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1 Abstract
2 Image registration is the process of aligning sets of similar, but different, intensity image functions
3 to track changes between the images. In medical image problems involving lung images, variational

»

registration models are a very powerful tool which can aid in effective treatment of various lung con-
ditions and diseases. However a common drawback of many variational models, such as the diffusion

5

6 model [19] and even optic flow models [8,22], is the lack of control of folding in the deformations
7 leading to physically inaccurate transformations. For this reason, such models are generally not
8 suitable for real life lung imaging problems where folding cannot occur.

9 There are two approaches offering reliable solutions (though not necessarily accurate). The first
10 approach is a parametric model such as the affine registration model, still widely used in many
11 applications, but it cannot track local changes or yield accurate results. The second approach is to
12 impose an extra constraint on the transformation of registration as in the work by [11,36,48], at
13 the cost of increased nonlinearity. An alternative to the second approach, achieving diffeomorphic
14 transforms without adding any constraints, is an inverse consistent model such as by Christensen-
15 Johnson [15] from computing explicitly both the forward and inverse transforms. However one must
16 deal with the strong non-linearity in the formulation.

17 In this paper we first propose a simplified inverse consistent model to avoid the inclusion of strong non-
18 linearities and then a fast non-linear multigrid (NMG) technique to overcome the extra computational
19 work required by the inverse consistent model. Experiments, performed on real medical CT images,
20 show that our proposed inverse consistent model is robust to both parameter choice and non-folding
21 in the transformations when compared with diffusion type models.

22 Keywords. System of nonlinear PDEs, Existence, Image registration,

23 Diffeomorphic map, Fast multigrid solver.

. 1 Introduction

2s A challenge which frequently arises in a lot of real world applications, and especially in medical imaging,
26 18 image registration. An image registration technique works by fixing one image in a pair or set of
27 similar images to be the ‘reference’ image and then applying geometric transformations to the remaining
28 image/s, called the ‘template’ image/s, with the goal of aligning the template image/s with the reference
»e image. The important role that registration plays in many aspects of medical imaging problems can be
30 seen in recent works of [1,16,25,27,33]. Especially in diagnostics of lung problems [12,17,26,28,40, 44|,
;1 registration tasks such as motion correction and feature tracking are routinely carried out and any
32 increase in accuracy is highly desirable in improving patient care. Since the transformations within
33 lung images are in general highly non-uniform, non-parametric models such as [6,7,9-11] are typically
s« favoured over parametric models such as [3,18,34,37]. Our main concern is this former type.

ss  Denoting by R, T € Q C R respectively a reference function and template image function, we are looking
36 to determine the transformation ¢(x,w) such that

T(p(x,u)=T(x+u)=Ty,~R=R(x) forx=(1,...,24)" € QCR? (1.1)

*Centre for Mathematical Imaging Techniques and Department of Mathematical Sciences, University of Liverpool,
United Kingdom. Emails: |anthony.thompson, k.chen|@liv.ac.uk
tCorresponding author. Web: http://www.liv.ac.uk/~cmchenke


cmchenke
Stamp


37

38

39

40

41

42

43

44

45

46

a7

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

where o(z,u) = z+u(z) and u = u(x) = (u1(z), ..., uq(x))" denotes the displacement field. Through-
out the remainder of this paper we will only consider the two-dimensional case d = 2, however the ideas
presented are extendible to the three-dimensional case d = 3. In addition, we will also assume that the
image domain (2 is given by the unit square = [0, 1]?.

We can formulate the variational image registration problem mathematically in the following way. The
task of finding the transformation ¢ is equivalent to that of determining the displacement field w, which
is achieved by solving a minimisation problem of the following form

min B(u) = Z (R, T,u) + aZ (u) (1.2)

u

where F(u) denotes some general energy functional, & is some dissimilarity measure of T, R, Z is a
regularisation term required to constrain u and overcome the ill-posedness of the problem and o € RT
is some weighting parameter. For the purposes of this paper, we will assume that R,T are mono-modal

images, and as a result the common choice of dissimilarity measure is the sum of squared distances
(SSD), although this is not the only possible choice [39]. The SSD term is given by the following

2 (R, T,u) = %/ T, — R|” d (1.3)
Q

where |-| denotes the Euclidean norm and T,, = T'(x + u). Moreover, there is a large choice of regularisa-
tion term [2,5,20,23,38]. Here we shall mainly consider one of these, Z(u) = ||[Vu||? = |Jur||* + |Juz]|?, in
order to focus on the idea of diffeomorphism of ¢. Unfortunately energy functionals of the form shown
in (1.2), in general, do not avoid the potential problem of mesh folding in the transformation ¢. Since we
are considering real life medical imaging problems, a transformation with folding would suggest that the
transformation is physically inaccurate and therefore incorrect. One mathematical solution to overcome
this problem is to impose the nonlinear constraint Q,;, = mindet(V¢) > 0 as done in recent works
of [11,36,48| and in particular the term min(det(Vep) — 1)*/(det(V¢))? is added in [11].

However, we consider here another solution to this folding problem by extending the model (1.2) to
include an additional term, explicitly linking the forward transform ¢ and the inverse transform
between T, R, which enforces the transformation ¢ to be inverse consistent and therefore non-folding. A
simple way to ensure diffeomorphism is for the transformation ¢ and its inverse v to satisfy the relation
@ =1 ! since pop ! =1porp~! = Iz = x where I denotes the identity mapping. The first variant
including an inverse consistency constraint (and ¢ only) leads to a minimisation problem of the form

min O (u) = 2 (R, T,u) + aZ (u) + BI (¢ (z,u), ¢~ " (z, 1)) (1.4)

u

where .# denotes the inverse consistency constraint, ¢!, @ denote the inverses of ¢, u respectively

and 0 < 8 € R is a second weighting parameter. There are different choices for the inverse consistency
constraint [14,15,17,34]. In this paper however we consider the second variant of an inverse consistent
model, using both ¢ and 1, with the following form

u,v

min B (u,v) = %/ 2 (R, T,u) + 2 (T,R,v) + a(Z (u) + Z (v))
Q
+8(7 (o (@ow) 7 (@,8)) + 7 (W (2,0), 97 (@, @)) ) (15)

where 2 (T, R,v) , Z (v) and f('l,b (z,v),p7 ! (z,u) ) denote the similarity measure, regularisation term
and inverse consistency constraint respectively for the backward problem R — T, also where v, 1 denote
the backward displacement and transformation respectively with @, 1»~! denoting their inverses. We aim
to simplify this second variant and propose an efficient multigrid numerical scheme.

The remainder of this paper will be set out as follows. In §2 we will introduce the Christensen-Johnson
model based on (1.5), as well as our proposed simplification to avoid additional non-linearities when
compared with general diffusion type models, in addition to our proposed numerical approach. Next in
§3 we will introduce our fast NMG scheme to overcome the increased computational cost resulting from
the additional work required by the model, before showing some experimental results on real medical
CT images in §4. Finally in §5 we will present our conclusions.
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2 A simplified inverse consistent model and its algorithm

Several authors have discussed similar registration models for two images to symmetrically deform toward
one another in multiple passes [14,29,42,47]. The realization of a diffeomorphic transform is achieved
by working with 4 deformation fields instead of 1. Here we follow the work by Christensen-Johnson [15]
who proposed a model to overcome the problem of non-inverse consistent transformations by using
only 2 deformation fields. The model satisfies our requirement of having a more physically accurate
transformation robust to folding. They achieved this through a combination of two things: (i) A term
was added into the standard form of the energy functional shown in (1.2) to impose inverse consistency
and take on the form show in (1.5); (i4) The forward (T — R) and backward (R — T) registration
problems were computed simultaneously. These things, combined with a SSD dissimilarity term (1.3)
and diffusion regularisation term, led to the formation of their inverse consistent model which is given
by the following

1
min E7¢ (u,v) = 5/ T — R’ + |Ry — T)* + (|Vu\2 + |Vv\2)
Q

+ 5 (e (@ w) — 97 (@,0)]" + ¢ (2,0) - ¢ (2,9)]) d0 (2.1)

where |-| denotes the F-norm for matrices (reduced to modulus for scalar quantities), ¢, 1 denote the
forward and backward transformations, ¢~!,7p~! denote the inverse transformations, u,v denote the
forward and backward displacements and @, v denote the inverse displacements respectively. The full
minimisation problem was then split into two sub-problems corresponding to the forward and backward
registration problems respectively. This resulted in (2.1) being written in the following way

