration and has no intensity information.
Shortly, we will consider adapting (14) to an intensity registration framework as an option for
our main model.

3. A new registration model for 3D image registration. The starting point of our idea
is to address the question of how to design a Beltrami coefficient--like quantity | \mu | , linking to
our transformation \bfity , such that a relationship | \mu | < 1 \leftrightarrow det\nabla \bfity > 0 holds. Then building a
new model minimizing how | \mu | was used in planar cases would be immediately feasible; such
a model will produce a diffeomorphic map \bfity .

However, as stated before, no such quantity | \mu | exists in 3D or for n > 3. To fill in this
gap, we first propose such a quantity in 3D and then show that it shares the same theoretical
properties that a Beltrami coefficient in 2D has. Hence we shall call it a Beltrami coefficient--
like distortion measure. We then employ it as a regularizer to build the new 3D model before
addressing other theoretical and numerical issues.

3.1. Beltrami coefficient--like distortion measure. Given a map \bfitf in 3D, we propose an
algebraic construction to measure its departure from a conformal map.

Definition 2. If the map \bfitf (x1, x2, x3) = (y1(x1, x2, x3), y2(x1, x2, x3), y3(x1, x2, x3)) is con-
tinuously differentiable, then we define

(15) \scrN (\bfitf ) =
\| \nabla \bfitf \| F  - 

\surd 
3(det\nabla \bfitf )1/3

\| \nabla \bfitf \| F +
\surd 
3(det\nabla \bfitf )1/3

as a new algebraic measure for \bfitf whenever \| \nabla \bfitf \| F \not = 0.

We note that in (15), det\nabla \bfitf can take any sign while the condition \| \nabla \bfitf \| F \not = 0 is usually
satisfied in image registration because det\nabla \bfitf = 1 where there are no deformations. Then,
to see how \scrN (\bfitf ) could be related to distortion of a conformal map, we have the following
results.

Lemma 3. The quantity \scrN defined by (15) for a map \bfitf possesses the following properties:
P1 If \scrN (\bfitf ) = 0, then all the singular values of \nabla \bfitf are equal.
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P2 \scrN is nonnegative: 0 \leq \scrN (\bfitf ) \leq \infty .
P3 The Beltrami coefficient--like equivalence holds: \scrN (\bfitf ) < 1\leftrightarrow det\nabla \bfitf > 0.
P4 The special case holds: \scrN (\bfitf ) = 1\leftrightarrow det\nabla \bfitf = 0.
P5 1 < \scrN (\bfitf ) \leq \infty \leftrightarrow det\nabla \bfitf < 0.
P6 If the singular values of \nabla \bfitf are equal, then \scrN (\bfitf ) = 0 when det\nabla \bfitf > 0, and \scrN (\bfitf ) is
\infty when det\nabla \bfitf < 0.

P7 The quantity \scrN is invariant under the scalar multiplication and rigid-body motion
actions.

Proof. For P1, if \scrN (\bfitf ) = 0, according to (15), \| \nabla \bfitf \| F =
\surd 
3(det\nabla \bfitf )1/3. Hence, det\nabla \bfitf 

is nonnegative. Let \sigma 1, \sigma 2, and \sigma 3 be the singular values of \nabla \bfitf . Then we have \| \nabla \bfitf \| F =\sqrt{} \sum 3
i=1 \sigma 

2
i and det\nabla \bfitf = \Pi 3

i=1\sigma i. By (9), we have
\sqrt{} \sum 3

i=1 \lambda i \geq 
\surd 
3
\sqrt{} 
(\Pi 3

i=1\lambda i)
1/3. Since

\lambda i = \sigma 2i for i = 1, 2, 3, we further have
\sqrt{} \sum 3

i=1 \sigma 
2
i \geq 
\surd 
3(\Pi 3

i=1\sigma i)
1/3. The equality holds if and

only if \sigma 1 = \sigma 2 = \sigma 3.
For P2, if det\nabla \bfitf is positive, then the denominator is obviously nonnegative. By the

application of (9) as in P1, we have \| \nabla \bfitf \| F \geq 
\surd 
3(det\nabla \bfitf )1/3, so the numerator is nonnegative.

Similarly, if det\nabla \bfitf is negative, the numerator and denominator are both nonnegative. Hence,
we have 0 \leq \scrN (\bfitf ) \leq \infty .

P3 -- P5 directly follows from (15).
For P6, if \sigma 1 = \sigma 2 = \sigma 3, when det\nabla \bfitf > 0, we have \| \nabla \bfitf \| F  - 

\surd 
3(det\nabla \bfitf )1/3 = 0 and

\| \nabla \bfitf \| F +
\surd 
3(det\nabla \bfitf )1/3 = 2\| \nabla \bfitf \| F ; then \scrN (\bfitf ) = 0. But when det\nabla \bfitf < 0, since det\nabla \bfitf =

 - \Pi 3
i=1\sigma i, we have \| \nabla \bfitf \| F +

\surd 
3(det\nabla \bfitf )1/3 = 0 and \| \nabla \bfitf \| F  - 

\surd 
3(det\nabla \bfitf )1/3 = 2\| \nabla \bfitf \| F ; then

\scrN (\bfitf ) =\infty .
For P7, c\sigma 1, c\sigma 2, c\sigma 3 are the singular values of \nabla c\bfitf for any c > 0 since \sigma 1, \sigma 2, \sigma 3 are

singular values of \nabla \bfitf . So we have \| \nabla c\bfitf \| F = c
\sqrt{} \sum 3

i=1 \sigma 
2
i and det\nabla c\bfitf = c3\Pi 3

i=1\sigma i and

\scrN (\bfitf ) = \scrN (c\bfitf ). In addition, if O is an orthogonal matrix and b is a translation, then the
Jacobian of \bfitf (O\bfitx + b) is OT\nabla \bfitf . Since the singular values of \nabla \bfitf and OT\nabla \bfitf are the same,
we have \scrN (\bfitf (\bfitx )) = \scrN (\bfitf (O\bfitx + b)). Hence, the quantity \scrN is invariant under the scalar
multiplication and rigid-body motion actions.

We remark that property P5 from Lemma 3, i.e., \scrN (\bfity ) < 1 \leftrightarrow det\nabla \bfity > 0, is our
expectation for \scrN (\bfity ) in 3D to inherit the key property of the Beltrami coefficient in 2D:
| \mu | < 1 \leftrightarrow det\nabla \bfity > 0. Hence, by analogy, we may view \scrN (\bfitf ) as a measure of distortion
on conformality. The generalization given by [1] for quasi-conformal maps in 3D is very
interesting, but their quasi-conformal dilatation is nondifferentiable, so it cannot be easily
adapted to a variational model. We can build a 3D variational model using \scrN (\bfity ) in an
unconstrained optimization framework, similar to the 2D case [50]. In fact, we can apply this
result to most variational models [11] that do not yet guarantee a diffeomorphic map.

Another observation on \scrN (\bfity ) is that controlling \scrN (\bfity ) not only ensures the bijectivity,
but also guarantees the smoothness, which means that this new regularizer is more likely to
produce a regular transformation. Promoting \scrN (\bfity ) < 1 does not restrict the range of the
Jacobian determinant of the transformation. For example, consider two simple and separate
maps: \bfity 1(\bfitx ) = 0.1\bfitx = 0.1(x1, x2, x3) and \bfity 2(\bfitx ) = 10\bfitx = 10(x1, x2, x3). We have \scrN (\bfity 1) =
\scrN (\bfity 2) = 0, but det\nabla \bfity 1 = 0.001 and det\nabla \bfity 2 = 1000.
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Finally, for completeness, we may extend our above measure (15) from 3D to \bfitf in nD
(beyond n = 3):

(16) \scrN (\bfitf ) =

\left\{       
\| \nabla \bfitf \| F - 

\surd 
n(\mathrm{d}\mathrm{e}\mathrm{t}\nabla \bfitf )1/n

\| \nabla \bfitf \| F+
\surd 
n(\mathrm{d}\mathrm{e}\mathrm{t}\nabla \bfitf )1/n

if n is odd,

\| \nabla \bfitf \| F - 
\surd 
n(\mathrm{d}\mathrm{e}\mathrm{t}\nabla \bfitf )1/n

\| \nabla \bfitf \| F+
\surd 
n(\mathrm{d}\mathrm{e}\mathrm{t}\nabla \bfitf )1/n

if n is even and det\nabla \bfitf > 0,

\infty otherwise.

Now, we see the connection between the new measure (16) and the standard Beltrami coeffi-
cient | \mu | from (11) for n = 2 and det\nabla \bfitf > 0. First rewrite | \mu | 2 from (11) as

| \mu (\bfitf )| 2 =
\| \nabla \bfitf \| 2F  - 2 det\nabla \bfitf 
\| \nabla \bfitf \| 2F + 2det\nabla \bfitf 

= \scrN (\bfitf )
(\| \nabla \bfitf \| F +

\surd 
2(det\nabla \bfitf )1/2)2

\| \nabla \bfitf \| 2F + 2det\nabla \bfitf 
.

Then we see that the following relationship holds (noting the close resemblance to (12)):

(17) \scrN (\bfitf ) \leq | \mu (\bfitf )| 2 \leq 2\scrN (\bfitf ),

which confirms that our new measure is equivalent to the Beltrami coefficient in 2D. Impor-
tantly, for n \geq 2, our new measure (16) shares the key property as | \mu (\bfitf )| 2 : \scrN (\bfitf ) < 1 \leftrightarrow 
det\nabla \bfitf > 0.

3.2. A new 3D image registration model. Here, we first formulate our new model to deal
with 3D image registration problems. Equipped with the knowledge of | \mu | < 1\leftrightarrow det\nabla \bfity > 0,
we propose the following new variational model for 3D image registration:
(18)

min
\bfity 
\scrJ (\bfity ) := 1

2

\int 
\Omega 

(T \circ \bfity  - R)2d\bfitx +
\alpha 1

2

\int 
\Omega 

\| \nabla (\bfity  - \bfitx )\| 2Fd\bfitx +
\alpha 2

2

\int 
\Omega 

\| \nabla 2(\bfity  - \bfitx )\| 2Fd\bfitx +\beta 

\int 
\Omega 

\phi (\scrN (\bfity ))d\bfitx ,

where \nabla 2 denotes the Hessian operator and we define

(19) \phi (v) =
v2

(v  - 1)2 + 1
.

Other choices of \phi , e.g., \phi (v) = v2 or \phi (v) = v2/((v  - 1)2 + 10 - 5), are also permitted as long
as they promote \scrN < 1 (or det\nabla \bfity > 0). The key message is that the resulting transformation
\bfity will be orientation-preserving under the Dirichlet boundary conditions [2].

3.3. Mathematical analysis of the proposed model (18). Registration models are usu-
ally nonconvex with respect to \bfity , and consequently there is no uniqueness. Here we address
the solution existence of the nonconvex model (18). Since the proposed model (18) involves
second order derivatives, the natural solution space should be W 2,2(\Omega ).

We first consider the solution space where the determinant is essentially positive: \scrA 1 =
\{ \bfity \in W 2,2(\Omega ) : | 

\int 
\Omega \bfity (\bfitx ) d\bfitx | \leq | \Omega | (C1 + diam(\Omega )) ,det\nabla \bfity \in L2(\Omega ),det\nabla \bfity > 0, a.e.\} , moti-

vated by [8, 15]. In fact, we shall now check if their analysis tools can be used to establish the
solution existence of (18). To this end, using the notation in [8, 15], we first rewrite model
(18) in the following framework:

(20) \scrJ (\bfity ) =
\int 
\Omega 
\varphi 1(\bfitx ,\bfity ,\nabla \bfity ,\nabla 2\bfity , det\nabla \bfity )d\bfitx ,
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where \varphi 1(\bfitx ,\bfity , \psi ,\Theta ,\Psi ) = 1
2(T \circ \bfity  - R)

2+ \alpha 1
2 | \psi  - I| 

2+ \alpha 2
2 | \Theta | 

2+\beta \phi (\| \psi \| F - 
\surd 
3\Psi 1/3

\| \psi \| F+
\surd 
3\Psi 1/3 ). Although this

\varphi 1 is convex with respect to \Theta = \nabla 2\bfity , clearly, \varphi 1 is nonconvex with respect to \psi = \nabla \bfity and
\Psi = det\nabla \bfity . Consequently we cannot apply their analysis method by calculus of variations.

