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Abstract1

Image registration is the process of aligning sets of similar, but di�erent, intensity image functions2

to track changes between the images. In medical image problems involving lung images, variational3

registration models are a very powerful tool which can aid in e�ective treatment of various lung con-4

ditions and diseases. However a common drawback of many variational models, such as the di�usion5

model [19] and even optic �ow models [8, 22], is the lack of control of folding in the deformations6

leading to physically inaccurate transformations. For this reason, such models are generally not7

suitable for real life lung imaging problems where folding cannot occur.8

There are two approaches o�ering reliable solutions (though not necessarily accurate). The �rst9

approach is a parametric model such as the a�ne registration model, still widely used in many10

applications, but it cannot track local changes or yield accurate results. The second approach is to11

impose an extra constraint on the transformation of registration as in the work by [11, 36, 48], at12

the cost of increased nonlinearity. An alternative to the second approach, achieving di�eomorphic13

transforms without adding any constraints, is an inverse consistent model such as by Christensen-14

Johnson [15] from computing explicitly both the forward and inverse transforms. However one must15

deal with the strong non-linearity in the formulation.16

In this paper we �rst propose a simpli�ed inverse consistent model to avoid the inclusion of strong non-17

linearities and then a fast non-linear multigrid (NMG) technique to overcome the extra computational18

work required by the inverse consistent model. Experiments, performed on real medical CT images,19

show that our proposed inverse consistent model is robust to both parameter choice and non-folding20

in the transformations when compared with di�usion type models.21

Keywords. System of nonlinear PDEs, Existence, Image registration,22

Di�eomorphic map, Fast multigrid solver.23

1 Introduction24

A challenge which frequently arises in a lot of real world applications, and especially in medical imaging,25

is image registration. An image registration technique works by �xing one image in a pair or set of26

similar images to be the `reference' image and then applying geometric transformations to the remaining27

image/s, called the `template' image/s, with the goal of aligning the template image/s with the reference28

image. The important role that registration plays in many aspects of medical imaging problems can be29

seen in recent works of [1, 16, 25, 27, 33]. Especially in diagnostics of lung problems [12, 17, 26, 28, 40, 44],30

registration tasks such as motion correction and feature tracking are routinely carried out and any31

increase in accuracy is highly desirable in improving patient care. Since the transformations within32

lung images are in general highly non-uniform, non-parametric models such as [6, 7, 9�11] are typically33

favoured over parametric models such as [3, 18,34,37]. Our main concern is this former type.34

Denoting by R, T ∈ Ω ⊂ Rd respectively a reference function and template image function, we are looking35

to determine the transformation ϕ(x,u) such that36

T (ϕ(x,u)) ≡ T (x+ u) ≡ Tu ≈ R ≡ R(x) for x = (x1, . . . , xd)
T ∈ Ω ⊂ Rd (1.1)
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where ϕ(x,u) = x+u(x) and u ≡ u(x) = (u1(x), . . . , ud(x))
T
denotes the displacement �eld. Through-37

out the remainder of this paper we will only consider the two-dimensional case d = 2, however the ideas38

presented are extendible to the three-dimensional case d = 3. In addition, we will also assume that the39

image domain Ω is given by the unit square Ω = [0, 1]2.40

We can formulate the variational image registration problem mathematically in the following way. The41

task of �nding the transformation ϕ is equivalent to that of determining the displacement �eld u, which42

is achieved by solving a minimisation problem of the following form43

min
u
E(u) = D (R, T,u) + αR (u) (1.2)

where E(u) denotes some general energy functional, D is some dissimilarity measure of T,R, R is a44

regularisation term required to constrain u and overcome the ill-posedness of the problem and α ∈ R+
45

is some weighting parameter. For the purposes of this paper, we will assume that R, T are mono-modal46

images, and as a result the common choice of dissimilarity measure is the sum of squared distances47

(SSD), although this is not the only possible choice [39]. The SSD term is given by the following48

D (R, T,u) =
1

2

∫
Ω

|Tu −R|2 dΩ (1.3)

where |·| denotes the Euclidean norm and Tu ≡ T (x+u). Moreover, there is a large choice of regularisa-49

tion term [2,5,20,23,38]. Here we shall mainly consider one of these, R(u) = ‖∇u‖2 = ‖u1‖2 +‖u2‖2, in50

order to focus on the idea of di�eomorphism of ϕ. Unfortunately energy functionals of the form shown51

in (1.2), in general, do not avoid the potential problem of mesh folding in the transformation ϕ. Since we52

are considering real life medical imaging problems, a transformation with folding would suggest that the53

transformation is physically inaccurate and therefore incorrect. One mathematical solution to overcome54

this problem is to impose the nonlinear constraint Qmin = min det(∇ϕ) > 0 as done in recent works55

of [11,36,48] and in particular the term min(det(∇ϕ)− 1)4/(det(∇ϕ))2 is added in [11].56

However, we consider here another solution to this folding problem by extending the model (1.2) to57

include an additional term, explicitly linking the forward transform ϕ and the inverse transform ψ58

between T,R, which enforces the transformation ϕ to be inverse consistent and therefore non-folding. A59

simple way to ensure di�eomorphism is for the transformation ϕ and its inverse ψ to satisfy the relation60

ϕ = ψ−1 since ϕ ◦ ϕ−1 = ψ ◦ ψ−1 = Ix = x where I denotes the identity mapping. The �rst variant61

including an inverse consistency constraint (and ϕ only) leads to a minimisation problem of the form62

min
u
E(I)(u) = D (R, T,u) + αR (u) + βI

(
ϕ (x,u) ,ϕ−1 (x, ũ)

)
(1.4)

where I denotes the inverse consistency constraint, ϕ−1, ũ denote the inverses of ϕ, u respectively63

and 0 ≤ β ∈ R is a second weighting parameter. There are di�erent choices for the inverse consistency64

constraint [14, 15, 17, 34]. In this paper however we consider the second variant of an inverse consistent65

model, using both ϕ and ψ, with the following form66

min
u,v

E(II) (u,v) =
1

2

∫
Ω

D (R, T,u) + D (T,R,v) + α
(
R (u) + R (v)

)
+ β

(
I
(
ϕ (x,u) ,ψ−1 (x, ṽ)

)
+ I

(
ψ (x,v) ,ϕ−1 (x, ũ)

))
dΩ. (1.5)

where D (T,R,v) , R (v) and I
(
ψ (x,v) ,ϕ−1 (x, ũ)

)
denote the similarity measure, regularisation term67

and inverse consistency constraint respectively for the backward problem R→ T , also where v, ψ denote68

the backward displacement and transformation respectively with ṽ, ψ−1 denoting their inverses. We aim69

to simplify this second variant and propose an e�cient multigrid numerical scheme.70

The remainder of this paper will be set out as follows. In �2 we will introduce the Christensen-Johnson71

model based on (1.5), as well as our proposed simpli�cation to avoid additional non-linearities when72

compared with general di�usion type models, in addition to our proposed numerical approach. Next in73

�3 we will introduce our fast NMG scheme to overcome the increased computational cost resulting from74

the additional work required by the model, before showing some experimental results on real medical75

CT images in �4. Finally in �5 we will present our conclusions.76
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2 A simpli�ed inverse consistent model and its algorithm77

Several authors have discussed similar registration models for two images to symmetrically deform toward78

one another in multiple passes [14, 29, 42, 47]. The realization of a di�eomorphic transform is achieved79

by working with 4 deformation �elds instead of 1. Here we follow the work by Christensen-Johnson [15]80

who proposed a model to overcome the problem of non-inverse consistent transformations by using81

only 2 deformation �elds. The model satis�es our requirement of having a more physically accurate82

transformation robust to folding. They achieved this through a combination of two things: (i) A term83

was added into the standard form of the energy functional shown in (1.2) to impose inverse consistency84

and take on the form show in (1.5); (ii) The forward (T → R) and backward (R → T ) registration85

problems were computed simultaneously. These things, combined with a SSD dissimilarity term (1.3)86

and di�usion regularisation term, led to the formation of their inverse consistent model which is given87

by the following88

min
u,v

EIC (u,v) =
1

2

∫
Ω

|Tu −R|2 + |Rv − T |2 + α
(
|∇u|2 + |∇v|2

)
+ β

(∣∣ϕ (x,u)−ψ−1 (x, ṽ)
∣∣2 +

∣∣ψ (x,v)−ϕ−1 (x, ũ)
∣∣2) dΩ (2.1)

where |·| denotes the F-norm for matrices (reduced to modulus for scalar quantities), ϕ,ψ denote the89

forward and backward transformations, ϕ−1,ψ−1 denote the inverse transformations, u,v denote the90

forward and backward displacements and ũ, ṽ denote the inverse displacements respectively. The full91

minimisation problem was then split into two sub-problems corresponding to the forward and backward92

registration problems respectively. This resulted in (2.1) being written in the following way93 
min
u
EIC1 (u,v) =

1

2

∫
Ω

|Tu −R|2 + α |∇u|2 + β |u− ṽ|2 dΩ, ṽ(x) = ψ−1(x)− x

min
v
EIC2 (u,v) =

1

2

∫
Ω

|Rv − T |2 + α |∇v|2 + β |v − ũ|2 dΩ, ũ(x) = ϕ−1(x)− x.

