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Improved Optimization Methods for Image
Registration Problems
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Abstract In this paper we propose new multilevel optimization methods for
minimizing continuously differentiable functions obtained by discretizing mo-
dels for Image Registration problems. These multilevel schemes rely on a novel
Two-Step Gauss-Newton method, in which a second step is computed within
each iteration by minimizing a quadratic approximation of the objective func-
tion over a certain two-dimensional subspace. Numerical results on Image Re-
gistration problems show that the proposed methods can outperform the stan-
dard multilevel Gauss-Newton method.
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1 Introduction

Image Registration is the task of overlaying two or more images of the same
subject taken at different times, from different viewpoints or by different sen-
sors. The goal of registration is to find a function that maps points of one
image to the corresponding points of the other image, providing a geomet-
ric alignment between the images. This process compensates the motion of
the subject or some difference between the sensors, allowing the images to be
compared and analyzed in a common reference frame [6]. A very important
application is the registration of medical images obtained from Computed To-
mography (CT), Magnetic Resonance Imaging (MRI) or Ultrasound (US), for
example. In this context, Image Registration helps in the direct comparison
of images taken at different stages of progression of a disease (e.g., a tumor
growth), which is essential for the correct diagnosis of the disease, for planning
the treatment and for monitoring the response of the patient [11].

Mathematically, the Image Registration problem can be described in the
following way. Consider two images, R and T . Image R (called reference) is
kept unchanged, while image T (called template) is kept transformed. These
images can be viewed as compactly supported functions R, T : Ω → R, where
Ω ⊂ Rd is a bounded convex domain and d is the dimension of the images.
Without loss of generality, in this work we shall consider d = 2. For each
pixel x = (x1, x2) ∈ Ω, the values R(x) and T (x) describe the darkness of x in
images R and T , respectively. The goal of registration is to find a displacement
field u : R2 → R2 such that T (x + u(x)) is similar to R(x) with respect to
some metric. Let us denote by T (u) the function given by

T (u)(x) = T (x+ u(x)).

Then, given a metric D(. , .) for measuring the dissimilarity between any two
images, the image registration problem can be stated as the following opti-
mization problem:

min
u

D(R, T (u)). (1)

A usual choice for D(. , .) is the L2-norm

D(R, T (u)) =
1

2

∫
Ω

(T (x+ u(x))−R(x))
2

dΩ. (2)

Problem (1) is an ill-posed problem. Thus, to avoid meaningless solutions, a
regularization term is included in the objective function of (1). The resulting
problem is

min
u

J(u) ≡ D(R, T (u)) + λS(u), (3)

where λ > 0 is a regularization parameter. The role of the regularizer is to
modify problem (1) such that it becomes solvable. A usual choice for S( . ) is

S(u) =
1

2

∫
Ω

|B(u(x))|2 dΩ. (4)
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where B is some differential operator.
Note that (3) is an infinite-dimensional optimization problem. In general,

this type of problem cannot be solved analytically, requiring therefore the
use of numerical schemes. There are two main numerical approaches to solve
infinite-dimensional optimization problems. The first approach, referred as
optimize-then-discretize, consists in differentiate the objective function (3) to
obtain the continuous Euler-Lagrange equation, discretize these equations, and
then solve numerically the resulting finite-dimensional equations. The second
approach, referred as discretize-then-optimize, consists in discretize the objec-
tive function (3) and then solve the resulting finite-dimensional optimization
problem by some optimization algorithm. Usually, the discrete optimization
problem has a very large number of variables. To solve it, several researchers
apply a Gauss-Newton method with a line-search (e.g., Armijo line-search) em-
bedded in a coarse-to-fine Multilevel optimization strategy. In this strategy,
images are registered progressively from lower resolutions to higher resolu-
tions, providing (by interpolation) the initial point for the finest resolution.
See, for example, [1,7,14].

In this paper, we propose two simple techniques to improve the performance
of the Multilevel Gauss-Newton algorithm on Image Registration Problems.
The first technique consists in the possible use of a second step within each
iteration of the Gauss-Newton method. This step is computed by minimizing
a quadratic approximation of the objective function over a two-dimensional
subspace. This subspace is spanned by the steepest descent direction and by
the L-BFGS direction with respect to the current point given by the Gauss-
Newton step. If such subspace step provides any decrease in the objective
function, it is accepted, otherwise it is discarded. The second technique is a
modification of the standard coarse-to-fine Multilevel strategy. At each level,
instead of using directly the interpolated solution of the previous level as the
initial point, we try to find a better initial point by minimizing a quadratic
approximation of the objective function over the subspace spanned by the
interpolated solutions of all the previous levels. If this new point results in a
decrease of the objective function value, it is accepted as the new initial point,
otherwise we proceed as in the standard coarse-to-fine approach.

The paper is organized as follows. In Section 2, we describe the methods
resulting from the two proposed techniques. We also present a convergence
analysis for these schemes. In Section 3, we report the results of extensive
numerical experiments showing the effectiveness of our new methods. Finally,
in Section 4, we summarize the contributions of this work and indicate some
directions for future research.

2 Optimization Methods

In this section we present the optimization methods resulting from the use of
our two novel subspace techniques, which are inspired by [13]. For clarity, we
start by describing the standard Multilevel Gauss-Newton algorithm.
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2.1 Multilevel Gauss-Newton Algorithm

Consider the optimization problem

min
u∈V

J(u), (5)

where J is a function from an infinite-dimensional vector space V to R. Let

Vl be a finite-dimensional subspace of V with basis
{
φ
(j)
l

}nl

j=1
at grid level l,

where nl is the dimension of Vl. By definition, it means that given any ul ∈ Vl
there exists a vector ul = (u

(1)
l , . . . , u

(nl)
l ) ∈ Rnl such that

ul =

nl∑
j=1

u
(j)
l φ

(j)
l . (6)

Suppose that we have nested spaces VN0
⊂ . . . ⊂ VN−1 ⊂ VN ⊂ V. For each

level l, we shall consider the discrete functional Jl : Rnl → R given by

Jl(ul) = J(ul), (7)

where ul is computed by (6). Thus, on level l, the discretized version of (5) is

min
ul∈Rnl

Jl(ul). (8)

In the discretize-then-optimize approach, our goal is to obtain an approximate
solution of (5) by solving iteratively its discrete version (8) for l = N . This can
be done by using the coarse-to-fine multilevel strategy, in which problems of the
form (8) are solved consectively for l = N0, . . . , N − 1, N , and the initial point
ul+1,0 for the discrete problem on level l + 1 is generated by “prolongating”
the solution u∗l obtained on level l. We shall denote by P l+1

l the prolongation
operator from level l to level l+1. Thus, in the coarse-to-fine strategy we have

ul+1,0 = P l+1
l u∗l , l = N0, . . . , N − 1. (9)