Then, to overcome this nonconvexity issue, we can rewrite (20) in the following form:

(21) \scrJ (\bfity ) =
\int 
\Omega 
\varphi 2(\bfitx ,\bfity ,\nabla \bfity ,\nabla 2\bfity ,\scrN (\bfity ))d\bfitx ,

where \varphi 2(\bfitx ,\bfity , \psi ,\Theta ,\Psi ) = 1
2(T \circ \bfity  - R)

2 + \alpha 1
2 | \psi  - I| 

2 + \alpha 2
2 | \Theta | 

2 + \beta \phi (\Psi ). It is evident that
this new \varphi 2 is convex with respect to \psi ,\Theta ,\Psi . We now modify the solution set \scrA 2 = \{ \bfity \in 
W 2,2(\Omega ) : | 

\int 
\Omega \bfity (\bfitx ) d\bfitx | \leq | \Omega | (C1 + diam(\Omega )) ,\scrN (\bfity ) \in L2(\Omega ),\scrN (\bfity ) < 1, a.e.\} and establish

the coercivity of (21) with respect to the product space \scrX = W 2,2(\Omega )\times L2(\Omega ). Building the
weak lower semicontinuity of (21), i.e.,
(22)

(\bfity k,\scrN (\bfity k))\rightharpoonup (\bfity ,\scrV ) =\Rightarrow lim
k\rightarrow \infty 

\int 
\Omega 
\varphi 2(\bfitx ,\bfity 

k,\nabla \bfity k,\nabla 2\bfity k,\scrN (\bfity k))d\bfitx \geq 
\int 
\Omega 
\varphi 2(\bfitx ,\bfity ,\nabla \bfity ,\nabla 2\bfity ,\scrV )d\bfitx 

is also fine. However verifying \scrV = \scrN (\bfity ) is highly nontrivial, and it is not yet possible to do
this due to the high nonlinearity of the new regularizer \scrN from (15). We seek a different way
to establish the existence.

We now consider an analysis method which does not require convexity for all main vari-
ables. Our starting point is the following result.

Lemma 4 (see [52]). Let \Omega \subset \BbbR 3 be an open set, and let \rho : \Omega \times \BbbR 3\times \BbbR 3\times 3\times \BbbR 3\times 32 \rightarrow [0,+\infty )
satisfy the following assumptions:

(i) \rho is a Carath\'eodory function:
1. \rho (\bfitx , \cdot , \cdot , \cdot ) is continuous for almost every \bfitx \in \Omega .
2. \rho (\bfitx ,\bfity , \psi ,\Theta ) is measurable in \bfitx for every (\bfity , \psi ,\Theta ) \in \BbbR 3 \times \BbbR 3\times 3 \times \BbbR 3\times 32.

(ii) \rho (\bfitx ,\bfity , \psi ,\Theta ) is quasi-convex with respect to \Theta .
(iii) 0 \leq \rho (\bfitx ,\bfity , \psi ,\Theta ) \leq a(\bfitx ) + C(| \bfity | 2 + | \psi | 2 + | \Theta | 2) for some a(\bfitx ) \in L1(\Omega ), C > 0.

Then \scrJ (\bfity ) =
\int 
\Omega \rho (\bfitx ,\bfity ,\nabla \bfity ,\nabla 

2\bfity )d\bfitx is weak lower semicontinuous (wlsc) in W 2,2(\Omega ).

When applying Lemma 4 to the proposed model (18), we see that the requirement on
the convexity of the highest order variable (\Theta ) can be satisfied, but the boundedness of the
objective functional with respect to other variables has to be established. For this purpose,
we rewrite the energy \scrJ (\cdot ) of (18) in the following form, which fits the setting of Lemma 4:

(23) \scrJ (\bfity ) =
\int 
\Omega 
\rho (\bfitx ,\bfity ,\nabla \bfity ,\nabla 2\bfity )d\bfitx ,

where \rho (\bfitx ,\bfity , \psi ,\Theta ) = 1
2(T \circ \bfity  - R)

2+ \alpha 1
2 | \psi  - I| 

2+ \alpha 2
2 | \Theta | 

2+\beta \phi (\| \psi \| F - 
\surd 
3(\mathrm{d}\mathrm{e}\mathrm{t}\psi )1/3

\| \psi \| F+
\surd 
3(\mathrm{d}\mathrm{e}\mathrm{t}\psi )1/3

). To proceed,

define the solution space \scrW = \{ \bfity \in W 2,2(\Omega ) : \bfity (\bfitx ) = \bfitx on \partial \Omega \} . We assume that the images
T and R are continuous and compactly supported in \Omega . Then, we have the following result.

Lemma 5. Assume that the images T and R are continuous and compactly supported in
\Omega . Then we have the following:
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(i) The functional \rho from (23) is bounded as follows (for some constants a,C > 0):

0 \leq \rho (\bfitx ,\bfity , \psi ,\Theta ) \leq a+ C(| \bfity | 2 + | \psi | 2 + | \Theta | 2).

(ii) The energy functional \scrJ (\cdot ) in (23) is wlsc in W 2,2(\Omega ).

Proof. (i) T and R are bounded by c1 because they are compactly supported in \Omega . Since
\phi (v) = v2/((v  - 1)2 + 1) \leq 2 for any v (more precisely, \leq 1 for v \leq 0, \leq 2 for 0 < v \leq 2, and
in (1, 2) for v > 2), we have

\rho (\bfitx ,\bfity , \psi ,\Theta ) =
1

2
(T \circ \bfity  - R)2 + \alpha 1

2
| \psi  - I| 2 + \alpha 2

2
| \Theta | 2 + \beta \phi 

\Biggl( 
\| \psi \| F  - 

\surd 
3(det\psi )1/3

\| \psi \| F +
\surd 
3(det\psi )1/3

\Biggr) 
\leq 2c21 + c2 +

\alpha 1

2
| \psi | 2 + \alpha 2

2
| \Theta | 2 + 2\beta 

\leq \alpha 

2
(| \bfity | 2 + | \psi | 2 + | \Theta | 2) + 2c21 + c2 + 2\beta ,

(24)

where \alpha = max\{ \alpha 1, \alpha 2\} . Then, the function \rho (\cdot ) satisfies 0 \leq \rho (\bfitx ,\bfity , \psi ,\Theta ) \leq a + C(| \bfity | 2 +
| \psi | 2 + | \Theta | 2); i.e., it fulfils condition (iii) of Lemma 4 with a(\bfitx ) \equiv a = 2c21 + c2 + 2\beta and
C = \alpha /2.

(ii) We now verify that the functional \rho (\cdot ) fulfils all the assumptions of Lemma 4:
\bullet Since the T and R are continuous and \bfity \in \scrW , the function \rho (\cdot ) is a Carath\'eodory

function.
\bullet It is easy to check that \rho (\bfitx ,\bfity , \psi ,\Theta ) is convex with respect to \Theta , implying that it is
also quasi-convex.

Then, together with (1), by Lemma 4, the energy \scrJ (\cdot ) is wlsc in W 2,2(\Omega ).

We are now ready to prove the existence of a solution for the minimization model (18).

Theorem 6. Assume that images T and R are continuous and compactly supported in \Omega .
Then the minimization problem (18) admits at least one solution in the space \scrW .

Proof. Since \scrJ (\bfity ) has a lower bound 0, there exists a minimizing sequence (\bfity n)n\in \BbbN \subset \scrW 
of \scrJ (\cdot ), i.e.,

\scrJ (\bfity n)  - \rightarrow 
n\rightarrow \infty 

m1 := inf
\bfity \in \scrW 

\scrJ (\bfity ).

In addition, since \scrJ (Id) = 1
2\| T \circ \bfity  - R\| 

2 is finite, we can assume that (\scrJ (\bfity n))n\in \BbbN is bounded
above by a constant m2 > 0. Using the generalized Poincar\'e inequality and the boundary
condition, there exist constants C1, C2 \in \BbbR such that

(25) \scrJ (\bfity ) \geq C1\| \bfity \| 2W 2,2 + C2.

The inequality (25) guarantees that the sequence (\bfity n)n\in \BbbN is uniformly bounded in \scrW , i.e.,

m2 \geq \scrJ (\bfity n) \geq C1\| \bfity n\| 2W 2,2 + C2.

SinceW 2,2 is a reflexive space, there exists a subsequence, denoted (\bfity nl
)l\in \BbbN , such that \bfity nl

\rightharpoonup 
l\rightarrow \infty 

\bfity \ast weakly in W 2,2. By wlsc from Lemma 5, we obtain

inf
\bfity \in \scrW 

\scrJ (\bfity ) = lim
n\rightarrow \infty 

\scrJ (\bfity n) = lim
l\rightarrow \infty 
\scrJ (\bfity nl

) \geq \scrJ (\bfity \ast ) \geq inf
\bfity \in \scrW 

\scrJ (\bfity ).

Hence, \bfity \ast is in the space \scrW .
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To explain that the positivity of the Jacobian determinant of the transformation does not
intervene in the existence of the solution, we modify the admissible space \scrW to a new space
\scrW = \{ \bfity \in W 2,2(\Omega ) : \bfity (\bfitx ) = \bfitx on \partial \Omega ,det\nabla \bfity \geq \epsilon , a.e., for a small \epsilon > 0\} . Then we have the
following theorem.

Theorem 7. Assume that images T and R are continuous and compactly supported in \Omega .
Then the minimization problem (18) admits at least one solution in the space \scrW .

Proof. Here, we just need to prove that the space \scrW is weakly closed with respect to
W 2,2-topology. According to the Kondrachov embedding theorem, for any p such that 3 <
p < 6, W 2,2 is compactly embedded in W 1,p. Hence, \bfity n \rightharpoonup 

n\rightarrow \infty 
\bfity weakly in W 2,2 implies that

\bfity n \rightarrow 
n\rightarrow \infty 

\bfity strongly in W 1,p, which also shows that \bfity n \rightharpoonup 
n\rightarrow \infty 

\bfity weakly in W 1,p. By the weak

continuity of determinants [17, sect 8.2.4, Lemma], we have det\nabla \bfity n \rightharpoonup 
n\rightarrow \infty 

det\nabla \bfity weakly

in Lq, q = p/3 > 1. Then the mapping F (\bfity ) = det\nabla \bfity from \scrW to Lq is continuous with
respect to the weak topology on both W 2,2 and Lq. Hence, \scrW is the preimage of the closed
set \{ det\nabla \bfity \in Lq : \bfity (\bfitx ) = \bfitx on \partial \Omega ,det\nabla \bfity \geq \epsilon , a.e., for any small \epsilon > 0\} under the weakly
continuous mapping F with respect to the weak topology on W 2,2. Thus, \scrW is weakly closed
with respect to W 2,2-topology.

Then, similar to the proof of Theorem 6, there exists \bfity nl
\rightharpoonup 
l\rightarrow \infty 

\bfity \ast weakly in \scrW such that

inf
\bfity \in \scrW 

\scrJ (\bfity ) = lim
n\rightarrow \infty 

\scrJ (\bfity n) = lim
l\rightarrow \infty 
\scrJ (\bfity nl

) \geq \scrJ (\bfity \ast ) \geq inf
\bfity \in \scrW 

\scrJ (\bfity )

and \bfity \ast is a minimizer in the space \scrW .

Remark 1. In practice, we do not need this space\scrW nor do we need to add the constraint
det\nabla \bfity > 0 since a suitably large \beta in our model will ensure the one-to-one transformation.

3.4. A convergent numerical algorithm. There are two possible approaches to solving a
variational model such as the proposed (18). One is the partial differential equation approach:
first derive the Euler--Lagrange equation and then solve it numerically. Here, we consider the
other approach of optimization, the first-discretize-then-optimize method, to solve our model
(18).

First, we choose a suitable discrete scheme to discretize the variational model (18) to derive
a finite-dimensional optimization problem. Then, we choose an optimization method to solve
the resulting unconstrained optimization problem. Two popular methods are the alternating
direction method of multipliers method (ADMM) [49] and the Gauss--Newton method [11].
Here we take the latter method (and briefly discuss the former later).

