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I A NOVEL DIFFEOMORPHIC MODEL FOR IMAGE REGISTRATION

2 AND ITS ALGORITHM*

3 DAOPING ZHANG' AND KE CHENT?

4 Abstract. In this work, we investigate image registration by mapping one image to another in
5 a variational framework and focus on both model robustness and solver efficiency. We first propose

6 a new variational model with a special regularizer, based on the quasi-conformal theory, which can
guarantee that the registration map is diffeomorphic. It is well known that when the deformation is
8 large, many variational models including the popular diffusion model cannot ensure diffeomorphism.
9 One common observation is that the fidelity error appears small while the obtained transform is
10 incorrect by way of mesh folding. However direct reformulation from the Beltrami framework does
11 not lead to effective models; our new regularizer is constructed based on this framework and added
12 to the diffusion model to get a new model, which can achieve diffeomorphism. However the idea is
13 applicable to a wide class of models. We then propose an iterative method to solve the resulting
14 nonlinear optimization problem and prove the convergence of the method. Numerical experiments
15 can demonstrate that the new model can not only get a diffeomorphic registration even when the
16 deformation is large, but also possess the accuracy in comparing with the currently best models.

17 Key words. Image registration, diffeomorphic, Beltrami coefficient, optimization, Gauss-
18 Newton scheme.

19 AMS subject classifications. 65D, 65M, 65K, 68U, 68W
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1. Introduction. Image registration is to find a transformation to map the cor-
responding image data, which are taken at different times, from different sensors, or
from different viewpoints, for the purpose of telling the difference or merging informa-
tion. Nowadays, image registration is widely used in many areas, such as computer
vision, biological imaging, remote sensing and medical imaging [6, 21, 26, 32, 36, 38,
40, 47, 57].

In reality, according to the specific application, image registration can be classified
into two categories: mono-modal registration and multi-modal registration. For multi-
modal registration, finding a suitable distance measure is the most essential step [22,
35, 36, 47, 57]. The idea of this paper will be applicable to multi-modal registration
framework, but we focus on the mono-modal registration in this work.

In dealing with the mono-modal registration, there are many choices of a data
fidelity term [33] and a common approach for computing this transformation is to use
the sum of squared differences (SSD) to measure the difference between the reference
image R and the deformed template image T' [11]. However, minimization of SSD
alone in image registration is an ill-posed problem in the sense of Hadamard since
36 it may have many solutions. In order to overcome this difficulty, regularization is
37 indispensable [38, 52]. However, the choice of the regularization term, which needs
38 some prior information about physical properties and helps to avoid the local minima,
39 depends on the specific application.

40 All registration models are nonlinear but they can be classified into two main
11 categories according to the way deformation mapping is represented: linear registra-
12 tion and nonlinear registration. In linear registration, the deformation model is linear
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2 DAOPING ZHANG AND KE CHEN

and global, including rotation, translation, shearing and scaling [11, 38]. Although
the computation speed of a linear model is fast since it contains few variables, it is
commonly used as the pre-registration for starting a more sophisticated model. This
is mainly because linear models can not accommodate the local details (differences).
In contrast, nonlinear registration models inspired by physical processes of trans-
formations [47] such as the elastic model [5], fluid model [9], diffusion model [16],
TV (total variation) model [19], MTV (modified TV) model [12], linear curvature
model [17, 18], mean curvature model [14], Gaussian curvature model [27] and total
fractional-order variation model [56] are proposed to account for localised variation
in details, by allowing many degrees of freedom. The particular free-form deforma-
tion models based on B-splines lying between the above two types possess simplicity,
smoothness, efficiency and ability to describe local deformation with few degrees of
freedom [44, 45, 47]. For relatively small deformation, all models can be effective,
but for large deformation, not all models are effective and in particular few models
can guarantee a one-to-one mapping unless one fine tunes the coupling parameters
to reduce the deformation magnitude allowed (since the mapping quality is perfect if
deformation is zero) which in turn loses the ability of modeling large deformation.

Over the last decade, more and more researchers have focused on diffeomorphic
image registration where folding measured by the local invertibility quantity det(Jy)
is reduced or avoided. Here, y denotes the transformation in the registration model
and det(Jy) is the Jacobian determinant of y. Under desired assumptions, obtaining
a one-to-one mapping is a natural choice as reviewed in [47].

In 2004, Haber and Modersitzki [23] proposed an image registration model im-
posing volume preserving constraints, by ensuring det(Jy) is close to 1. Although
volume preservation is very important in some applications where some underlying
(e.g. anatomical) structure is known to be incompressible [47], it is not required or
reasonable in others. In a later work, the same authors [25] relaxed the constraint to
allow det(Jy) to lie in a specific interval. Yanovsky et al. [55] applied the symmetric
Kullback-Leibler distance to quantify det(Jy) to achieve a diffeomorphic mapping.
Burger et al. [7] designed a volume penalty term that ensured that shrinkage and
growth had the same cost in their variational functional. The constrained hierar-
chical parametric approach [41] ensures that the mapping is globally one-to-one and
thus preserves topology in the deformed image. Sdika [46] introduced a regularizer to
penalize the non-invertible transformation. In [51], Vercauteren et al. proposed an ef-
ficient non-parametric diffeomorphic image registration algorithm based on Thirion’s
demons algorithm [49]. In addition, a framework called Large Deformation Diffeomor-
phic Metric Mapping (LDDMM) can generate the diffeomorphic transformation for
image registration [37, 3, 15, 50]. An entirely different framework proposed by Lam
and Lui [30] obtains diffeomorphic registrations by constraining Beltrami coefficients
of a quasi-conformal map f = y;(x) + ty2(x), instead of controlling the map y(x)
directly.