Given an initial guess ul,0 for the solution of (8), Newton’s Method generates
a sequence {ul,k} by the rule ul,k+1 = ul,k + tl,kdl,k, with

∇2Jl(ul,k)dl,k = −∇Jl(ul,k), (10)

where ∇Jl(ul,k) and ∇2Jl(ul,k) are the gradient and the hessian of Jl at ul,k,
respectively. However, in many situations the structure of the objective Jl
gives

∇2Jl(ul,k) = Hl,k +Al,k, (11)

where Hl,k ∈ Rnl×nl is an “easy” to compute symmetric positive-definite ma-
trix, while Al,k is “difficult” to compute. For these cases, the common approach
is the Gauss-Newton Method, where sequence {ul,k} is defined similarly but,
in contrast to (10), dl,k is obtained by solving the linear system

Hl,kdl,k = −∇Jl(ul,k). (12)

If the stepsize tl,k is computed by the Armijo line-search, we have the following
algorithm.
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Algorithm 1 (Gauss-Newton Method): u∗l = GN(l, ul,0)

Step 0 Compute ∇Jl(ul,0) and Hl,0 ≈ ∇2Jl(ul,0). Set η = 10−4 and
k := 0.
Step 1 If ul,k satisfies the stopping rules, stop and return u∗l = ul,k.
Otherwise, go to Step 2.
Step 2 Compute dl,k by solving the Gauss-Newton linear system

Hl,kdl,k = −∇Jl(ul,k). (13)

Step 3 Find the smallest integer ik ≥ 0 such that tl,k = (0.5)ik satisfies

Jl(ul,k + tl,kdl,k) ≤ Jl(ul,k) + ηtl,k∇Jl(ul,k)T dl,k. (14)

Step 4 Set ul,k+1 = ul,k+ tl,kdl,k and compute ∇Jl(ul,k+1) and Hl,k+1 ≈
∇2Jl(ul,k+1).
Step 5 Set k := k + 1 and go back to Step 1.

Remark 1 In the context of Image Registration problems, at Step 2 it is com-
mon the use of the following stopping rules:

|Jl(ul,k)− Jl(ul,k)| ≤ 10−3(1 + |Jl(ul,0)|) if k > 0, (15)

‖ul,k − ul,k−1‖2 ≤ 10−2(1 + ‖ul,0‖2) if k > 0, (16)

‖∇Jl(ul,k)‖2 ≤ 10−2(1 + |Jl(ul,0)|), (17)

‖∇Jl(ul,k)‖2 ≤ ε, (18)

and
k ≥ kmax. (19)

Specifically, the execution of the algorithm is interrupted when all conditions
(15)-(17) are satisfied or when any of the conditions (18) and (19) holds.

Very often, the discretization of Image Registration problems generate prob-
lems where nN is very big (e.g., nN > 106). Thus, when we apply the Gauss-
Newton Method to the discrete problem in the finest grid

min
ul∈RnN

JN (uN ),

the solution of the linear system (13) at each iteration can consume a lot
of time. Consequently, if the method starts from a bad initial point, it will
take many iterations to reach a solution, which will make the total running
time very big. However, if the method starts from a good initial point, it
will take fewer iterations to reach a solution, which can lead to a significant
reduction in the total running time. This is the motivation behind the coarse-
to-fine multilevel strategy, which is a technique to generate initial points. The
Multilevel Gauss-Newton Method can be summarized in the following way.
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Algorithm 2 (Multilevel Gauss-Newton Method)

Step 0 Set uN0,0 = (0, . . . , 0) ∈ RN0 and l := N0 (coarsest level).
Step 1 Compute u∗l = GN(l, ul,0).
Step 2 If l = N (finest level), stop and return u∗N . Otherwise, go to Step
3.
Step 3 Set ul+1,0 = P l+1

l u∗l , l := l + 1 and go back to Step 1.

2.2 Two-Step Gauss-Newton Algorithm

In order to enhance the performance of the Gauss-Newton method, we consider
the use of a second step after the Gauss-Newton step within each iteration.
If we obtain any reduction in the objective function value, the new step is
accepted. Otherwise, the new step is rejected. Since we are dealing with large-
scale problems, this additional step must be cheap to compute. Therefore, we
propose the following subspace procedure. Denote by ûl,k+1 the Gauss-Newton
iterate computed at Step 4 of Algorithm 1, that is,

ûl,k+1 = ul,k + tl,kdl,k, with Hl,kdl,k = −∇Jl(ul,k).

Let Ĥl,k+1 be the Gauss-Newton approximation to ∇2Jl(ûl,k+1) and consider
the quadratic model of Jl around ûl,k+1:

ml(ûl,k+1 + d) ≡ Jl(ûl,k+1) +∇Jl(ûl,k+1)T d+
1

2
dT Ĥl,k+1d.

We compute the second step d̂l,k+1 by minimizing ml(ûl,k+1 + d) over the
subspace

Sl,k+1 = span
({
dSDl,k+1, d

QN
l,k+1

})
,

where dSDl,k+1 = −∇Jl(ûl,k+1) and dQNl,k+1 = −Bl,k+1∇Jl(ûl,k+1) with Bl,k+1

being the approximation to
(
∇2Jl(ûl,k+1)

)−1
given by the Limited-memory

BFGS (L-BFGS) formula [5]. More specificaly,

d̂l,k+1 = α1d
SD
l,k+1 + α2d

QN
l,k+1, (20)

where α = (α1, α2) ∈ R2 is a solution of the quadratic minimization problem

min
α∈R2

gTl,k+1α+
1

2
αTQl,k+1α, (21)

with

gl,k+1 =

[∇Jl(ûl,k+1)T dSDl,k+1

∇Jl(ûl,k+1)T dQNl,k+1

]
(22)

and

Ql,k+1 =

[
(dSDl,k+1)T Ĥl,k+1d

SD
l,k+1 (dSDl,k+1)T Ĥl,k+1d

QN
l,k+1

(dQNl,k+1)T Ĥl,k+1d
SD
l,k+1 (dQNl,k+1)T Ĥl,k+1d

QN
l,k+1

]
. (23)
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Problem (21) is equivalent to the 2× 2 linear system

Ql,k+1α = −gl,k+1, (24)

which makes the computation of the second step d̂l,k+1 in (20) very cheap.

If Jl(ûl,k+1 + d̂l,k+1) < Jl(ûl,k+1), then we accept the new step and we de-

fine ul,k+1 = ûl,k+1 + d̂l,k+1. Otherwise, we reject the new step and we define
ul,k+1 = ûl,k+1. The resulting Two-Step Gauss-Newton method can be sum-
marized as follows.