Discretization. We discretize our proposed model (18) on the spatial domain \Omega = [0, \omega 1]\times 
[0, \omega 2] \times [0, \omega 3]. In the implementation, we employ the nodal grid (Figure 1) and define a
spatial partition
(26)
\Omega nh = \{ \bfitx i,j,k \in \Omega | \bfitx i,j,k = (xi1, x

j
2, x

k
3) = (ih1, jh2, kh3), 0 \leq i \leq n1, 0 \leq j \leq n2, 0 \leq k \leq n3\} ,

where hl =
\omega l
nl
, 1 \leq l \leq 3, and the discrete domain consists of n1n2n3 cells of size h1\times h2\times h3.

We discretize the transformation field \bfity on the nodal grid, namely \bfity i,j,k = (yi,j,k1 , yi,j,k2 , yi,j,k3 ) =
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(y1(\bfitx 
i,j,k), y2(\bfitx 

i,j,k), y3(\bfitx 
i,j,k)). In order to simplify the presentation, we denote

(27) h = h1h2h3, N = n1n2n3, N1 = (n1 + 1)(n2 + 1)(n3 + 1),

and, according to the lexicographical ordering, we reshape

X = (x01, . . . , x
n1
1 , x

0
2, . . . , x

n2
2 , x

0
3, . . . , x

n3
3 )T \in \BbbR 3N1

and

Y = (y0,0,01 , . . . , yn1,n2,n3
1 , y0,0,02 , . . . , yn1,n2,n3

2 , y0,0,03 , . . . , yn1,n2,n3
3 )T \in \BbbR 3N1 .

Figure 1. Partition of the domain \Omega . Nodal grid \Box and cell-centered grid \times .

For the fitting term in (18), according to the cell-centered partition and midpoint rule, we
get the following approximation:

(28) \scrD (T \circ \bfity , R) := 1

2

\int 
\Omega 
(T \circ \bfity  - R)2d\bfitx \approx h

2
(\vec{}T (PY ) - \vec{}R)T (\vec{}T (PY ) - \vec{}R).

Here, \vec{}R = \vec{}R(PX) \in \BbbR N is the discretized reference image and \vec{}T (PY ) \in \BbbR N is the discretized
deformed template image, where P \in \BbbR 3N\times 3N1 is an averaging matrix from the nodal grid to
the cell-centered grid [23, 25].

Based on the forward difference and midpoint rule, for the first order regularizer in (18),
we have the following approximation:

(29) \scrS 1(\bfity ) :=
\alpha 1

2

\int 
\Omega 
\| \nabla (\bfity  - \bfitx )\| 2Fd\bfitx \approx 

\alpha 1h

2
(Y  - X)TATA(Y  - X),

where A is as derived in Appendix A.
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Remark 2. For (29), we have used the forward difference \partial x1y
i,j,k
1 \approx (yi+1,j,k

1  - yi,j,k1 )/h1
in Appendix A. Although the long stencil \partial x1y

i,j,k
1 \approx (yi+1,j,k

1  - yi - 1,j,k
1 )/(2h1) yields second

order accuracy, it is not recommended because for the high oscillatory input [0; 1; 0; 1; . . . ; 1; 0],
this stencil will lead to a zero derivative [40].

Based on the second order cell-centered difference and midpoint rule, for the second order
regularizer in (18), we have the following approximation:

\scrS 2(\bfity ) :=
\alpha 2

2

\int 
\Omega 
\| \nabla 2(\bfity  - \bfitx )\| 2Fd\bfitx \approx 

\alpha 2h

2
(Y  - X)TBTB(Y  - X),(30)

where B is as derived in Appendix B.

V
5

V
1

V
6

V
7

V
2

V
3

V
8

V
4

Figure 2. Partition of a voxel. V1, . . . , V8 are vertices.

Since our new regularizer \scrN (\bfity ) involves det\nabla \bfity , we should choose a suitable discretization
to ensure det\nabla \bfity > 0 when there is no mesh folding. Finite difference approximations using six
neighboring pixels cannot detect folding; namely, even when the mesh has folding, det\nabla \bfity may
still be positive. A good solution is to construct local finite elements based on a large stencil
and then compute det\nabla \bfity , since (as pointed out in [26]) a tetrahedron cannot twist unless its
volume changes sign. In addition, [8] ensures the regularity of various partitions of a voxel.
Hence, we divide each voxel into six tetrahedrons (V3V7V4V5, V3V1V4V5, V4V1V2V5, V7V4V5V8,
V4V5V8V6, V4V2V5V6) (see Figure 2), and in each tetrahedron, we use three linear interpolating
functions to approximate y1, y2, and y3, respectively.

According to this partition, we can get

(31) \scrS \mathrm{N}\mathrm{e}\mathrm{w}(\bfity ) = \beta 

\int 
\Omega 
\phi (\scrN (\bfity ))d\bfitx = \beta 

n1\sum 
i=1

n2\sum 
j=1

n3\sum 
k=1

6\sum 
m=1

\int 
\Omega i,j,k,m

\phi (\scrN (\bfity ))d\bfitx ,

where \Omega i,j,k,m represents a tetrahedron.

Let Li,j,k,m(\bfitx ) = (Li,j,k,m1 (\bfitx ), Li,j,k,m2 (\bfitx ), Li,j,k,m3 (\bfitx )) be the linear interpolation for \bfity in
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the \Omega i,j,k,m, where

Li,j,k,m1 (\bfitx ) = ai,j,k,m1 x1 + ai,j,k,m2 x2 + ai,j,k,m3 x3 + bi,j,k,m1 ,

Li,j,k,m2 (\bfitx ) = ai,j,k,m4 x1 + ai,j,k,m5 x2 + ai,j,k,m6 x3 + bi,j,k,m2 ,

Li,j,k,m3 (\bfitx ) = ai,j,k,m7 x1 + ai,j,k,m8 x2 + ai,j,k,m9 x3 + bi,j,k,m3 .

(32)

Then, in each tetrahedron \Omega i,j,k,m, we have | \nabla \bfity | 2F \approx 
\sum 9

l=1(a
i,j,k,m
l )2 and

(33)

\partial x1L
i,j,k,m
1 = ai,j,k,m1 , \partial x1L

i,j,k,m
2 = ai,j,k,m4 , \partial x1L

i,j,k,m
3 = ai,j,k,m7 ,

\partial x2L
i,j,k,m
1 = ai,j,k,m2 , \partial x2L

i,j,k,m
2 = ai,j,k,m5 , \partial x2L

i,j,k,m
3 = ai,j,k,m8 ,

\partial x3L
i,j,k,m
1 = ai,j,k,m3 , \partial x3L

i,j,k,m
2 = ai,j,k,m6 , \partial x3L

i,j,k,m
3 = ai,j,k,m9 ,

det\nabla \bfity \approx ai,j,k,m1 ai,j,k,m5 ai,j,k,m9 + ai,j,k,m2 ai,j,k,m6 ai,j,k,m7

+ai,j,k,m4 ai,j,k,m8 ai,j,k,m3  - ai,j,k,m2 ai,j,k,m4 ai,j,k,m9

 - ai,j,k,m1 ai,j,k,m6 ai,j,k,m8  - ai,j,k,m3 ai,j,k,m5 ai,j,k,m7 .

Here, we construct Dl, 1 \leq l \leq 9:

(34)
D1 = [M1, 0, 0], D4 = [0,M1, 0], D7 = [0, 0,M1],
D2 = [M2, 0, 0], D5 = [0,M2, 0], D8 = [0, 0,M2],
D3 = [M3, 0, 0], D6 = [0,M3, 0], D9 = [0, 0,M3],

where M1, M2, and M3 are the discrete operators of \partial x1 , \partial x2 , and \partial x3 , respectively, and how
to construct them is shown in Appendix C.

Then we denote DlY = (a1,1,1,1l , . . . , an1,n2,n3,6
l )T \in \BbbR 6N , 1 \leq l \leq 9, and set

\vec{}\bfitq 1(Y ) =
9\sum 
l=1

DlY \odot DlY,

\vec{}\bfitq 2(Y ) = D1Y \odot D5Y \odot D9Y +D2Y \odot D6Y \odot D7Y +D4Y \odot D8Y \odot D3Y

 - D2Y \odot D4Y \odot D9Y  - D1Y \odot D6Y \odot D8Y  - D3Y \odot D5Y \odot D7Y,

\vec{}\bfitr 1(Y ) = (\vec{}\bfitq 1(Y ))1/2  - 
\surd 
3(\vec{}\bfitq 2(Y ))1/3,

\vec{}\bfitr 2(Y ) = 1./((\vec{}\bfitq 1(Y ))1/2 +
\surd 
3(\vec{}\bfitq 2(Y ))1/3),

\vec{}\bfitr (Y ) = \vec{}\bfitr 1(Y )\odot \vec{}\bfitr 2(Y ),

(35)

where \odot denotes the Hadamard product of two matrices and ./ denotes the componentwise
division. Then we have the following approximation:

(36) \scrS \mathrm{N}\mathrm{e}\mathrm{w}(\bfity ) \approx 
\beta h

6
\bfitphi (\vec{}\bfitr (Y ))eT ,

where \bfitphi (\vec{}\bfitr (Y )) = (\phi (\vec{}\bfitr (Y )1), . . . , \phi (\vec{}\bfitr (Y )6N )) and e = (1, . . . , 1) \in \BbbR 6N .
Finally, combining formulae (28), (29), (30), and (36), we get the discretized formulation

for (18):

min
Y
\scrJ (Y ) =

h

2
(\vec{}T (PY ) - \vec{}R)T (\vec{}T (PY ) - \vec{}R) +

\alpha 1h

2
(Y  - X)TATA(Y  - X)(37)

+
\alpha 2h

2
(Y  - X)TBTB(Y  - X) +

\beta h

6
\bfitphi (\vec{}\bfitr (Y ))eT ,
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where h is as defined in (27).

Remark 3. (i) In the implementation, we impose the Dirichlet boundary condition; namely,
\bfity (\bfitx ) = \bfitx when \bfitx \in \partial \Omega . This is a suitable assumption in image registration, which means that
we assume that the transformation is deformed in the interior region. However, if a Neumann
boundary condition must be used, we could simply modify our formulation to incorporate the
changes at boundaries.

(ii) Since Y does not, in general, correspond to voxel points and the interpolation operator
is active at all steps (this is typical of an image registration model), here we choose cubic-
spline interpolation [40] to compute \vec{}T (PY ). Linear interpolation cannot be applied because
it is not differentiable at grid points.

In image registration, the number of variables is usually huge, and the dimension of the
resulting optimization problem is also huge. For example, when the size of the given images
is 128 \times 64 \times 128, the number of unknowns is over 3 million (3 \times 129 \times 65 \times 129). Hence,
designing an efficient and converging solver is of crucial importance.

A search method. The iterative scheme for solving an unconstrained optimization problem
is

(38) Y k+1 = Y k + \theta k\delta Y k,

where Y k is the current iterative point, Y k+1 is the next iterative point, \theta k is the step length
obtained by an Armijo strategy, and \delta Y k is the search direction. Here, for finding the step
length \theta k, the Armijo strategy with backtracking is [30] is crucial for energy reduction along
a descent direction. However, the equation Hk\delta Y k =  - dk\scrJ with the exact Hessian Hk of
(37) is not feasible due to lack of definiteness (here dk\scrJ is the gradient of \scrJ at Y k), and so

guaranteeing that \delta Y k is a descent direction is ensured by our choice of \^Hk (approximating
Hk). In the numerical implementation, we choose a Gauss--Newton algorithm with a line
search method to solve the resulting unconstrained optimization problems (37).

Here we propose a generalized Gauss--Newton direction from solving the generalized Gauss--
Newton system:

(39) \^Hk\delta Y k =  - dk\scrJ ,

where \^Hk is the generalized Gauss--Newton matrix of \scrJ at Y k. The key message is that the
generalized Gauss--Newton matrix \^Hk is some positive definite matrix, approximating the full
Hessian matrix Hk of (37) (since Hk is not symmetric positive definite). Construction of a
suitable \^Hk is a key step.

Below we shall examine and approximate the three constituents of the exact Hessian
separately.