In this paper, we aim to reformulate the Lam and Lui Beltrami measure as a
direct regularizer for controlling det(Jy) and to assess the effectiveness of the resulting
variational models; though the idea applies to any commonly used models, we apply
it to the diffusion model as one simple example. Our contributions are two-fold:

e We propose a new Beltrami coefficient based regularizer that is explicitly
expressed in terms of det(Jy). This establishes a link between the Beltrami
coefficient of the transformation and the quantity det(Jy).

e An effective, iterative scheme is presented and numerical experimental results
show that the new registration model has a good performance and produces
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DIFFEOMORPHIC MODEL FOR IMAGE REGISTRATION AND ITS ALGORITHM 3

a diffeomorphic mapping while remaining competitive to the state-of-the-art
models from non-Beltrami frameworks.
We remark that several interesting works that are concerned with reversible transfor-
mations (such as [8, 54]) may also benefit from this study.

The rest of the paper is organized as follows. Section 2 briefly reviews the basic
mathematical formulation of image registration modeling, several typical regulariza-
tion terms and how to get a diffeomorphic transformation for image registration. In
Section 3, we propose a new regularizer and a new registration model. The effective
discretization and numerical scheme are discussed in Section 4. Numerical experiment
results are shown in Section 5, and finally a summary is concluded in Section 6.

2. Preliminaries, Regularization and Diffeomorphic Transformation. In
general, image registration aims to compare, in space R4, two or more images or
image sequences in a video. In this work, we consider the case of a pair of images
T,R:Q CR?— R and d = 2. Here by convention, R is the Reference image and T
is the (moving) Template image.

The aim of image registration is to find a transformation y(x) such that

Toy(x) =T(y(x)) ~ R,

where x = (21, 22) and y(x) = (y1(x), y2(x)). That is, the transformation y(x) moves
T to match R. If we define y(x) = x + u(x), then u(x) = (u1(x),u2(x)) indicates
how much T moves i.e. u(x) is the displacement. Thus, the determination of the
transformation y(x) is equivalent to the determination of the displacement field u(x).

2.1. Data fidelity. One way to ensure that T'(y) can approximate R is to min-
imize the difference T'(y) — R. A commonly used difference measure is the sum of
squared differences (SSD) defined by

(1) Dbl = [ (1)~ Rfdx = 5 |T) = RI? = 5IT0x+w) — A} = Dl

where || - ||? denotes the squared Lo-norm. Of course, there are some other typical
distance measures, including normalized cross correlation [38], mutual information

[35, 38], normalized gradient fields [24, 39] and mass-preserving measure [7].

2.2. Regularization. Minimizing any of the above mentioned measures is inef-
ficient to obtain a unique transformation y for image registration, because min Dl[y]
is ill-posed [38, 39]. In order to overcome this problem, regularization is necessary.
Combining distance measure and regularization gives the variational model for image
registration:

(2) muin J(u) = Dlu] + aS[u],
where D[u] is the distance measure from (1), S[u] is the regularizer to be discussed
and « is a positive parameter to balance these two terms.

There exist many regularizers and we can classify them into three categories:

e First order regularizers involving |Vu| or |V - u|. The diffusion regularizer
[16] and the TV regularizer [19] are well-known first order regularizers. The
former one aims to control smoothness of the displacement and the latter one
can preserve the discontinuity.

e Fractional order regularizer V*u with a € (1,2). In [56], a fractional or-
der regularizer is used for image registration. Because the fractional order
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4 DAOPING ZHANG AND KE CHEN

regularizer is a global regularizer, its implementation must explore the struc-
tured Toeplitz matrices. This regularizer can not only produce accurate and
smooth solutions but also allow for a large rigid alignment [56].

e Second order regularizers involving VZu or V - (Vu/|Vul). These include
the linear curvature regularizer [17, 18], mean curvature regularizer [14] and
Gaussian curvature regularizer [27].

The first two categories of models require an affine linear transformation in an initial
pre-registration step while the latter category does not need a linear transformation
in pre-registration.

Differing from the above three categories, an important class of fluid like models
based on partial differential equations were developed to capture large deformations.
Christensen et al. [10] proposed an effective viscous fluid model characterized by a
spatial smoothing of the velocity field. For the viscous fluid model, the deformation
is governed by the Navier-Stokes equation:

(3) Vv 4+ +AV(V-v)+F =0, v=0u+v-Vu

Here, n and X are the viscosity coefficients, the term V2v constrains the velocity
field to vary smoothly, the term V(V - v) allows structures in the template to change
in mass and F is the nonlinear deformation force field, which can be defined by
(T(x+u) — R)VT. The velocity field v is initialized as 0 in implementation. In [10],
the condition | det(Jy)| > 0.5 is checked at each iteration and if not satisfied, restarting
the numerical solver is initiated so that a diffeomorphic transform is obtained; see also
[38]. Further in [55], the model is enhanced by incorporating a volume preservation
idea relating to minimizing |det(Jy) — 1| again to ensure diffeomorphism without
restarting.
Next, we review the Diffusion model [16]

i —uau—1 X+u) — 2xg 2u2x
@) min () = Dlul + oSl = 5 [ (T0x+w - R +2/Q;|Ved.

It leads to the Euler-Lagrange equation:

. T(x+u) — R)9,, T (x+u) — aAu; =0,
(T'(x4u) — R)VyT(x+u) — aAu =0 i.e. ETEX—I-u% _ Rgau:TEX+ug — alus = 0,
subject to (Vug,n) = 0 on 9Q and ¢ = 1, 2. Particularly, there exits a fast implemen-
tation based on the so-called additive operator splitting (AOS) scheme [38, 53]. In
[13], a fast solver was developed for this model.

However, as with other models reviewed in the three categories, the obtained
solution u or y is mathematically correct but often incorrect physically. This is due
to no guarantee of mesh non-folding which is measured by det(Jy) > 0 i.e. a positive
determinant of the local Jacobian matrix Jy of the transform y.