(2.2)

Noting that the constraints in (2.2) are respectively ψ(ṽ(x)) = x − ψ and ϕ(ũ(x)) = x − ϕ i.e.94

ψ(ṽ(x)) + v = 0, ϕ(ũ(x)) +u = 0, the explicit computation of them is a di�cult and computationally95

expensive task owing to their non-linear nature. However, this kind of model is e�ective at preventing96

mesh folding as is illustrated in Figure 1 where the mesh problem on the left is �xed by the model on97

the right plot.98

(a) Bad mesh of the transformation ϕ obtained from the stan-
dard di�usion model: Qmin = −0.245

(b) Good mesh obtained from the new inverse consistent
model: Qmin = 0.114

Figure 1: Comparison of two registration meshes for Example 2 as shown in Figure 2 for the same
parameters α = 1

25 and β = 104 (See �4).
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We are motivated to overcome the di�culty of computing the inverse displacements ũ and ṽ directly.99

We propose to replace these terms with linear approximations. This simpli�cation allows us to re-100

move the additional non-linearities from the inverse consistent terms, leaving only the non-linearities101

seen in di�usion type models, while still retaining the advantages of the inverse consistent model. We102

know that the transformations ϕ,ψ, and their inverses ϕ−1,ψ−1, should satisfy the following relations103

ϕ−1 (ϕ (x,u)) = x, ψ−1 (ψ (x,v)) = x. Expanding out leads to the following equalities104 {
ϕ−1 (ϕ (x,u)) = ϕ (x,u) + ũ (ϕ (x,u)) = x+ u(x) + ũ (x+ u(x)) = x

ψ−1 (ψ (x,v)) = ψ (x,v) + ṽ (ψ (x,v)) = x+ v(x) + ṽ (x+ v(x)) = x
(2.3)

which can be reduced to105

u(x) + ũ (x+ u(x)) = 0, v(x) + ṽ (x+ v(x)) = 0 (2.4)

by using a Taylor expansion on the arguments of ũ, ṽ in (2.4), we can obtain the approximations106

ũ (x+ u(x)) ≈ ũ(x), ṽ (x+ v(x)) ≈ ṽ(x). (2.5)

From substituting (2.5) into (2.4), we get107

u(x) ≈ −ũ(x), v(x) ≈ −ṽ(x) (2.6)

and using (2.6) in (2.1), we have108

min
u,v

EIC (u,v) =
1

2

∫
Ω

|Tu −R|2 + |Rv − T |2 + α
(
|∇u|2 + |∇v|2

)
+ β

(
|u+ v|2 + |v + u|2

)
dΩ

≡ gIC (x,u,v,∇u,∇v) (2.7)

which results in the following split formulation by alternating minimization109 
min
u
EIC1 (u,v) =

1

2

∫
Ω

|Tu −R|2 + α |∇u|2 + β |u+ v|2 dΩ,

min
v
EIC2 (u,v) =

1

2

∫
Ω

|Rv − T |2 + α |∇v|2 + β |v + u|2 dΩ.

(2.8)

Comparing this model with (2.1), we see that we now no longer need to compute the inverse displacements110

ũ and ṽ directly, instead we need only use the displacements u and v.111

To solve the minimisation problem (2.8), a discretise-optimise approach (for details see [38,39]) was used112

originally, however we instead propose to use an optimise-discretise approach in addition to a fast NMG113

framework. This approach involves solving the Euler-Lagrange (EL) equations corresponding to (2.8),114

and can be shown to be given by115

−α∆um + Fm (u,v) = 0, −α∆vm +Gm (u,v) = 0 (2.9)

with respective Neumann boundary conditions ∇um · n = 0, ∇vm · n = 0, where116

Fm (u,v) = β (um + vm) + ∂um
Tu (Tu −R) ,

Gm (u,v) = β (vm + um) + ∂vmRv (Rv − T ) (2.10)

denote respectively the force terms for component m = 1, 2.117

We remark that the models by [14, 29, 42, 47], though involving more unknown �elds to compute, can118

also be advantageous when the underlying deformation between T and R is large (and by design the 4119

�elds can be small or could be said to be half sized); in this case, it will be of interest to develop fast120

multigrid methods for them.121
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2.1 Existence of a solution for model (2.7)122

Now we will prove the existence of solutions for the model (2.7) following the idea of [11] for a similar123

proof in a related but di�erent model. Given the energy functional EIC(u,v) de�ned in (2.7), we wish124

to show that the solutions u∗,v∗ exist such that EIC (u∗,v∗) becomes minimal. We use the so called125

direct method [21] as in [11], consisting of the following steps:126

(i) Take the minimising sequences {un,vn} for EIC .127

(ii) Show that the sequences {un,vn} admit subsequences {unk
,vnk
} that converge to a solution128

(u∗,v∗) ∈ χ in the weak topology, where χ denotes some function space.129

(iii) Show that the energy functional EIC is lower semi-continuous.130

Before outlining the proof, we �rst review some necessary theory which will be used shortly. First we131

introduce three assumptions which will be used for the remainder of this proof:132

• A1: Assume that α = β = 2 for simplicity.133

• A2: Assume that the image domain Ω has a C1 boundary that is denoted by ∂Ω.134

• A3: Assume that R, T ∈ C2.135

Second, de�ne the function space χ by the following136

χ := W 1,2
(
Ω,R2

)
×W 1,2

(
Ω,R2

)
(2.11)

equipped with the norm ‖(u,v)‖χ = ‖u‖W 1,2(Ω,R2) × ‖v‖W 1,2(Ω,R2).137

Remark 2.1. Here we remark that the function space χ is re�exive, this means that there exist subse-138

quences which converge in the weak topology. Or, in other words, given the bounded sequences (xn, yn) ∈ χ139

then there exist subsequences xnk
, ynk

such that Φ (xnk
, ynk

)→ Φ (xn, yn) ∀Φ ∈ χ.140

Third, de�ne the following admissible sets141

A =

{
u ∈ A0 :

∣∣∣∣∫
Ω

u(x) dΩ

∣∣∣∣ ≤ vol(Ω) (M + diam(Ω))

}
B =

{
v ∈ B0 :

∣∣∣∣∫
Ω

v(x) dΩ

∣∣∣∣ ≤ vol(Ω) (N + diam(Ω))

}
(2.12)

where A0 =
{
u ∈W 1,2

(
Ω,R2

)}
, B0 =

{
v ∈W 1,2

(
Ω,R2

)}
and M,N ∈ R are some constants.142

De�nition 2.1 (Generalised Poincaré Inequality). Let p ∈ [1,∞] and Ω be a bounded connected open143

subset of RN with a Lipschitz boundary, then there exists some constant C ∈ R which depends only on144

p and Ω so that for every function u ∈W 1,2 (Ω)145

‖∇u‖Lp(Ω) ≥ C ‖u− uΩ‖Lp(Ω) (2.13)

where uΩ = 1
|Ω|
∫

Ω
u dΩ.146

Lemma 2.1 (General Lower Semi-Continuity). In the image domain Ω ∈ R2, suppose that f : Ω →147

R2×RN → [0,∞) is a continuously di�erentiable function and f (·,y, ξ) is measurable for every (y, ξ) ∈148

R2 × RN . Also assume that f (x,y, ·) is convex and that149

yn → y in Lp
(
Ω,R2

)
for p ≥ 1; ξn → ξ in Lp

(
Ω,RN

)
for p ≥ 1. (2.14)

Then the following result holds150

lim
n→∞

inf

∫
Ω

f (x,yn(x), ξn(x)) dΩ ≥
∫

Ω

f (x,y(x), ξ(x)) dΩ (2.15)

Lemma 2.2 (Coercity Condition). Let the assumptions A1 and A3 from earlier hold, then the inverse151

consistent model (2.7) satis�es the coercity condition. That is, there exist constants 0 < C, K ∈ R such152

that ∀u ∈ A, v ∈ B the following inequality holds153

EIC(u,v) ≥ K + C
(
‖u‖2W 1,2(Ω,R2) + ‖v‖2W 1,2(Ω,R2)

)
(2.16)

where A, B are the admissible sets de�ned in (2.12).154
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Proof. Suppose that we have some arbitrary transformations u ∈ A, v ∈ B, then we have155

EIC(u,v) =

∫
Ω

1

2

(
|Tu −R|2 + |Rv − T |2

)
+ ‖∇u‖2 + ‖∇v‖2 + |u+ v|2 + |v + u|2 dΩ

≥
∫

Ω

‖∇u‖2 + ‖∇v‖2 dΩ (2.17)

since 1
2 |Tu −R|

2 ≥ 0, 1
2 |Rv − T |

2 ≥ 0, |u+ v|2 ≥ 0, |v + u|2 ≥ 0. Then, as a result of assumption A2,156

we can use the generalised Poincaré inequality (De�nition 2.1) to get157

‖∇u‖2L2 ≥ C1 ‖u‖2L2 − C1 |Ω|
(

1

|Ω|

∣∣∣∣∫
Ω

u dΩ

∣∣∣∣)2

(2.18)

where C1 ∈ R is some constant. Since we know that u ∈ A and
∣∣∫

Ω
u dΩ

∣∣ ≤ vol(Ω) (M + diam(Ω)), then158

we also know that there exists some K1 ∈ R such that159

‖∇u‖2L2 ≥ K1 + C1 ‖u‖2L2 (2.19)

using an analogous argument, and the fact that v ∈ B and
∣∣∫

Ω
v dΩ

∣∣ ≤ vol(Ω) (N + diam(Ω)), we can160

show that there exist C2,K2 ∈ R such that the following inequality holds161

‖∇v‖2L2 ≥ K2 + C2 ‖v‖2L2 . (2.20)

Then introducing the new constants C, K ∈ R, and combining (2.17)-(2.20), we get162

EIC(u,v) ≥ K + C
(
‖u‖2W 1,2(Ω,R2) + ‖v‖2W 1,2(Ω,R2)

)
(2.21)

and so the coercity condition holds.163

Finally, in order for a solution to the inverse consistent model (2.7) to exist, the following existence164

theorem must hold165

Theorem 2.3. Given that the assumptions A1-A3 hold, then the model (2.7) with energy functional166

EIC(u,v) possesses at least one minimiser (u∗,v∗) , u∗ ∈ A,v∗ ∈ B.167

Proof. We begin by constructing the minimising sequences {un,vn} such that lim
n→∞

EIC (un,vn) =168

inf
u∈A,v∈B

EIC(u,v) given that the energy functional EIC is positive and has a lower bound 0. Moreover,169

the energy functional EIC (x,x) is �nite. Then, using Lemma 2.2, for each n we have170

M ≥ EIC (un,vn) ≥ K + C
(
‖u‖2W 1,2(Ω,R2) + ‖v‖2W 1,2(Ω,R2)

)
(2.22)

and so the sequences {un,vn} are bounded in the function space χ. Since we know that the function171

space χ is re�exive (Remark 2.1), then this implies that there exist some subsequences {unk
,vnk
} which172

converge to (u∗,v∗) in the weak topology. Now we see that (unk
,vnk

) → (u∗,v∗) in the space W 1,2
173

implies that (unk
,vnk

) → (u∗,v∗) in the L2 space owing to the fact that W 1,2 is compactly embedded174

in the L2 space i.e. W 1,2 ⊂⊂ L2. From assumption A2 we know that the function gIC , de�ned in (2.7),175

is convex for �xed x,u,v, continuously di�erentiable and measurable in x for �xed (u,v,∇u,∇v) ∈176