1
min B¢ (u, v) = 5/ Tw — R” + o |Vul* + Blu— o dQ, o(z)=v '(z)—=
w Q
(2.2)
1
min EI¢ (u,v) = 5/ Ry —T)* 4+ a|Vo> + v —al® dQ, a(x)=¢ '(z)— .
v Q

Noting that the constraints in (2.2) are respectively ¥ (o(x)) = x — ¥ and p(a(x)) = x — ¢ ie.
Y(0(x)) +v =0, p(u(x)) +u = 0, the explicit computation of them is a difficult and computationally
expensive task owing to their non-linear nature. However, this kind of model is effective at preventing
mesh folding as is illustrated in Figure 1 where the mesh problem on the left is fixed by the model on
the right plot.
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(a) Bad mesh of the transformation ¢ obtained from the stan-  (b) Good mesh obtained from the new inverse consistent

dard diffusion model: Q.,in = —0.245 model: Qi = 0.114

Figure 1: Comparison of two registration meshes for Example 2 as shown in Figure 2 for the same
parameters o = % and B = 10* (See §4).
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We are motivated to overcome the difficulty of computing the inverse displacements w and v directly.
We propose to replace these terms with linear approximations. This simplification allows us to re-
move the additional non-linearities from the inverse consistent terms, leaving only the non-linearities
seen in diffusion type models, while still retaining the advantages of the inverse consistent model. We
know that the transformations ¢, v, and their inverses ¢!, 41, should satisfy the following relations
e e (z,u)) ==z, v~ (1 (x,v)) = . Expanding out leads to the following equalities

{901 (¢ (2,0)) = o (2,0) + 4 (@, 0) = 2+ u(®) + @ (@ + u()) =@ o)
Y (Y (2,0) =Y (2,0) + 0 (Y (2,0) =z +v(x) + O (z+v(z) ==
which can be reduced to
u(xz)+u(x+u(x)) =0, v(x)+v(x+v(x)=0 (2.4)
by using a Taylor expansion on the arguments of @, ¥ in (2.4), we can obtain the approximations
o (z+u(x)) ~ u(x), o (x+v(x)) = o(x). (2.5)
From substituting (2.5) into (2.4), we get
u(x) ~ —u(x), v(xz) = —0(x) (2.6)
and using (2.6) in (2.1), we have
IB}TI}EIC (u,v) = %/ﬂ T — R+ |Ry — T)> + <|Vu|2 + |Vv|2>
+8 (|u + o + v+ u|2) dQ
= ¢'% (x,u,v, Vu, Vv) (2.7)
which results in the following split formulation by alternating minimization
min B{° (u,v) = %/Q T — RI> + o |Vul> + 8 |u + v|* d,
(2.8)

1
min B10 (u, v) = 5/ Ry — TP +a|Vol® + 8 v+ ul® dO.
v Q

Comparing this model with (2.1), we see that we now no longer need to compute the inverse displacements
u and v directly, instead we need only use the displacements w and v.

To solve the minimisation problem (2.8), a discretise-optimise approach (for details see [38,39]) was used
originally, however we instead propose to use an optimise-discretise approach in addition to a fast NMG
framework. This approach involves solving the Euler-Lagrange (EL) equations corresponding to (2.8),
and can be shown to be given by

— AUy, + Fy, (u,v) =0, —aAvy, + Gy, (u,v) =0 (2.9)
with respective Neumann boundary conditions Vu,, - n =0, Vv, - n = 0, where

Fo (u,v) = B (um + vm) + Ou,, Tu (T, — R),
G (u,v) = B (v, + um) + 0y, Ry (Ry — T) (2.10)

denote respectively the force terms for component m = 1, 2.

We remark that the models by [14, 29, 42,47], though involving more unknown fields to compute, can
also be advantageous when the underlying deformation between T" and R is large (and by design the 4
fields can be small or could be said to be half sized); in this case, it will be of interest to develop fast
multigrid methods for them.
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2.1 Existence of a solution for model (2.7)

Now we will prove the existence of solutions for the model (2.7) following the idea of [11] for a similar
proof in a related but different model. Given the energy functional E7¢(u,v) defined in (2.7), we wish
to show that the solutions uw*,v* exist such that E'¢ (u*,v*) becomes minimal. We use the so called
direct method [21] as in [11], consisting of the following steps:

(i) Take the minimising sequences {u,,, v, } for E1C.

(ii) Show that the sequences {u,,v,} admit subsequences {w,,,v,,} that converge to a solution
(u*,v*) € x in the weak topology, where y denotes some function space.

(iii) Show that the energy functional E¢ is lower semi-continuous.

Before outlining the proof, we first review some necessary theory which will be used shortly. First we
introduce three assumptions which will be used for the remainder of this proof:

e Al: Assume that a = 8 = 2 for simplicity.
o A2: Assume that the image domain € has a C' boundary that is denoted by 0.
e A3: Assume that R, T € C?.
Second, define the function space x by the following
x = Wh? (Q,R?) x W2 (Q,R?) (2.11)
equipped with the norm [|(w, v)|, = [[ullyy1.2(0r2) X [V/ly12(qr2)-

Remark 2.1. Here we remark that the function space x is reflexive, this means that there exist subse-
quences which converge in the weak topology. Or, in other words, given the bounded sequences (T, y,) € X
then there exist subsequences Tn, ,Yn, such that ® (xn,,yn,) = P (Tn,yn) VO € x.

Third, define the following admissible sets

A {u € Ao /Qu(w) dQ’ < vol(Q) (M + diam(Q))}

B:{’UGB()I

/Qv(:c) dQ' <wol(Q2) (N + diam(Q))} (2.12)

where Ay = {u c wh2 (Q,Rz)} , By = {v cwh2 (Q,RQ)} and M, N € R are some constants.

Definition 2.1 (Generalised Poincaré Inequality). Let p € [1,00] and € be a bounded connected open
subset of RY with a Lipschitz boundary, then there exists some constant C' € R which depends only on
p and (2 so that for every function u € W12 (Q)

||Vu||LP(Q) 2 CHU*UQHLP(Q) (2.13)

where ug = ﬁ fﬂudQ.

Lemma 2.1 (General Lower Semi-Continuity). In the image domain Q € R?, suppose that f: Q —
R% x RN — [0, 00) is a continuously differentiable function and f (-,y, &) is measurable for every (y, &) €
R? x RN. Also assume that f (x,y,-) is convex and that

Yy, — Yy in LP (Q,Rz) forp>1; &, — &in LP (Q,RN) forp>1. (2.14)
Then the following result holds
lim inf / f (@, yo(@), € () dQ > / f (@ y(@), &) A (2.15)

Lemma 2.2 (Coercity Condition). Let the assumptions Al and A3 from earlier hold, then the inverse
consistent model (2.7) satisfies the coercity condition. That is, there exist constants 0 < C, K € R such
that Yu € A, v € B the following inequality holds

E'(u,v) > K +C (HUH%/VL?(Q,Rz) + HUH%/VL?(Q,R?)) (2.16)

where A, B are the admissible sets defined in (2.12).
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Proof. Suppose that we have some arbitrary transformations u € A, v € BB, then we have
1
B (u,v) = / 3 (|Tu — R’ +|R, — T|2) HIVull® + Vol + [u+v]* + v + ul* dQ
Q
> / IVu|? + || Vol* d (2.17)
Q

since £ [Ty, — R|> >0, 2[R, — T° >0, [u+wv[> >0, [v+u|* > 0. Then, as a result of assumption A2,
we can use the generalised Poincaré inequality (Definition 2.1) to get

/QudQD2 (2.18)

where Cy € R is some constant. Since we know that w € A and | [, wdQ| < vol(Q) (M + diam(2)), then
we also know that there exists some K; € R such that

L

IVulls > i fulls - ol (

IVul2. > Ky + Cy Jlul, (2.19)

using an analogous argument, and the fact that v € B and | [, vdQ| < vol(Q) (N + diam(R)), we can
show that there exist Cy, K5 € R such that the following inequality holds

IVol7z = Ko + Co |[v]|72 - (2.20)

Then introducing the new constants C, K € R, and combining (2.17)-(2.20), we get
2 2
E'u,v) > K+C (HuHWL?(Q,Rz) + Hv||W1s2(Q,]R2)) (2.21)
and so the coercity condition holds. O

Finally, in order for a solution to the inverse consistent model (2.7) to exist, the following existence
theorem must hold

Theorem 2.3. Given that the assumptions A1-A3 hold, then the model (2.7) with energy functional
EC(u,v) possesses at least one minimiser (u*,v*), u* € A,v* € B.