First, for the discretized SSD (28), its gradient and Hessian are, respectively,

(40)

\Biggl\{ 
d1 = hP T \vec{}T T\~\bfY (\vec{}T ( \~Y) - \vec{}R),

H1 = hP T (\vec{}T T\~\bfY 
\vec{}T \~\bfY +

\sum N
l=1(

\vec{}T ( \~Y) - \vec{}R)l\nabla 2(\vec{}T ( \~Y) - \vec{}R)l)P,

where \~Y = PY and \vec{}T \~\bfY = \partial \vec{}T ( \~\bfY )

\partial \~\bfY 
denotes the Jacobian of \vec{}T with respect to \~Y. Since we

cannot guarantee that H1 is positive semidefinite, here, we omit the second order term to
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obtain the approximated Hessian of (28):

(41) \^H1 = hP T (\vec{}T T\~\bfY 
\vec{}T \~\bfY )P,

which is positive semidefinite.
Second, for the discretized first and second order regularizers (29) and (30), the gradient

and Hessian are in the following:

(42)

\biggl\{ 
d2 = (\alpha 1hA

TA+ \alpha 2hB
TB)(Y  - X),

H2 = \alpha 1hA
TA+ \alpha 2hB

TB.

Finally, for the discretized new regularizer (36), the gradient and Hessian are as follows:

(43)

\Biggl\{ 
d3 = \beta h

6 d\vec{}\bfitr Td\bfitphi (\vec{}\bfitr ),

H3 = \beta h
6 (d\vec{}\bfitr Td2\bfitphi (\vec{}\bfitr )d\vec{}\bfitr +

\sum 6N
l=1[d\bfitphi (\vec{}\bfitr )]l\nabla 2(\vec{}\bfitr )l),

where d\bfitphi (\vec{}\bfitr ) = (\phi \prime ((\vec{}\bfitr )1), . . . , \phi 
\prime ((\vec{}\bfitr )6N ))

T is the vector of derivatives of \bfitphi at all tetrahedrons,

(44)

d\vec{}\bfitr = diag(\vec{}\bfitr 1)d\vec{}\bfitr 2 + diag(\vec{}\bfitr 2)d\vec{}\bfitr 1,

d\vec{}\bfitr 1 = 1
2 diag(1./(\vec{}\bfitq 

1)
1
2 )d\vec{}\bfitq 1  - 

\surd 
3
3 diag(1./(\vec{}\bfitq 2)

2
3 )d\vec{}\bfitq 2,

d\vec{}\bfitr 2 =  - diag(\vec{}\bfitr 2 \odot \vec{}\bfitr 2)[12 diag(1./(\vec{}\bfitq 
1)

1
2 )d\vec{}\bfitq 1 +

\surd 
3
3 diag(1./(\vec{}\bfitq 2)

2
3 )d\vec{}\bfitq 2],

d\vec{}\bfitq 1 = 2
\sum 9

l=1 diag(DlY )Dl,
d\vec{}\bfitq 2 = diag(D5Y \odot D9Y  - D6Y \odot D8Y )D1

+ diag(D6Y \odot D7Y  - D4Y \odot D9Y )D2

+ diag(D4Y \odot D8Y  - D5Y \odot D7Y )D3

+ diag(D8Y \odot D3Y  - D2Y \odot D9Y )D4

+ diag(D1Y \odot D9Y  - D3Y \odot D7Y )D5

+ diag(D2Y \odot D7Y  - D1Y \odot D8Y )D6

+ diag(D2Y \odot D6Y  - D3Y \odot D5Y )D7

+ diag(D4Y \odot D3Y  - D1Y \odot D6Y )D8

+ diag(D1Y \odot D5Y  - D2Y \odot D4Y )D9,

d\vec{}\bfitr , d\vec{}\bfitr 1,d\vec{}\bfitr 2, d\vec{}\bfitq 1,d\vec{}\bfitq 2 are the Jacobian of \vec{}\bfitr , \vec{}\bfitr 1, \vec{}\bfitr 2, \vec{}\bfitq 1, \vec{}\bfitq 2 with respect to Y , respectively,
d2\bfitphi (\vec{}\bfitr ) is the Hessian of \bfitphi with respect to \vec{}\bfitr , which is a diagonal matrix whose ith diag-
onal element is \phi \prime \prime ((\vec{}\bfitr )i), 1 \leq i \leq 6N . Here, diag(v) is a diagonal matrix with v on its main
diagonal.

To extract a positive semidefinite part, we again omit the second order term and obtain
the following approximated Hessian:

(45) \^H3 =
\beta h

6
d\vec{}\bfitr Td2\bfitphi (\vec{}\bfitr )d\vec{}\bfitr .

So the generalized Gauss--Newton system is

(46) \^H\delta Y =  - d\scrJ ,

where \^H = \^H1 +H2 + \^H3 and d\scrJ = d1 + d2 + d3.
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Remark 4. Here, by construction, \^H is indeed a positive definite matrix sinceH2 is positive
definite under the Dirichlet boundary conditions and \^H1 and \^H3 are both positive semidefinite.

The overall numerical solution scheme is summarized in Algorithm 1 below. Here, we
choose the stopping criteria consistent with the literature [40, 50]; namely, when the changes in
the objective function, the norm of the update, and the norm of the gradient are all sufficiently
small, the iterations are terminated. In each iteration, we need to solve the generalized Gauss--
Newton system (46) to find the search direction \delta U . Here, we choose MINRES [3, 42] to solve
this system, and, in the implementation, the tolerance for the relative residual is set to 0.1.
Except for the diagonal preconditioner, we also consider a preconditioner L, which is composed
of the diagonals of blocks of the approximated Hessian \^H shown in Figure 3(b). This choice
is motivated by two aspects. On one hand, since the discretized optimization problem is
usually large scale and the storage is limited, we cannot explicitly formulate the approximated
Hessian \^H. In the implementation, the approximated Hessian \^H is stored implicitly, and we
just provide a matrix-free version to compute the matrix-vector product \^Hv. In this way, it
is easy to extract the diagonals of the blocks of the approximated Hessian \^H. One the other
hand, after a permutation E, the preconditioner L can be converted into ELE, a diagonal
matrix of blocks shown in Figure 3(c). Hence, solving Lx = b in each iteration is very fast. The
efficiency of this preconditioner L is also illustrated in section 5 numerically. In Appendices
D and E, we give the details of how to compute the matrix-vector product \^Hv, the diagonal
of \^H, and the preconditioner L.

Algorithm 1. Generalized Gauss--Newton scheme by using Armijo line search for image
registration: Y \leftarrow GNAIR(\alpha 1, \alpha 2, \beta , Y

0, T,R).

Step 1: Given Y 0;
Step 2: For (37), compute \scrJ (Y 0), d0\scrJ and \^H0;
Step 3: Set k = 0;
while ``the stopping criteria are not satisfied"" do

--- Solve \^Hk\delta Y k =  - dk\scrJ from (46);
--- Update Y k+1 by an Armijo step via (38);
--- k = k + 1;
--- compute \scrJ (Y k), dk\scrJ and \^Hk;

end while

Remark 5. Here the generalized Gauss--Newton system is symmetric positive definite.
Apart from preconditioning, we choose MINRES rather than the standard conjugate gra-
dient method (CG); this is based on experimental performance where we find that MINRES
is faster, leading to a more accurate transformation than CG under the same stopping criteria.
Alternatively we could use a restarted GMRES method as the inner solver.

For Algorithm 1, we have the following global convergence result.

Theorem 8. Let T and R be twice continuously differentiable. For (37), if choosing a suf-
ficiently large \beta and setting the discretized identity map as Y 0, then each iterate Y k generated
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(a) \^H (b) L (c) ELE

Figure 3. The structure of the approximated Hessian \^H (left), the structure of the preconditioner L (mid-
dle), and the structure of the preconditioner L after a permutation E (right). L is composed of the diagonals
of blocks of the approximated Hessian \^H. The size of the matrix is 14739 (3\times 17\times 17\times 17).

by Algorithm 1 is in \scrY for some small constant \epsilon :

(47) \scrY = \{ Y | (\vec{}\bfitr (Y ))l \leq 1 - \epsilon , 1 \leq l \leq 6N\} .

In addition, we have

(48) lim
k\rightarrow \infty 

d\scrJ (Y
k) = 0,

and hence any limit point of the sequence of iterates produced by Algorithm 1 is a stationary
point Y \ast in \scrY . The stationary point Y \ast is also a discretized one-to-one transformation.

Proof. Consider the following space:

(49) \scrY = \{ Y | (\vec{}\bfitr (Y ))l < 1, 1 \leq l \leq 6N\} .

If the kth iteration Y k is in \scrY , then by [10, Lemma 1], the Armijo line search can give the
k+1th iteration Y k+1 that is also in \scrY . Since, in the implementation, the initial iteration Y 0

is the discretized identity map and we have \vec{}\bfitr (Y 0) = 0, then by Algorithm 1 it can generate a
sequence (Y k)k\in \BbbN , which is in the space \scrY . Furthermore, by the sufficient decrease condition
in the Armijo line search, we have

(50) \scrJ (Y 0) > \scrJ (Y 1) > \cdot \cdot \cdot > \scrJ (Y k) > \cdot \cdot \cdot .

Then with a sufficiently large \beta , we can ensure that the generated sequence (Y k)k\in \BbbN is in the
following space:

(51) \scrY = \{ Y | (\vec{}\bfitr (Y ))l \leq 1 - \epsilon , 1 \leq l \leq 6N for some small \epsilon \} .

Since the Dirichlet boundary condition is applied, \| Y \| is bounded and \vec{}\bfitr (Y ) is a continuous
mapping from a compact set to \BbbR 6N . Hence, for some small \epsilon > 0, \scrY is compact.

Next, we need to verify that the following conditions are satisfied:
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(1) d\scrJ is Lipschitz continuous.
(2) For all k, \^Hk is symmetric and positive definite.
(3) There exist constant \kappa and \zeta such that the condition number \kappa ( \^Hk) \leq \kappa and the norm
\| \^Hk\| \leq \zeta for all k.

(4) \scrJ (Y ) has a lower bound.
Because T and R are twice continuously differentiable, (37) is twice continuously differ-

entiable with respect to Y \in \scrY and d\scrJ is Lipschitz continuous.
We have remarked that \^Hk is symmetric positive definite by construction. In each it-

eration, Hk
2 = \alpha 1hA

TA + \alpha 2hB
TB is constant, and we can set \| Hk

2 \| = \zeta 2. For \^Hk
1 =

hP T (\vec{}T T\~\bfY 
\vec{}T \~\bfY )P , we get its upper bound \zeta 1 because T is twice continuously differentiable and

\scrY is compact. In addition, \phi is twice continuously differentiable; then we have \| \^Hk
3 \| \leq 

\beta h
6 \| d\vec{}\bfitr 

T \| \| d2\bfitphi (\vec{}\bfitr )\| \| d\vec{}\bfitr \| \leq \zeta 3. Hence, we have

(52) \| \^Hk\| \leq \| \^Hk
1 \| + \| Hk

2 \| + \| \^Hk
3 \| \leq \zeta 1 + \zeta 2 + \zeta 3 = \zeta .

Let \sigma be the minimum eigenvalue of Hk
2 . Then the smallest eigenvalue \lambda \mathrm{m}\mathrm{i}\mathrm{n} of \^Hk should be

larger than \sigma . Due to \lambda \mathrm{m}\mathrm{a}\mathrm{x} \leq \| \^Hk\| , the largest eigenvalue \lambda \mathrm{m}\mathrm{a}\mathrm{x} of \^Hk should be smaller than
\zeta . So set \kappa = \zeta 

\sigma , and the condition number of \^Hk is smaller than \kappa .
Finally, we can see that a lower bound of (37) is 0 since it is nonnegative. Since the above

listed four conditions are satisfied, according to [30, Thm. 3.2.4], we complete the proof.