R2×R2×R2×2×R2×2. Therefore, using Lemma 2.1, we can say that the functional EIC is weakly lower177

semi-continuous. That is178

lim
n→∞

inf

∫
Ω

gIC (x,unk
,vnk

,∇unk
,∇vnk

) dΩ ≥
∫

Ω

gIC (x,u,v,∇u,∇v) dΩ (2.23)

thus we have179

inf
u∈A,v∈B

EIC(u,v) = lim
n→∞

EIC (unk
,vnk

) ≥ EIC (u∗,v∗) ≥ inf
u∈A,v∈B

EIC(u,v). (2.24)

Therefore, the solution (u∗,v∗) is a minimiser of the energy functional EIC .180

Remark 2.2. Here we note that this proof can also be used to show the existence of solutions for the181

original Christensen-Johnson model (2.1) using a slight modi�cation in (2.17).182
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2.2 Discretisation of the inverse consistent model (2.9)183

To solve the system of EL equations (2.9), we look to obtain a numerical approximation. We do this by184

discretising the image domain Ωh into a uniform n × n mesh, with interval width h = 1
n−1 , and then185

using a �nite di�erence (FD) method.186

Remark 2.3. In general we need not discretise Ωh using a square mesh, and can instead be discretised187

using a n ×m mesh where n 6= m. However it is common for lung CT slices to be square, and for this188

reason we work with a square mesh (by taking m = n).189

Doing this, as well as using a lexicographic ordering of the discrete grid points (i, j), we obtain the190

following discrete versions of (2.9)191

−α
(
∆huhm

)
k

+
(
Fm(uh,vh)

)
k

= 0, −α
(
∆hvhm

)
k

+
(
Gm(uh,vh)

)
k

= 0 (2.25)

where192 (
∆huhm

)
k
≈ 1

h2

( (
uhm
)
k−n +

(
uhm
)
k−1

+
(
uhm
)
k+1

+
(
uhm
)
k+n

)
(2.26)

and similar for
(
∆hvhm

)
k
, also with the following discrete force terms193 (

Fm(uh,vh)
)
k

= β
((
uhm
)
k

+
(
vhm
)
k

)
+
(
∂hum

Thu
)
k

((
Thu
)
k
−
(
Rh
)
k

)
,(

Gm(uh,vh)
)
k

= β
((
vhm
)
k

+
(
uhm
)
k

)
+
(
∂hvmR

h
v

)
k

((
Rhv
)
k
−
(
Th
)
k

)
(2.27)

where194 (
∂hu1

Thu
)
k
≈ 1

2h

( (
Thu
)
k+1
−
(
Thu
)
k−1

)
,
(
∂hu2

Thu
)
k
≈ 1

2h

( (
Thu
)
k+n
−
(
Thu
)
k−n

)
,(

∂hv1R
h
v

)
k
≈ 1

2h

( (
Rhv
)
k+1
−
(
Rhv
)
k−1

)
,
(
∂hv2R

h
v

)
k
≈ 1

2h

( (
Rhv
)
k+n
−
(
Rhv
)
k−n

)
(2.28)

for m = 1, 2, k = (j − 2)(n− 1) + (i− 1) and i, j = 2, . . . , n− 1.195

There are a lot of choices of methods to solve the discrete system of equations (2.25). Some exam-196

ples include the Newton method, the time-marching method and the additive operator splitting (AOS)197

method. However for highly non-linear equations, like the ones in (2.25), it can be di�cult to ensure198

these methods converge to a solution. Moreover, for large images, using such methods to solve (2.25)199

on a single level is extremely expensive computationally. Also owing to the inverse consistent model200

requiring the simultaneous computation of the forward and backward problems, this expense is dou-201

bled. This problem is very common in variational models, and as such there has been a lot of research202

into the development of NMG methods with the purpose of greatly reducing CPU cost in solving such203

problems [19,24, 30�32,43]. In particular we note the work done by Chumchob-Chen in [19] where they204

developed a robust NMG framework for di�usion type models (though their model cannot avoid mesh205

folding).206

Now we propose to use a similar NMG framework applied to our inverse consistent model. In addition207

we will also perform a more accurate analysis of the NMG scheme compared to that presented in [19],208

in order to obtain a better measure of what is required to achieve optimal convergence for the NMG209

scheme.210

2.3 A non-linear multigrid framework211

Here we will present our NMG framework based upon [19]. Multigrid methods stem from two key212

observations213

O1: Iterative solvers, such as the Gauss-Seidel method, are e�ective at removing (smoothing) high214

frequency error components within a small number of iterations. Low frequency error components215

dominate convergence rates.216

O2: Smooth errors (low frequency) are well approximated on coarser grids. Coarser grids have less217

unknowns making it feasible to do a larger number of iterations without increasing the overall cost.218
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By using these observations, we can restrict our problem on a �ne grid to that of a much coarser grid,219

by alternating both smoothing and coarsening steps. On this very coarse grid, we are able to obtain a220

much more accurate approximation in signi�cantly less time. From this accurate approximation, we can221

interpolate back up to our original �ne grid to obtain an approximation to the original problem. Now222

we brie�y outline our proposed `full approximation scheme' NMG (FAS-NMG) algorithm (See [4] for223

details) within the two-grid setting. We begin by denoting the original �ne grid by Ωh and the coarse224

grid by ΩH with intervals h = 1
n−1 and H = 2h respectively. Next we write the PDEs from (2.25) using225

the following operator notation226

N h
1 [uh,vh] = Gh1 , N h

2 [uh,vh] = Gh2 (2.29)

where N h
m and Ghm (m = 1, 2) are sized 2 vectors consisting of the non-linear LHS and initial zero RHS of227

the discrete EL equations (2.25) for uh,vh respectively. Then the FAS-NMG framework, in the two-grid228

setting, is as followed229

Algorithm 1
[
u

(k+1)
h ,v

(k+1)
h

]
← FAS-NMG(Rh, Th, n, h,u

(k)
h ,v

(k)
h ,Gh1 ,G

h
2 , α, ν1, ν2)

1: Pre-smoothing step by performing ν1 steps to update uh ū
(k)
h ← SMOOTH(Rh, Th,u

(k)
h ,Gh

1 , α, ν1)

2: and then vh v̄
(k)
h ← SMOOTH(Rh, Th,v

(k)
h ,Gh

2 , α, ν1)
3: Coarse-grid correction

Compute the residuals r
(k)
1h = Gh

1 −N h
1 [u

(k)
h , v̄

(k)
h ], r

(k)
2h = Gh

2 −N h
2 [v

(k)
h , ū

(k)
h ]

Restrict residuals and smooth approximations r
(k)
mH = RH

h r
(k)
mh, ū

(k)
H = RH

h ū
(k)
h , v̄

(k)
H = RH

h v̄
(k)
h

Set H = 2h
Form RHS of coarse grid PDEs GH

1 = rH
1 + NH

1 [ū
(k)
H , v̄

(k)
H ], GH

2 = rH
2 + NH

2 [ū
(k)
H , v̄

(k)
H ]

4: Solve to obtain solutions u
(k)
H , v

(k)
H to high accuracy using a coarsest grid solver.

Compute the corrections e
(k)
1H = u

(k)
H − ū

(k)
H , e

(k)
2H = v

(k)
H − v̄

(k)
H

Interpolate the corrections to original �ne grid level e
(k)
1h = IhHe

(k)
1H , e

(k)
2h = IhHe

(k)
2H

Update current grid level approximations using correction û
(k)
h = ū

(k)
h + e

(k)
1h , v̂

(k)
h = v̄

(k)
h + e

(k)
2h

5: Post-smoothing step by performing ν2 steps (relaxation sweeps) u
(k+1)
h ← SMOOTH(Rh, Th, û

(k)
h ,Gh

1 , α, ν1)

6: v
(k+1)
h ← SMOOTH(Rh, Th, v̂

(k)
h ,Gh

2 , α, ν1)

This Algorithm 1 can be re�ned on its coarse grid to recursively interact with increasingly coarser grids230

until a desired level is reached (e.g. 8 × 8), thus leading to the full v-cycle scheme. Out of the three231

main steps in the NMG framework (smoothing, coarse grid solver, correction), the smoothing step is the232

most crucial to the convergence of the scheme. As was highlighted by O2, only `smooth' errors can be233

approximated on a coarser grid, thus any remaining high frequency error components can no longer be234

removed once the problem has been restricted to a coarser grid (where high frequency error components235

form the �ne grid are not present or visible) which in turn means the NMG will take longer to converge236

as well as being less accurate.237

2.4 Three collective pointwise smoothers for (2.25)238

Here we will present three di�erent smoother schemes to be used in our NMG scheme.239

First Pointwise Smoother (S1): For our �rst smoother we consider the simplest type of smoother240

scheme to solve the system (2.25), namely we use each equation to update each displacement indepen-241

dently. We do this by using the following �xed point iteration scheme242

−α
(
∆huhm

)(l+1)

k
+
(
Fm(uh,vh)

)(l+1)

k
= 0, −α

(
∆hvhm

)(l+1)

k
+
(
Gm(uh,vh)

)(l+1)

k
= 0 (2.30)

where243 (
F1(uh,vh)

)(l+1)

k
= β

((
uh1
)(l+1)

k
+
(
vh1
)(l)
k

)
−
(
∂hu1

Th(x1 + u
(l)
1 , x2 + u

(l)
2 )
)
k

((
Th(x1 + u

(l+1)
1 , x2 + u

(l)
2 )
)
k
−
(
Rh(x1, x2)

)
k

)
,(

F2(uh,vh)
)(l+1)

k
= β

((
uh2
)(l+1)

k
+
(
vh2
)(l)
k

)
−
(
∂hu2

Th(x1 + u
(l)
1 , x2 + u

(l)
2 )
)
k

((
Th(x1 + u

(l)
1 , x2 + u

(l+1)
2 )

)
k
−
(
Rh(x1, x2)

)
k

)
,
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244 (
G1(uh,vh)

)(l+1)

k
= β

((
vh1
)(l+1)

k
+
(
uh1
)(l)
k

)
−
(
∂hv1R

h(x1 + v
(l)
1 , x2 + v

(l)
2 )
)
k

((
Rh(x1 + v

(l+1)
1 , x2 + v

(l)
2 )
)
k
−
(
Th(x1, x2)