Proof. We begin by constructing the minimising sequences {u,,v,} such that lim E'C (u,,v,) =
n—oo
,iz{lf BEIC(u, v) given that the energy functional E'¢ is positive and has a lower bound 0. Moreover,
ucA,ve
the energy functional E'¢ (z,x) is finite. Then, using Lemma 2.2, for each n we have

2 2
M > E'C (up,v,) 2 K +C (HUHWL?(Q,]W) + HUHWL?(Q,]RZ)) (2.22)

and so the sequences {u,,v,} are bounded in the function space x. Since we know that the function
space  is reflexive (Remark 2.1), then this implies that there exist some subsequences {w,, , vy, } which
converge to (u*,v*) in the weak topology. Now we see that (w,,,v,,) — (u*,v*) in the space W12
implies that (w,,,v,,) — (u*,v*) in the L? space owing to the fact that W12 is compactly embedded
in the L2 space i.e. W12 cC L2. From assumption A2 we know that the function ¢’“, defined in (2.7),
is convex for fixed @, u,v, continuously differentiable and measurable in « for fixed (u,v,Vu,Vv) €
R? x R? x R2%2 x R2%2. Therefore, using Lemma, 2.1, we can say that the functional E’C is weakly lower
semi-continuous. That is

lim inf [ ¢’ (2, Un,, Vn,, VUn,, VU, ) dQ > / g'¢ (x,u, v, Vu, Vo) dQ (2.23)
thus we have
: IC T IC S BIC (0% ) > i IC . _
ue,lz{}f:eBE (u,v) nh_}rr;oE (Uny, Vn,) > E°Y (u,0") > ue}g&zf;eBE (u,v) (2.24)
Therefore, the solution (u*,v*) is a minimiser of the energy functional EC, O

Remark 2.2. Here we note that this proof can also be used to show the existence of solutions for the
original Christensen-Johnson model (2.1) using a slight modification in (2.17).
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2.2 Discretisation of the inverse consistent model (2.9)

To solve the system of EL equations (2.9), we look to obtain a numerical approximation. We do this by
discretising the image domain Q" into a uniform n x n mesh, with interval width h = and then
using a finite difference (FD) method.

15

Remark 2.3. In general we need not discretise Q" using a square mesh, and can instead be discretised
using a n X m mesh where n # m. However it is common for lung CT slices to be square, and for this
reason we work with a square mesh (by taking m =n).

Doing this, as well as using a lexicographic ordering of the discrete grid points (4, j), we obtain the
following discrete versions of (2.9)

—oz(Ah’uZ’l)k + (Fm(uh,'vh))k =0, —oz(Ah’v,h,’L)k + (G (u, vh’))k =0 (2.25)
where
(A%, o () () () () ) (2.26)

and similar for (A"v},),, also with the following discrete force terms

(B 0"), = B((uh) + (vh), ) + (24, T0), (Th), — (R),):
(Gl 0"),, = B( (k) + (ul), ) + (95, B2)  ((RE), — (1)) (2.27)
where
(0,70, ~;,L((Th>k+l (T8 )s @7, ~ o (), — (T,
O 18), ~ 5 (((RE), 0y — (B2, ) OhRE), ~ oo (B~ (RD),)  (@29)

form=1,2k=(-2)(n—-1)+(—-1)andi,j=2,...,n— 1.

There are a lot of choices of methods to solve the discrete system of equations (2.25). Some exam-
ples include the Newton method, the time-marching method and the additive operator splitting (AOS)
method. However for highly non-linear equations, like the ones in (2.25), it can be difficult to ensure
these methods converge to a solution. Moreover, for large images, using such methods to solve (2.25)
on a single level is extremely expensive computationally. Also owing to the inverse consistent model
requiring the simultaneous computation of the forward and backward problems, this expense is dou-
bled. This problem is very common in variational models, and as such there has been a lot of research
into the development of NMG methods with the purpose of greatly reducing CPU cost in solving such
problems [19,24,30-32,43]. In particular we note the work done by Chumchob-Chen in [19] where they
developed a robust NMG framework for diffusion type models (though their model cannot avoid mesh
folding).

Now we propose to use a similar NMG framework applied to our inverse consistent model. In addition
we will also perform a more accurate analysis of the NMG scheme compared to that presented in [19],
in order to obtain a better measure of what is required to achieve optimal convergence for the NMG
scheme.

2.3 A non-linear multigrid framework

Here we will present our NMG framework based upon [19]. Multigrid methods stem from two key
observations

O1: Iterative solvers, such as the Gauss-Seidel method, are effective at removing (smoothing) high
frequency error components within a small number of iterations. Low frequency error components
dominate convergence rates.

02: Smooth errors (low frequency) are well approximated on coarser grids. Coarser grids have less
unknowns making it feasible to do a larger number of iterations without increasing the overall cost.
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By using these observations, we can restrict our problem on a fine grid to that of a much coarser grid,
by alternating both smoothing and coarsening steps. On this very coarse grid, we are able to obtain a
much more accurate approximation in significantly less time. From this accurate approximation, we can
interpolate back up to our original fine grid to obtain an approximation to the original problem. Now
we briefly outline our proposed ‘full approximation scheme’ NMG (FAS-NMGQG) algorithm (See [4] for
details) within the two-grid setting We begin by denoting the original fine grid by Q" and the coarse
grid by Q with intervals h = — and H = 2h respectively. Next we write the PDEs from (2.25) using
the following operator notatlon

Nl 0" =61, N3 o' =g; (2.29)

where N and G" (m = 1,2) are sized 2 vectors consisting of the non-linear LHS and initial zero RHS of
the discrete EL equations (2.25) for u”, v" respectively. Then the FAS-NMG framework, in the two-grid
setting, is as followed

Algorithm 1 ugﬁﬂ),v;ﬁ“)} + FAS-NMG(R", T" n, h, u(k) ék),g?,gg,a,yl,ug)

1: Pre-smoothing step by performing 11 steps to update up, 7(k) — SMOOTH(Rh T u (k) .G a, Vi)
2 and then vy, *"” + SMOOTH(R", T" v,ﬁ’”, Gl a, 1)
3: Coarse-grid correction

Compute the residuals rgkh) =Gl - Nt [ug@, ﬁék)] rékh) - N4 [’U<k) _(k>]

Restrict residuals and smooth approximations rfﬂ) =RHr ff)h, alt) = =RHla <k) 7(") RhH@,(lk)

Set H = 2h

Form RHS of coarse grid PDEs Gf = r{f + N{[a}; (k) 7(k)] Gy =ri + N [ul; (k) 7(k)}
4: Solve to obtain solutions u(}?), ) to high accuracy using a coarsest grld solver.

(k) _ (k) = (k) (k) (k) —(k)

Compute the corrections e;

—Ug, €p =
Interpolate the corrections to original fine grid level egk,z = IH (1’?{, <k) IH (k>

n (k) —(k)+ (kh) Aik) —(k)+ (k)
= ey,

: Post-smoothing step by performing v» steps (relaxation sweeps) u (kH) «— SMOOTH(R", T", AEP, 91 , Q1)
,g’““) ~ SMOOTH(R",T",%", Gk, a,v1)

Update current grid level approximations using correction 1,

D ot

This Algorithm 1 can be refined on its coarse grid to recursively interact with increasingly coarser grids
until a desired level is reached (e.g. 8 x 8), thus leading to the full v-cycle scheme. Out of the three
main steps in the NMG framework (smoothing, coarse grid solver, correction), the smoothing step is the
most crucial to the convergence of the scheme. As was highlighted by O2, only ‘smooth’ errors can be
approximated on a coarser grid, thus any remaining high frequency error components can no longer be
removed once the problem has been restricted to a coarser grid (where high frequency error components
form the fine grid are not present or visible) which in turn means the NMG will take longer to converge
as well as being less accurate.

2.4 Three collective pointwise smoothers for (2.25)

Here we will present three different smoother schemes to be used in our NMG scheme.