In the above result, we assume that the initial guess Y 0 is an identity (or equally the
deformation field is zero). However, though such a zero start is enough for convergence, it is
a common practice to adopt a multilevel strategy to obtain a better initial guess and speed
up image registration. Specifically, we first coarsen the template and the reference by L \geq 1
levels recursively and then, starting on the coarsest level, register the coarsened images before
interpolating to the next finer level until we are back to the finest level. There are two issues
to consider: (i) L should be such that the images on the coarsest level still possess the large
differences in the pair of images in order for registration to be meaningful. (ii) Coarse to
fine level interpolation should ensure that the interpolation Y 0 still remains in space \scrY (or
diffeomorphic) on that level. The most important advantage of the multilevel strategy is that
it can use less time to provide a good initial guess because there are fewer variables on coarser
levels than on the fine level.

As mentioned earlier, an alternative to a Gauss--Newton method is ADMM, where one
splits an original problem into several subproblems. For the proposed model (18), we introduce
one auxiliary variable \bfitv and have the following equivalent formulation:

min
\bfity ,\bfitv 

1

2

\int 
\Omega 
(T \circ \bfity  - R)2d\bfitx +

\alpha 1

2

\int 
\Omega 
\| \nabla (\bfity  - \bfitx )\| 2Fd\bfitx +

\alpha 2

2

\int 
\Omega 
\| \nabla 2(\bfity  - \bfitx )\| 2Fd\bfitx 

+ \beta 

\int 
\Omega 
\phi 

\Biggl( 
\| \bfitv \| F  - 

\surd 
3(det\bfitv )1/3

\| \bfitv \| F +
\surd 
3(det\bfitv )1/3

\Biggr) 
d\bfitx s.t. \bfitv = \nabla \bfity .

(53)
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After discretization, we get the following constrained optimization problem:

min
Y,V

h

2
(\vec{}T (PY ) - \vec{}R)T (\vec{}T (PY ) - \vec{}R) +

\alpha 1h

2
(Y  - X)TATA(Y  - X) +

\alpha 2h

2
(Y  - X)TBTB(Y  - X)

+
\beta h

6
\bfitphi (\vec{}\bfits (V ))eT s.t. V = DY,

(54)

where D = [DT
1 , . . . , D

T
9 ]
T is the first order discrete operator based on (34) and \vec{}\bfits is just

defined following the definition of \vec{}\bfitr in (35).
To investigate the convergence of ADMM for (54), we first review a recent convergence

result.

Theorem 9 (see [49]). Consider the following problem:

(55) min
x,y

g(x) + h(y) s.t. Px+Qy = 0,

where g : \BbbR n \rightarrow \BbbR \cup \{ \infty \} , h : \BbbR q \rightarrow \BbbR , P \in \BbbR m\times n, and Q \in \BbbR m\times q. Assume the following hold:
A1 (coercivity) Define the feasible set \scrF := \{ (x, y) \in \BbbR n+q : Px+Qy = 0\} . The objective

function g(x) + h(y) is coercive over this set, that is, g(x) + h(y) \rightarrow \infty if (x, y) \in \scrF 
and \| x, y\| \rightarrow \infty .
The assumption A1 can be dropped if the feasible set of (x, y) is bounded.

A2 (feasibility) Im(P ) \subseteq Im(Q), where Im(\cdot ) returns the image of a matrix.
A3 (Lipschitz subminimization paths)

(a) argminy\{ h(y) : Qy = u\} has a unique minimizer. H : Im(Q)\rightarrow \BbbR q defined by
H(u) := argminy\{ h(y) : Qy = u\} is a Lipschitz continuous map.

(b) argminx\{ g(x) : Px = u\} has a unique minimizer. F : Im(P )\rightarrow \BbbR n defined by
F (u) := argminx\{ g(x) : Px = u\} is a Lipschitz continuous map.

A4 (objective-f regularity) g is Lipschitz differentiable with constant Lf .
A5 (objective-h regularity) h is Lipschitz differentiable with constant Lg.

Then ADMM converges subsequently for any sufficient large penalty parameter, that is, start-
ing from any initial guess point, it generates a sequence that is bounded, has at least one limit
point, and each limit point is a stationary point of its augmented Lagrangian function.

To apply Theorem 9, we convert (54) into the following form:

(56) min
Y,V

g(Y ) + h(V ) s.t. DY  - V = 0,

where g(Y ) = h
2 (
\vec{}T (PY ) - \vec{}R)T (\vec{}T (PY ) - \vec{}R)+\alpha 1h

2 (Y  - X)TATA(Y  - X)+\alpha 2h
2 (Y  - X)TBTB(Y  - 

X) and h(V ) = \beta h
6 \bfitphi (\vec{}\bfits (V ))eT .

For (56), the feasible set (Y, V ) is bounded, and then A1 can be dropped, due to the
Dirichlet boundary conditions. A2 and A3(a) are trivial because for (56), Q =  - I. Again,
by imposing the Dirichlet boundary conditions, P = D is full column rank and then A3(b)
holds. Here, since we assume that T and R are twice continuously differentiable and the
feasible set is bounded, A4 holds. However, since some components of \vec{}\bfits (V ) may be infinity,
the gradient of h(V ) can be infinity and is not Lipschitz continuous. Hence A5 does not hold,
and consequently Theorem 9 cannot be applied.
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Alternatively, we could introduce two auxiliary variables \bfitv and \bfitw to build a three-block
ADMM:

min
\bfity ,\bfitv ,\bfitw 

1

2

\int 
\Omega 
(T \circ \bfity  - R)2d\bfitx +

\alpha 1

2

\int 
\Omega 
\| \nabla (\bfity  - \bfitx )\| 2Fd\bfitx +

\alpha 2

2

\int 
\Omega 
\| \nabla 2(\bfity  - \bfitx )\| 2Fd\bfitx + \beta 

\int 
\Omega 
\phi (\bfitw )d\bfitx 

s.t. \bfitv = \nabla \bfity , \bfitw =
\| \bfitv \| F  - 

\surd 
3(det\bfitv )1/3

\| \bfitv \| F +
\surd 
3(det\bfitv )1/3

.

(57)

Clearly each resulting subproblem is more easily solved than for (54). However, since (57)
contains a nonlinear constraint, the convergence of ADMM still cannot be established. This
can be one future research direction.

4. Other possible regularizers. In this section, we give another two possible 3D regular-
izers for the orientation-preserving image registration.

First, making use of (10) from the LLL work and extending it beyond landmark registra-
tion, we could consider the following regularizer for a 3D map \bfitf .

Definition 10. If the map \bfitf (x1, x2, x3) = (y1(x1, x2, x3), y2(x1, x2, x3), y3(x1, x2, x3)) is con-
tinuously differentiable, then we define

(58) \scrN 1(\bfitf ) =
1

3

\biggl( 
\| \nabla \bfitf \| 2F

(det\nabla \bfitf )2/3

\biggr) 
as a new regularizer for a 3D map \bfitf .

Then, the following lemma shows some properties of (58).

Lemma 11. Regularizer \scrN 1 from (58) possesses the following properties:
P1 \scrN 1(\bfitf ) = 1\leftrightarrow the singular values of \nabla \bfitf are equal;
P2 1 \leq \scrN 1(\bfitf ) \leq \infty ;
P3 \scrN 1(\bfitf ) =\infty \leftrightarrow det\nabla \bfitf = 0.

Unfortunately \scrN 1 does not share all the properties of \scrN .
Second, we consider another possible regularizer. Since (58) represents a dilatation in 3D

according to the LLL work (see (7)), we may use \scrN 1 to define the distortion in 3D by

(59) \scrN 2(\bfitf ) =
\scrN 1(\bfitf ) - 1

\scrN 1(\bfitf ) + 1
.

Then, we can rewrite the above to define another new regularizer.

Definition 12. If the map \bfitf (x1, x2, x3) = (y1(x1, x2, x3), y2(x1, x2, x3), y3(x1, x2, x3)) is con-
tinuously differentiable, then we define

(60) \scrN 2(\bfitf ) =
\| \nabla \bfitf \| 2F  - 3(det\nabla \bfitf )2/3

\| \nabla \bfitf \| 2F + 3(det\nabla \bfitf )2/3

as a new regularizer for a 3D map \bfitf .

Similarly, we can show that \scrN 2(\bfitf ) has the following properties.
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Lemma 13. Regularizer \scrN 2 from (60) possesses the following properties:
P1 \scrN 2(\bfitf ) = 0\leftrightarrow the singular values of \nabla \bfitf are equal;
P2 0 \leq \scrN 2(\bfitf ) \leq 1;
P3 0 \leq \scrN 2(\bfitf ) < 1\leftrightarrow det\nabla \bfitf \not = 0;
P4 \scrN 2(\bfitf ) = 1\leftrightarrow det\nabla \bfitf = 0.

Clearly \scrN 2 seems better than \scrN 1 in that it shares more properties of \scrN .
Therefore, based on \scrN 1,\scrN 2, we can present two respective models as follows:

(61)

min
\bfity 

1

2

\int 
\Omega 
(T \circ \bfity  - R)2d\bfitx +

\alpha 1

2

\int 
\Omega 
\| \nabla (\bfity  - \bfitx )\| 2Fd\bfitx +

\alpha 2

2

\int 
\Omega 
\| \nabla 2(\bfity  - \bfitx )\| 2Fd\bfitx +\beta 

\int 
\Omega 
\phi (\scrN 2(\bfity ))d\bfitx ,

where \phi (v) = v2/((v - 1)2 +1) is the same as what was used in the proposed model (18), and
(62)

min
\bfity 

1

2

\int 
\Omega 
(T \circ \bfity  - R)2d\bfitx +

\alpha 1

2

\int 
\Omega 
\| \nabla (\bfity  - \bfitx )\| 2Fd\bfitx +

\alpha 2

2

\int 
\Omega 
\| \nabla 2(\bfity  - \bfitx )\| 2Fd\bfitx +\beta 

\int 
\Omega 
\phi (\scrN 1(\bfity ))d\bfitx ,

where \phi (v) = v2 because we promote \scrN 1 <\infty . Here, (62) can be considered as a reasonable
modified LLL model under our framework, which is mainly used to make a comparison in the
later test since the \scrN 1 comes from the LLL model.

Clearly, P2 from Lemma 11 and P3 from Lemma 13 show that if we just control \scrN 1 <\infty 
and \scrN 2 < 1, it is not sufficient to ensure that the obtained transformation is orientation-
preserving, since the term (det\nabla \bfitf )2/3 is never negative. Adding an explicit constraint such
as det\nabla \bfity > 0 defeats the idea of unconstrained optimization. Hence, it remains a problem
to modify these two models (61) and (62) to achieve orientation-preserving transformations.
However, a practical strategy has to be using large parameters for \alpha 1, \alpha 2, \beta to balance accuracy
and mesh quality (towards quality).

5. Numerical experiments. In this section, we demonstrate the performance of our new
model (18) by three 3D examples. Specifically we shall compare these models:

\bullet NEW from (18)---the proposed new model;
\bullet O1 from (61)---the first alternative model (generalization of LLL);
\bullet O2 LLL from (62)---the second alternative model (generalization of LLL);
\bullet Hyper from (3)---the hyperplastic model which assumes det\nabla \bfity \approx 1;
\bullet LDDMM from (5)---the LDDMM model.

All the numerical experiments are run in MATLAB 2019a on a MacBook Pro with 2.2
GHz Quad-Core Intel Core i7 microprocessor and 16 GB of memory. As a comparison, we
compare our model (18) with the state-of-the-art methods, the hyperelastic model (Hyper
[8]), LDDMM [36], and the modified LLL model (O2). The codes of Hyper and LDDMM
are based on FAIR [40], which can be downloaded from https://github.com/C4IR/FAIR.m.
The implementation of O1 and O2 are similar to Algorithm 1, including discretization and
deriving the approximated Hessian. To measure the quality of the registration, we consider
the following quantities:

\bullet Relative SSD (Re SSD) defined by \| T\circ \bfity  - R\| 2
\| T - R\| 2 to measure the relative residual.

\bullet The minimum of the Jacobian determinant of the transformation (min det\nabla \bfity ) and
the maximum of the Jacobian determinant of the transformation (max det\nabla \bfity ) to
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measure the quality of the mesh.

\bullet Dice similarity coefficient (DSC) defined by
2| \Omega T\circ \bfity \cap \Omega R| 
| \Omega T\circ \bfity | +| \Omega R| to evaluate the similarity of

the volume. Here, \Omega T\circ \bfity is the relevant volume part of the deformed template, and \Omega R
is the relevant volume part of the reference.