2.3. Models of diffeomorphic transformation. To achieve det(Jy) > 0, one
can find several recent works that impose this constraint in some direct ways. We
review a few of such models before we present our new constraint. In the form of (4),
the idea is to choose S1[-] in the following (note y = x + u)

(5) m&n J(u) = Dlu] + aS[u] + 551 [y].
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DIFFEOMORPHIC MODEL FOR IMAGE REGISTRATION AND ITS ALGORITHM 5

Volume control. In 2004, Haber and Modersitzki [23] used volume preserving
constraint (area in 2D) for image registration, namely

det(Jy) = 1.

As a consequence, we can ensure that the transformation is diffeomorphic. However,
volume preservation is not desirable when the anatomical structure is compressible in
medical imaging.

Slack constraint. Improving on [25], the constraint det(Jy) = 1 is relaxed and
a slack constraint is proposed

M, < det(Jy) < M,

where a positive interval [M,, Mp] is provided by the user as prior information in the
specific application e.g. [M,, M) = [0.1,2].

Unbiased transform. In [55], according to the information theory, det(.Jy) is
controlled by the symmetric Kullback-Leibler distance

| 1det() = 1105 det(s ) ax.

It can help to get an unbiased diffeomorphic transformation. This idea was tested
with the fluid regularizer (first order).

Balance of shrinkage and growth. Geometrically det(.Jy) = 1 implies volume
preservation. Similarly det(Jy,) < 1 implies shrinkage while det(Jy) > 1 implies
growth. A function that treats the cases of shrinkage and growth identically is ¢(x) =
((z — 1)%/x)? since ¢(1/x) = ¢(z). A volume penalty

det(Jy) — 1)2°
(6) / ((e(y))> dx
Q det(Jy)
is used in the hyperelastic model [7], which ensures that shrinkage and growth have
the same price.
LDDMM Framework. In LDDMM framework, the deformation is modeled by

considering its velocity over time according to the transport equation. We can write
its variational formulation as follows:

I%l,lnD(T(a 1)5 R) + QS(U)
st. T (x,t) +v(x,t)- VT (x,t) =0 and T(x,0) =T,

where v : © x [0,1] — R? is the velocity and 7 : Q x [0,1] — R is a series of images.
For more details, please see [37, 3, 15, 47, 50]

Beltrami indirect control. In 2014, Lam and Lui [30] presented a novel ap-
proach in a Beltrami framework to obtain diffeomorphic registrations with large defor-
mations using landmark and intensity information via quasi-conformal maps. Before
introducing this model, we first describe some basic theories about quasi-conformal
map and Beltrami coefficient.

A complex map z = x1 + ixg — f(2) = y1(x1,x2) + iy (1, 22) from a domain
in C onto another domain is quasi-conformal if it has continuous partial derivatives
and satisfies the following Beltrami equation:

0 7]
@ oL —un,
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6 DAOPING ZHANG AND KE CHEN

for some complex-valued Lebesgue measurable p [4] satisfying ||p|leo < 1. Here p =
w(y) = fz/f. is called the Beltrami coefficient explicitly computable from y since

_ 6.f _ 1 af . 8f _ (yl)ﬂh + (y2)-’£2 . (yQ)xl - (yl)xz

- ﬂ_52:§@5_ﬁﬁﬂ_ 2 T 2 ’
f’ _ % — E(ﬁ iﬁ) _ (yl)l‘l — (yQ)zQ +i(y2)m1 + (yl)mz

T 0z 2 0x1 0xo B 2 2 ’

where (y1)z, = 0y1/0x1. Conversely y = y* can be computed for a given p through
solving u(y) = p.

A quasi-conformal map is a homeomorphism (i.e. one-to-one) and its first-order
approximation takes small circles to small ellipses of bounded eccentricity [20]. As a
special case, ;1 = 0 means that the map f is holomorphic and conformal, characterized
by fz = 0 or y1, y2 satisfying the Cauchy-Riemann equations (y1)z, = (¥2)ws, (Y1)z, =
- (yQ)iCl :

Thus in the context of image registration, enforcing ||u||oo < 1 provides the con-
trol for the transform f and ensures homeomorphism. The quasi-conformal hybrid
registration model (QCHR) in [30] is

Q win [ (Vi +a [P +5 [ (700 - Ry

subject to y = (y1,y2) satisfying

1. p=py);

2). y(p;) = ¢; for 1 < j <m (Landmark constraints);

3). [n(¥)llee <1 (bijectivity),

which indirectly controls det(Jy) via Beltrami coefficient, where p(y) is the Beltrami
coefficient of the transformation y. The above model is solved by a penalty splitting
method. It minimizes the following functional:

(10) Lrwvkva [ wpo [ w—u+s [ (mon) - R

subject to the constraints that ||v|e < 1 and y* be the quasi-conformal map with
Beltrami coefficient p satisfying y*(p;) = ¢; for 1 < j < m. Then in each iteration,
it needs to solve the following two subproblems alternately:

fog1 = argming / = vl + 8 / (T(y") - R)?
Q Q

st. yi(pj)=¢jfor1<j<m

(11)

and
(12) Unt1 :argmin/ |VV\2+04/ |V|p—|—0'/ [V — i1 ]?
Q Q Q

In addition, it also solves the equation u(y) = p by the linear Beltrami solver (LBS)
[34] to find y and ensures that y matches the landmark constraints.

Thus, instead of controlling the Jacobian determinant of the transformation di-
rectly, controlling Beltrami coefficient is also a good alternative providing the same
but indirect control. However, since their algorithm [30] has to deal with two main
unknowns (the transformation y and its Beltrami coefficient 1) and one auxiliary un-
known (the coefficient v) in a non-convex formulation, the increased cost, practical
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implementation and convergence are real issues; for challenging problems, one cannot
observe convergence and therefore the full capability of the model is not realized.

We are motivated to reduce the unknowns and simplify their algorithm. Our
solution is to reformulate the problem in the space of the primary variable y or u,
not in the transformed space of variables u,v. We make use of the explicit formula
of u = u(y). Working with primal mapping y enables us to introduce the advantages
of minimizing a Beltrami coefficient to the above reviewed variational framework (2),
effectively unifying the two frameworks.