First Pointwise Smoother (S1): For our first smoother we consider the simplest type of smoother
scheme to solve the system (2.25), namely we use each equation to update each displacement indepen-
dently. We do this by using the following fixed point iteration scheme

a(AM )Y (Fa(uh o) =0, —a(arl)Y 4 (G o) T =0 (2.30)

o))

(
- (&ZLlTh(Jh + ug),xz + U )k((Th 1 "“ullﬂ)vﬂj2 "Hél)))k - (Rh(xl’m»k)’
(Fg(uh,vh)),(fﬂ) —6(( ) (1) (U ) )

(@ T ol + ) (74 0l ), (R ,2)), ),

where

(Fl(uh,v )) (I+1) 75(( ) lJrl)+
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<uw%““fﬂwm>wMU

) (( (1 + o, $2+U(l)))k - (Th(acl,xg))k),
(

v1

)
(

( u,v )z+1 <( )(H-l)
(

@)

JF
k
O]
+ (“g)k )
xr1 + vl ,:cz +U37))

R"
) ( RM(xy Jrvg)’x +v(l+1)))k - (Th(xl,zg))k). (2.31)

Now in order to deal with the non-linearities in the force terms of (2.30), we use the same treatment as
that used in [19], namely we linearise the force terms using first order Taylor expansions. Replacing the
non-linear force terms in (2.30), with their first order approximations, leads to the following smoother
scheme at step (I) to update the (I + 1) terms

(8 RM x1—|—v I2+U(l))
)

— (o) R"

V2

(AR 4 5"+ (o)
(WTWWWW ()™ = (uh)) (@2, 72)) = (BY),] = 0.
—a(Ar] )<z+1)5((vm)<z+1) (u )S)
(00, ) (R0 + ()™ = () ) (00, BE) — (@), ] =0

for m = 1,2. In order to compute the (I + 1) terms in (2.32), we use a lexicographic Gauss-Seidel
(GSLEX) based method.

h
m

»—l\_/

Second Pointwise Smoother (S2): Following the smoother proposed by Chumchob-Chen [19], for
our second proposed smoother, we will fully couple all 4 PDEs together by using a similar scheme to
(2.30) and new fixed point lineralizations as follows

(Fl(uh,vh))l(jﬂ) :5(( )(l+1 (v )(l+1)
(" (21 +ul™, 2o +uf ™)), — (Rh(f’?hxz))k)’
) (1+1)
(T"(x ) v+l s uy ) - (Rh(xhxz))k)’
(Gl(uh, ))(z+1)_5<( )(z+1 T (u )(l+1))

— (@ By + ol o+ o) (R @1+ oD 4ol T)) = (T (21,2)) ),
(Gatu 0"), " = B((05), T + (uh) )

— (9" Ry + ol 2y +U(l)))k((Rh([g + ol gy (l+1)))k _ (Th(zl,xg))k>. (2.33)

—(8Z]Th(x1+u§ ,x2—|—u X

'
i
(F2(uh,vh)),(€l+1) = 3(( )(z+1 (v
i

_ (ah Th(xl +'LL§),$ +’LL(l) .

Next we linearise the force terms (2.33) by applying Taylor approximations to the discrete force terms
(2.33), we obtain the following smoother scheme to update the (I 4 1) terms at step (1)

ma(Ah) 5 () ()

HOLTDL [+ (™ = 0 ) T+ (™ = ) @] <o

<h>ﬁ1 W®” + (uh),

(@ R (R + (@) = @0),) @L R, + ()™ = (o)) (@, RY), ] =0
(2.34)

u u

v

for s,t = 1,2 and s # t. Similar to S1, we use a GSLEX based method on (2.34) to update the (I + 1)
terms.

Third Pointwise Smoother (S3): The above 4 x 4 system which must be solved at every discrete
interior point in (2.34) is computationally expensive. For this reason we propose an alternate, simplified
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version of S2 while still maintaining some coupling in the equations. We propose to use a similar scheme
0 (2.30), except now we have the following force terms with fixed points specified differently

(Fl(uh,v ))(H-l —ﬁ(( )(l-‘rl) (U{l)(l-’rl))
— (00, Ty +ul 23+ uf) k((T v+l e+ uy))), — (Rh(‘rl’xQ))k)’
(FQ(’U,h”Uh))](cl+1) _ B(( )(l+1 (’I_)h) l+1)>
(

2
— (O T + a4 u)),

. T (xy —|—u1 , T —|—u(l+1)))k—(Rh(;gl,m))k)’

(Gt o) = () + ())
— (@, B (a1 + o 22+ o) (R @1 + oz 4+ 0l)), = (T (21,2)),, ),
(Gata o) = (R + )
— (9 R"(a +v§),x2+v§”))k((3h(x +ol, +v(l+1)))k—(Th(rl,fvz))k) (2.35)

Again, after using Taylor approximations to linearise (2.35), at iteration step (I) we have the following
smoother scheme which we use to compute the (I + 1) updates

a(Ahuh )(l+1) +,3(( )(l+1)
LT+ (0L - ()Y @Y - ()] <o

k k Um ™~ U

( )(l+1)

+

(2.36)

oA B () ()
(0, BA) (R + (b)) = @)Y @0, Y)Y = (1), ] =0

for m = 1,2. As we did for S1 and S2, we use a scheme based upon a GSLEX method to compute the
(I + 1) updates in (2.36).

3 Analysis for the NMG algorithm

As we mentioned at the end of §2.3, the effectiveness of the smoother scheme has a severe impact on the
convergence of the NMG scheme. In order to determine how effective a given smoother scheme is within
the NMG framework, we look to compute the so called ‘smoothing rate’ of the scheme which gives us
an insight into how effectively the chosen smoother removes high frequency error components. However,
before we look at computing the smoothing rates of our three proposed smoothers from §2.4, we must
first determine whether each of the proposed smoothers are suitable for use as pointwise error smoothing
procedures. To do this we must compute the h-ellipticity for each of the proposed smoothers. For both
calculations (i.e. smoothing rates and h-ellipticity values) we can use local Fourier analysis or LFA.

3.1 Local Fourier Analysis (LFA)

In order to analyse the h-ellipticity and smoothing rate of a given smoother scheme, we can use a
technique called LFA. Originally LFA was designed to only analyse the smoothing properties of discrete
linear operators, however the work done by A. Brandt [4] proposed to locally 'freeze’ the coefficients of
non-linear operators thus enabling the use of LFA for non-linear operators such as the one in (2.30). In
LFA [13,19], we begin by considering our problem over an infinite grid (thus removing any influence from
the boundary conditions), and then assuming that the discrete form of a variable non-linear operator can
be replaced by a constant linear operator and extended to this infinite grid, which we define as followed

Q= {:L' €0 x = (x1,25)" = (ih,jh)" fori,j e Z+} (3.1)

10



284

285

286

287

288

290

291

293

204

296

297

298

300

302

303

305

with grid interval h defined by h = —1-. In addition let us also define the grid functions ®" (x,6) =
exp (£02), where 6 = (61,05)" € ® = [-7,m)°, & € O° and i = v/—1, which when a discrete linear
operator £" is applied gives

c'eh (z,0) = L" (6)®" (z,9) (3.2)

where £ (6) denotes the Fourier symbol of L™ (see [45,46]).

3.2 H-ellipticity measure for the proposed smoothers

For effective smoother schemes, the measure of the h-ellipticity is a key component which must be
considered. This measure is used to ascertain whether a given smoother scheme, such as the ones we
outlined in §2.4, are sufficient for use as pointwise error smoothing procedures for the given discrete
operator within a multigrid framework; if not, one must consider line or block smoothers or problem
reformulation.

We will now demonstrate that our proposed smoothers from §2.4 can be constructed for the given discrete
operator, and can therefore be used in our proposed NMG scheme. To do this we use a similar calculation
to the ones shown in [19,30,35,45,46] applied to the smoother schemes (2.32), (2.34) and (2.36) at some
given outer iteration step.