Algorithm 3 (Two-Step GN Method): u∗l = 2SGN(l, ul,0)

Step 0 Compute ∇Jl(ul,0) and Hl,0 ≈ ∇2Jl(ul,0). Set Bl,0 = I, m = 3,
η = 10−4 and k := 0.
Step 1 If ul,k satisfies the stopping rules, stop and return u∗l = ul,k.
Otherwise, go to Step 2.
Step 2 Compute dl,k by solving the Gauss-Newton linear system

Hl,kdl,k = −∇Jl(ul,k). (25)

Step 3 Find the smallest integer ik ≥ 0 such that tl,k = (0.5)ik satisfies

Jl(ul,k + tl,kdl,k) ≤ Jl(ul,k) + ηtl,k∇Jl(ul,k)T dl,k. (26)

Step 4 Set ûl,k+1 = ul,k+ tl,kdl,k and compute ∇Jl(ûl,k+1) and Ĥl,k+1 ≈
∇2Jl(ûl,k+1).
Step 5 Set sl,k = ûl,k − ul,k and yl,k = ∇Jl(ûl,k+1)−∇Jl(ul,k).
Step 6 (L-BFGS direction) Let m̂ = min {k,m− 1}. If k > 0, set
Bl,0 = (sTl,k−1yl,k−1/(yl,k−1)T yl,k−1)I. Update Bl,0 m̂+ 1 times using the

pairs {sl,j , yl,j}kj=k−m̂, i.e., let

Bl,k+1 =
(
V Tk . . . V Tk−m̂

)
Bl,0 (Vk−m̂ . . . Vk)

+ρk−m̂
(
V Tk . . . V Tk−m̂+1

)
sl,k−m̂(sl,k−m̂)T (Vk−m̂+1 . . . Vk)

+ρk−m̂+1

(
V Tk . . . V Tk−m̂+2

)
sl,k−m̂+1(sl,i−m̂+1)T (Vk−m̂+2 . . . Vk)

...

+ρksl,k(sl,k)T ,

with ρj = 1/(sl,j)
T yl,j and Vj = I − ρjyl,j(sl,j)

T . Compute dQNl,k+1 =
−Bl,k+1∇Jl(ûl,k+1).
Step 7 (Second Step) Let dSDl,k+1 = −∇Jl(ûl,k+1), compute α = (α1, α2) ∈
R2 by solving (24) and then set d̂l,k+1 = α1d

SD
l,k+1 + α2d

QN
l,k+1.

Step 8 If Jl(ûl,k+1 + d̂l,k+1) < Jl(ûl,k+1), set ul,k+1 = ûl,k+1 + d̂l,k+1

and compute ∇Jl(ul,k+1) and Hl,k+1 ≈ ∇2Jl(ul,k+1). Otherwise, set

ul,k+1 = ûl,k+1 and Hl,k+1 = Ĥl,k+1.
Step 9 Set k := k + 1 and go back to Step 1.
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In practice, the matrices Bl,k+1 in the L-BFGS scheme are not formed

explicitly. At each iteration all that we need is to compute the product dQNl,k+1 =
−Bl,k+1∇Jl(ûl,k+1). This can be done efficiently in a matrix-free fashion by
using the following algorithm [10]:

Algorithm 4. (Direction finding in L-BFGS)

Step 0 Set q = ∇Jl(ûl,k+1).

Step 1 For j = (i− 1) : (−1) : (i− m̂) do

αj = ρj(s
j)T q

q = q − αjyj

Step 2 Set r = Bl,0q.

Step 3 For j = (i− m̂) : 1 : (i− 1) do

β = ρj(y
j)T r

r = r + (αj − β)sj

Step 4 Set dQNl,k+1 = −r and STOP.

Finally, if at Step 1 of Algorithm 2 we replace Gauss-Newton method by
our new Two-Step Gauss-Newton method we obtain the multilevel algorithm
below.

Algorithm 5 (Multilevel Two-Step Gauss-Newton Method)

Step 0 Set uN0,0 = (0, . . . , 0) ∈ RN0 and l := N0 (coarsest level).
Step 1 Compute u∗l = 2SGN(l, ul,0).
Step 2 If l = N (finest level), stop and return u∗N . Otherwise, go to Step
3.
Step 3 Set ul+1,0 = P l+1

l u∗l , l := l + 1 and go back to Step 1.

2.3 Convergence Analysis

The analysis of Algorithms 1 and 3 in a constrained setting can be done in
an unified framework. In fact, consider the finite-dimensional optimization
problem

min
u∈Rn

J(u), (27)

s. t. u ∈ X, (28)
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where J : Rn → R is a differentiable function and X ⊂ Rn is an open set1.
Clearly, problem (27)-(28) may have no solution. Thus, we seek for itera-
tive methods that generate sequences {uk} ⊂ X of feasible points such that
{J(uk)} is monotonically decreasing. By incorporating constraint (28) within
the Armijo line-search in Algorithms 1 and 3 (and omitting the level index
l), the resulting algorithms can be seen as particular cases of the following
framework.

Algorithm A. (Feasible Direction Method)

Step 0 Given u0 ∈ X, B0 ∈ Rn×n symmetric and positive-definite and
η ∈ (0, 1), set k := 0.

Step 1 Compute dk = −Bk∇J(uk).

Step 2 Find the smallest ik ≥ 0 such that tk = (0.5)ik ensures

J(uk + tkdk) ≤ J(uk) + ηtk∇J(uk)T dk and uk + tkdk ∈ X. (29)

Define ûk+1 = uk + tkdk.

Step 3 Find uk+1 ∈ X such that J(uk+1) ≤ J(ûk+1), choose Bk+1 ∈
Rn×n symmetric and positive-definite, set k := k+ 1 and go back to Step
1.

Remark 2 In Algorithm A, Bk is the inverse of the Gauss-Newton matrix,
that is, Bk = H−1k . To better see the correspondence between Algorithm A
and Algorithms 1 and 3, note that in Algorithm 1 we set uk+1 = ûk+1 for
all k, while in Algorithm 3 we may have uk+1 6= ûk+1 if the second step is
successful.

We shall study the worst-case complexity and global convergence properties
of Algorithm A. By worst-case complexity we mean an upper bound on the
maximum number of iterations that Algorithm A may take to find an approx-
imate critical point of J or a point near to the boundary of the feasible set.
Our analysis is an adaptation of the analysis of Nesterov [9] for the Gradient
Method. Consider the following assumptions:

A1 The objective J : Rn → R is differentiable and ∇J : Rn → Rn is L-
Lipschitz:

‖∇J(w)−∇J(u)‖ ≤ L‖w − u‖, ∀w, u ∈ Rn.

A2 The set L(u0) = {u ∈ Rn | J(u) ≤ J(u0)} is compact.
A3 There exist constants c1 ≥ c0 > 0 such that

c0I � Bk � c1I ∀k.
1 In Image Registration Problems, it is common the inclusion of the constraint det∇y > 0,

where y(x) = x + u(x).
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The next lemma shows that if ∇J(uk) 6= 0, then there exists ik ≥ 0 such that
conditions (29) hold. Therefore, Step 2 of Algorithm A is well-defined. The
proof is based on elementary analysis arguments and it is included here for
completeness.