Hence, we propose a new regularizer based Beltrami coefficient and, in the numer-
ical part, we can find that it is easy to be implemented. Moreover the reformulated
control regularizer can potentially be applied to a large class of variational models.

3. The proposed image registration model. In this section, we aim to
present a new regularizer based on Beltrami coefficient, which can help to get a
diffeomorphic transformation. Then combining the new regularizer with the diffusion
model, we present a novel model. Of course, combining with other models may be
studied as well since the idea is the same.

For f(z) = y1(z1, x2) + iy2(z1, z2), according to the Beltrami equation (7) and
the definitions (8), we have

_0f yof  (W1)ay — (Y2)as) +1((¥2)ar + (Y1)s)

(13) M= 52) 32 = (e + (v2)es) + {(2)ey — (92)ms)’
s () — )e)? 4 () + ()en) 512 — 2det(]))
(14) |H(f)| = (<y1)w1 + <y2)w2)2 + (<y2)w1 _ (yl)M)Q o ||JfH% + 2det(Jf)'

Note (Y1)z,(¥2)zs — (Y2)z, (Y1)2, = det(Jf). So det(Js) can be represented by the
Beltrami coefficient u(f)

(15) det(Jy) = |f:[*(1 = [u()*)

Clearly det(Vf) > 0 if |u(f)| < 1, and by the inverse function theorem, the map
f is locally bijective. We conclude that f is diffeomorphism if we assume that Q is
bounded, simply connected.

For more details about quasi-conformal theory, the readers can refer to [1, 20, 31].

3.1. New regularizer. Our new regularizer based on |u(f)| < 1 to control the
transformation to get a diffeomorphic mapping is

s (g Il 2det()
(16) S1ly] —/Q¢(|N| Jdx, |ul” = ||JZH§+2det(‘]:’)

which clearly involves the Jacobian determinant det(Jy) in a non-trivial way and we
explore the choices of ¢ below.

REMARK. Our new reqularizer has two advantages: one is that the obtained trans-
formation y do not need to possess det(J,) — 1; the other one is that we only compute
the transformation and do not need to compute its Beltrami coefficient and introduce
another auziliary unknown as [30]. In addition, from the numerical experiments,
we can see that our new regularizer is easy to implement and obtains accurate and
diffeomorphic transformations.
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8 DAOPING ZHANG AND KE CHEN

3.2. The proposed model. The above regularizer (16) providing a constraint
on y is ready to be combined with an existing model. In the framework (5), using
(16), the first version of our new model takes the form

1
(17) min S7(y) = RIE + 1 1Vul 13+ | o(uf)ax

where u = y(x) — x = (y1(x),y2(x)) — x is the deformation field, |Vu|? = |Vuy|? +
|Vug|? and p = pu(y). To promote |u(f)| < 1, our first and simple choice is ¢(v) =
o1(v) = ﬁ, which forces (17) and ¢(v) to reduce v, at the initial guess v = 0
when u=0, since ¢;(v) — co when v — 1.

REMARK. From (9) and (17), we see that the QCHR model focuses on obtaining a
smooth Beltrami coefficient and our model focuses on the diffeomorphic transformation
itself. There are major differences between the regularizer in QCHR model and our
new reqularizer: the former is characterized by the Beltrami coefficient p directly and
gradient of this Beltrami coefficient p, while the latter is characterized by the Beltrami
coefficient indirectly in terms of the transformation y and the gradient of u. Since
y = x+ u is our desired transformation, our direct regularizers such as |Vu|> make
more sense than indirect reqularizers such as |V pu|?.

However as long as |u(f)| < 1, we would not give a preference to forcing |u(f)| —
0. To put some control on bias, similarly to [7], we are led to 2 more choices of a less
unbiased function to modify S[y]

o d(v) = ¢a(v) = womz: balance |(f)] between 0 and 1 as ¢a(v) = ¢p2(1/v);
o 6(v) = ¢3(v) = 5= encourage [u(f)| = 0 and [u(f)] # 1;
Below, we list first order derivatives and second order derivatives for the above
different ¢(v):

e 9(v) = & and ¢(v) =
(

b ¢/2 v) = — (vvj_ll)z and gb/?l(v) = (12)11_-'5;14;
o Gh0) = — 2 and (o) = (i,

which will be used in subsequent solutions. With a general ¢(v), the second version
of our proposed model takes the form:

u

2
(18) min;/ﬂ(T(x—l—u)—R)zdx—&—Z/Q;Wudgdx—i—ﬁ/ﬂfﬁ(mg)dx

9 (311ul*812u2)2+(811u2+312u1)2
where [u[* = (Oy U1 T 02y u2+2)%+(Dy Uz — Dy ur)
discretization, using y1 = x1 +ui(x1,x2), Y2 = o +us(1,z2), and 9, u1 = duy/0x1.

> is written in component form ready for

REMARK. For the existence or uniqueness of a solution of (18), this is out of the
scope of the present work and will be considered in our forthcoming work.

4. The numerical algorithm. In this section, we will present a numerical al-
gorithm to solve model (18). We choose the discretize - optimize approach. Directly
discretizing this variational model gives rise to a finite dimensional optimization prob-
lem. Then we use optimization methods to solve this resulting problem.