)
k

)
,(

G2(uh,vh)
)(l+1)

k
= β

((
vh2
)(l+1)

k
+
(
uh2
)(l)
k

)
−
(
∂hv2R

h(x1 + v
(l)
1 , x2 + v

(l)
2 )
)
k

((
Rh(x1 + v

(l)
1 , x2 + v

(l+1)
2 )

)
k
−
(
Th(x1, x2)

)
k

)
. (2.31)

Now in order to deal with the non-linearities in the force terms of (2.30), we use the same treatment as245

that used in [19], namely we linearise the force terms using �rst order Taylor expansions. Replacing the246

non-linear force terms in (2.30), with their �rst order approximations, leads to the following smoother247

scheme at step (l) to update the (l + 1) terms248 

−α
(
∆huhm

)(l+1)

k
+ β

((
uhm
)(l+1)

k
+
(
vhm
)(l)
k

)
+
(
∂hum

Thu
)(l)
k

[(
Thu
)(l)
k

+
((
uhm
)(l+1)

k
−
(
uhm
)(l)
k

)(
∂hum

Thu
)(l)
k
−
(
Rh
)
k

]
= 0,

−α
(
∆hvhm

)(l+1)

k
β
((
vhm
)(l+1)

k
+
(
uhm
)(l)
k

)
+
(
∂hvmR

h
v

)(l)
k

[(
Rhv
)(l)
k

+
((
vhm
)(l+1)

k
−
(
vhm
)(l)
k

)(
∂hvmR

h
v

)(l)
k
−
(
Th
)
k

]
= 0

(2.32)

for m = 1, 2. In order to compute the (l + 1) terms in (2.32), we use a lexicographic Gauss-Seidel249

(GSLEX) based method.250

Second Pointwise Smoother (S2): Following the smoother proposed by Chumchob-Chen [19], for251

our second proposed smoother, we will fully couple all 4 PDEs together by using a similar scheme to252

(2.30) and new �xed point lineralizations as follows253 (
F1(uh,vh)

)(l+1)

k
= β

((
uh1
)(l+1)

k
+
(
vh1
)(l+1)

k

)
−
(
∂hu1

Th(x1 + u
(l)
1 , x2 + u

(l)
2 )
)
k

((
Th(x1 + u

(l+1)
1 , x2 + u

(l+1)
2 )

)
k
−
(
Rh(x1, x2)

)
k

)
,(

F2(uh,vh)
)(l+1)

k
= β

((
uh2
)(l+1)

k
+
(
vh2
)(l+1)

k

)
−
(
∂hu2

Th(x1 + u
(l)
1 , x2 + u

(l)
2 )
)
k

((
Th(x1 + u

(l+1)
1 , x2 + u

(l+1)
2 )

)
k
−
(
Rh(x1, x2)

)
k

)
,(

G1(uh,vh)
)(l+1)

k
= β

((
vh1
)(l+1)

k
+
(
uh1
)(l+1)

k

)
−
(
∂hv1R

h(x1 + v
(l)
1 , x2 + v

(l)
2 )
)
k

((
Rh(x1 + v

(l+1)
1 , x2 + v

(l+1)
2 )

)
k
−
(
Th(x1, x2)

)
k

)
,(

G2(uh,vh)
)(l+1)

k
= β

((
vh2
)(l+1)

k
+
(
uh2
)(l+1)

k

)
−
(
∂hv2R

h(x1 + v
(l)
1 , x2 + v

(l)
2 )
)
k

((
Rh(x1 + v

(l+1)
1 , x2 + v

(l+1)
2 )

)
k
−
(
Th(x1, x2)

)
k

)
. (2.33)

Next we linearise the force terms (2.33) by applying Taylor approximations to the discrete force terms254

(2.33), we obtain the following smoother scheme to update the (l + 1) terms at step (l)255 

−α
(
∆huhs

)(l+1)

k
+ β

((
uhs
)(l+1)

k
+
(
vhs
)(l+1)

k

)
+
(
∂hus

Thu
)(l)
k

[(
Thu
)(l)
k

+
((
uhs
)(l+1)

k
−
(
uhs
)(l)
k

) (
∂hus

Thu
)(l)
k

+
((
uht
)(l+1)

k
−
(
uht
)(l)
k

) (
∂hut

Thu
)(l)
k

]
= 0,

−α
(
∆hvhs

)(l+1)

k
+ β

((
vhs
)(l+1)

k
+
(
uhs
)(l+1)

k

)
+
(
∂hvsR

h
v

)(l)
k

[(
Rhv
)(l)
k

+
((
vhs
)(l+1)

k
−
(
vhs
)(l)
k

) (
∂hvsR

h
v

)(l)
k

+
((
vht
)(l+1)

k
−
(
vht
)(l)
k

) (
∂hvtR

h
v

)(l)
k

]
= 0

(2.34)

for s, t = 1, 2 and s 6= t. Similar to S1, we use a GSLEX based method on (2.34) to update the (l + 1)256

terms.257

Third Pointwise Smoother (S3): The above 4 × 4 system which must be solved at every discrete258

interior point in (2.34) is computationally expensive. For this reason we propose an alternate, simpli�ed259
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version of S2 while still maintaining some coupling in the equations. We propose to use a similar scheme260

to (2.30), except now we have the following force terms with �xed points speci�ed di�erently261 (
F1(uh,vh)

)(l+1)

k
= β

((
uh1
)(l+1)

k
+
(
vh1
)(l+1)

k

)
−
(
∂hu1

Th(x1 + u
(l)
1 , x2 + u

(l)
2 )
)
k

((
Th(x1 + u

(l+1)
1 , x2 + u

(l)
2 )
)
k
−
(
Rh(x1, x2)

)
k

)
,(

F2(uh,vh)
)(l+1)

k
= β

((
uh2
)(l+1)

k
+
(
vh2
)(l+1)

k

)
−
(
∂hu2

Th(x1 + u
(l)
1 , x2 + u

(l)
2 )
)
k

((
Th(x1 + u

(l)
1 , x2 + u

(l+1)
2 )

)
k
−
(
Rh(x1, x2)

)
k

)
,

262 (
G1(uh,vh)

)(l+1)

k
= β

((
vh1
)(l+1)

k
+
(
uh1
)(l+1)

k

)
−
(
∂hv1R

h(x1 + v
(l)
1 , x2 + v

(l)
2 )
)
k

((
Rh(x1 + v

(l+1)
1 , x2 + v

(l)
2 )
)
k
−
(
Th(x1, x2)

)
k

)
,(

G2(uh,vh)
)(l+1)

k
= β

((
vh2
)(l+1)

k
+
(
uh2
)(l+1)

k

)
−
(
∂hv2R

h(x1 + v
(l)
1 , x2 + v

(l)
2 )
)
k

((
Rh(x1 + v

(l)
1 , x2 + v

(l+1)
2 )

)
k
−
(
Th(x1, x2)

)
k

)
. (2.35)

Again, after using Taylor approximations to linearise (2.35), at iteration step (l) we have the following263

smoother scheme which we use to compute the (l + 1) updates264 

−α
(
∆huhm

)(l+1)

k
+ β

((
uhm
)(l+1)

k
+
(
vhm
)(l+1)

k

)
+
(
∂hum

Thu
)(l)
k

[(
Thu
)(l)
k

+
((
uhm
)(l+1)

k
−
(
uhm
)(l)
k

)(
∂hum

Thu
)(l)
k
−
(
Rh
)
k

]
= 0,

−α
(
∆hvhm

)(l+1)

k
β
((
vhm
)(l+1)

k
+
(
uhm
)(l+1)

k

)
+
(
∂hvmR

h
v

)(l)
k

[(
Rhv
)(l)
k

+
((
vhm
)(l+1)

k
−
(
vhm
)(l)
k

)(
∂hvmR

h
v

)(l)
k
−
(
Th
)
k

]
= 0

(2.36)

for m = 1, 2. As we did for S1 and S2, we use a scheme based upon a GSLEX method to compute the265

(l + 1) updates in (2.36).266

3 Analysis for the NMG algorithm267

As we mentioned at the end of �2.3, the e�ectiveness of the smoother scheme has a severe impact on the268

convergence of the NMG scheme. In order to determine how e�ective a given smoother scheme is within269

the NMG framework, we look to compute the so called `smoothing rate' of the scheme which gives us270

an insight into how e�ectively the chosen smoother removes high frequency error components. However,271

before we look at computing the smoothing rates of our three proposed smoothers from �2.4, we must272

�rst determine whether each of the proposed smoothers are suitable for use as pointwise error smoothing273

procedures. To do this we must compute the h-ellipticity for each of the proposed smoothers. For both274

calculations (i.e. smoothing rates and h-ellipticity values) we can use local Fourier analysis or LFA.275

3.1 Local Fourier Analysis (LFA)276

In order to analyse the h-ellipticity and smoothing rate of a given smoother scheme, we can use a277

technique called LFA. Originally LFA was designed to only analyse the smoothing properties of discrete278

linear operators, however the work done by A. Brandt [4] proposed to locally 'freeze' the coe�cients of279

non-linear operators thus enabling the use of LFA for non-linear operators such as the one in (2.30). In280

LFA [13,19], we begin by considering our problem over an in�nite grid (thus removing any in�uence from281

the boundary conditions), and then assuming that the discrete form of a variable non-linear operator can282

be replaced by a constant linear operator and extended to this in�nite grid, which we de�ne as followed283

Ω∞h :=
{
x ∈ Ω: x = (x1, x2)

T
= (ih, jh)

T
for i, j ∈ Z+

}
(3.1)
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with grid interval h de�ned by h = 1
n−1 . In addition let us also de�ne the grid functions Φh (x,θ) =284

exp
(
iθx
h

)
, where θ = (θ1, θ2)

T ∈ Θ = [−π, π)
2
, x ∈ Ω∞h and i =

√
−1, which when a discrete linear285

operator Lh is applied gives286

LhΦh (x,θ) = L̂
h

(θ) Φh (x,θ) (3.2)

where L̂
h

(θ) denotes the Fourier symbol of Lh (see [45,46]).287

3.2 H-ellipticity measure for the proposed smoothers288

For e�ective smoother schemes, the measure of the h-ellipticity is a key component which must be289

considered. This measure is used to ascertain whether a given smoother scheme, such as the ones we290

outlined in �2.4, are su�cient for use as pointwise error smoothing procedures for the given discrete291

operator within a multigrid framework; if not, one must consider line or block smoothers or problem292

reformulation.293

We will now demonstrate that our proposed smoothers from �2.4 can be constructed for the given discrete294

operator, and can therefore be used in our proposed NMG scheme. To do this we use a similar calculation295

to the ones shown in [19,30,35,45,46] applied to the smoother schemes (2.32), (2.34) and (2.36) at some296

given outer iteration step.297

H-Ellipticity for Smoother S1: We begin by writing (2.32) in the following operator form298