Lemma 1 Suppose that A1 holds. Given ū ∈ X, B ∈ Rn×n positive definite
and η ∈ (0, 1), let d = −B∇J(ū). If ∇J(ū) 6= 0, then there exists δ > 0 such
that

J(ū+ td) ≤ J(ū) + ηt∇J(ū)T d and ū+ td ∈ X,

for all t ∈ [0, δ).

Proof Since X is an open set, there exists ε > 0 such that

‖u− ū‖ ≤ ε =⇒ u ∈ X. (30)

Thus, if we consider u = ū+ td, it follows that

0 ≤ t ≤ ε

‖d‖
=⇒ ū+ td ∈ X. (31)

Let us denote δ1 = ε/‖d‖. On the other hand, as J is differentiable and η ∈
(0, 1), we have

lim
t→0

J(ū+ td)− J(ū)

t
= ∇J(ū)T d = −∇J(ū)TB∇J(ū)

< −η∇J(ū)TB∇J(ū)

= η∇J(ū)T d.

Hence, there exists δ2 > 0 such that

J(ū+ td)− J(ū)

t
< η∇J(ū)T d,

for all t ∈ (0, δ2). Therefore,

J(ū+ td) ≤ J(ū) + ηt∇J(ū)T d, ∀t ∈ [0, δ2). (32)

Finally, if we take δ = min {δ1, δ2}, it follows from (31) and (32) that

J(ū+ td) ≤ J(ū) + ηt∇J(ū)T d and ū+ td ∈ X, ∀t ∈ [0, δ),

and the proof is complete. ut

The lemma below gives a lower bound for the sequence {tk} and will be crucial
to establish a lower bound for the functional decrease obtained in consecutive
iterations of Algorithm A. Its proof is an adaptation of the proof of Lemma
11.1.1 in [12].
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Lemma 2 Suppose that A1 holds. Then, for all k, we have

tk ≥ min

{
1,− (1− η)

L

(
−∇J(uk)T dk

‖dk‖2

)
,
Γ (uk)

2‖dk‖

}
, (33)

where, for all u ∈ X,

Γ (u) = inf
w/∈X

‖u− w‖.

Proof If ik = 0, then tk = 1 and so (33) holds. Thus, suppose that ik > 0.
If uk + 2tkdk ∈ X, then from the definition of ik we know that uk + 2tkdk =
uk + (0.5)ik−1dk does not satisfy the inequality in (29). Thus

J(uk + 2tkdk) > J(uk) + 2ηtk∇J(uk)T dk. (34)

Since ∇J is L-Lipschitz, it follows that

J(uk + 2tkdk) ≤ J(uk) + 2tk∇J(uk)T dk + 2Lt2k‖dk‖2. (35)

Then, combining (34) and (35) we have

J(uk) + 2ηtk∇J(uk)T dk < J(uk) + 2tk∇J(uk)T dk + 2Lt2k‖dk‖2

=⇒ 2Lt2k‖dk‖2 > (η − 1)2tk∇J(uk)T dk

=⇒ tk > −
(1− η)

L

(
∇J(uk)T dk
‖dk‖2

)
and so, (33) also holds.

Finally, if uk + 2tkdk /∈ X, it follows from the definition of Γ (uk) that

2tk‖dk‖ > Γ (uk).

Thus, tk > Γ (uk)/2‖dk‖, and once again (33) holds. ut

Now we are in position to establish a worst-case complexity bound for Algo-
rithm A.

Theorem 1 Suppose that A1-A3 hold and let {uk} be a sequence generated
by Algorithm A such that

Γ (uk) > ε and ‖∇J(uk)‖ > ε, for k = 0, . . . , T − 1, (36)

for a given precision ε > 0. Then, J(u) is bounded from below by some Jlow
and we must have

T ≤
(
J(u0)− Jlow

κc

)
ε−2, (37)

where

κc = min

{
ηc0,

η(1− η)c20
Lc21

,
ηc0
2c1

}
. (38)
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Proof By Step 3 of Algorithm A, we have J(uk+1) ≤ J(ûk+1). Thus, combining
(29) and and the lower bound for tk in (33), we obtain the following lower
bound for the decrease of the function value in consecutive iterations:

J(uk)− J(uk+1) ≥ J(uk)− J(ûk+1) ≥ ηtk
(
−∇J(uk)T dk

)
≥ ηmin

{
−∇J(uk)T dk,

(1− η)

L

(
−∇J(uk)T dk

‖dk‖

)2

,
Γ (uk)

2

(
−∇J(uk)T dk

‖dk‖

)}
.

(39)

On the other hand, from A3 it follows that

‖dk‖ = ‖ −Bk∇J(uk)‖ ≤ ‖Bk‖‖∇J(uk)‖ ≤ c1‖∇J(uk)‖,

and
−∇J(uk)T dk = ∇J(uk)TBk∇J(uk) ≥ c0‖∇J(uk)‖2. (40)

Hence,

− ∇J(uk)T dk
‖dk‖

≥ c0‖∇J(uk)‖2

c1‖∇J(uk)‖
=

(
c0
c1

)
‖∇J(uk)‖. (41)

Then, combining (39) with (40), (41) and (36) we obtain

J(uk)− J(uk+1) ≥ ηmin

{
c0‖∇J(uk)‖2, (1− η)c20

Lc21
‖∇J(uk)‖2,

(
c0
2c1

)
Γ (uk)‖∇J(uk)‖

}
≥ min

{
ηc0,

η(1− η)c20
Lc21

,
ηc0
2c1

}
min

{
‖∇J(uk)‖2, Γ (uk)‖∇J(uk)‖

}
= κc min

{
‖∇J(uk)‖2, Γ (uk)‖∇J(uk)‖

}
(42)

> κcε
2, for k = 0, . . . , T − 1.

From A2, it follows that J has a global minimizer on Rn. Thus, there exists
Jlow such that J(uk) ≥ Jlow for all k. Therefore,

J(u0)− Jlow ≥ J(u0)− J(uT ) =

T−1∑
k=0

J(uk)− J(uk+1) ≥
T−1∑
k=0

κcε
2 = Tκcε

2

=⇒ T ≤
(
J(u0)− Jlow

κc

)
ε−2,

and the proof is complete. ut

Remark 3 Theorem 1 means that given ε > 0, Algorithm A takes at most
O(ε−2) iterations to generate a point uT ∈ X such that

Γ (uT ) ≤ ε or ‖∇J(uT )‖ ≤ ε.

For X = Rn, this bound agrees in order with known complexity bounds for
first-order methods [2,4,9]. In any case, by (42) we have

J(uT ) < J(uT−1) < . . . < J(u1) < J(u0).
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Finally, from inequality (42) we can establish the following global convergence
result.