4.1. Discretization. We use finite differences to discretize model (18) on a unit
square domain 2 = [0,1]%. In implementation, we employ the nodal grid and define
a spatial partition Q), = {x* € Q | xJ = (2}, 23) = (ih,jh),0 <i <n,0 < j < n},
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DIFFEOMORPHIC MODEL FOR IMAGE REGISTRATION AND ITS ALGORITHM 9

where h = % and the discrete domain consists of n? cells of size h x h. We dis-
cretize the displacement field u on the nodal grid, namely u®/ = (ullj ,ué’j ) =
(uy (2}, 23), ug(xh, 23)). For ease presentation, according to the lexicographical or-
dering, we reshape

(0 n 0 0 n\T 2(n+1)*x1
X =% a2l et ad, a2l a)T e RAE DT

and
0,n n,n 0,0 n,0 0,n

/.00 n,0 n,n\T 2(n+1)%x1
U= (U] ey U7 ey Ug ey U Uy ey Uy ey Uy ey Uy ) € R2(nH1)7 %1

4.1.1. Discretization of Term 1 in (18). According to the cell-centred parti-
tion in Figure 1(a) and mid-point rule, we get

Dlu] = /Q (T(x4u(x)) — R(x))2dx

2
(19) h2 n—1ln—1
=5 Z Z(T(XH-%,H-% + u(xi—i-%,j-i-%)) _ R(Xi+%,j+§))2.
i=0 j=0

-1, i-0.5,) ij

X X X
(a) Tlustration of cell-centered partition: (b) Partition for d; and 8y. The left yellow
Green cell denoted by 2; ;. Nodal Grid O cell is sz and the right green cell is Qf?

Fic. 1. Partition of domain Q = U;;€); ;. Note that solutions u1 and uz are defined at nodes.

Set R = R(PX) R"**1 as the discretized reference image and T(PX + PU) €
R™ 1 a5 the discretized deformed template image, where P € R2% x2(n+1? g ap
averaging matrix for the transfer from the nodal grid representation of U to the cell
centered positions.

Consequently, for SSD, we obtain the following discretization:

(20) Dlu] ~ h;(f(PX + PU) - R)"(T(PX + PU) — R).
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4.1.2. Discretization of Term 2 in (18). For the diffusion regularizer,

2
«
(21) Suful == 5 [ 3 [Vurfax
=1
according to the the partition in Figure 1(b) and mid-point rule, we have
i+3.j .
(22) / |0, ug|*dx ~ h2(0s1 27 uy)? 1<j<n-1,

i J

or at the boundary half-boxes
2 h? ivlg ‘
(23) ) |0, we|“dx == ?(&1 2" uy) j=0,n.
QL

And for [,z |0z, ue?dx, £ = 1,2, we have similar results.
3

As designed, we use compact (short) difference schemes to compute the 9,,u, and
8I2ug, = 172:

i,J+1 1,
i+1.j - i,j+3 Uy — Uy
(24) Opy 2 up ~ H—— | Oy Pup =~ =

Then (21) can be rewritten in the following formulation:
h2
(25) Sait[u] = %UTATGAU.

See Appendix A for details on A and G.

REMARK. Note that here the matrix A is the discretized gradient matriz. So
ATGA is the discretized Laplace matric.

[ ey e ]
V3 V4
B H i 1]
V5
A A i ]
Vi V2
m m

& £]

F1G. 2. Partition of a cell, nodal point [l and center point o. AV1VaVs is Q j 1.
4.1.3. Discretization of Term 3 in (18). For simplicity, denote |u(y)| =

|p(x +u)| by |u(u)|. From (18), note that ¢(|u(u)|?) involves only first order deriva-
tives and all u*/ are available at vertex pixels. Thus it is convenient first to obtain
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approximations at all cell centres (e.g. at Vs in Figure 2) and second to use local
linear elements to facilitate first order derivatives. We shall divide each cell (Figure
2) into 4 triangles. In each triangle, we construct two linear interpolation functions to
approximate the u; and us. Consequently, all partial derivatives are locally constants
or ¢(|u(u)|?) is constant in each triangle.

According to the partition in Figure 2, we get

(26)  Spetrami[u] := 8 /Q o(|p(w)|?)dx = BZZZ / w)))2)dx.

=1 j=1 k=1

S,et, Li’j’k(x) — (Li’j’k(x%Lé’j’k(x)) — (al,j kiUl + aQ,J, Lo + ak 1,5,k a4’J km + at QYL o+
aé’j’k), which is the linear interpolation for u in the € ;). Note that O, LY ’J’k =
abPk 9, LR = qbik g L = % and 8, LE7F = ol According to (18), the
discretization of Beltrami regularizer can be written into followmg.

2 N n 4 i,5,k i9,k\2 ijk ik
(27)  Spemamilt] ~ 2= 37373 g (07" = a5 + (a5 +ai?h)?

i,k ik ik idik
i=1 j=1k=1 (a7”" +ag”" +2)? + (azj *a4] )2

To simplify (27), define 3 vectors ¥(U), (U), 7 (U) € R by F(U), = Fl(U)gF?(U)g,
FL(U)e = (" —ag™)? + (a7 +ay™)2, P (U) = 1/[(a77" +ag”* +2)% + (ay" -
a7)2] where £ = (k— 1)n% + (j — 1)n+i € [1,4n?%]. Hence, (27) becomes

Bh?
(28) SBeltraml[ ]N 791)( ( ))
where ¢(F(U)) = (¢(F(U)1), ..., p(F(U)4n2)) denotes the pixel-wise discretization of
up,ug at all cell centers, and e = (1,...,1) € R4n°, Here, ¥(U) is the square of the
discretized Beltrami coefficient; we rewrite it in a compact form in Appendix B.

Finally, combining the above three parts (20), (25) and (28), we get the discretiza-
tion formulation for model (18):

2
. L B, h
min J(U) := %(T(PX + PU) — R)T(T(PX + PU) — R) + - UTATGAU

U
+ﬁi¢<< U))e’

(29)

REMARK. According to the definition of ¢ and #(U), > 0, each component of
d(H(U)) is non-negative and differentiable.

4.2. Optimization method for the discretized problem (29). In the nu-
merical implementation, we choose line search method to solve the resulting uncon-
strained optimization problem (29). In order to guarantee the search direction is a
descent direction, we employ the Gauss-Newton direction as the standard direction
involving non-definite Hessians does not generate a descent direction. Otherwise, us-
ing a Gauss-Newton approach presents two agvantages: one is that we do not need
to compute the second order term and it can save computation time; the other one
is that this Gauss-Newton matrix is more important than the second term, either
because of small second order derivatives or because of small residuals [42].