H-Ellipticity for Smoother S1: We begin by writing (2.32) in the following operator form

ciw" = g" (3.3)
with
—aAl 4+ Ui’l + B 0 0 0
ch = 0 —al" + oy + 0 0
1 0 0 —aAr + 7+ 8 0 ’
0 0 0 —aA" + 7 + B
g{l_Fl uhavh) u}f
h h ok h
h_ | 95 — Fo (uh,0") no | ub
g = g5 — Gy (ul,o") [ I P (3.4)
gt — Ga (u",v") v}
where
Fp (uh,o") = (98 T ul, — goh, — (98 TP (T — R"),
G (uP 0") = (38 RM)* R — Bul, — (98 RM) (R —1T"),
opy = O Tuds Th, 7y = Ol RLOL Ry, (3.5)

for m,p,q = 1,2. Since LFA is a local method for a nonlinear problem, we apply the analysis separately
to each individual grid point. This then leads to a local discrete system which is only defined within a
small neighbourhood of the discrete grid point (é,5). Applying our discrete linear operator L',? to the
grid functions ®" (z, 0) yields the following

LIe" (x,0) = L, (6) ®" (,0) (3.6)

where ZZ? (8) denotes the Fourier symbol of the operator £7, and is given by (letting a = 8 — a.Z" ()

ol +a 0 0 0
~h _ 0 ohy +a 0 0
£,(0)= 0 0 ™ +a 0 (3.7)
0 0 0 ™ +a

11
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also with .Z" (0) denoting the Fourier symbol of the discrete Laplace operator A", Then, the h-ellipticity
measure is calculated from the following

o (Lh) _ min{’det (2? (0))’ 10 € @hz‘gh} 38)
AT max{’det (i',}ll (0))’ 10 € G)} '

where © = [, 7r)2 and Op;gp, = O\ [fg, g)z denotes the high frequency range. It can be shown that

N o 4 N 3 R 2
det (ch (9)) = ot (zh (0)) — a3 (dy + 1) (Zh (0)) + 02 (dy + crdy + ) (gh (9))
-« (Cldg + C2d1) (.,?h (0)) + cods (39)
where
1 =0ty + 0%y + 28, ¢ = o105, + B (of) + 0%) + 5
dy = Ty + To5 + 28, dy = T4 7o + B (s + 70) + B (3.10)
From [19], it was shown that
oh 2 ‘ ‘
-Z£"(0) = ﬁ<2— (cos 0y —|—00592)), (3.11)
. 2 5 8
. _oh _ 2 _ oh _°
ol (=2"0) = 5w (<27 0) = 15 312)
thus (3.8) becomes
(0 ) L 2 e g )
1 1 =
(40%68(14 + 512&3;(;§l+61) + 640(2(d+hc41dl+cz) + 8a(cld}?2+02d1) + ngg)
16a* + 8a3 (dy + c1) h? + 4a? (dyc1dy + co) h?
+ 2« (Cldg +02d1)h6 +ng2h8 3.13
B 40960&4 + 512043 (dl + Cl) h2 + 64&2 (dJrCldl + CQ) h4 ( ' )
+ 8« (CldQ + C2d1) h6 + (ngg) hs
and so, taking the limit as h — 0, we get
6l (20)) = -
lim &1 (ﬁl ) = 52 (3.14)

From this result, we can conclude that the h-ellipticity measure is always bounded away from 0 regardless
of the values of «, 3, h, JI’}q, T[ilq for p,q = 1,2. Or in other words, the results do not depend on the

given images R, T, the choice of parameters «, S or the mesh interval h. Therefore we can conclude that
smoother S1 is sufficient for use as a pointwise error smoothing procedure.

H-Ellipticity for Smoother S2: Now we repeat the h-ellipticity calculation procedure for smoother

S2. Similar to smoother S1, we get the following Fourier symbol for the operator Lg (again a =

B —aZ"(0))

0?1:— a haﬁ I} 0
Py | 12 Opta 0 B
L,0=| 0 thia b (3.15)
0 153 T{‘Q 7'2’12 +a

where .Z" (0) again denotes the Fourier symbol of A" and az}}q, Tz’fq are as in (3.5). The h-ellipticity for

LY is computed using

o (Lh) _ min{‘det (ﬁ; (0))‘ 10 € @high} (3.16)
P max{‘det (ﬁ; (0))‘ 10 € @} . '

12



322 Simplifying the determinant we get

det (ZZZ (0)) = (a{b1 + a) (032 + a) (Tlhl + a) (T2h2 + a) — (O'{Ll + a) (032 + a) (T{’Q)Q
) )

(11 +a) (s +a (Ufz)Q - (0?1 +a) (Tzhz + a) B2
— (o +a) (155 +a) 8% + (‘7?2)2 (71h2)2 — 207,75 8% + B*
— ot (D?h (0))4 P (dy + 1) (jh (0))

+a? (dg +c1dy + o — 5 — ds + 252) (jh (0))2
—a(erdy + cody + 3 + d3 + c1ds + dics) («iﬁh (9))
+ cody + 4 + ds — docs — cads + csds + 28* (3.17)
323 where ¢y, ¢o,dy, dy are as in (3.10), and
cs =02 (o + 7 +2B), ca=B (B2 +B (ol +74) + oty + 7)), 5 = (0?2)2
dy = B2 (0% + dy +26) , dy = B2 (82 + B (ohy + 7o) + 0By + 7o), ds = ()" (3.18)

324 From the h-ellipticity calculation of smoother S1, we see that the value of the limit (3.14) as h — 0
sz depends only on the coefficient of the a* term. Thus we get

~h 1
lim &% (£5(6)) = o 1
p G2 L, (6) 256 (3.19)
326 and so smoother S2 is suitable for use as a pointwise error smoothing procedure.

sz H-Ellipticity for Smoother S3: Finally we once again repeat the h-ellipticity calculation for our

328 simplified smoother S3. Doing so gives the following Fourier symbol for the operator Eg

ot +a 0 B 0
hoa 0 ohy +a 0 5
o= AT (3.20)
0 B 0 ™ +a
220 where 2" (0) again denotes the Fourier symbol of the discrete Laplace operator A and op,.Th are as
330 defined in (3.5) for p,q = 1,2. We compute the h-ellipticity using the following
min{‘det (2:2 (9))‘ 10 € @high}
&h (c’g) - . (3.21)

max{‘det (Z:Q (9))‘ 10 € ('-)}
331 Further from
det (ﬁg (0)) = (0{11 + a) (032 + a) (Tlhl + a) (72]12 + a)
— (o +a) (1 +a) B2 — (05 +a)
o 4 o R 2
_ (.zh (0)) o (dy + 1) (gh (0)) + a2 (dy + crdy + co + 25%) (.zh (9))
— a(erdy + cady + c3 + d3) (jh (9)) + cody + ¢4 + dy + (3.22)

32 where ¢1, ¢o,dy, dy are as given in (3.10) and c¢s, ¢4, d3, dy are as given in (3.18), we get the following

. L h 1
lim &7 (z:3 (9)) = 5 (3.23)

333 Thus we reach the same conclusion, namely the h-ellipticity is always bounded away from 0, and so
:3a  smoother S3 is sufficient for use as a pointwise error smoothing procedure.
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3.3 Smoother analysis of the proposed smoothers

We now consider how effective our smoother schemes from §2.4 are at removing high frequency error
components. The discrete residual error, as shown in §2.3, can be split into the sum of low frequency error
components (which can be well approximated on a coarser grid) and high frequency error components
(which disappear on coarser grids due to aliasing). For this reason, one key aspect of the NMG framework
is the removal of all high frequency error components before we restrict to a coarser grid. We can use
LFA to approximate the smoothing rate of a given smoother scheme, and from this we can obtain an
estimate of how many smoothing steps we will need to remove the high frequency components if we aim
to reduce the error by 107! (typical in a NMG context).

LFA for Smoother S1: We begin our calculation of the smoothing rate by writing the discrete system
(2.32) in the following way

Liw" + Mhiwh = g" (3.24)

where £" w", G" are as defined in (3.4), and

—oty 0 B 0
0 —oh 0

T B T g (3.25)
0 8 0 -1

with O’Zqﬂ';gbq as in (3.5) for p,q = 1,2. Also we can rewrite the discrete Laplace operator as A" =

L+ L+ L where L, L, £ define the following stencils

1 0 0 O 1 0 0 0 1 01 0
h_ ho_ h _
Ll=15 10 0 . f=510 —4 0], 2"=10 0 1 (3.26)
010 0 0 0 0 0 0
and so, we can write (3.24) in the following way
‘C}11+'U’Zew + L}ll()uﬁew + ‘C]f—ugld + M}ll’u’gld = gh (327)
where we have denoted the current and previous approximations of u”, v" by u”,,, v . and u", v",
respectively, also with
—aZt 0 0 0 —aZ" 0 0 0
_ h _ h
P afl 0 0 | |0 agh 0 0
0 0 —aZh 0 0 0  —aZh 0
0 0 0 —a Lt 0 0 0 —azh
—a P+ o+ 0 0 0
ch= 0 —a Ly +oly+ B 0 0
1o 0 0 —a P+ + 8 0
O O 0 —Oéoiﬂoh + 7—2}12 + ﬂ
—oty 0 B8 0
h
h _ 0 —022 0 5
M7 = 3 0 —rh 0 | (3.28)
0 B 0 —7

Now subtracting (3.27) from (3.24) we can obtain the local error equations given by
{E?+ + ﬁ}fo} €hew = — [ﬁ’ff + M}f} ebia (3.29)

h h h

T . . .
where el = (el*, €5 41 €3 4 eff*) . Then we expand the local errors in (3.29) using Fourier components

to give

new 2i01im 240957 o 2i01im 2i0o 7
eﬁew = Z P exp ( hl + ; )» egld = Z T/’eld exp ( hl + }j > (3.30)
6cO® 0cO