Lh
1w

h = Gh (3.3)

with299

Lh
1 =


−α∆h + σh11 + β 0 0 0

0 −α∆h + σh22 + β 0 0
0 0 −α∆h + τh11 + β 0
0 0 0 −α∆h + τh22 + β

 ,

Gh =


gh1 − F1

(
uh,vh

)
gh2 − F2

(
uh,vh

)
gh3 −G1

(
uh,vh

)
gh4 −G2

(
uh,vh

)
 , wh =


uh1
uh2
vh1
vh2

 (3.4)

where300

Fm
(
uh,vh

)
=
(
∂hum

Thu
)2
uhm − βvhm −

(
∂hum

Thu
) (
Thu −Rh

)
,

Gm
(
uh,vh

)
=
(
∂hvmR

h
v

)2
vhm − βuhm −

(
∂hvmR

h
v

) (
Rhv − Th

)
,

σhpq = ∂hup
Thu∂

h
uq
Thu , τ

h
pq = ∂hvpR

h
v∂

h
vqR

h
v (3.5)

for m, p, q = 1, 2. Since LFA is a local method for a nonlinear problem, we apply the analysis separately301

to each individual grid point. This then leads to a local discrete system which is only de�ned within a302

small neighbourhood of the discrete grid point (i, j). Applying our discrete linear operator Lh
1 to the303

grid functions Φh (x,θ) yields the following304

Lh
1Φh (x,θ) = L̂

h

1 (θ) Φh (x,θ) (3.6)

where L̂
h

1 (θ) denotes the Fourier symbol of the operator Lh
1 , and is given by (letting a = β − αL̂ h (θ))305

L̂
h

1 (θ) =


σh11 + a 0 0 0

0 σh22 + a 0 0
0 0 τh11 + a 0
0 0 0 τh22 + a

 (3.7)
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also with L̂ h (θ) denoting the Fourier symbol of the discrete Laplace operator ∆h. Then, the h-ellipticity306

measure is calculated from the following307

E h
1

(
Lh

1

)
=

min
{∣∣∣det

(
L̂
h

1 (θ)
)∣∣∣ : θ ∈ Θhigh

}
max

{∣∣∣det
(
L̂
h

1 (θ)
)∣∣∣ : θ ∈ Θ

} (3.8)

where Θ = [−π, π)
2
and Θhigh = Θ\

[
−π2 ,

π
2

)2
denotes the high frequency range. It can be shown that308

det
(
L̂
h

(θ)
)

= α4
(
L̂ h (θ)

)4

− α3 (d1 + c1)
(
L̂ h (θ)

)3

+ α2 (d2 + c1d1 + c2)
(
L̂ h (θ)

)2

− α (c1d2 + c2d1)
(
L̂ h (θ)

)
+ c2d2 (3.9)

where309

c1 = σh11 + σh22 + 2β, c2 = σh11σ
h
22 + β

(
σh11 + σh22

)
+ β2

d1 = τh11 + τh22 + 2β, d2 = τh11τ
h
22 + β

(
τh11 + τh22

)
+ β2. (3.10)

From [19], it was shown that310

−L̂ h (θ) =
2

h2

(
2− (cos θ1 + cos θ2)

)
, (3.11)

min
θ∈Θhigh

(
−L̂ h (θ)

)
=

2

h2
, max
θ∈Θ

(
−L̂ h (θ)

)
=

8

h2
(3.12)

thus (3.8) becomes311

E h
1

(
L̂
h

1 (θ)
)

=

(
16α4

h8 + 8α3(d1+c1)
h6 + 4α2(d+c1d1+c2)

h4 + 2α(c1d2+c2d1)
h2 + c2d2

)
(

4096α4

h8 + 512α3(d1+c1)
h6 + 64α2(d+c1d1+c2)

h4 + 8α(c1d2+c2d1)
h2 + c2d2

)

=

(
16α4 + 8α3 (d1 + c1)h2 + 4α2 (d+c1d1 + c2)h4

+ 2α (c1d2 + c2d1)h6 + c2d2h
8

)
(

4096α4 + 512α3 (d1 + c1)h2 + 64α2 (d+c1d1 + c2)h4

+ 8α (c1d2 + c2d1)h6 + (c2d2)h8

) (3.13)

and so, taking the limit as h→ 0, we get312

lim
h→0

E h
1

(
L̂
h

1 (θ)
)

=
1

256
. (3.14)

From this result, we can conclude that the h-ellipticity measure is always bounded away from 0 regardless313

of the values of α, β, h, σhpq, τ
h
pq for p, q = 1, 2. Or in other words, the results do not depend on the314

given images R, T , the choice of parameters α, β or the mesh interval h. Therefore we can conclude that315

smoother S1 is su�cient for use as a pointwise error smoothing procedure.316

H-Ellipticity for Smoother S2: Now we repeat the h-ellipticity calculation procedure for smoother317

S2. Similar to smoother S1, we get the following Fourier symbol for the operator Lh
2 (again a =318

β − αL̂ h (θ))319

L̂
h

2 (θ) =


σh11 + a σh12 β 0
σh12 σh22 + a 0 β
β 0 τh11 + a τh12

0 β τh12 τh22 + a

 (3.15)

where L h (θ) again denotes the Fourier symbol of ∆h and σhpq, τ
h
pq are as in (3.5). The h-ellipticity for320

Lh
2 is computed using321

E h
2

(
Lh

2

)
=

min
{∣∣∣det

(
L̂
h

2 (θ)
)∣∣∣ : θ ∈ Θhigh

}
max

{∣∣∣det
(
L̂
h

2 (θ)
)∣∣∣ : θ ∈ Θ

} . (3.16)
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Simplifying the determinant we get322

det
(
L̂
h

2 (θ)
)

=
(
σh11 + a

) (
σh22 + a

) (
τh11 + a

) (
τh22 + a

)
−
(
σh11 + a

) (
σh22 + a

) (
τh12

)2
−
(
τh11 + a

) (
τh22 + a

) (
σh12

)2 − (σh11 + a
) (
τh22 + a

)
β2

−
(
σh22 + a

) (
τh22 + a

)
β2 +

(
σh12

)2 (
τh12

)2 − 2σh12τ
h
12β

2 + β4

= α4
(
L̂ h (θ)

)4

− α3 (d1 + c1)
(
L̂ h (θ)

)3

+ α2
(
d2 + c1d1 + c2 − c5 − d5 + 2β2

) (
L̂ h (θ)

)2

− α (c1d2 + c2d1 + c3 + d3 + c1d5 + d1c5)
(
L̂ h (θ)

)
+ c2d2 + c4 + d5 − d2c5 − c2d5 + c5d5 + 2β4 (3.17)

where c1, c2, d1, d2 are as in (3.10), and323

c3 = β2
(
σh11 + τh11 + 2β

)
, c4 = β2

(
β2 + β

(
σh11 + τh11

)
+ σh11 + τh11

)
, c5 =

(
σh12

)2
d3 = β2

(
σh22 + τh22 + 2β

)
, d4 = β2

(
β2 + β

(
σh22 + τh22

)
+ σh22 + τh22

)
, d5 =

(
τh12

)2
. (3.18)

From the h-ellipticity calculation of smoother S1, we see that the value of the limit (3.14) as h → 0324

depends only on the coe�cient of the α4 term. Thus we get325

lim
h→0

E h
2

(
L̂
h

2 (θ)
)

=
1

256
(3.19)

and so smoother S2 is suitable for use as a pointwise error smoothing procedure.326

H-Ellipticity for Smoother S3: Finally we once again repeat the h-ellipticity calculation for our327

simpli�ed smoother S3. Doing so gives the following Fourier symbol for the operator Lh
3328

L̂
h

3 (θ) =


σh11 + a 0 β 0

0 σh22 + a 0 β
β 0 τh11 + a 0
0 β 0 τh22 + a

 (3.20)

where L̂ h (θ) again denotes the Fourier symbol of the discrete Laplace operator ∆h and σhpq, τ
h
pq are as329

de�ned in (3.5) for p, q = 1, 2. We compute the h-ellipticity using the following330

E h
3

(
Lh

3

)
=

min
{∣∣∣det

(
L̂
h

3 (θ)
)∣∣∣ : θ ∈ Θhigh

}
max

{∣∣∣det
(
L̂
h

3 (θ)
)∣∣∣ : θ ∈ Θ

} . (3.21)

Further from331

det
(
L̂
h

3 (θ)
)

=
(
σh11 + a

) (
σh22 + a

) (
τh11 + a

) (
τh22 + a

)
−
(
σh11 + a

) (
τh11 + a

)
β2 −

(
σh22 + a

) (
τh22 + a

)
β2 + β4

= α4
(
L̂ h (θ)

)4

− α3 (d1 + c1)
(
L̂ h (θ)

)3

+ α2
(
d2 + c1d1 + c2 + 2β2

) (
L̂ h (θ)

)2

− α (c1d2 + c2d1 + c3 + d3)
(
L̂ h (θ)

)
+ c2d2 + c4 + d4 + β4 (3.22)

where c1, c2, d1, d2 are as given in (3.10) and c3, c4, d3, d4 are as given in (3.18), we get the following332

lim
h→0

E h
3

(
L̂
h

3 (θ)
)

=
1

256
. (3.23)

Thus we reach the same conclusion, namely the h-ellipticity is always bounded away from 0, and so333

smoother S3 is su�cient for use as a pointwise error smoothing procedure.334
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3.3 Smoother analysis of the proposed smoothers335

We now consider how e�ective our smoother schemes from �2.4 are at removing high frequency error336

components. The discrete residual error, as shown in �2.3, can be split into the sum of low frequency error337

components (which can be well approximated on a coarser grid) and high frequency error components338

(which disappear on coarser grids due to aliasing). For this reason, one key aspect of the NMG framework339

is the removal of all high frequency error components before we restrict to a coarser grid. We can use340