Let J(U) : R2Z+1” 5 R be twice continuously differentiable, U* € R2("+1* and
the approximated Hessian H(U*) positive definite. We model .J at the current point

Tha anuscript is for review purpose: 0y,
T}1/9 manuscript 1 JOT TEVIEW PUTPOSES ()nl([



397

398

413
414
415
416

417

118
419
420

421
422

123

424
425
426

12 DAOPING ZHANG AND KE CHEN

U* by the quadratic approximation ¢*(s),

(30) J(U* +5) =~ ¢*(s) = J(U*) + d s (U*)Ts + %STH(Uk)TS
where s = U — U* and d;(U*) = VJ(U*). Minimizing ¢*(s) yields
(31) Ut = UY — [H(U*)7'd, (U").

In order to guarantee the global convergence of the Gauss-Newton method, we
employ the line search and its iteration is as follows:

(32) UM = U* — 0, [H(U®)] " Yd (U").

where 0y is a step length.
Next, we will investigate the details about the approximated Hessian H(U*), step
length 6y, stopping criteria and multilevel strategy.

4.2.1. Approximated Hessian H. We consider each of the three terms in
J(U) from (29) separately.
Firstly, we consider the discretized SSD

(33) %Z(T(PX + PU) — R)T(T(PX + PU) — R).

Its gradient and Hessian are respectively

2 dy h?PTTT(T(U)_Fz) R2( DX,
(34) Hy = h*PT(TTTy +zz L(T(U) = R),VX(T(U) — R),)P

where U = PX + PU and T, = % as the Jacobian of T with respect to U.

For Hy, we cannot ensure that it is positive semi-definite. If it is not positive
definite, we may not get a descent direction. So we omit the second order term of H;
to obtain the approximated Hessian of (33):

(35) Hy = W*PT(TETg) P,

REMARK. FEvaluation of the deformed template image T must involve interpola-
tion because U do not in general correspond to pz:z:el points; in our implementation,
as with [39], we use B-splines interpolation to get T( U)

Secondly, for the discretized diffusion regularizer %U TATGAU, its gradient and
Hessian are the following:

_ 2 AT 2(n+1)?x1
(36) { ds ah?ATGAU € R ,

Hy, = ah?ATGA € R2(n+1)?x2(n41)*

Since Hj is positive definite when U is applied with Dirichet boundary conditions, we
do not approximate it.
Finally, for the discretized Beltrami term

(37) —oEU))e",

Tha anuscript is for review purpose: 0y,
T}1/9 manuscript 1 JOT TEVIEW PUTPOSES ()nl([



428

429

430

431

432
433
434
435
136
437
438
439

440

141

442

443

144

445
446

447

148
449

DIFFEOMORPHIC MODEL FOR IMAGE REGISTRATION AND ITS ALGORITHM 13

the gradient and the Hessian are as follows:

gy [ @ = Cradem e B
3 = (AT 2@ (R)dE + 30,7, [de ()] V2E,) € RA D x2(nt1)?

where do(¥) = (¢/(T1), ..., #’ (F4n2))T is the vector of derivatives of ¢ at all cell centers,

df = diag(f')di® + diag(f*)dr",
(39) di' = 2diag(A1U)A; + 2diag(AsU) As,
di* = —diag(f® © )2 diag(AsU + 2) A3 + 2 diag(A4U) A4,

® denotes a Hadamard product, dr, dr", di” are the Jacobian of T, ¥, ¥~ with respect
to U respectively, [d¢(T)], is the /th component of d¢(F) and d2¢(F) is the Hessian
of ¢ with respect to ¥, which is a diagonal matrix whose ith diagonal element is
@"(%;), 1 <i < 4n?. Here diag(v) is a diagonal matrix with v on its main diagonal.
More details about ', ¥*, Ay, A, A3 and A4 are shown in Appendix B and some
illustration of our notation is given in Appendix C.

To extract a positive semi-definite part out of (38), we omit the second order
term and obtain the approximated Hessian as

Bh?

(40) H; = e

dr” d2¢(F)d¥.
Therefore for functional J(U) in (29) with any choice of ¢, we obtain its gradient
(41) dy=dy +dy+ds
and approximated Hessian:
(42) H=H, + Hy + H;.

4.2.2. Search Direction. At each iteration, using (41) and (42), we need to
solve the Gauss-Newton system to find the search direction of (29):

(43) H6U = —dy,

where dU is the search direction. In our implementation, we use MINRES with
diagonal preconditioning to solve this linear system [2, 43].

4.2.3. Step Length. We use the standard Armijo strategy with backtracking
to find a suitable step length 6. In the implementation, we also need to check that
r(U) (54) is smaller than 1. Recall that F(U) is the norm square of the discretized
Beltrami term. As a safe guard, we choose TO = 108 and Tol = 107'2 as the lower
bound of the step length 6 and 6||6U]|| [7, 28, 42, 48]. The algorithm is summarized
in Algorithm 1.

4.2.4. Stopping Criteria. Here, we adopt the stopping criteria as in [39]:
(La) [|J(U™Y) = JU)[| < 7 (1 + |7 (UO)]]),
(Lb) [y =yl < mw (1 + [ly°ID),
(L) |ldsl| < e (1 + @),
(2) lldsl < eps,
(3) i > Maxlter.