14
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where 1, are Fourier coefficients, 4 = v/—1 and © = [, 77)2. Using the Fourier component form of the
errors in (3.30), allows us to rewrite the local error equation (3.29) in terms of these Fourier components.
Then we get

~h ~h 2e01im 240957 R ~ h 21601im 216951
21, @+ 210 @] vy o (574 ZRIT) — (21 (0) + K4} 6)] gt o (T 4 22

h h h h
(3.31)
where
—5 (e7™2 e - 0 » 0 0
0 L (e7™2 4 g™ 0 0
— h? . .
£’1+ (0) 0 0 _% (e—zwg + e—zwl) ‘ 0 .
0 0 0 — 5 (e7iw2 4 gmien)
— 5 (et + etn) 0 0 0
h B 0 — % (e 4 eten) 0 0
‘Cl — (0) - 0 0 _}% (eiwz + eiw1) 0
0 0 0 _% (eiwg +eiw1>
et ol +8 \ oh 0 0
0 25+ o095+ 5 0 0
L,(0) = Rt 22 N
10(0) 0 0 S+ +8 0
0 0 0 B+h+s
—oh oh B 0
~ h 0 —0 0
Mio-| 5 ; (3.32)
0 153 0 —7h

and with w,, = 2”,?’” for m = 1, 2. Finally, we compute the local smoothing rate using the following
~h
Hioe = fioc (0) = sup {p (Sl (0)) :0¢ @high} (3.33)
where @y, = [77r,7r)2\ [fg, g)Q denotes the high frequency range, p (-) denotes the spectral radius

o h
and 8, (@) denotes the amplification matrix given by the following

~h N ~h
1—

8l 0= [21, 0+ £1,0)] [ (0)+ A1} 0)] (3.31)

form=1,2.

LFA for Smoother S2: Now we repeat the smoothing rate calculation we used for smoother S1, but
this time for smoother S2. Doing so we compute the local smoothing rate from

fitoe = fitoe (8) = sup {p (SZ (0)) . 9e @,ngh} (3.35)

with amplification matrix
~h ~h ~h “lr.n < h
5,(0) = — L5, (0)+ £30(0)]  [£5_(8) + K1, (0)] (3.36)

where 2',;+ (0) and ﬁ;_ (0) are the same as ﬁ}er (0) and 2',?_ (0) from (3.32) respectively, and

% + Uh?l + .y J?}QL B 0
~h o 73+ o095+ 0 0 B
L 9) = 12 h2 22
20 (6) 8 0 eyt
0 B 7—1h2 % + 7'2h2 + 8
—U% —0?2 0 0
~ h _ _0'12 _UQL2 O O
Myo)= |0 R L (3.37)
0 0 —T1h2 —7'2}‘2
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373

Remark 3.1. We remark that if we set § = 0, then the smoother analysis becomes similar to that shown
in [19]. However the analysis in [19] led to an overestimation of the smoothing rate due to omitting

< h
the lagged displacements (as shown by the M (0) matriz), which resulted in an underestimation of the
number of smoother steps required and thus a less effective NMG scheme.

LFA for Smoother S3: Again we repeat the smoothing rate calculation, this time for smoother S3.

We compute the local smoothing rate using the following

~h
Hioe = Hioc (6) = sup {p (83 (0)) :0 ¢ @high} (3.38)
with amplification matrix
~h “h ~h “lr.n ~ h
55(0) = — L3, (0) + £30(0)]  [£5_(8) + K15 (0)] (3.39)
~h ~h ~h ~h .
where L5, (0) and L3 _ () are the same as £, , () and £, _ (0) from (3.32) respectively, and
wrohts 0 B 0
“h 0 do L oh 4+ 0 B
0 — h2 22
£30(0) B 0 o+ +B 0
0 B 0 e+l +8
—ohy 0 0 0
LI 0 —oh, 0 0
M, (0) = 0 0 b0 (3.40)
0 0 0 -
Smoothing Rate Examples:
3 S1 S2 S3
“ Havg Tol 10~ Havg Tol 1071 Havg Tol 10~
0 0.72942 8 0.73352 8 0.72942 8
L1102 | 079205 10 | 0.72972 8 0.72526 8
10* | 0.93335 34 0.73178 8 0.72545 8

Table 1: Comparison of the smoothing rates of the proposed smoothers S1-S3 for parameters o = %
and 3 = 0,10%,10* after 5 inner and outer iterations on a 32 x 32 grid for Example 2 as shown in Figure
2. For each smoother, the smoothing rates and number of inner iterations required to reach an error
reduction of 10~! are shown.

From Table 1 we see that as the value of 5 increases the smoothing rate for smoother S1 gets closer
to 1. For this reason we conclude that smoother S1 is not suitable for use in the NMG framework as
this increase in smoothing rate would require an unreasonable number of smoother steps for practical
applications as shown by the number of iterations required to reduce the error to a tolerance of 1071
from Table 1. We also see that the rates for smoothers S2 and S3 remain stable even as the value of
B increases. In addition, owing to this stability, we see that for both smoothers S2 and S3 8 smoother
steps are sufficient to reduce the error to a reasonable level before restriction.

3.4 Coarsest grid solvers

By using a NMG framework we are able to restrict our original problem on a large grid to a very coarse
grid (e.g. 8 x 8). On this coarsest grid our aim is to solve the problem as accurately as possible, owing to
the low computational cost, and so we need a designated solver for use only on this coarsest grid. Here
we will present 2 coarsest grid solvers, based upon smoothers S2 and S3 from §2.4. It is also possible
to estimate the convergence rate of a given coarse grid solver using (3.33) with @ € © instead of only
being restricted to the high frequency range ®y,;4%, and from this rate we can approximate the number
of iterations required to reach a desired error tolerance similar to what we did with the smoothing rates.
However this analysis can only be performed on a very coarse grid, such as a 8 X 8 grid, and in this paper
we do not present the details of this analysis.
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First Proposed Coarsest Level Solver C1: From §2.4, we know that on the coarsest grid we are
looking to solve the system of equations shown in (2.34) with coarse grid interval width H instead of the
fine grid interval width h. Equivalently we can express the system (2.34) in the following matrix form

At = FH (3.41)

where AH ¢ R4(n=2)"x4(n=2)* 4pq wl FH ¢ R4(n=2°x1 gr¢ given by

Al A I, 0 ull FH

- Al A o T ull | 4 FH
H _ 2 2 12 _ 2 — | £2

0 I, B B vl GY

where A? BH ¢ R(=2°x("=2)” re the block tri-diagonal system matrices reflecting the coefficients of
the (u! )(l+1) (UH)(Z+1)

K terms at the various neighbouring pixels for each discrete interior point k respec-

tively, AH B’H € R("=2°x(n=2)* yp6 the diagonal matrices corresponding to the (utH)iHl), (th)ilH)

terms in the (uf )](CZH) (v )UH) equations respectively, I, = I where I denotes the (n—2)2 x (n—2)?2
identity matrix and w!!, v, FH G ¢ R("~ 2*x1 are the column vectors consisting of the displacements

(us )(z+1), (Us )(l+1) nd RHS terms (FH)(ZH (GH) (1+1) given by

(FI), = (1T)?) (ufh), + @), DT, (uf'),

— (@7, (1), - (r),)
(GH), = (O RI?) (off), + (OF R, GHRE), (o),
— (ORI, (R, = (17),) (3.43)

for s,t =1,2, s#tandk=(j—2)(n—1)+ (i —1) for i,j = 2,...,n — 1. We then solve the matrix
equation (3.41) using a direct method, that is we solve

o 2 (3.44)

Second Proposed Coarsest Level Solver C2: Similar to what we did for C1, we can express the
system (2.36) on the coarsest grid in the following matrix form

Ayt = pH (3.45)
where AH € R4(n=2)"x4(n=2)* ha5 the following structure

AL 0 I, o0

Ar_| 0 Al 0 I
| L o Bf o

o0 I, o Bf

(3.46)

where AH BH € R=2"x(n=2)% ang oy oH FH GH € R(=2°X1 have the same structure as shown

m> Ums

in C1, with RHS terms (FH)(ZJr1 (Gﬁ)g+ ) given by

(), = (@277 (uth), - 02 1), (), - (B),)

(GH), = (L RY)?) (o) — (O B ((RE), = (T7),). (3.47)
Again we solve the matrix equation (3.45) in a similar way to that shown in C1.
4 Numerical results

Now we will present some experimental results comparing three models, these are
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413

415

416

417

418

(i) A NMG scheme, similar to our proposed scheme, applied to a standard unidirectional diffusion
model which we denote by DNMG.