LFA to approximate the smoothing rate of a given smoother scheme, and from this we can obtain an341

estimate of how many smoothing steps we will need to remove the high frequency components if we aim342

to reduce the error by 10−1 (typical in a NMG context).343

LFA for Smoother S1: We begin our calculation of the smoothing rate by writing the discrete system344

(2.32) in the following way345

Lh
1w

h + Mh
1w

h = Gh (3.24)

where Lh
1 ,w

h,Gh are as de�ned in (3.4), and346

Mh
1 =


−σh11 0 β 0

0 −σh22 0 β
β 0 −τh11 0
0 β 0 −τh22

 (3.25)

with σhpq, τ
h
pq as in (3.5) for p, q = 1, 2. Also we can rewrite the discrete Laplace operator as ∆h =347

L h
+ + L h

0 + L h
− , where L h

+ , L h
0 , L h

− de�ne the following stencils348

L h
+ =

1

h2

0 0 0
1 0 0
0 1 0

 , L h
0 =

1

h2

0 0 0
0 −4 0
0 0 0

 , L h
− =

1

h2

0 1 0
0 0 1
0 0 0

 (3.26)

and so, we can write (3.24) in the following way349

Lh
1 +u

h
new + Lh

1 0u
h
new + Lh

1−u
h
old + Mh

1u
h
old = Gh (3.27)

where we have denoted the current and previous approximations of uh,vh by uhnew,v
h
new and uhold,v

h
old350

respectively, also with351

Lh
1 + =


−αL h

+ 0 0 0
0 −αL h

+ 0 0
0 0 −αL h

+ 0
0 0 0 −αL h

+

 , Lh
1− =


−αL h

− 0 0 0
0 −αL h

− 0 0
0 0 −αL h

− 0
0 0 0 −αL h

−



Lh
1 0 =


−αL h

0 + σh11 + β 0 0 0
0 −αL h

0 + σh22 + β 0 0
0 0 −αL h

0 + τh11 + β 0
0 0 0 −αL h

0 + τh22 + β



Mh
1 =


−σh11 0 β 0

0 −σh22 0 β
β 0 −τh11 0
0 β 0 −τh22

 . (3.28)

Now subtracting (3.27) from (3.24) we can obtain the local error equations given by352 [
Lh

1 + + Lh
1 0

]
ehnew = −

[
Lh

1− + Mh
1

]
ehold (3.29)

where eh∗ =
(
eh1 ∗, e

h
2 ∗, e

h
3 ∗, e

h
4 ∗
)T

. Then we expand the local errors in (3.29) using Fourier components353

to give354

ehnew =
∑
θ∈Θ

ψnewθ exp

(
2iθ1iπ

h
+

2iθ2jπ

h

)
, ehold =

∑
θ∈Θ

ψoldθ exp

(
2iθ1iπ

h
+

2iθ2jπ

h

)
(3.30)
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where ψ∗θ are Fourier coe�cients, i =
√
−1 and Θ = [−π, π)

2
. Using the Fourier component form of the355

errors in (3.30), allows us to rewrite the local error equation (3.29) in terms of these Fourier components.356

Then we get357 [
L̂
h

1 + (θ) + L̂
h

1 0 (θ)
]
ψnewθ exp

(
2iθ1iπ

h
+

2iθ2jπ

h

)
= −

[
L̂
h

1− (θ) + M̂
h

1 (θ)
]
ψoldθ exp

(
2iθ1iπ

h
+

2iθ2jπ

h

)
(3.31)

where358

L̂
h

1 + (θ) =


− α
h2

(
e−iω2 + e−iω1

)
0 0 0

0 − α
h2

(
e−iω2 + e−iω1

)
0 0

0 0 − α
h2

(
e−iω2 + e−iω1

)
0

0 0 0 − α
h2

(
e−iω2 + e−iω1

)


L̂
h

1− (θ) =


− α
h2

(
eiω2 + eiω1

)
0 0 0

0 − α
h2

(
eiω2 + eiω1

)
0 0

0 0 − α
h2

(
eiω2 + eiω1

)
0

0 0 0 − α
h2

(
eiω2 + eiω1

)


L̂
h

1 0 (θ) =


4α
h2 + σh11 + β 0 0 0

0 4α
h2 + σh22 + β 0 0

0 0 4α
h2 + τh11 + β 0

0 0 0 4α
h2 + τh22 + β



M̂
h

1 (θ) =


−σh11 0 β 0

0 −σh22 0 β
β 0 −τh11 0
0 β 0 −τh22

 (3.32)

and with ωm = 2πθm
h for m = 1, 2. Finally, we compute the local smoothing rate using the following359

µloc ≡ µloc (θ) = sup
{
ρ
(
Ŝ
h

1 (θ)
)

: θ ∈ Θhigh

}
(3.33)

where Θhigh = [−π, π)
2 \
[
−π2 ,

π
2

)2
denotes the high frequency range, ρ (·) denotes the spectral radius360

and Ŝ
h

1 (θ) denotes the ampli�cation matrix given by the following361

Ŝ
h

1 (θ) = −
[
L̂
h

1 + (θ) + L̂
h

1 0 (θ)
]−1 [

L̂
h

1− (θ) + M̂
h

1 (θ)
]

(3.34)

for m = 1, 2.362

LFA for Smoother S2: Now we repeat the smoothing rate calculation we used for smoother S1, but363

this time for smoother S2. Doing so we compute the local smoothing rate from364

µloc ≡ µloc (θ) = sup
{
ρ
(
Ŝ
h

2 (θ)
)

: θ ∈ Θhigh

}
(3.35)

with ampli�cation matrix365

Ŝ
h

2 (θ) = −
[
L̂
h

2 + (θ) + L̂
h

2 0 (θ)
]−1 [

L̂
h

2− (θ) + M̂
h

2 (θ)
]

(3.36)

where L̂
h

2 + (θ) and L̂
h

2− (θ) are the same as L̂
h

1 + (θ) and L̂
h

1− (θ) from (3.32) respectively, and366

L̂
h

2 0 (θ) =


4α
h2 + σh11 + β σh12 β 0

σh12
4α
h2 + σh22 + β 0 β

β 0 4α
h2 + τh11 + β τh12

0 β τh12
4α
h2 + τh22 + β



M̂
h

2 (θ) =


−σh11 −σh12 0 0
−σh12 −σh22 0 0

0 0 −τh11 −τh12

0 0 −τh12 −τh22

 (3.37)
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Remark 3.1. We remark that if we set β = 0, then the smoother analysis becomes similar to that shown367

in [19]. However the analysis in [19] led to an overestimation of the smoothing rate due to omitting368

the lagged displacements (as shown by the M̂
h

2 (θ) matrix), which resulted in an underestimation of the369

number of smoother steps required and thus a less e�ective NMG scheme.370

LFA for Smoother S3: Again we repeat the smoothing rate calculation, this time for smoother S3.371

We compute the local smoothing rate using the following372

µloc ≡ µloc (θ) = sup
{
ρ
(
Ŝ
h

3 (θ)
)

: θ ∈ Θhigh

}
(3.38)

with ampli�cation matrix373

Ŝ
h

3 (θ) = −
[
L̂
h

3 + (θ) + L̂
h

3 0 (θ)
]−1 [

L̂
h

3− (θ) + M̂
h

3 (θ)
]

(3.39)

where L̂
h

3 + (θ) and L̂
h

3− (θ) are the same as L̂
h

1 + (θ) and L̂
h

1− (θ) from (3.32) respectively, and374

L̂
h

3 0 (θ) =


4α
h2 + σh11 + β 0 β 0

0 4α
h2 + σh22 + β 0 β

β 0 4α
h2 + τh11 + β 0

0 β 0 4α
h2 + τh22 + β



M̂
h

3 (θ) =


−σh11 0 0 0

0 −σh22 0 0
0 0 −τh11 0
0 0 0 −τh22

 . (3.40)

Smoothing Rate Examples:375

α β
S1 S2 S3

µavg Tol 10−1 µavg Tol 10−1 µavg Tol 10−1

1
15

0 0.72942 8 0.73352 8 0.72942 8
102 0.79205 10 0.72972 8 0.72526 8
104 0.93335 34 0.73178 8 0.72545 8

Table 1: Comparison of the smoothing rates of the proposed smoothers S1-S3 for parameters α = 1
15

and β = 0, 102, 104 after 5 inner and outer iterations on a 32× 32 grid for Example 2 as shown in Figure
2. For each smoother, the smoothing rates and number of inner iterations required to reach an error
reduction of 10−1 are shown.

From Table 1 we see that as the value of β increases the smoothing rate for smoother S1 gets closer376

to 1. For this reason we conclude that smoother S1 is not suitable for use in the NMG framework as377

this increase in smoothing rate would require an unreasonable number of smoother steps for practical378

applications as shown by the number of iterations required to reduce the error to a tolerance of 10−1
379

from Table 1. We also see that the rates for smoothers S2 and S3 remain stable even as the value of380

β increases. In addition, owing to this stability, we see that for both smoothers S2 and S3 8 smoother381

steps are su�cient to reduce the error to a reasonable level before restriction.382

3.4 Coarsest grid solvers383

By using a NMG framework we are able to restrict our original problem on a large grid to a very coarse384

grid (e.g. 8×8). On this coarsest grid our aim is to solve the problem as accurately as possible, owing to385

the low computational cost, and so we need a designated solver for use only on this coarsest grid. Here386

we will present 2 coarsest grid solvers, based upon smoothers S2 and S3 from �2.4. It is also possible387

to estimate the convergence rate of a given coarse grid solver using (3.33) with θ ∈ Θ instead of only388

being restricted to the high frequency range Θhigh, and from this rate we can approximate the number389

of iterations required to reach a desired error tolerance similar to what we did with the smoothing rates.390

However this analysis can only be performed on a very coarse grid, such as a 8×8 grid, and in this paper391

we do not present the details of this analysis.392
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First Proposed Coarsest Level Solver C1: From �2.4, we know that on the coarsest grid we are393

looking to solve the system of equations shown in (2.34) with coarse grid interval width H instead of the394

�ne grid interval width h. Equivalently we can express the system (2.34) in the following matrix form395