This manuscript is for review purposes only.
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Algorithm 1 Armijo Line Search: (U,ID) <+ ALS(U, 6U)

Step 1: Initialisation. Set ID = 0, § = 1, Tol= 10712, T0 = 10~® and n = 10~
Compute J(U) and d;.
Step 2: Feasibility checking.
while 0||6U|| > Tol do
urer = U + 66U,
if ||F(U™)|] < 1 then
If 6 > TO, exit this while loop and go to Step 3, else if # < T0, go to Step 4.
end if
Reduce the factor 6 by 6 = 6/2;
end while
Step 3: Line Search.
while 6||6U|| > Tol do
Compute J(U™Y);
if J(U") < J(U) 4 6nd ;76U then
If 8 > TO, exit this algorithm with U = U™, else if 8 < T0, go to Step 4.
end if
Reduce the factor by 6 = 6/2;
Uurer = U 4 66U,
end while
Step 4: Set ID =1 and U = U™,

462 Here, eps is the machine precision and MaxIter is the maximal number of outer
463 iterations. We set 75 = 1073, 7 = 1072, 7¢ = 1072 and MaxIter= 500. If any one
464 of (1) (2) and (3) is satisfied, the iterations are terminated. Hence, a Gauss-Newton
165 numerical scheme with Armijo line search can be developed. The resulting Gauss-
166 Newton numerical scheme by using Armijo line search is summarized in Algorithm
467 2.

Algorithm 2 Gauss-Newton scheme by using Armijo line search for Image Registra-
tion: (U,ID) +- GNAIRA(«, 3,U° T, R)
Step 1: Set i = 0 at the solution point U? = U°.
Step 2: For (29), compute the energy functional J(U?), its gradient d’; and
the approximated Hessian H® by (42).
while “none of the listed 3 stopping criteria are satisfied” do
— Solve the Gauss-Newton equation: H'6U® = —d';
— (ULID) <+ ALS(UY, §U%) by Algorithm 1;
if ID =1 then
Exit this algorithm.
else
1=14+1;
Compute J(U?), d’; and H';
end if
end while

468 Next, we discuss the global convergence result of Algorithm 2 for our reformulated
169 problem (29). Firstly, we review some relevant theorem.
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THEOREM 1 ([28]). For the unconstrained optimization problem
min J(U)

let an iterative sequence be defined by U™ = Ut+05U*, where U = —(H")~1d;(U?)
and 6 is obtained by Algorithm 1. Assume that three conditions are met: (i). dj be
Lipschitz continuous; (ii). the matrices H* are SPD (iii). there exist constants ik and
A such that the condition number xk(H®) < & and the norm ||H|| < X for all i. Then
either J(U?) is unbounded from below or

(44) lim d;(U*) =0

71— 00

and hence any limit point of the sequence of iterates is a stationary point.

REMARK. In the above discretization leading to (29), we do not need to introduce
the boundary condition. However for theory purpose, in the following, we will prove
our convergence result under the Dirichlet boundary condition (namely, the boundary
is fized) and this condition is needed to prove the symmetric positive definite (SPD)
property of the approximated Hessians. In practical implementation, such a condition
s mot required as confirmed by experiments.

In addition, define an important set X := {U | F(U); < 1 —¢,1 < £ < 4n?}
for small e. So U € X means that the transformation is diffeomorphic. Under the

suitable 3, we assume that each U’ generated by Algorithm 2 is in the X’.
Secondly we stage a simple lemma that is needed shortly for studying H®.

LEMMA 2. Let a matriz be comprised of 3 submatrices H = Hy + Ho + Hs. If
H, and Hy are symmetric positive semi-definite and Hs is SPD, then H is SPD with
Ay < Ap, where A\p, and A, are the minimum eigenvalues of Hs and H separately.

Proof. According to Rayleigh quotient, we can find a vector v such that

T
H
(45) Ap = el

Then we have

(46) Ahy < + + = = Ap,

which completes the proof. ]

THEOREM 3. Assume that T and R are twice continuously differentiable. For
(29), when ¢ = @1, po or ¢3, by using Algorithm 2, we obtain

(47) lim dj(U*) =0

71— 00
and hence any limit point of the sequence of iterates produced by Algorithm 2 is a
stationary point.

Proof. 1t suffices to show that Algorithm 2 satisfies the requirements of Theorem
1. Recall ¥(U) and we can see that it is continuous. Here, we use the Dirichlet bound-
ary condition and we can assume that ||U|| is bounded. Then ¥(U) is a continuous
mapping from a compact set to R4"**1 and F(U) is proper. So for some small € > 0,
X is compact.
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16 DAOPING ZHANG AND KE CHEN

Firstly, we show that in X, d; of (29) is Lipschitz continuous. When ¢ = ¢1, ¢
or ¢3, the term ¢(F(U))el in the (29) is twice continuously differentiable with respect
to U € X. In addition, T' and R are twice continuously differentiable. So (29) is twice
continuously differentiable with respect to U € X and d; is Lipschitz continuous.

Secondly, we show that in X, H* = H! + Hi + H is SPD. By the construction
of H! and H}, they are symmetric positive semi-definite. H is symmetric positive
definite under the Dirichlet boundary condition. Consequently H* is SPD.

Thirdly, we show that both x(H') and ||H’| are bounded. We notice that
in each iteration, Hi = ah?ATGA is constant and we can set ||Hi| = M,. For
I:I{ = h2PT(f€fﬁ)P, we get its upper bound M; because T is twice continuously
differentiable and X" is compact. For ¢ = ¢1, ¢ or ¢3, ¢ is twice continuously differ-
entiable with respect to U € X, then we have || Hi| < %thdFTHHdqu(F)HHdFH < Ms.
Hence, we have

(48) 1| < 1HT) + | Hsll + || S| < Ma+ Mo + M.

So set M = My + My + M3 and |[H!|| < M. Set o as the minimum eigenvalue of H3.
According to Lemma 2, the smallest eigenvalue \,,;, of H® should be larger than o.
The largest eigenvalue . of H' should be smaller than M due to Apae < [|[H?|.
So the conditional number of H? is smaller than %

Finally, we can find that (29) has lower bound 0. So by applying Theorem 1, we
finish the proof. ]

4.3. Multi-Level Strategy. In practice, we employ the multilevel strategy. We
firstly coarsen the template T and the reference R by L levels. Here, we set T, = T
and R; = R in the finest level and 77 and R, in the coarsest level. Then we can obtain
U; by solving our model (18) on the coarsest level. In order to give a good initial
guess for the finer level, we adopt an interpolation operator on U; to obtain U as the
initial guess for the next level. We repeat this process and get the final registration on
the finest level. A multi-level strategy has several advantages: in the coarse level, only
important patterns can be considered and it is a standard technique used in order to
avoid getting trapped in a meaningless local minimum; the computational speed is
very fast because of less variables than on the fine level; the solution on the coarse
level can be a good initial guess for the fine level.