5.1. Test 1: Comparison of models for a pair of synthetic images. We construct a
synthetic example (a big ball and a small collapsed ball) to highlight the advantage of our
model (18) over the other models. A comparison task is a highly nontrivial matter because
there are potentially unfair choices to favor a certain method. To remedy this, we tried to use
other colleagues' codes whenever possible to reduce bias, and we tuned parameters of other
compared methods to show only their most applicable results.

Figure 4 shows the template and the reference. Here, the dimension of the given images
is 64\times 64\times 64, and the domain of the images is [0, 64]3. In the implementation, we employ a
four-step multilevel strategy for all methods and discretize the images by using regular meshes
with 8\times 8\times 8, 16\times 16\times 16, 32\times 32\times 32, and 64\times 64\times 64, respectively. On the finest level,
the number of the unknowns in this example is 823875.

For the choice of the parameters of Hyper, we use the (recommended) parameters \alpha l = 100
(length regularizer), \alpha s = 1 (surface regularizer), and \alpha v = 10 (volume regularizer). For
LDDMM, a suitable choice is \alpha = 1200 to control the smoothness of the velocity and Nt = 10
as the number of time steps for computing the characteristic [36]. For NEW, O1, and O2, we
fix \alpha 1 = 100, \alpha 2 = 0.1 and choose \beta = 6200, \beta = 2000, and \beta = 50, respectively.

Figure 5 shows the deformed templates obtained by these five models, and Table 1 gives the
corresponding measurements. Using the symbol > to denote ""better than,"" the comparisons
may be summarized as follows:

\bullet Visual differences. From Figure 5, we can see that NEW, O1, and O2 have all generated
visually acceptable deformed templates (similar to the reference), but LDDMM and
Hyper have not. That is,

NEW, O1, and O2 > Hyper and LDDMM.

\bullet Error (accuracy) differences. Column 2 of Table 1 shows the relative residuals of five
models to inform accuracies of this example. Clearly Hyper and LDDMM are less
satisfactory than all the others. Precisely, we see that

NEW > O1 > O2 > Hyper and LDDMM.

We remark that det\nabla \bfity \approx 1 does not hold.
\bullet Bijectivity differences. Columns 3--4 of Table 1 show the minimum and maximum of
the Jacobian determinant of the transformation obtained by each model. Although
we only require min det\nabla \bfity > 0 to ensure an orientation-preserving transformation
and in this regard all five models are satisfactory, we can notice that the range of the
Jacobian determinant of the transformations obtained by NEW, O1, O2, and LDDMM
are larger than Hyper since the latter explicitly aims for 1, which is not a reasonable
condition in this example.
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\bullet DSC differences. Column 7 of Table 1 shows the Dice similarity coefficient of these
models. Again, we can see that

NEW, O1, and O2 > Hyper and LDDMM.

\bullet Solution speed differences. Columns 5--6 of Table 1 show the CPU times and iterations
of these five models. Clearly we see that

NEW, O1, and O2 > Hyper and LDDMM.

Here, for LDDMM, since the deformation is large, the main part of its computing time
is spent on computing the characteristic of the transport equation accurately.

Hence, for the large deformation problems where volume preservation is not required, our
new model NEW can show the advantages over other models.

(a) Template T (b) Reference R

(c) Reference R in axial, coronal, and sagittal views

Figure 4. Test 1: The first row shows the template and reference. The second row shows the reference in
axial, coronal, and sagittal views, respectively. Since the template is a ball, its axial, coronal, and sagittal views
are the same.

5.2. Test of the preconditioner, convergence, and solver. Here, we use Test 1 to inves-
tigate the preconditioner, convergence of the algorithm, and the performance of the different
solvers for our new models.
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Table 1
Test 1: Comparison of the new models with Hyper and LDDMM.

Re SSD min det\nabla \bfity maxdet\nabla \bfity DSC Time (s) Iter. on each level

NEW 0.08\% 0.3583 36.8403 0.9243 15.2 13, 5, 3, 4

O1 0.11\% 0.3541 37.7971 0.9206 15.5 10, 4, 3, 4

O2 0.12\% 0.3459 35.4774 0.9227 14.4 11, 4, 3, 4

Hyper 1.26\% 0.1212 16.4666 0.8746 55.0 20, 6, 6, 7

LDDMM 1.31\% 0.0001 38.1041 0.8717 797.7 4, 2, 2, 2

We first investigate the preconditioner mentioned in section 3 for NEW, O1, and O2.
From Figure 6, MINRES with the L preconditioner can give the best convergence perfor-
mance among these solvers. Further, from Table 2, we can still find that MINRES with the
L preconditioner uses the least number of iterations and computational time to reach the ter-
mination in one iteration of NEW, O1, and O2. Hence, MINRES with the L preconditioner
is an effective solver for solving the generalized Gauss--Newton system in the proposed new
models.

We next illustrate the convergence of the algorithm for NEW, O1, and O2. Forcing the
algorithm to run until the relative norms of the gradients reach 10 - 6 (note that the algorithm
can satisfy the stopping criteria in several iterations with a large tolerance, e.g., 10 - 2), Figure
7 shows the relative norm of the gradient from the first order condition, as shown in Figure
7(a), and the relative energy functional values (Figure 7(b)). We see that the relative norms
of the gradient of NEW, O1, and O2 are reduced to 10 - 6. Clearly, the algorithm for NEW,
O1, and O2 is convergent, as predicted by Theorem 8. The convergence is not monotone,
which is the usual behavior of an optimization approach for a nonconvex problem [41].

We finally test the performance of different solvers for NEW, O1, and O2. Since the gen-
eralized Gauss--Newton system is symmetric positive definite, the conjugate gradient method
(CG) seems to be the usual choice. In addition, although GMRES is designed for solving the
unsymmetric system, the convergence theory is also suitable for the symmetric system. How-
ever, according to Table 3, we can see that the performance of the solver based on GMRES
is similar to MINRES, but GMRES spends more running time. In addition, the performance
of CG is similar to MINRES for NEW and O2 but worse than MINRES for O1. Especially
for MINRES with the L preconditioner, it has the best performance among these different
solvers for NEW, O1, and O2, with respect to accuracy and speed. If we apply a strict stop-
ping criterion for CG in O1, from Table 4, their performances can also be comparable with
MINRES, but they need more iterations and hence more computational time. Hence, for the
key component, solving the generalized Gauss--Newton system in the proposed optimization
method, we choose MINRES rather than CG or GMRES.

5.3. Test 2: Comparison of models for a pair of brain images. We illustrate the perfor-
mance of our model NEW in registering a pair of 3D real-life images. For completeness, we
also compare it with the other four models (O1, O2, Hyper, and LDDMM). We choose the hu-
man brain images from the data accompanying the software FAIR [40]. The template and the
corresponding reference are shown in Figure 8. The size of the given images is 128\times 64\times 128,
and the domain of the images is [0, 20] \times [0, 10] \times [0, 20]. In the implementation, for all five
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(a) Template (b) Reference (c) Residual before registration

(d) T (\bfity \bfN \bfE \bfW ) (e) Relative volume change (f) Residual after registration
(0.08\%)

(g) T (\bfity \mathrm{O}1) (h) Relative volume change (i) Residual after registration
(0.11\%)

(j) T (\bfity \mathrm{O}2) (k) Relative volume change (l) Residual after registration
(0.12\%)

(m) T (\bfity \mathrm{H}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}) (n) Relative volume change (o) Residual after registration
(1.26\%)

(p) T (\bfity \mathrm{L}\mathrm{D}\mathrm{D}\mathrm{M}\mathrm{M}) (q) Relative volume change (r) Residual after registration
(1.31\%)

Figure 5. The results of Test 1: In the first row, there are the template, reference, and the residual before
registration in axial, coronal, and sagittal views. The second row to the sixth row show the deformed template,
its corresponding relative volume change (det\nabla \bfity ), and residual after registration in axial, coronal, and sagittal
views obtained by NEW, O1, O2, Hyper, and LDDMM, respectively. The percentage represents the relative
residual.
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Figure 6. Residual plots: Performance of different preconditioners for one iteration of NEW, O1, and
O2 in Test 1. Here, MINRES, MINRESD, and MINRESL represent that the solver is MINRES without
preconditioner, with diagonal preconditioner, and with L preconditioner, respectively.

Table 2
The number of iterations needed to reach the termination for MINRES with different preconditioners in

Test 1.

NEW O1 O2

No. of Iter Time (s) No. of Iter Time (s) No. of Iter Time (s)

MINRES 6 1.7 9 2.3 10 2.5

MINRESD 5 1.5 7 1.9 5 1.5

MINRESL 4 1.5 6 1.9 4 1.5
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Figure 7. The relative norm of the gradient and relative function values of NEW, O1, and O2 in Test 1.

models, we employ a four-step multilevel strategy which is to discretize the images in the
following different resolutions: 16 \times 8 \times 16, 32 \times 16 \times 32, 64 \times 32 \times 64, and 128 \times 64 \times 128.
The number of unknowns on the finest level in this example is 3244995.

Here, for the parameters of Hyper, we choose the default parameters provided by FAIR
[40], \alpha l = 100, \alpha s = 10, and \alpha v = 100. For LDDMM, we set \alpha = 200 to control the smoothness
of the velocity and Nt = 2 as the number of time steps for computing the characteristic [36].

D
ow

nl
oa

de
d 

09
/2

4/
20

 to
 1

37
.1

89
.2

04
.6

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1680 DAOPING ZHANG AND KE CHEN

Table 3
The performance of different solvers for NEW, O1, and O2 in Test 1 by using the same stopping crite-

ria. Here, MINRES, MINRESD, and MINRESL represent that the solver is MINRES without preconditioner,
with diagonal preconditioner, and with L preconditioner, respectively. CG, CGD, and CGL represent that the
solver is CG without preconditioner, with diagonal preconditioner, and with L preconditioner, respectively. And
GMRES, GMRESD, and GMRESL represent that the solver is GMRES without preconditioner, with diagonal
preconditioner, and with L preconditioner, respectively.

NEW O1 O2

Iter on levels Re SSD Time (s) Iter on levels Re SSD Time (s) Iter on levels Re SSD Time (s)

MINRES 11,5,3,5 0.10\% 21.9 10,5,3,4 0.11\% 17.6 12,3,1,8 0.47\% 50.6

MINRESD 11,5,4,3 0.22\% 13.2 11,4,3,3 0.21\% 12.9 12,5,4,4 0.13\% 14.6

MINRESL 13,5,3,4 0.08\% 15.2 10,4,3,4 0.11\% 15.5 11,4,3,4 0.12\% 14.4

CG 11,4,3,3 0.22\% 15.9 11,4,3,3 0.22\% 15.3 13,4,4,5 0.14\% 32.3

CGD 11,3,3,5 0.11\% 24.6 11,3,3,3 0.23\% 13.6 14,4,4,5 0.12\% 22.3

CGL 12,4,3,4 0.11\% 17.2 12,4,3,3 0.21\% 13.4 14,4,5,5 0.12\% 21.1

GMRES 11,5,3,5 0.10\% 22.4 10,5,3,4 0.11\% 17.7 12,3,1,8 0.47\% 53.7

GMRESD 12,4,3,4 0.19\% 17.3 12,4,3,4 0.11\% 18.0 13,5,4,3 0.23\% 14.2

GMRESL 12,4,3,4 0.11\% 17.6 10,4,3,4 0.11\% 17.2 11,5,4,4 0.12\% 18.3

Table 4
Performance of the solvers based on CG for O1 in Test 1 by using a strict stopping criterion.

NEW

Iter on levels Re SSD Time (s)

CG 11,5,4,4 0.14\% 21.5

CGD 11,4,4,5 0.12\% 22.4

CGL 12,4,3,4 0.14\% 17.1

For NEW, O1, and O2, we again fix \alpha 1 = 100, \alpha 2 = 0.1 and choose \beta = 5000, \beta = 5000, and
\beta = 70, respectively.

Figure 9 shows the deformed templates obtained by these models, and Table 5 gives
the corresponding quantitative measurements. Similar to Test 1 results, we observe that
although the deformed templates obtained by these five methods are visually good and the
resulting transformations are all orientation-preserving (since the minimums of the Jacobian
determinant of the transformations are positive), NEW gives the smallest relative residual.
In addition, NEW also produces the best Dice among these models. Specifically, NEW, O1,
and O2 need far fewer iterations than Hyper, and their total running times are about half of
or less than half of those of Hyper and LDDMM.