Theorem 2 Suppose that A1-A3 hold. Then, given u0 ∈ X, the sequence
{uk} ⊂ X generated by Algorithm A from u0 admits a subsequence that con-
verges either to a point in the boundary of X or to a critical point of J in
X.

Proof Let us denote the closure of X by X̄. Note that {uk} ⊂ L(u0). Thus, by
A2, sequence {uk} is bounded and, therefore, it admits a convergent sub-
sequence

{
ukj
}

, with uk → ū ∈ X̄. Since J is continuous, we also have
J(ukj ) → J(ū) as j goes to infinity. Thus, sequence {J(uk)} is monotoni-
cally decreasing and admits a convergent subsequence. Hence, {J(uk)} must
be convergent, which implies that

lim
k→+∞

J(uk)− J(uk+1) = 0.

Thus, by applying the Squeeze Theorem on inequality (42) we conclude that

lim
j→+∞

∇J(ukj ) = 0 or lim
j→+∞

Γ (ukj )‖∇J(ukj )‖ = 0. (43)

On the other hand, as ∇J and Γ are continuous functions, we have

lim
j→+∞

∇J(ukj ) = ∇J(ū) and lim
j→+∞

Γ (ukj ) = Γ (ū). (44)

Then, combining (43) and (44) it follows that

∇J(ū) = 0 or Γ (ū) = 0,

that is, the limit point ū is either a point in the boundary of X or a critical
point of J in X. ut

2.4 Subspace Multilevel Technique

In the standard coarse-to-fine multilevel strategy, the initial point ul+1,0 for
level l + 1 is computed using only the solution u∗l of the previous level. To
allow the finding of a better initial point, we propose the use of all the previous
solutions u∗l , u

∗
l−1, . . . , u

∗
N0

by employing again the subspace technique. Given
N0 ≤ z < w ≤ N , let us denote by Pwz the prolongation operator from
level z to level w. We set ûl+1,0 = P l+1

l u∗l and we compute ∇Jl(ûl+1,0) and

Ĥl+1,0 ≈ ∇2Jl(ûl+1,0). Then, we obtain a search direction d̂l+1,0 by solving
the subspace quadratic problem

min
d

Jl+1(ûl+1,0) +∇Jl(ûl+1,0)T d+
1

2
dĤl+1,0d, (45)

s. t. d ∈ Sl+1,0 ⊂ Rnl+1 , (46)
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where Sl+1,0 ≡ span
({
P l+1
N0

u∗N0
, . . . , P l+1

l u∗l
})

. As in the Two-Step Gauss-

Newton method, d̂l+1,0 can be easily computed by solving a small-scale linear

system. If Jl+1(ûl+1,0 + d̂l+1,0) < Jl+1(ûl+1,0), we define the initial point for

level l + 1 as ul+1,0 = ûl+1,0 + d̂l+1,0. Otherwise, we set ul+1,0 = ûl+1,0. The
corresponding modification in Algorithm 2 can be summarized in the following
way.

Algorithm 6 (Subspace Multilevel GN Method)

Step 0 Set uN0,0 = (0, . . . , 0) ∈ RN0 and l := N0 (coarsest level).
Step 1 Compute u∗l = GN(l, ul,0).
Step 2 If l = N (finest level), stop and return u∗N .
Step 3 Compute P l+1

l u∗l , . . . , P
N
l u
∗
l , set ûl+1,0 = P l+1

l u∗l and compute

∇Jl+1(ûl+1,0) and Ĥl+1,0 ≈ ∇2Jl+1(ûl+1,0).
Step 4 If l = 0, set ul+1,0 = ûl+1,0 and go to Step 6.

Step 5 Compute d̂l+1,0 by solving the subspace problem (45)-(46). If

Jl+1(ûl+1,0+d̂l+1,0) < Jl+1(ûl+1,0), set ul+1,0 = ûl+1,0+d̂l+1,0. Otherwise,
set ul+1,0 = ûl+1,0.
Step 6 Set l := l + 1 and go back to Step 1.

Finally, if at Step 1 of Algorithm 6 we replace Gauss-Newton method by
our new Two-Step Gauss-Newton method we obtain the subspace multilevel
algorithm below.

Algorithm 7 (Subspace Multilevel Two-Step GN Method)

Step 0 Set uN0,0 = (0, . . . , 0) ∈ RN0 and l := N0 (coarsest level).
Step 1 Compute u∗l = 2SGN(l, ul,0).
Step 2 If l = N (finest level), stop and return u∗N .
Step 3 Compute P l+1

l u∗l , . . . , P
N
l u
∗
l , set ûl+1,0 = P l+1

l u∗l and compute

∇Jl+1(ûl+1,0) and Ĥl+1,0 ≈ ∇2Jl+1(ûl+1,0).
Step 4 If l = 0, set ul+1,0 = ûl+1,0 and go to Step 6.

Step 5 Compute d̂l+1,0 by solving the subspace problem (45)-(46). If

Jl+1(ûl+1,0+d̂l+1,0) < Jl+1(ûl+1,0), set ul+1,0 = ûl+1,0+d̂l+1,0. Otherwise,
set ul+1,0 = ûl+1,0.
Step 6 Set l := l + 1 and go back to Step 1.

3 Numerical Experiments

In order to investigate the numerical performance of the proposed methods,
we have tested implementations of the following algorithms:

(i) the standard Multilevel Gauss-Newton Algorithm (i.e., Algorithm 2). We
shall refer to this code as GN (from Gauss-Newton).
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(ii) the Multilevel Two-Step Gauss-Newton Algorithm (i.e., Algorithm 5). We
shall refer to this code as TS (from Two-Step).

(iii) the Subspace Multilevel Gauss-Newton Algorithm (i.e., Algorithm 6). We
shall refer to this code as SIG (from Subspace Initial Guess).

(iv) the Subspace Multilevel Two-Step Gauss-Newton Algorithm (i.e., Algo-
rithm 7). We shall refer to this code as HYBRID, since it can be viewed
as a combination of TS and SIG.

The algorithms were coded in MATLAB (R2017a) language, and the tests were
performed on a PC with 3.20 GHz Intel(R) Core(TM) i5-6500 microprocessor,
and with installed memory (RAM) of 8.00 GB. In all codes, the execution of
the inner optimization algorithm (Gauss-Newton or Two-Step Gauss-Newton)
is interrupted when all conditions (15)-(17) are satisfied or when any of the
conditions (18) and (19) holds. For the latter conditions, we use ε = 10−16 and
kmax = 500. Moreover, in all codes, the Gauss-Newton linear system is solved
by the Conjugate Gradient (CG) Method with Diagonal Preconditioner. We
stop the execution of the CG method when the residual becomes smaller 10−1

or when the maximum of 50 iterations is reached.
The codes were applied to Image Registration problems corresponding to

20 pairs of images (Reference, Template): ten pairs of medical images (Fig-
ures 1-10), and ten pairs of artificial images (Figures 11-20). To evaluate the
performance of the codes for several problem sizes, we considered four differ-
ent resolutions: 128× 128, 256× 256, 512× 512 and 1024× 1024. The choice
for the objective function (3) was the one corresponding to the hyperelastic
model proposed in [1]. Specifically, we use the MATLAB package FAIR as the
basis for our tests (see details in [7]). In all codes, the constraint det∇y > 0,
for y(x) = x + u(x), is handled within the Armijo line-search, that is, to be
accepted a trial step must provide a sufficient decrease in the objective and
the resulting point must be feasible with respect to the referred constraint (see
Algorithm A).