(ii) Our proposed NMG applied to our inverse consistent model , equipped with smoother S2 and solver
C1, which we denote by ICNMG1.

(iii) Our proposed NMG applied to our inverse consistent model , equipped with smoother S3 and solver
C2, which we denote by ICNMG2.

Using these results we will demonstrate how our new ICNMG models produce comparable results, both
visually and numerically, to the DNMG model while maintaining non-folding results even in the case
of a ‘bad’ parameter choice. In addition we will also show how our simplified smoother S3 in ICNMG2
improves upon the CPU time, while maintaining the same level of accuracy, compared with ICNMG1
which uses the fully coupled smoother S2.

In order to gain a qualitative measure in the accuracy between the two models, we choose to use the

_ 2 _ 2
structural similarity (SSIM) [41] and relative errors Errp = % % corresponding
2 2

to the forward and backward transformations respectively. Additionally in [11] it was shown that the
quantity Qmin = det (V) can be used to indicate the presence of folding if @Qin < 0, likewise if
Qmin > 0 this indicates that no folding is present. Moreover, we will consider the NMG method to have
converged only if one of the following criteria have been met; Average relative residual reaches e, = 1072,
maximum relative residual reaches e, = 1072 or the number of NMG cycles reaches 5 = 15. It should
also be noted that for our proposed ICNMG models, we only consider the NMG to have converged it
both the forward and backward problems have converged according to the above stopping criteria. For
all models we select the weighting parameter o = %5, and in our ICNMG models we set the second
parameter to be 8 = 10*. We performed our experiments on 3 sets of real lung CT images as shown in
Figure 2. We also note that in Tables 2-8 green Q),,;, values indicate no folding in the transformation,
while red values indicate folding is present in the transformation.

, BErrgp =

(a) Reference R of Example 1 (b) Reference R of Example 2

(d) Template T of Example 1 (e) Template T of Example 2 (f) Template T of Example 3

Figure 2: Three Pairs of Test Images.

Example 1 Results: From Figure 3 we see that the DNMG model, as well as our ICNMG models,
produce visually very similar results. This trend is backed up further by the results shown in Table
2, where we see near identical SSIM and relative error values. In addition we see that our ICNMG
models produce larger CPU times when compared with the DNMG model, however this increase is to
be expected since our ICNMG models must solve additional equations. Moreover we also see that our
simplified smoother S3, which is used in our ICNMG model, produces noticeably smaller CPU times
when compared with out ICNMG1 model which uses the fully couple smoother S2 while maintaining
the same level of accuracy. Also since our ICNMG models require both forward and backward problems
to converge, we see a slight increase in the number of NMG cycles required when compared with the
DNMG model. This pattern of results is also seen in Table 3 where again all 3 models produce similar
results with our ICNMG models requiring an additional NMG cycle to converge plus larger CPU times,
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with our ICNMG2 model being significantly faster than our ICNMG1 model. In all cases we see that
all models produce positive @i, values which indicates no folding is present in the transformations.

Example 2 Results: In Example 2, wee see the same pattern of results that we did for Example 1.
Namely near identical results both visually (Figure 4) and numerically (Tables 4 and 5) with larger
CPU times for our ICNMG models, and our ICNMG2 model much faster than our ICNMG1 model.
In addition all 3 models produce non-folding results in all cases. However when considering the ‘bad’
parameter case o = % in Table 6, we see that the DNMG model produces negative Q,;n values
in 3 out of the 4 cases whereas both of our ICNMG models maintain the physical integrity of the
transformation while achieving the same level of accuracy in all 4 cases. An example of how the mesh
plots of the transformations from the DNMG model and our ICNMG2 model for the 128% example
from Table 6 can be seen in Figure 1. Here we see that the mesh from our ICNMG2 model is much
smoother than that from the DNMG model. We remark that the DNMG model can be modified to also
produce non-folding by resetting the NMG scheme with a larger parameter « if folding occurs, however
this solution extremely expensive computationally in addition to producing less accurate registration

results in terms of SSIM and error values.

Example 3 Results: From Figure 5 and Tables 7 and 8 we see the same trend in results that was
present in Examples 1 and 2, while we again see all cases produce non-folding transformations.

Testing of sensitivity of parameters for ICNMG2 model: Here we perform a test on how robust
our ICNMG2 model is to the choice of parameters a and 5. To do this we tracked the SSIM and
Qmin values across a total of 25 different sets of parameter values, that is all combinations resulting from
the parameters a = %7 1—15, %7 2—15, % and 8 = 0,10%,10%,10°%,105, and can be seen in Figures 6 and 7
respectively. In addition we remark that we have included a simulation for the DNMG model in our
tests by considering the parameter 3 = 0. From Figure 6 we see that our ICNMG2 model maintains
very similar SSTM values when compared with the DNMG model (8 = 0 column), and there is little
variation in the values as the parameter § is varied in our ICNMG2 model. However the advantage
of our ICNMG is shown more clearly in Figure 7 where we have tracked the Q,;, values across the
different parameter tests, here red indicates Q,,;» < 0 while green indicates Q,;, > 0. From this figure
we see that our ICNMG?2 is robust to folding for a much larger range of « values when compared with
the diffusion model which has a much more limited range of viable « choices.

5 Conclusions

In this paper we first explained how many standard variational registration models do no place any em-
phasis on maintaining the physical accuracy of the transformations, thus potentially leading to physically
inaccurate transformations with folding. Next we explained how inverse consistent models, such as the
Christensen-Johnson model proposed in [15], can help improve robustness to folding. We also mentioned
how the model in [15] is impractical for real medical image problems owing to the extensive computational
cost resulting from solving the associated minimisation problem. In order to help avoid this problem, we
first proposed a linearisation of the inverse consistency constraint from the Christensen-Johnson model
to remove the additional non-linearities arising from this term when compared with typical diffusion type
models, as well as alleviating the computational cost of directly computing the inverse displacements.
Next we proposed the use of a fast NMG framework, based upon the scheme proposed by Chumchob-
Chen in [19], along with 3 potential smoother schemes to further reduce the computational workload
of the proposed inverse consistent model. In addition we also performed an analysis of the 3 proposed
smoothers to determine their suitability for use in the NMG scheme, and how they can impact the con-
vergence of the NMG. Next we showed, using 3 sets of real lung CT images, how our proposed inverse
consistent model maintains the same level of accuracy as a unidirectional diffusion model using a similar
NMG scheme, while being robust to parameter choice and folding even in the case of a ‘bad’ weighting
parameter value which causes folding in the transformation obtained from the diffusion model.
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Tage Size n? Tnitial DNMG ICNMG1 ICNMG2
| SSIM/Erre(%) | SSIM/Erre (%)/NMG/CPU (5)/Qumin | SSIM/Erre (%)/N VG/CPU( )/Qmin | SSIM/Err (%)/NMG/CPU (s)/Quin
1282 0.915/0.35 0.938/0.22/1/0.167/0.553 0.938/0.22/2/1.498/0.180 0.938/0.22/2/0.879/0.130
2562 0.914/0.38 0.935/0.27/1/0.822/0.67 0.932/0.28/2/5. 150,/0 654 0.933/0.28/2/3.031/0.654
5122 0.939/0.37 0.953/0.27/1/4.082/0.669 0.049,/0.28/2/24.557/0.658 0.949/0.28/2/14.180/0.658
10242 0.958/0.37 0.967/0.27/1/18.818/0.667 0.964/0.29/2/111.034/0.656 0.964/0.29/2/66.814/0.656

Table 2: Example 1: Comparison of forward registrations between 3 methods on different image sizes

Tmage Sire n? Tnitial DNMG ICNMG1 ICNMG2
i SSIM/Errp(%) | SSIM/Errp (%)/NMG/CPU (5)/Qumin | SSIM/Errg (%)/NMG/CPU (s)/Qmin | SSIM/Errg (%)/NMG/CPU (5)/Qumin
1282 0.915/0.34 0.940/0.17/1/0.204/0.654 0.939/0.22/2/1.498/0.736 0.939/0.22/2/0.879/0.736
2562 0.914/0.37 0.936/0.22/1/0.874/0.57 0.934/0.27/2/5.155/0.718 0.934/0.27/2//3.031/0.719
5122 0.939/0.36 0.953/0.22/1/4.046/0.63¢ 0.949/0.27/2/24.557/0.695 0.949/0.27/2/14.180/0.695
10242 0.958/0.36 0.968/0.22/1/17.935/0.633 0.965/0.28,/2/111.034/0.686 0.965/0.28/2/66.814/0.686