ĀHwH = F̄H (3.41)

where ĀH ∈ R4(n−2)2×4(n−2)2 and wH , F̄H ∈ R4(n−2)2×1 are given by396

ĀH =


AH

1 ÃH
1 I2 0

ÃH
2 AH

2 0 I2

I2 0 BH
1 B̃H

1

0 I2 B̃H
2 BH

2

 , w =


uH1
uH2
vH1
vH2

 , F̄ =


F̄H1
F̄H2
ḠH

1

ḠH
2

 (3.42)

where AH
s ,B

H
s ∈ R(n−2)2×(n−2)2 are the block tri-diagonal system matrices re�ecting the coe�cients of397

the
(
uHs
)(l+1)

∗ ,
(
vHs
)(l+1)

∗ terms at the various neighbouring pixels for each discrete interior point k respec-398

tively, ÃH
s , B̃

H
s ∈ R(n−2)2×(n−2)2 are the diagonal matrices corresponding to the

(
uHt
)(l+1)

∗ ,
(
vHt
)(l+1)

∗399

terms in the
(
uHs
)(l+1)

k
,
(
vHs
)(l+1)

k
equations respectively, I2 = βI where I denotes the (n−2)2× (n−2)2

400

identity matrix and uHs ,v
H
s , F̄

H
s , Ḡ

H
s ∈ R(n−2)2×1 are the column vectors consisting of the displacements401 (

uHs
)(l+1)

k
,
(
vHs
)(l+1)

k
and RHS terms

(
F̄Hs
)(l+1)

k
,
(
ḠHs
)(l+1)

k
given by402 (

F̄Hs
)
k

=
((
∂Hus

THu
)2)

k

(
uHs
)
k

+
(
∂Hus

THu
)
k

(
∂Hut

THu
)
k

(
uHt
)
k

−
(
∂Hus

THu
)
k

((
THu
)
k
−
(
RH
)
k

)
(
ḠHs
)
k

=
((
∂HvsR

H
v

)2)
k

(
vHs
)
k

+
(
∂HvsR

H
v

)
k

(
∂HvtR

H
v

)
k

(
vHt
)
k

−
(
∂HvsR

H
v

)
k

((
RHv
)
k
−
(
TH
)
k

)
(3.43)

for s, t = 1, 2, s 6= t and k = (j − 2)(n − 1) + (i − 1) for i, j = 2, . . . , n − 1. We then solve the matrix403

equation (3.41) using a direct method, that is we solve404

wH =
(
ĀH

)−1
F̄H (3.44)

Second Proposed Coarsest Level Solver C2: Similar to what we did for C1, we can express the405

system (2.36) on the coarsest grid in the following matrix form406

ÃHwH = F̄H (3.45)

where ÃH ∈ R4(n−2)2×4(n−2)2 has the following structure407

ÃH =


AH

1 0 I2 0
0 AH

2 0 I2

I2 0 BH
1 0

0 I2 0 BH
2

 (3.46)

where AH
m,B

H
m ∈ R(n−2)2×(n−2)2 and uHm,v

H
m , F̄

H
m , Ḡ

H
m ∈ R(n−2)2×1 have the same structure as shown408

in C1, with RHS terms
(
F̄Hm
)(l+1)

k
,
(
ḠHm
)(l+1)

k
given by409 (

F̄Hm
)
k

=
((
∂Hum

THu
)2)

k

(
uHm
)
k
−
(
∂Hum

THu
)
k

((
THu
)
k
−
(
RH
)
k

)
(
ḠHm
)
k

=
((
∂HvmR

H
v

)2)
k

(
vHm
)
k
−
(
∂HvmR

H
v

)
k

((
RHv
)
k
−
(
TH
)
k

)
. (3.47)

Again we solve the matrix equation (3.45) in a similar way to that shown in C1.410

4 Numerical results411

Now we will present some experimental results comparing three models, these are412
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(i) A NMG scheme, similar to our proposed scheme, applied to a standard unidirectional di�usion413

model which we denote by DNMG.414

(ii) Our proposed NMG applied to our inverse consistent model , equipped with smoother S2 and solver415

C1, which we denote by ICNMG1.416

(iii) Our proposed NMG applied to our inverse consistent model , equipped with smoother S3 and solver417

C2, which we denote by ICNMG2.418

Using these results we will demonstrate how our new ICNMG models produce comparable results, both419

visually and numerically, to the DNMG model while maintaining non-folding results even in the case420

of a `bad' parameter choice. In addition we will also show how our simpli�ed smoother S3 in ICNMG2421

improves upon the CPU time, while maintaining the same level of accuracy, compared with ICNMG1422

which uses the fully coupled smoother S2.423

In order to gain a qualitative measure in the accuracy between the two models, we choose to use the424

structural similarity (SSIM) [41] and relative errors ErrF =
‖Tu−R‖22
‖R‖22

, ErrB =
‖Rv−T‖22
‖T‖22

corresponding425

to the forward and backward transformations respectively. Additionally in [11] it was shown that the426

quantity Qmin = det (∇ϕ) can be used to indicate the presence of folding if Qmin ≤ 0, likewise if427

Qmin > 0 this indicates that no folding is present. Moreover, we will consider the NMG method to have428

converged only if one of the following criteria have been met; Average relative residual reaches ε1 = 10−2,429

maximum relative residual reaches ε2 = 10−2 or the number of NMG cycles reaches ε3 = 15. It should430

also be noted that for our proposed ICNMG models, we only consider the NMG to have converged it431

both the forward and backward problems have converged according to the above stopping criteria. For432

all models we select the weighting parameter α = 1
15 , and in our ICNMG models we set the second433

parameter to be β = 104. We performed our experiments on 3 sets of real lung CT images as shown in434

Figure 2. We also note that in Tables 2-8 green Qmin values indicate no folding in the transformation,435

while red values indicate folding is present in the transformation.436

(a) Reference R of Example 1 (b) Reference R of Example 2 (c) Reference R of Example 3

(d) Template T of Example 1 (e) Template T of Example 2 (f) Template T of Example 3

Figure 2: Three Pairs of Test Images.

Example 1 Results: From Figure 3 we see that the DNMG model, as well as our ICNMG models,437

produce visually very similar results. This trend is backed up further by the results shown in Table438

2, where we see near identical SSIM and relative error values. In addition we see that our ICNMG439

models produce larger CPU times when compared with the DNMG model, however this increase is to440

be expected since our ICNMG models must solve additional equations. Moreover we also see that our441

simpli�ed smoother S3, which is used in our ICNMG model, produces noticeably smaller CPU times442

when compared with out ICNMG1 model which uses the fully couple smoother S2 while maintaining443

the same level of accuracy. Also since our ICNMG models require both forward and backward problems444

to converge, we see a slight increase in the number of NMG cycles required when compared with the445

DNMG model. This pattern of results is also seen in Table 3 where again all 3 models produce similar446

results with our ICNMG models requiring an additional NMG cycle to converge plus larger CPU times,447
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with our ICNMG2 model being signi�cantly faster than our ICNMG1 model. In all cases we see that448

all models produce positive Qmin values which indicates no folding is present in the transformations.449

Example 2 Results: In Example 2, wee see the same pattern of results that we did for Example 1.450

Namely near identical results both visually (Figure 4) and numerically (Tables 4 and 5) with larger451

CPU times for our ICNMG models, and our ICNMG2 model much faster than our ICNMG1 model.452

In addition all 3 models produce non-folding results in all cases. However when considering the `bad'453

parameter case α = 1
25 in Table 6, we see that the DNMG model produces negative Qmin values454

in 3 out of the 4 cases whereas both of our ICNMG models maintain the physical integrity of the455

transformation while achieving the same level of accuracy in all 4 cases. An example of how the mesh456

plots of the transformations from the DNMG model and our ICNMG2 model for the 1282 example457

from Table 6 can be seen in Figure 1. Here we see that the mesh from our ICNMG2 model is much458

smoother than that from theDNMGmodel. We remark that theDNMGmodel can be modi�ed to also459

produce non-folding by resetting the NMG scheme with a larger parameter α if folding occurs, however460

this solution extremely expensive computationally in addition to producing less accurate registration461

results in terms of SSIM and error values.462

Example 3 Results: From Figure 5 and Tables 7 and 8 we see the same trend in results that was463

present in Examples 1 and 2, while we again see all cases produce non-folding transformations.464

Testing of sensitivity of parameters for ICNMG2 model: Here we perform a test on how robust465

our ICNMG2 model is to the choice of parameters α and β. To do this we tracked the SSIM and466

Qmin values across a total of 25 di�erent sets of parameter values, that is all combinations resulting from467

the parameters α = 1
10 ,

1
15 ,

1
20 ,

1
25 ,

1
30 and β = 0, 103, 104, 105, 106, and can be seen in Figures 6 and 7468

respectively. In addition we remark that we have included a simulation for the DNMG model in our469

tests by considering the parameter β = 0. From Figure 6 we see that our ICNMG2 model maintains470

very similar SSIM values when compared with the DNMG model (β = 0 column), and there is little471

variation in the values as the parameter β is varied in our ICNMG2 model. However the advantage472

of our ICNMG is shown more clearly in Figure 7 where we have tracked the Qmin values across the473

di�erent parameter tests, here red indicates Qmin < 0 while green indicates Qmin > 0. From this �gure474

we see that our ICNMG2 is robust to folding for a much larger range of α values when compared with475

the di�usion model which has a much more limited range of viable α choices.476

5 Conclusions477

In this paper we �rst explained how many standard variational registration models do no place any em-478

phasis on maintaining the physical accuracy of the transformations, thus potentially leading to physically479

inaccurate transformations with folding. Next we explained how inverse consistent models, such as the480

Christensen-Johnson model proposed in [15], can help improve robustness to folding. We also mentioned481

how the model in [15] is impractical for real medical image problems owing to the extensive computational482

cost resulting from solving the associated minimisation problem. In order to help avoid this problem, we483

�rst proposed a linearisation of the inverse consistency constraint from the Christensen-Johnson model484

to remove the additional non-linearities arising from this term when compared with typical di�usion type485

models, as well as alleviating the computational cost of directly computing the inverse displacements.486

Next we proposed the use of a fast NMG framework, based upon the scheme proposed by Chumchob-487

Chen in [19], along with 3 potential smoother schemes to further reduce the computational workload488

of the proposed inverse consistent model. In addition we also performed an analysis of the 3 proposed489

smoothers to determine their suitability for use in the NMG scheme, and how they can impact the con-490

vergence of the NMG. Next we showed, using 3 sets of real lung CT images, how our proposed inverse491

consistent model maintains the same level of accuracy as a unidirectional di�usion model using a similar492

NMG scheme, while being robust to parameter choice and folding even in the case of a `bad' weighting493

parameter value which causes folding in the transformation obtained from the di�usion model.494
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Image Size n2 Initial DNMG ICNMG1 ICNMG2
SSIM/ErrF (%) SSIM/ErrF (%)/NMG/CPU (s)/Qmin SSIM/ErrF (%)/NMG/CPU (s)/Qmin SSIM/ErrF (%)/NMG/CPU (s)/Qmin

1282 0.915/0.35 0.938/0.22/1/0.167/0.553 0.938/0.22/2/1.498/0.489 0.938/0.22/2/0.879/0.489
2562 0.914/0.38 0.935/0.27/1/0.822/0.673 0.932/0.28/2/5.155/0.654 0.933/0.28/2/3.031/0.654
5122 0.939/0.37 0.953/0.27/1/4.082/0.669 0.949/0.28/2/24.557/0.658 0.949/0.28/2/14.180/0.658
10242 0.958/0.37 0.967/0.27/1/18.818/0.667 0.964/0.29/2/111.034/0.656 0.964/0.29/2/66.814/0.656

Table 2: Example 1: Comparison of forward registrations between 3 methods on di�erent image sizes.