The results reported below summarize more than 21 hours of numerical ex-
perimentation. Problems and results for resolution 128×128 are given in Table
1, where “TIME” represents the time in seconds taken by the code to solve the
corresponding problem, “IT” represents the number of iterations perfomed to
reach the solution, “FE” represents the number of function evaluations per-
formed, and “TOTAL” provides the sum of the values in the corresponding
column of the table, where the total time is given in seconds.
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(a) Reference (b) Template

Fig. 1 Problem Hand.

(a) Reference (b) Template

Fig. 2 Problem EPslice.

(a) Reference (b) Template

Fig. 3 Problem Brain.

(a) Reference (b) Template

Fig. 4 Problem CT.

(a) Reference (b) Template

Fig. 5 Problem MRI.

(a) Reference (b) Template

Fig. 6 Problem Lung.

(a) Reference (b) Template

Fig. 7 Problem CT1.

(a) Reference (b) Template

Fig. 8 Problem CT2.

(a) Reference (b) Template

Fig. 9 Problem MRI2.

(a) Reference (b) Template

Fig. 10 Problem Breast.
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(a) Reference (b) Template

Fig. 11 Problem Circle to C.

(a) Reference (b) Template

Fig. 12 Problem C to Circle.

(a) Reference (b) Template

Fig. 13 Problem A to R.

(a) Reference (b) Template

Fig. 14 Problem Square to Square.

(a) Reference (b) Template

Fig. 15 Problem Lena.

(a) Reference (b) Template

Fig. 16 Problem Circle to Square.

(a) Reference (b) Template

Fig. 17 Problem Molecule.

(a) Reference (b) Template

Fig. 18 Problem F to F.

(a) Reference (b) Template

Fig. 19 Problem Circle to I.

(a) Reference (b) Template

Fig. 20 Problem Rio.
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GN SIG TS HYBRID
PROBLEM TIME IT FE TIME IT FE TIME IT FE TIME IT FE
1. Hand 2.1 31 75 1.8 31 80 2.1 30 120 1.6 27 114
2. EPLslice 11.4 82 216 8.6 71 190 5.0 52 214 4.7 47 201
3. Brain 1.5 52 116 1.5 49 116 1.3 29 114 1.3 29 110
4. CT 5.9 51 116 5.6 48 116 3.9 42 166 3.7 40 162
5. MRI 3.3 56 123 3.3 56 129 2.7 38 152 2.7 38 156
6. Lung 3.3 40 95 3.7 45 112 2.5 30 123 3.5 36 153
7. CT1 8.9 82 202 7.4 79 200 4.7 51 206 3.9 47 194
8. CT2 4.1 36 82 3.1 33 82 2.7 28 112 2.2 25 106
9. MRI2 10.2 95 206 9.4 91 204 5.3 57 228 5.5 58 238
10. Breast 5.1 53 117 5.0 53 123 3.5 37 147 3.7 38 157
11. Circle to C 1.4 45 103 1.6 48 114 1.4 37 131 1.3 37 146
12. C to Circle 2.7 46 119 2.8 49 129 4.5 87 356 2.5 40 175
13. A to R 0.8 39 88 0.7 41 99 0.8 23 94 0.6 19 84
14. Square to Square 0.6 19 46 0.6 19 54 0.5 14 60 0.5 12 61
15. Lena 0.6 18 46 0.7 18 52 0.7 17 68 0.6 16 70
16. Circle to Square 0.2 12 34 0.4 14 44 0.2 11 44 0.3 12 56
17. Molecule 0.9 23 56 1.0 22 60 1.1 22 87 1.1 20 84
18. F to F 0.9 41 95 1.0 43 104 0.8 25 102 0.8 25 106
19. Circle to I 1.5 25 60 1.2 28 73 1.3 22 90 1.3 19 80
20. Rio 0.6 15 40 0.4 14 44 0.5 14 56 0.5 13 58
TOTAL 65.6 861 2035 59.7 852 2125 45.5 666 2670 42.5 598 2511

Table 1 Results for resolution 128× 128.

GN SIG TS HYBRID
PROBLEM TIME IT FE TIME IT FE TIME IT FE TIME IT FE
1. Hand 6.4 35 85 7.1 35 92 9.9 36 144 9.2 33 140
2. EPLslice 110.1 172 480 120.6 176 500 88.0 123 548 83.2 120 534
3. Brain 4.6 61 136 4.9 56 134 5.1 35 128 4.9 34 132
4. CT 175.9 201 470 169.8 185 440 79.4 146 577 84.8 146 588
5. MRI 45.4 92 212 37.2 84 200 24.3 63 254 22.4 59 246
6. Lung 29.2 61 155 41.9 74 196 50.2 66 289 31.1 61 264
7. CT1 54.8 115 286 53.8 112 287 35.6 81 330 32.9 73 305
8. CT2 40.5 89 192 38.3 73 168 25.5 60 240 28.2 61 250
9. MRI2 60.2 136 305 60.1 132 304 42.4 97 391 43.7 99 407
10. Breast 36.6 77 176 28.8 75 177 26.8 59 241 20.4 56 233
11. Circle to C 7.0 51 117 6.3 54 130 7.2 42 148 4.9 41 166
12. C to Circle 9.8 53 135 10.9 54 142 10.1 91 374 8.3 44 193
13. A to R 2.5 41 94 3.3 44 109 4.5 28 114 2.9 22 99
14. Square to Square 1.9 21 52 6.6 26 73 3.1 17 72 4.4 16 79
15. Lena 2.2 20 52 2.6 20 60 2.6 19 76 2.8 18 80
16. Circle to Square 2.3 15 42 2.5 19 56 0.4 12 48 0.9 13 62
17. Molecule 5.2 32 76 5.7 27 74 6.1 26 101 5.2 24 101
18. F to F 3.8 46 107 3.7 47 116 3.4 28 116 3.9 28 122
19. Circle to I 6.6 32 76 5.9 32 83 5.5 26 102 5.7 23 96
20. Rio 1.4 17 46 1.7 16 52 1.8 16 64 2.0 15 68
TOTAL 606.5 1367 3294 611.6 1341 3393 432.0 1071 4367 401.9 986 4165

Table 2 Results for resolution 256× 256.