5.4. Test 3: Comparison of models for a set of MR images. In this test, we use a set
of 17 MR images from the Internet Brain Segmentation Repository (IBSR) to test our new
model NEW and the other two models (Hyper and LDDMM). The data are downloaded from
https://www.nitrc.org/projects/ibsr. Here, we resize the images into 128\times 128\times 128. We fix
one of the images as the template and take the other images as the references. Hence, we in
total have 16 pairs of templates and references. The domain of the images is [0, 1]3. In the
implementation, for all three models, we employ a five-step multilevel strategy, which is to
discretize the images in the following different resolutions: 8\times 8\times 8, 16\times 16\times 16, 32\times 32\times 32,
64\times 64\times 64, and 128\times 128\times 128. The number of unknowns on the finest level in this example
is 6440067, making the task a large scale computing problem.
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(a) Template T (b) Reference R

(c) Template T in axial, coronal, and sagittal views

(d) Reference R in axial, coronal, and sagittal views

Figure 8. Test 2: The first line shows the template and reference. The second and third lines show the
template and the reference in axial, coronal, and sagittal views, respectively.

For the parameters of these three models, we test six different parameters, respectively.
For the parameters of Hyper, we set \alpha l = 1000 or 100, \alpha s = 10 or 100, and \alpha v = 10 or 100. For
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Table 5
Test 2: Comparison of the new models with Hyper and LDDMM.

Resolution Re SSD min det\nabla \bfity maxdet\nabla \bfity DSC Time (s) Iterations on each level

NEW 128\times 64\times 128 8.12\% 0.0097 39.3644 0.8632 295.7 9, 11, 13, 16

O1 128\times 64\times 128 11.93\% 0.0447 36.6370 0.8552 188.9 7, 11, 13, 10

O2 128\times 64\times 128 9.95\% 0.0615 43.9114 0.8583 221.7 5, 9, 11, 14

Hyper 128\times 64\times 128 11.33\% 0.0026 4.6357 0.8555 580.4 8, 9, 16, 24

LDDMM 128\times 64\times 128 18.59\% 0.0032 17.8784 0.8422 773.6 3, 5, 7, 8

LDDMM (see [36] for a similar choice of parameters), we vary \alpha from 100 to 1000 to control
the smoothness of the velocity and set Nt = 2 as the number of time steps for computing the
characteristic. For NEW, we fix \alpha 1 = 100 and set \alpha 2 = 0.01, 0.1, or 1 and \beta = 5000 or 10000.

Figure 10 shows the deformed templates, relative volume changes, and residuals of one
case obtained by these three models. The corresponding measurements are shown in Table 6.
Here, to reflect results from these pairs of images, we list the average and standard deviation
of the Re SSD, min det\nabla \bfity , max det\nabla \bfity and computational time of different methods with
respect to different values of the regularization parameters. All the methods can guarantee
the bijective transformations because all the minimums of the Jacobian determinant of the
transformations are positive. For Hyper, by choosing these parameters, the ranges of the
Jacobian determinant of the transformation are very similar. This is because Hyper has a
potential to force det\nabla \bfity \approx 1. However, compared with NEW and LDDMM, the relative
SSD obtained by Hyper is worse, which shows that preserving volume is not suitable in
this application. Further, NEW can give better Re SSD than LDDMM. Especially when
the parameters are set (100, 0.1, 5000), NEW can generate the best Re SSD among all these
choices. Here, we note that when the parameters are set (100, 0.01, 5000), the generated
Re SSD is slighter worse than (100, 0.1, 5000), but the computational time is only about 50\%.
For LDDMM, by tuning the parameters, we can get acceptable Re SSD, but it needs much
more running time than NEW.

In summary, the above three sets of examples demonstrate that our new model NEW
can be more advantageous than (and competitive with) the state-of-the-art models, Hyper,
LDDMM, and O2 (LLL) in terms of computational time and accuracy.

6. Conclusions. In image registration, visual comparison is not a reliable way to assess
effectiveness because our human eye cannot always tell if a transformed image is incorrect due
to going through a folding transformation. In order to ensure that the transformation has no
folding, many models (including the state-of-the-art registration models) explicitly control the
Jacobian determinant of the underlying transformation. However, for registration problems
where larger deformations exist, controlling the Jacobian determinant of the transformation
and forcing it to be close to 1 are not always reasonable. To overcome this difficulty, minimizing
the modulus of the Beltrami coefficient offers an indirect way of controlling the Jacobian
determinant of the transformation. However, since the Beltrami coefficient is defined in two
dimensions and by complex analysis, it cannot be directly extended to 3D. In this paper,
we construct a quantity as a generalization of the norm of the Beltrami coefficient in 3D as
a measure of distortion on conformal maps. Using it, we propose our new model (18) and
establish the existence of a solution. In order to solve the new model efficiently, we present
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(a) Template (b) Reference (c) Residual before registration

(d) T (\bfity \mathrm{N}\mathrm{E}\mathrm{W}) (e) Relative volume change (f) Residual after registration
(8.12\%)

(g) T (\bfity \mathrm{O}1) (h) Relative volume change (i) Residual after registration
(11.93\%)

(j) T (\bfity \mathrm{O}2) (k) Relative volume change (l) Residual after registration
(9.95\%)

(m) T (\bfity \mathrm{H}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}) (n) Relative volume change (o) Residual after registration
(11.33\%)

(p) T (\bfity \mathrm{L}\mathrm{D}\mathrm{D}\mathrm{M}\mathrm{M}) (q) Relative volume change (r) Residual after registration
(18.59\%)

Figure 9. The results of Test 2: In the first row, there are the template, reference, and the residual before
registration in axial, coronal, and sagittal views. The second row to the sixth row show the deformed template,
its corresponding relative volume change (det\nabla \bfity ), and residual after registration in axial, coronal, and sagittal
views obtained by NEW, O1, O2, Hyper, and LDDMM, respectively. The percentage represents the relative
residual.
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Table 6
Test 3 of 16 pairs of MR images: Comparison of the new model NEW with Hyper and LDDMM. Average

and standard deviation of the Re SSD, mindet\nabla \bfity , maxdet\nabla \bfity , and computing time for different values of the
regularization parameters.

Measurements by NEW
Parameters min det\nabla \bfity maxdet\nabla \bfity Re SSD Time (s)

(100, 0.01, 5000) 0.1398\pm 0.0743 11.4426\pm 9.8745 12.59\%\pm 4.61\% 408.7\pm 130.9

(100, 0.01, 10000) 0.1864\pm 0.0682 9.0047\pm 7.2030 14.33\%\pm 5.51\% 430.5\pm 177.1

(100, 0.1, 5000) 0.1800\pm 0.1043 6.8892\pm 5.5417 12.24\%\pm 5.99\% 821.8\pm 1167.4

(100, 0.1, 1000) 0.2348\pm 0.0862 5.7243\pm 4.0364 13.18\%\pm 6.68\% 1323.6\pm 2551.4

(100, 1, 5000) 0.4060\pm 0.1813 1.7849\pm 2.6414 28.09\%\pm 9.80\% 417.4\pm 100.1

(100, 1, 10000) 0.4466\pm 0.1437 1.7761\pm 2.1036 28.87\%\pm 9.92\% 357.3\pm 101.7

Measurements by Hyper
Parameters min det\nabla \bfity maxdet\nabla \bfity Re SSD Time (s)

(100, 10, 100) 0.3574\pm 0.0526 2.5507\pm 0.6171 17.44\%\pm 8.59\% 1197.7\pm 1243.5

(100, 100, 10) 0.2721\pm 0.0823 1.6649\pm 0.2513 25.39\%\pm 14.04\% 2920.7\pm 1686.1

(100, 100, 100) 0.4236\pm 0.0640 1.6509\pm 0.2680 25.89\%\pm 14.04\% 1662.1\pm 634.5

(1000, 10, 100) 0.4149\pm 0.0458 2.2362\pm 0.3953 21.20\%\pm 9.75\% 347.9\pm 216.7

(1000, 100, 10) 0.4143\pm 0.0983 1.5845\pm 0.1734 33.04\%\pm 12.79\% 262.7\pm 63.8

(1000, 100, 100) 0.4986\pm 0.0678 1.5788\pm 0.1700 33.18\%\pm 12.77\% 271.7\pm 67.5

Measurements by LDDMM
Parameters min det\nabla \bfity maxdet\nabla \bfity Re SSD Time (s)

100 0.0659\pm 0.0632 45.6814\pm 61.2808 13.17\%\pm 5.20\% 2328.4\pm 1564.6

200 0.1162\pm 0.0861 13.6115\pm 13.7689 15.89\%\pm 5.64\% 1997.2\pm 1794.0

400 0.2024\pm 0.1099 5.7173\pm 3.8898 20.49\%\pm 7.35\% 1920.8\pm 2150.8

600 0.2834\pm 0.1198 4.0926\pm 2.2623 23.53\%\pm 8.46\% 1410.4\pm 1693.6

800 0.3438\pm 0.1282 3.3744\pm 1.5352 25.66\%\pm 9.15\% 1215.6\pm 1558.0

1000 0.4002\pm 0.1255 3.0326\pm 1.2210 27.40\%\pm 9.67\% 999.0\pm 1088.4

a converging generalized Gauss--Newton scheme. The numerical experiments illustrate that
our new model can be more advantageous than related models with respect to computational
time and accuracy.

In the future, we will consider a possible reformation by the game approach [46] to reduce
the number of model parameters and test the new model for multimodal images. We also hope
to develop an unsupervised deep learning method following the approach of [11, 47], where the
energy functional (18) in our proposed registration model is used as a loss function (without
using any ground truth data). Finally, there is also a recent development in hypercomplex
analysis using Clifford analysis (to extend 2D complex analysis to higher dimensions). It would
be of interest to consider how to generalize the 2D Beltrami coefficient in this framework.

Appendix A. Computation of \bfitA in (29).

(63) A = I3 \otimes 

\left(  A1

A2

A3

\right)  ,

where A1 = I(n3+1)\otimes I(n2+1)\otimes \partial 
1,h1
n1 , A2 = I(n3+1)\otimes \partial 

1,h2
n2 \otimes I(n1+1), A3 = \partial 1,h3n3 \otimes I(n2+1)\otimes I(n1+1),
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(a) Template (b) Reference (c) Residual before registration

(d) T (\bfity \mathrm{N}\mathrm{E}\mathrm{W}) (e) Relative volume change (f) Residual after registration
(7.73\%)

(g) T (\bfity \mathrm{H}\mathrm{y}\mathrm{p}\mathrm{e}\mathrm{r}) (h) Relative volume change (i) Residual after registration
(9.43\%)

(j) T (\bfity \mathrm{L}\mathrm{D}\mathrm{D}\mathrm{M}\mathrm{M}) (k) Relative volume change (l) Residual after registration
(9.35\%)

Figure 10. The results of one case in Test 3: In the first row, there are the template, reference, and the
residual before registration in axial, coronal, and sagittal views. The second row to the fourth row show the
deformed template, its corresponding relative volume change (det\nabla \bfity ), and residual after registration in axial,
coronal, and sagittal views obtained by NEW, Hyper, and LDDMM, respectively. The percentage represents the
relative residual. Here, the parameters of NEW, Hyper, and LDDMM are (100,0.01,5000), (100,100,10), and
200, respectively.

and

(64) \partial 1,hlnl
=

1

hl

\left(   - 1 1
\cdot \cdot 
 - 1 1

\right)  \in \BbbR nl,nl+1, 1 \leq l \leq 3.

Here, \otimes indicates Kronecker product.

Appendix B. Computation of \bfitB in (30).