Image Size n2 Initial DNMG ICNMG1 ICNMG2
SSIM/ErrB(%) SSIM/ErrB (%)/NMG/CPU (s)/Qmin SSIM/ErrB (%)/NMG/CPU (s)/Qmin SSIM/ErrB (%)/NMG/CPU (s)/Qmin

1282 0.915/0.34 0.940/0.17/1/0.204/0.654 0.939/0.22/2/1.498/0.786 0.939/0.22/2/0.879/0.786
2562 0.914/0.37 0.936/0.22/1/0.874/0.573 0.934/0.27/2/5.155/0.718 0.934/0.27/2//3.031/0.719
5122 0.939/0.36 0.953/0.22/1/4.046/0.639 0.949/0.27/2/24.557/0.695 0.949/0.27/2/14.180/0.695
10242 0.958/0.36 0.968/0.22/1/17.935/0.633 0.965/0.28/2/111.034/0.686 0.965/0.28/2/66.814/0.686

Table 3: Example 1: Comparison of backward registrations between 3 methods on di�erent image sizes.

Image Size n2 Initial DNMG ICNMG1 ICNMG2
SSIM/ErrF (%) SSIM/ErrF (%)/NMG/CPU (s)/Qmin SSIM/ErrF (%)/NMG/CPU (s)/Qmin SSIM/ErrF (%)/NMG/CPU (s)/Qmin

1282 0.808/1.02 0.892/0.37/2/0.415/0.451 0.891/0.37/2/1.582/0.353 0.890/0.37/2/0.640/0.241
2562 0.767/1.07 0.871/0.40/2/1.512/0.250 0.868/0.42/2/5.202/0.157 0.868/0.42/2/3.025/0.024
5122 0.779/1.08 0.868/0.41/2/6.819/0.519 0.866/0.43/2/24.572/0.423 0.866/0.43/2/14.232/0.423
10242 0.828/1.08 0.892/0.40/2/31.895/0.520 0.891/0.43/2//111.561/0.413 0.891/0.43/2/66.537/0.413

Table 4: Example 2: Comparison of forward registrations between 3 methods on di�erent image sizes.

Image Size n2 Initial DNMG ICNMG1 ICNMG2
SSIM/ErrB(%) SSIM/ErrB (%)/NMG/CPU (s)/Qmin SSIM/ErrB (%)/NMG/CPU (s)/Qmin SSIM/ErrB (%)/NMG/CPU (s)/Qmin

1282 0.808/1.00 0.886/0.36/2/0.479/0.361 0.886/0.36/2/1.582/0.155 0.885/0.36/2/0.640/0.073
2562 0.767/1.05 0.861/0.38/2/1.561/0.212 0.861/0.41/2/5.202/0.220 0.860/0.41/2/3.025/0.167
5122 0.779/1.06 0.862/0.40/2/7.054/0.419 0.861/0.42/2/24.572/0.366 0.861/0.42/2/14.232/0.366
10242 0.828/1.06 0.889/0.40/2/31.370/0.405 0.890/0.42/2/111.561/0.350 0.890/0.42/2/66.537/0.350

Table 5: Example 2: Comparison of backward registrations between 3 methods on di�erent image sizes.

Image Size n2 Initial DNMG ICNMG1 ICNMG2
SSIM/ErrF (%) SSIM/ErrF (%)/NMG/CPU (s)/Qmin SSIM/ErrF (%)/NMG/CPU (s)/Qmin SSIM/ErrF (%)/NMG/CPU (s)/Qmin

1282 0.808/1.02 0.872/0.36/2/0.426/−0.245 0.896/0.36/2/1.521/0.360 0.886/0.36/2/0.821/0.114
2562 0.767/1.07 0.855/0.32/4/2.182/−0.374 0.874/0.36/2/5.255/0.220 0.871/0.36/2/3.355/0.316
5122 0.779/1.08 0.876/0.34/2/6.907/−0.141 0.872/0.36/2/24.525/0.098 0.871/0.36/2/15.225/0.214
10242 0.828/1.08 0.900/0.32/2/33.889/0.214 0.896/0.36/2/111.118/0.168 0.895/0.36/2/73.118/0.240

Table 6: Example 2: Comparison of forward registrations between 3 methods on di�erent image sizes
for a `bad' parameter value α = 1

25 .

Image Size n2 Initial DNMG ICNMG1 ICNMG2
SSIM/ErrF (%) SSIM/ErrF (%)/NMG/CPU (s)/Qmin SSIM/ErrF (%)/NMG/CPU (s)/Qmin SSIM/ErrF (%)/NMG/CPU (s)/Qmin

1282 0.847/0.94 0.908/0.34/2/0.324/0.230 0.910/0.37/2/1.414/0.259 0.900/0.39/2/0.646/0.169
2562 0.805/1.05 0.899/0.31/2/1.418/0.513 0.897/0.32/2/5.147/0.467 0.896/0.32/2/3.007/0.416
5122 0.805/1.08 0.884/0.32/2/6.941/0.481 0.882/0.32/2/24.795/0.491 0.882/0.32/2/14.195/0.490
10242 0.842/1.08 0.901/0.32/2/33.210/0.411 0.902/0.32/2/111.887/0.589 0.902/0.32/2/66.789/0.588

Table 7: Example 3: Comparison of forward registrations between 3 methods on di�erent image sizes.

Image Size n2 Initial DNMG ICNMG1 ICNMG2
SSIM/ErrB(%) SSIM/ErrB (%)/NMG/CPU (s)/Qmin SSIM/ErrB (%)/NMG/CPU (s)/Qmin SSIM/ErrB (%)/NMG/CPU (s)/Qmin

1282 0.847/1.01 0.915/0.35/2/0.391/0.350 0.912/0.40/2/1.414/0.168 0.904/0.42/2/0.646/0.012
2562 0.805/1.12 0.899/0.34/2/1.485/0.525 0.899/0.34/2/5.147/0.489 0.898/0.34/2/3.007/0.461
5122 0.805/1.16 0.882/0.34/2/6.930/0.467 0.882/0.35/2/24.795/0.416 0.882/0.35/2/14.195/0.416
10242 0.842/1.16 0.899/0.34/2/33.301/0.440 0.902/0.35/2/111.887/0.435 0.902/0.35/2/66.789/0.435

Table 8: Example 3: Comparison of backward registrations between 3 methods on di�erent image sizes.
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Image Size n2 Image Example α
DNMG ICNMG1 ICNMG2

CPU (s) Ratio CPU (s) Ratio CPU (s) Ratio
1282

Example 2 (Forward) 1
15

0.415 � 1.582 � 0.640
2562 1.512 3.643 5.202 3.288 3.025 4.727
5122 6.819 4.510 24.572 4.724 14.232 4.705
10242 31.895 4.677 111.561 4.540 66.537 4.675

Table 9: Test on optimal complexity in CPU time ratio for 2 NMG methods. The optimal ratio is
approximately 4.5 for an O(NlogN) NMG method (with N = n2).

(a) Reference image R (b) DNMG Tu (c) ICNMG1 Tu (d) ICNMG2 Tu

(e) |Tu −R| (f) DNMG |Tu −R| (g) ICNMG1 |Tu −R| (h) ICNMG1 |Tu −R|

Figure 3: Example 1: Registration of 2(a) and 2(d) of size 256×256 by 3 methods with initial error shown
by image (e). Images (b), (c) and (d) show the deformed template images obtained using the DNMG,
ICNMG1 and ICNMG2 models respectively, while images (f), (g) and (h) show the respective �nal
errors.

(a) R (b) DNMG Tu (c) ICNMG1 Tu (d) ICNMG2 Tu

(e) |Tu −R| (f) DNMG |Tu −R| (g) ICNMG1 |Tu −R| (h) ICNMG1 |Tu −R|

Figure 4: Example 2: Registration of 2(b) and 2(e) of size 256×256 by 3 methods with initial error shown
by image (e). Images (b), (c) and (d) show the deformed template images obtained using the DNMG,
ICNMG1 and ICNMG2 models respectively, while images (f), (g) and (h) show the respective �nal
errors.
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(a) R (b) DNMG Tu (c) ICNMG1 Tu (d) ICNMG2 Tu

(e) |Tu −R| (f) DNMG |Tu −R| (g) ICNMG1 |Tu −R| (h) ICNMG2 |Tu −R|

Figure 5: Example 3: Registration of 2(c) and 2(f) of size 256×256 by 3 methods with initial error shown
by image (e). Images (b), (c) and (d) show the deformed template images obtained using the DNMG,
ICNMG1 and ICNMG2 models respectively, while images (f), (g) and (h) show the respective �nal
errors.

(a) Heat map of SSIM values over a range of parameter
choices α, β for the forward problem

(b) Heat map of SSIM values over a range of parameter
choices α, β for the backward problem

Figure 6: Comparison of how the SSIM values vary with di�erent choices of the parameters α and β
for Example 2.
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(a) Heat map of Qmin values over a range of parameter choices α, β for the forward problem

(b) Heat map of Qmin values over a range of parameter choices α, β for the backward problem

Figure 7: Comparison of how the Qmin values vary with di�erent choices of the parameters α and β for
Example 2.
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