From Table 1 we see that TS, SIG and HYBRID were better than GN in
terms of the total time. The fastest code was HYBRID, which outperformed
GN on 16 problems (9 of them corresponding to medical images).

Table 2 shows the results for resolution 256 × 256. Codes TS and HY-
BRID were better than GN in terms of the total time. The fastest code was
HYBRID, which outperformed GN on 11 problems (7 of them corresponding
to medical images).



Improved Optimization Methods for Image Registration Problems 19

GN SIG TS HYBRID
PROBLEM TIME IT FE TIME IT FE TIME IT FE TIME IT FE
1. Hand 37.6 39 95 32.8 38 102 25.9 38 152 26.3 35 150
2. EPLslice 220.3 190 525 332.3 207 586 286.2 149 666 214.0 137 617
3. Brain 18.0 64 144 15.1 58 142 15.0 37 148 15.7 36 144
4. CT 2827.4 524 1430 1700 370 988 824.3 253 1065 446.2 202 832
5. MRI 303.3 132 309 298.5 117 286 209.3 96 391 286.9 105 436
6. Lung 175.8 77 201 134.3 93 246 425.7 109 500 243.8 88 389
7. CT1 385.1 158 394 346.1 155 396 224.8 110 443 248.2 109 454
8. CT2 1083.4 208 537 1044.4 189 511 480.1 125 533 576.9 137 607
9. MRI2 339.4 167 388 270.0 157 371 204.3 125 507 249.0 130 545
10. Breast 221.2 100 234 230.6 98 239 195.5 85 347 151.1 77 319
11. Circle to C 31.2 54 125 57.2 68 162 60.9 51 172 58.9 51 197
12. C to Circle 37.9 56 144 39.9 57 150 47.3 97 401 47.4 49 210
13. A to R 26.2 49 112 13.3 46 117 17.8 30 121 14.5 24 111
14. Square to Square 16.7 25 62 17.9 27 78 26.3 20 84 20.7 18 86
15. Lena 17.2 22 58 19.1 22 68 18.3 21 84 19.7 20 90
16. Circle to Square 11.4 20 54 13.3 23 66 2.6 13 52 3.7 14 66
17. Molecule 74.3 40 95 69.7 46 116 74.5 39 145 64.7 37 150
18. F to F 12.2 48 113 7.1 48 122 6.6 29 122 7.6 29 128
19. Circle to I 32.4 43 100 53.1 42 105 45.3 33 128 64.3 31 125
20. Rio 9.5 19 52 9.6 18 60 11.8 18 72 12.5 17 78
TOTAL 5880.7 2035 5172 4704.6 1879 4911 3202.6 1478 6133 2772.3 1346 5734

Table 3 Results for resolution 512× 512.

GN SIG TS HYBRID
PROBLEM TIME IT FE TIME IT FE TIME IT FE TIME IT FE
1. Hand 119.9 41 101 121.2 40 110 105.3 40 160 58.2 36 156
2. EPLslice 539.9 198 550 589.5 216 612 518.2 155 693 654.2 150 677
3. Brain 49.8 65 148 91.7 63 156 52.9 38 152 46.7 37 152
4. CT 3884.3 556 1504 2299.4 390 1035 2478.2 297 1257 1526.3 235 965
5. MRI 1048.2 166 384 1094.8 136 337 908.2 120 486 696.0 118 489
6. Lung 929.0 102 258 1074.6 125 318 1615.3 140 650 2520.2 144 653
7. CT1 1246.3 181 446 1040.6 174 440 906.2 133 532 1050.3 143 585
8. CT2 6148.7 330 899 4924.8 287 796 3758.3 198 881 3865.9 215 982
9. MRI2 974.9 189 442 809.6 170 409 998.3 152 621 1088 154 652
10. Breast 515.3 107 254 477.5 105 259 760.1 100 414 1120.6 104 440
11. Circle to C 235.5 61 141 538.6 93 214 126.1 53 178 192.4 56 210
12. C to Circle 245.3 61 156 239.8 65 168 181.1 100 414 204.9 54 226
13. A to R 124.2 58 132 117.9 51 129 89.2 34 132 105.3 29 123
14. Square to Square 57.8 26 66 106.7 29 84 68.0 21 88 64.2 19 90
15. Lena 140.3 26 68 109.3 25 78 135.8 24 96 92.2 22 100
16. Circle to Square 69.6 23 62 57.1 27 76 43.4 14 56 34.1 15 70
17. Molecule 364.3 47 111 374.9 53 132 830.6 69 242 662.0 59 223
18. F to F 60.4 51 121 63.2 51 132 70.5 31 130 81.3 32 142
19. Circle to I 73.2 44 104 139.8 44 111 181.7 39 146 234.1 38 149
20. Rio 90.9 22 60 69.2 20 68 70.6 20 80 78.9 19 88
TOTAL 16917.9 2354 6007 14340 2164 5664 13898 1778 7408 14376.6 1679 7172

Table 4 Results for resolution 1024× 1024.

Table 3 shows the results for resolution 512 × 512. Codes TS, SIG and
HYBRID were better than GN in terms of the total time. In this case, the
fastest code was HYBRID, which outperformed GN on 13 problems (9 of
them corresponding to medical images).

Finally, Table 4 shows the results for resolution 1024 × 1024. Once again,
TS, SIG and HYBRID were better than GN in terms of the total time.
The fastest code was TS, which outperformed GN on 12 problems (6 of them
corresponding to medical images).
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The improved performance of TS and HYBRID over GN is better high-
lighted in Tables 5, 6 and 7, which shows the reduction in the total time
provided by the new methods.

Resolution Time GN Time SIG Reduction
128× 128 65.6 59.7 9.0%
256× 256 606.5 611.6 –
512× 512 5880.7 4704.6 20.0%

1024× 1024 16917.9 14340 15.2%

Table 5 Comparison of the total time (in seconds) to solve all 20 problems for each reso-
lution between GN and SIG.

Resolution Time GN Time TS Reduction
128× 128 65.6 45.5 30.6%
256× 256 606.5 432.0 28.7%
512× 512 5880.7 3202.6 45.5%

1024× 1024 16917.9 13898 17.8%

Table 6 Comparison of the total time (in seconds) to solve all 20 problems for each reso-
lution between GN and TS.

Resolution Time GN Time HYBRID Reduction
128× 128 65.6 42.5 35.2%
256× 256 606.5 401.9 33.7%
512× 512 5880.7 2772.3 52.8%

1024× 1024 16917.9 13898 15.0%

Table 7 Comparison of the total time (in seconds) to solve all 20 problems for each reso-
lution between GN and HYBRID.

As mentioned above, codes TS and HYBRID behave much better when
we consider only medical images. In terms of the total time, this difference of
performance is shown on Tables 8, 9 and 10.