Table 3: Example 1: Comparison of backward registrations between 3 methods on different image sizes

Image Size n® Initial DNMG ICNMG1 ICNMG2
SSIM/Errp(%) | SSIM/Erry (%)/NMG/CPU 5)/Qmin | SSIM/Erry (%)/NMG/CPU (s5)/Qmin | SSIM/Errg (%)/NMG/CPU (s)/Qmin
1287 0.808/1.02 0.892/0.37/2/0.415/0.451 0.891/0.37/2/1.582/0.353 0.890/0.37/2/0.640/0.241
2562 0.767/1.07 0.871/0.40/2/1.512/0.250 0.868/0.42/2/5.202/0.1! 7 0.868/0.42/2/3.025/0.024
5122 0.779/1.08 0.868/0.41/2/6.819/0.519 0.866/0.43/2/24.572/0 0.866/0.43/2/14.232/0.423
10242 0.828/1.08 0.892/0.40/2/31.895/0.520 0.891/0.43/ 2//111.561/(). | 1:; 0.891/0.43/2/66.537/0.413

Table 4: Example 2: Comparison of forward registrations between 3 methods on different image sizes

0.889/0.40,/2/31.370/0.405

Tage Size n? Tnitial "DNMG ICNMG1 ICNMG2
SSIM/Errp(%) | SSIM/Errg (%)/NMG/CPU (s)/Quin | SSIM/Errg (%)/NMG/CPU (5)/Qumin | SSIM/Errg (%)/NMG/CPU (5)/Qumin
1282 0.808/1.00 0.886/0.36/2/0.479/0.30 1 0.886/0.36,/2/1.582/0.155 0.885,/0.36/2/0.640/0.073
2562 0.767/1.05 0.861/0.38/2/1.561/0.212 0.861/0.41/2/5.202/0.220 0.860/0.41/2/3.0250.167
5122 0.779/1.06 0.862/0.40/2/7.054/0.419 0.861/0.42/2/24.572/0.366
10242 0.828/1.06

0.861/0.42/2/14.232/0.366

0.890/0.42/2/111.561/0.350

0.890/0.42/2/66.537/0.350

Table 5: Example 2: Comparison of backward registrations between 3 methods on different image sizes

Image Size n? Tnitial DNMG ICNMG1 ICNMG2
SSIM/Erre(%) | SSIM/Err p(%)/VMG/C‘PU( $)/Qumin | SSIM/Erre (%)/NMG/CPU ()/Qmin | SSIM/Errg (%)/NMG/CPU (3)/Qmin
1282 0.808/1.02 0.872/0.36/2/0.426/—0.245 0.896/0.36/2/1.521/0.360 0.886,/0.36/2/0.821/0.114
2562 0.767/1.07 0.855/0.32/4/2.182/—0.374 0.874/0.36/2/5.255,/0.220 0.871/0.36/2/3.355/0.316
5122 0.779/1.08 0.876/0.34/2/6.907/—0.141 0.872/0.36/2/24.525/0.098 0.871/0.36/2/15.225/0.214
10242 0.828/1.08 0.900/0.32/2/33.889/0.214 0.896/0.36/2/111.118/0.168 0.895/0.36/2/73.118/0.240

Table 6: Example 2: Comparison of forward registrations between 3 methods on different image sizes

for a ‘bad’ parameter value o = .
25
Image Size n? Initial DNMG ICNMG1 ICNMG2
8 SSIM/Errp(%) | SSIM/Errp (%)/NMG/CPU (5))Qmin | SSIM/Errp (%)/NMG/CPU (8)/Qmin | SSIM]Errp (%)/NMG/CPU (5)/Qumin
1282 0.847/0.94 0.908/0.34/2/0.324/0.230 0.910/0.37/2/1.414/0.259 0.900,/0.39/2/0.646/0.169
2562 0.805/1.05 0.899/0.31/2/1.418/0.513 0.897/0.32/2/5.147/0.467 0.896,/0.32/2/3.007/0.416
5122 0.805/1.08 0.884/0.32/2/6.941/0.481 0.882/0.32/2/24.795/0.491 0.882/0.32 /2/ 14.195/0.
10242 0.842/1.08 0.901/0.32/2/33.210/0.411

0.902/0.32/2/111.887/0.589

190

0.902/0.32/2/66. 789/l 588

Table 7: Example 3: Comparison of forward registrations between 3 methods on different image sizes

Tmage Size n? Initial DNMG ICNMG1 ICNMG2
SSIM/Errp(%) | SSIM/Errg (%)/NMG/CPU (s)/Qmin | SSIM/Errg (%)/NMG/CPU (s)/Qmin | SSIM/Errp (%)/NMG/CPU (s)/Qmin
1287 0.847/1.01 0.915/0.35/2/0.391/0.350 0.912/0.40/2/1.414/0.168 0.904/0.42/2/0.646/0.012
2562 0.805/1.12 0.899/0.34/2/1.485/0.525 0.809/0.34/2/5.147/0.459 0.898/0.34/2/3.007/0.461
5122 0.805/1.16 0.882/0.34/2/6.930/0.467 0.882/0.35/2/24.795/0.416 0.882/0.35/2/14.195/0.416
10242 0.842/1.16 0.899/0.34/2/33.301/0.440 0.902/0.35/2/111.887/0.435

).435

0.902/0.35/2/66.789//(

Table 8: Example 3: Comparison of backward registrations between 3 methods on different image sizes
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Image Size n? Image Example « DNMG ICNMG1 [CNMG2
‘ CPU (s) Ratio | CPU (s) Ratio | CPU (s) Ratio
1282 0.415 - 1.582 - 0.640
2562 1.512 3.643 5.202 3.288 3.025 4.727
5122 Example 2 (Forward) 11—5 6.819 4.510 24.572 4.724 14.232 4.705
10242 31.895  4.677 | 111.561 4.540 | 66.537  4.675

Table 9: Test on optimal complexity in CPU time ratio for 2 NMG methods. The optimal ratio is
approximately 4.5 for an O(NlogN) NMG method (with N = n?).

(a) Reference image R

(b) DNMG T,

(c) ICNMG1 Ty,

(d) ICNMG2 T,

(e) [Tu — R|

(f) DNMG [T, — R|

(g) ICNMG1 [Ty, — R|

(h) ICNMG1 [Ty, — R

Figure 3: Example 1: Registration of 2(a) and 2(d) of size 256 x 256 by 3 methods with initial error shown
by image (e). Images (b), (c¢) and (d) show the deformed template images obtained using the DNMG,
ICNMGT1 and ICNMG2 models respectively, while images (f), (¢) and (h) show the respective final

€rrors.

(e) [Tu — R|

(f) DNMG [T, — R|

(c) ICNMG1 Ty,

(g) ICNMG1 [Ty, — R|

(d) ICNMG2 Ty,

(h) ICNMG1 [Ty, — R

Figure 4: Example 2: Registration of 2(b) and 2(e) of size 256 x 256 by 3 methods with initial error shown
by image (e). Images (b), (¢) and (d) show the deformed template images obtained using the DNMG,
ICNMGT1 and ICNMG2 models respectively, while images (f), (g) and (h) show the respective final

€rrors.
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(c) ICNMG1 Ty, (d) ICNMG2 Ty,

(e) |Tw — R| (f) DNMG [T, — R| (g) ICNMG1 [Ty, — R| (h) ICNMG2 [T, — R

Figure 5: Example 3: Registration of 2(c¢) and 2(f) of size 256 x 256 by 3 methods with initial error shown
by image (e). Images (b), (c¢) and (d) show the deformed template images obtained using the DNMG,
ICNMGT1 and ICNMG2 models respectively, while images (f), (g) and (h) show the respective final
errors.

Alph
Alph

o4 s e 0 o4
Beta Beta

(a) Heat map of SSIM values over a range of parameter (b) Heat map of SSIM values over a range of parameter
choices «, B for the forward problem choices «, B for the backward problem

Figure 6: Comparison of how the SSTM values vary with different choices of the parameters o and 8
for Example 2.
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4 -0.200

o 10%3 10%4 10%5 10%6
Beta

(a) Heat map of Qmin values over a range of parameter choices «, 3 for the forward problem

Alpha

-0.200

0 1003 104 105 1008
Bela

(b) Heat map of Q.mnin values over a range of parameter choices a, 8 for the backward problem

Figure 7: Comparison of how the Q,,;, values vary with different choices of the parameters o and 3 for
Example 2.
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