(65) B = I3 \otimes 
\bigl( 
BT

1 BT
2 BT

3 BT
4 BT

5 BT
6 BT

7 BT
8 BT

9

\bigr) T
,

where B1 = I(n3+1)\otimes I(n2+1)\otimes \partial 
2,h1
n1 , B2 = I(n3+1)\otimes \partial 

2,h2
n2 \otimes I(n1+1), B3 = \partial 2,h3n3 \otimes I(n2+1)\otimes I(n1+1),

B4 = B7 = I(n3+1)\otimes \partial 
1,h2
n2 \otimes \partial 

1,h1
n1 , B5 = B8 = \partial 1,h3n3 \otimes I(n2+1)\otimes \partial 

1,h1
n1 , B6 = B9 = \partial 1,h3n3 \otimes \partial 

1,h2
n2 \otimes D
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I(n1+1), and

(66) \partial 2,hlnl
=

1

h2l

\left(    
 - 2 1
1  - 2 1

\cdot \cdot 
1  - 2

\right)    \in \BbbR nl+1,nl+1, 1 \leq l \leq 3.

Here, \otimes indicates Kronecker product.

Appendix C. Computation of \bfitM \bfone , \bfitM \bftwo , and \bfitM \bfthree in (34). We first investigate the linear
approximation L(x1, x2, x3) = a1x1 + a2x2 + a3x3 + b in the tetrahedron V3V4V5V7 (Figure
2). Denote these four vertices of this tetrahedron by V3 = \bfitx 1,1,1, V4 = \bfitx 2,2,2, V5 = \bfitx 3,3,3, and
V7 = \bfitx 4,4,4. Set L(\bfitx 1,1,1) = y1,1,1, L(\bfitx 2,2,2) = y2,2,2, L(\bfitx 3,3,3) = y3,3,3, and L(\bfitx 4,4,4) = y4,4,4.
Substituting V3, V4, V5, and V7 into L, we get

(67)

\left(    
x11 x12 x13 1
x21 x22 x23 1
x31 x32 x33 1
x41 x42 x43 1

\right)    
\left(    
a1
a2
a3
b

\right)    =

\left(    
y1,1,1

y2,2,2

y3,3,3

y4,4,4

\right)    .

Then, eliminating b, we obtain

(68)

\left(  x11  - x41 x12  - x42 x13  - x41
x21  - x42 x22  - x42 x23  - x42
x31  - x43 x32  - x42 x33  - x43

\right)  \left(  a1a2
a3

\right)  =

\left(  y1,1,1  - y4,4,4y2,2,2  - y4,4,4
y3,3,3  - y4,4,4

\right)  .

Set

(69) C =

\left(  x11  - x41 x12  - x42 x13  - x41
x21  - x42 x22  - x42 x23  - x42
x31  - x43 x32  - x42 x33  - x43

\right)  .

Then we have

(70)

\left(  a1a2
a3

\right)  =
1

det

\left(  C11 C21 C31

C12 C22 C32

C13 C23 C33

\right)  \left(  y1,1,1  - y4,4,4y2,2,2  - y4,4,4
y3,3,3  - y4,4,4

\right)  ,

where det is the determinant of C and Cij is the (i, j) cofactor of C. Since the domain \Omega has
been divided into N voxels, in order to find all a1 in the tetrahedron with the same position
of each voxel, we can make it as follows:

(71)

\left(   a11
...
aN1

\right)   =
1

det
(C11(E3Y  - E7Y ) + C21(E4Y  - E7Y ) + C31(E5Y  - E7Y )),

where El, l \in \{ 3, 4, 5, 7\} , is a matrix which extracts the corresponding positions of the vertices.
Set G1 =

1
\mathrm{d}\mathrm{e}\mathrm{t}(C11(E3  - E7) +C21(E4  - E7) +C31(E5  - E7)). For the other five tetrahedrons,
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we can also build Gl, l \in \{ 2, . . . , 6\} . Then we get

(72) M1 =

\left(   G1
...
G6

\right)   .

Similarly, we can obtain M2 and M3.

Appendix D. Computation of the matrix-vector product \^\bfitH \bfitv . Recall that \^H = \^H1 +
H2 + \^H3 and we have \^Hv = \^H1v +H2v + \^H3v.

First, for \^H1v = hP T \vec{}T T\~\bfY 
\vec{}T \~\bfY Pv, we need to compute v1 = Pv, v2 = \vec{}T \~\bfY v1, v3 =

\vec{}T T\~\bfY v2, and

\^H1v = P T v3. Since P is an averaging matrix from the nodal grid to the cell-centered grid, as
an example, the first component of Pv is

(Pv)1 =
1

8
((v)1 + (v)2 + (v)1+n1 + (v)2+n1 + (v)1+(n1+1)(n2+1)

+ (v)2+(n1+1)(n2+1) + (v)1+n1+(n1+1)(n2+1) + (v)2+n1+(n1+1)(n2+1)).
(73)

\vec{}T \~\bfY has the following structure:

(74) \vec{}T \~\bfY = [diag(w1), diag(w2),diag(w3)].

Then we have \vec{}T \~\bfY v1 = \Sigma 3
l=1wl \odot v1l and \vec{}T T\~\bfY v2 = ((w1 \odot v2)T , (w2 \odot v2)T , (w3 \odot v2)T )T , where

v1 = (vT11, v
T
12, v

T
13)

T . Similarly, it is easy to implement P T v3.
Second, in order to compute H2v = (\alpha 1hA

TA+ \alpha 2hB
TB)v, we just consider how Al and

ATl , l \in \{ 1, 2, 3\} , multiply a vector and Bl and B
T
l , l \in \{ 1, . . . , 9\} , multiply a vector. According

to (63) and (65), because of \partial 2,hlnl = (\partial 2,hlnl )T , here we only need to investigate \partial 1,hlnl v\prime , (\partial 1,hlnl )T v\prime 

and \partial 2,hlnl v\prime , l = \{ 1, 2, 3\} .
Finally, because \^H3 = \beta h

6 d\vec{}\bfitr Td2\bfitphi (\vec{}\bfitr )d\vec{}\bfitr and d2\bfitphi (\vec{}\bfitr ) is a diagonal matrix, we only need to
consider computing d\vec{}\bfitr v and d\vec{}\bfitr T v\prime . According to the (35), substituting d\vec{}\bfitr 1, d\vec{}\bfitr 2, d\vec{}\bfitq 1, and
d\vec{}\bfitq 2 into d\vec{}\bfitr , we have

(75) d\vec{}\bfitr =

9\sum 
l=1

\Lambda lDl,

where

\Lambda 1 = 2\Gamma 1 diag(D1Y ) + 2\Gamma 2 diag(D5Y \odot D9Y  - D6Y \odot D8Y ),

\Lambda 2 = 2\Gamma 1 diag(D2Y ) + 2\Gamma 2 diag(D6Y \odot D7Y  - D4Y \odot D9Y ),

\Lambda 3 = 2\Gamma 1 diag(D3Y ) + 2\Gamma 2 diag(D4Y \odot D8Y  - D5Y \odot D7Y ),

\Lambda 4 = 2\Gamma 1 diag(D4Y ) + 2\Gamma 2 diag(D8Y \odot D3Y  - D2Y \odot D9Y ),

\Lambda 5 = 2\Gamma 1 diag(D5Y ) + 2\Gamma 2 diag(D1Y \odot D9Y  - D3Y \odot D7Y ),

\Lambda 6 = 2\Gamma 1 diag(D6Y ) + 2\Gamma 2 diag(D2Y \odot D7Y  - D1Y \odot D8Y ),

\Lambda 7 = 2\Gamma 1 diag(D7Y ) + 2\Gamma 2 diag(D2Y \odot D6Y  - D3Y \odot D5Y ),

\Lambda 8 = 2\Gamma 1 diag(D8Y ) + 2\Gamma 2 diag(D4Y \odot D3Y  - D1Y \odot D6Y ),

\Lambda 9 = 2\Gamma 1 diag(D9Y ) + 2\Gamma 2 diag(D1Y \odot D5Y  - D2Y \odot D4Y ),

(76)
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\Gamma 1 =  - 1
2 diag((\vec{}\bfitr 

1 \odot \vec{}\bfitr 2 \odot \vec{}\bfitr 2  - \vec{}\bfitr 2)./(\vec{}\bfitq 1)
1
2 ), and \Gamma 2 =  - 

\surd 
3
3 diag((\vec{}\bfitr 1 \odot \vec{}\bfitr 2 \odot \vec{}\bfitr 2 + \vec{}\bfitr 2)./

(\vec{}\bfitq 2)
2
3 ). Furthermore, because of (34), (75) can be reformulated as follows:

(77) d\vec{}\bfitr = [\Lambda 1M1 + \Lambda 2M2 + \Lambda 3M3,\Lambda 4M1 + \Lambda 5M2 + \Lambda 6M3,\Lambda 7M1 + \Lambda 8M2 + \Lambda 9M3].

Hence, we only need to compute Mlvk, where l, k \in \{ 1, 2, 3\} and v = (vT1 , v
T
2 , v

T
3 )

T . For
simplification, we only consider M1v1. Recalling (72), we can get

(78) M1v1 =

\left( 
 G1v1

...
G6v1

\right)   .

Since Gl, l \in \{ 1, . . . , 6\} , is just the linear combination of the matrix El, l \in \{ 1, . . . , 8\} , finally
we only compute Elv1, l \in \{ 1, . . . , 8\} , which is very easy to implement.

Similarly, in order to compute d\vec{}\bfitr T v\prime , we only need to compute MT
l v

\prime , l \in \{ 1, 2, 3\} , and
it can be decomposed to compute ETl v

\prime 
k, l \in \{ 1, . . . , 8\} and k \in \{ 1, . . . , 6\} , where v\prime =

((v\prime 1)
T , . . . , (v\prime 6)

T )T .

Appendix E. The diagonal of \^\bfitH and the preconditioner \bfitL . According to the structure
of \^H1, the diagonal of \^H1 is h(P T \odot P T )\varsigma , where \varsigma is the diagonal of \vec{}T T\~\bfY 

\vec{}T \~\bfY .

The diagonal of H2 is \alpha 1h(A
T \odot AT )e + \alpha 2h(B

T \odot BT )e, where e is a vector whose
components are all equal to 1.

From (77) and \^H3 =
\beta h
6 d\vec{}\bfitr Td2\bfitphi (\vec{}\bfitr )d\vec{}\bfitr , the diagonal of \^H3 is \beta h

6 (\varsigma T1 , \varsigma 
T
2 , \varsigma 

T
3 )

T , where

\varsigma 1 = the diagonal of (\Lambda 1M1 + \Lambda 2M2 + \Lambda 3M3)
Td2\bfitphi (\vec{}\bfitr )(\Lambda 1M1 + \Lambda 2M2 + \Lambda 3M3),

\varsigma 2 = the diagonal of (\Lambda 4M1 + \Lambda 5M2 + \Lambda 6M3)
Td2\bfitphi (\vec{}\bfitr )(\Lambda 4M1 + \Lambda 5M2 + \Lambda 6M3),

\varsigma 3 = the diagonal of (\Lambda 7M1 + \Lambda 8M2 + \Lambda 9M3)
Td2\bfitphi (\vec{}\bfitr )(\Lambda 7M1 + \Lambda 8M2 + \Lambda 9M3).

(79)

Now we only need to compute the diagonal of MT
i1
\Lambda j1d

2\bfitphi (\vec{}\bfitr )\Lambda j2Mi2 , where i1, i2 \in \{ 1, 2, 3\} 
and j1, j2 \in \{ 1, 2, 3\} , \{ 4, 5, 6\} , or \{ 7, 8, 9\} . Since \Lambda j1d

2\bfitphi (\vec{}\bfitr )\Lambda j2 is a diagonal matrix and set \varsigma 
is the diagonal of \Lambda j1d

2\bfitphi (\vec{}\bfitr )\Lambda j2 , the diagonal of MT
i1
\Lambda j1d

2\bfitphi (\vec{}\bfitr )\Lambda j2Mi2 is (MT
i1
\odot MT

i2
)\varsigma , which

is very easy to implement following Appendix D.
The structure of the preconditioner L is

(80)

\left(  diag( \^H11) diag( \^H12) diag( \^H13)

diag( \^H21) diag( \^H22) diag( \^H23)

diag( \^H31) diag( \^H32) diag( \^H33)

\right)  .

Since \^H is symmetric and we have obtained the diagonal of \^H, we only need to compute
diag( \^H12), diag( \^H13), and diag( \^H23). Actually, they are also computed easily just by following
the above-mentioned steps.
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