Resolution Time GN Time SIG Reduction
128× 128 55.7 49.4 11.3%
256× 256 563.6 562.6 0.2%
512× 512 5611.6 4404.5 21.5%

1024× 1024 15456 12524 18.9%

Table 8 Comparison of the total time (in seconds) to solve all 10 problems with medical
images for each resolution between GN and SIG.
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Resolution Time GN Time TS Reduction
128× 128 55.7 33.7 39.4%
256× 256 563.6 387.1 31.3%
512× 512 5611.6 2891.1 48.4%

1024× 1024 15456 12100.9 21.7%

Table 9 Comparison of the total time (in seconds) to solve all 10 problems with medical
images for each resolution between GN and TS.

Resolution Time GN Time HYBRID Reduction
128× 128 55.7 32.9 41.0%
256× 256 563.6 360.8 36.0%
512× 512 5611.6 2458.3 56.2%

1024× 1024 15456 12100.9 18.3%

Table 10 Comparison of the total time (in seconds) to solve all 10 problems with medical
images for each resolution between GN and HYBRID.

Additional information about the codes can be obtained by using the Per-
formance Profile, which is a tool for benchmarking and comparing optimization
software [3]. More specifically, let tp,s denote the time to solve problem p by

solver s. The performance ratio is defined as rp,s =
tp,s
t∗p

, where t∗p is the lowest

time required to solve problem p among all solvers that are being compared.
Clearly, rp,s ≥ 1 for all p and s. The performance profile for each code s is
defined as

ρs(τ) =
number of problems for which rp,s ≤ τ

total number of problems
.

Therefore, the value ρs(τ) represents the percentage of problems solved by
algorithm s with a cost at most τ times worse than that of the best algorithm.
This means that, for a given value of τ , the best solver is the one with the
highest value of ρs(τ). In particular, ρs(1) gives the percentage of problems
for which solver s is the best.

Figures 21, 22 e 23 show the performance profiles for codes GN and HY-
BRID taking as reference all 30 problems with medical images and resolutions
of 128 × 128, 256 × 256 and 512 × 512 (combined results of Tables 1, 2 e 3).
As expected, we can see that in this set of test problems, code HYBRID
is significantly more efficient than GN in terms of CPU time and number
of Iterations. It is interesting to notice that GN outperforms HYBRID in
terms of the number of function evaluations. However, this effect is compen-
sated by the time that HYBRID saves in the solution of a smaller number
of Gauss-Newton linear systems (which is equal to the number of iterations).
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Fig. 21 Performance Profile based on CPU Time for the set of 20 problems with medical
images and resolutions of 128× 128 and 256× 256.

Fig. 22 Performance Profile based on Number of Iterations for the set of 20 problems with
medical images and resolutions of 128× 128, 256× 256 and 512× 512.
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Fig. 23 Performance Profile based on Number of Function Evaluations for the set of 20
problems with medical images and resolutions of 128× 128, 256× 256 and 512× 512.

As an example, Figure 24 shows the registered images obtained by all codes
applyed to problem MRI2 with resolution 512× 512.

We also tested the codes GN and HYBRID on four 3D problems from
[7] (such as the Brain Problem illustrated on Figures 25 and 26). The results
are in Table 11.

GN HYBRID
PROBLEM TIME IT FE TIME IT FE
1. Brain 1435 26 60 1249 25 97
2. Knee 937 16 40 698 13 56
3. Phantom 105 15 37 243 16 68
4. Mice 62 28 65 48 17 68
TOTAL 2539 85 202 2238 71 289

Table 11 Results for 3D problems.

Once again, HYBRID outperformed GN. However, it seems that the
gain of HYBRID over GN deteriorates when the problems become larger.
One possible explanation is that for larger problems, the computational cost
to compute function and grandient evaluations becomes comparable with the
cost to solve the Gauss-Newton problem. In this case, the saving obtained by
performing a smaller number of iterations may be not enough to compensate
the additional time used to evaluate the objective function and its gradients.
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(a) Template Image. (b) Reference Image.

(c) T (y) obtained by code
GN in 468.11 seconds.

(d) T (y) obtained by code
SIG in 326.04 seconds.

(e) T (y) obtained by code TS
in 250.82 seconds.

(f) T (y) obtained by code
HYBRID in 314.29 seconds.

Fig. 24 Registered images for problem MRI2 with resolution 512× 512.
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Fig. 25 3D Brain Problem.

(a) Template Image. (b) Reference Image.

Fig. 26 Template and Reference for the 3D Brain Problem.

Finally, it is worth to mention that the methods proposed in this work
can be applied to general smooth optimization problems. Notice that the key
component of the codes HYBRID and TS is the Algorithm 3 embedded
on them. To evaluate the performance of this algorithm on a different class
of problems, we applied it on a set of 10 test problems from [8] (without
the multilevel step). The results on Table 12 show that the gain obtained
with Algorithm 3 over the standard Gauss-Newton method is not restricted
to Image Registration Problems.



26 Ke Chen et al.

Gauss-Newton Algorithm 3
PROBLEM(n,m) IT FE IT FE
1. Extended Rosenbrock(100,100) 50 180 32 129
2. Extended Rosenbrock(500,500) 49 177 27 110
3. Extended Powell Singular(100,100) 23 47 26 79
4. Extended Powell Singular(500,500) 24 49 26 79
5. Penalty I(100,101) 99 667 25 154
6. Penalty I(500,501) 101 670 27 154
7. Variably Dimensioned(100,100) 48 93 28 81
8. Discrete Integral Equation(100,100) 15 31 02 06
9. Broyden Tridiagonal(100,100) 20 41 11 32
10. Broyden Banded(100,100) 24 49 15 45
TOTAL 453 2004 219 869

Table 12 Results for MGH problems.

4 Conclusion

In this paper we propose a Two-Step Gauss-Newton method for smooth un-
constrained optimization and a modified coarse-to-fine multilevel scheme. Both
methods rely on very simple subspace techniques and they aim the solution
of Image Registration problems by the discretize-then-optimize approach. Nu-
merical experiments were performed on a diverse set of 20 pairs of images
(Reference, Template) considering four different resolutions. The results ob-
tained correspond to more than 21 hours of numerical experimentation. For
registration problems with resolutions of 128× 128, 256× 256 and 512× 512,
a hybrid of our two new subspace methods outperformed the standard mul-
tilevel Gauss-Newton method, reducing the total running time in 52.8% for
problems with resolution of 512×512. The advantage of the new methods over
the Gauss-Newton scheme is even bigger when we consider the registration of
medical images. For example, in our set of 10 problems from medical images
with resolution of 512 × 512, our hybrid method was faster than the multi-
level Gauss-Newton method on 9 problems, reducing the total running time
in 56.2%. These results are very encouraging. As a future work, we intend to
investigate other choices for the subspace used in the Two-Step Gauss-Newton
method.
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