The multilevel scheme representing our main algorithm is summarized below
where I}, is an interpolation operator based on bi-linear interpolation techniques
and I} is a restriction operator for tansferring information to a coarser level.

5. Numerical Results. In this section, we will give some numerical results to
illustrate the performance of our model (18). We hope to achieve 3 aims:
1). Which choice of ¢ is the best for our model (18)7
2). We wish to compare with the current state-of-the-art methods (with codes listed
for readers’ benefit) in the literature for good diffeomorphic mapping:
(a) Hyperelastic Model [7]: code from http://www.siam.org/books/fa06/
(b) LDDMM [37]: code from
https://github.com/C4IR /FAIR.m/tree/master/add-ons/LagLDDMM
(¢) Diffeomorphic Demons (DDemons) [51]: code from
http://www.insight-journal.org/browse/publication/154
(d) QCHR [30]; code provided by the author Dr. Kam Chu Lam.
All of the tests are performed on a PC with 3.40 GHz Intel(R) Core(TM) i7-4770
microprocessor, and with installed memory (RAM) of 32 GB.
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Algorithm 3 Multilevel Image Registration: U <— MLIR(«, 8,U°, T, R)

Step 1: Compute the largest possible number of levels based on size of T, R:

L =Maxlevel; Define the coarsest level as level 1.
Work out the multilevel representation of given images R and T

RL = R, TL = T;

Rp_1=IfRy,

T, 1= I,{L{TL; R

Ri=1I1Ry, Ty = I'T, .

Step 2: Set the initial guess on the coarsest level:

U,=0°% U)=I1"00,,, j=L—1,..,1

Step 3: Apply Algorithm 2 on the coarsest level i = 1 with UY :
(U1,1ID) < GNAIRA (o, 3, UL, Ty, Ry );
if ID =1 then
Exit this algorithm;
end if
for level j =2: L do
Interpolate the solution from a coarser level U JO = 10U, _q;
Apply Algorithm 2 on level j:  (U;,1ID) <~ GNAIRA(q, f, U]Q,Tj, R;);
if ID =1 then

Exit this algorithm;

end if
end for

3). Most importantly, we like to test and highlight the advantages of our new model.

Let y be the final transform obtained by a particular model for registering two
given images T, R. We use the following three measures to quantify the performance
of this model and use them for later comparisons:

(i).

(ii).
(iii).

Re_SSD (the relative Sum of Squared Differences) which is given by

|1T(y) = RI”

(49 Re.SSD — :
) e

min det(Jy) and maxdet(Jy) that are the minimum and the maximum of the
Jacobian determinant of this transformation;
Jaccard similarity coefficient (JSC) as defined by

DT, N R, |

where DT, and R, represent respectively the segmented regions of interest
(e.g. certain image feature such as an organ) in the deformed template (after
registration) and the reference. Hence, JSC is the ratio of the intersection
of DT, and R, to the union of DT, and R, [29]. JSC = 1 shows that a
perfect alignment of the segmentation boundary and JSC' = 0 indicates that
the segmented regions have no overlap after registration.

Before computing JSC, in the first three examples below, we have employed a
segmentation algorithm to segment the main features in both 7" and R but for
the 4th example, the segmentation was manually done for both 7" and R.

In practice, we scale the intensity value of T and R to [0, 255]. Here, we state a strategy
for choosing the parameters. For our model (18), « should be related to energy D[ug]
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where ug is the initial guess for the displacement, and 8 should be related to «.
Empirically, we set a € [ay,as], where a; = 0.5D[u]1072 and ay = 2D[ug]1072.
Respectively for ¢ = ¢y, ¢2, @3, we set § € [3a,5a], [0.5a,2a] and [o,5a]. For
simplicity, we denote by New 1, New 2 and New 3 the model (18) with ¢1, ¢ and ¢3
respectively.

It should be noted that a good registration result should produce a small Re_SSD,
be diffeomorphic and yield a large JSC value for a region of interest.

5.1. Example 1 — Improvement over the diffusion model. In this ex-
ample, we test a pair of real medical images, X-ray Hands of resolution 128 x 128.
Figure 3 (a-b) show the template and the reference. We compare our model with
the diffusion model and study the improvement over it. In implementation, for both
models, we use a five-step multilevel strategy.

We conduct two experiments using different parameters:

i). Fixed parameters. Our first choice uses fixed parameters. For New 1-3, we
set =7, 06=1and 8 =9 respectively, and fix @« = 2. To be fair, we also choose
« = 2 for the diffusion model. In this case, Figure 3 shows the deformed templates
T(y) from 4 models. From it, we can see that all four models can produce visually
satisfactory results. To differentiate them, we have to check the quantitative measures
from Table 1. We can notice that the transformation obtained by the diffusion model is
non-diffeomorphic due to mindet(Jy) < 0 (i.e. mesh folded, though visually pleasing
and the Re_SSD is small). Figure 4 illustrates the transform y = x + u locally at its
folding point. In contrast, our New 1-3 can generate diffeomorphic transformations.

ii). Optimized parameters. The second choice uses the fine tuned parameters
for the diffusion model. We tested o € [1,500] and found the smallest oo = 430 with
which the diffusion model generates a diffeomorphic transformation. Then for our
model, we also set a« = 430 (which is not optimized in order to favour the former)
and set 3 =5 for New 1-3 (to test the robustness of our model). Table 1 shows the
detailed results for this second test. From it, we can see that the Re_SSD and JSC
of our model are similar to the diffusion model. And the transformations obtained
by New 1-3 are all diffeomorphic while the diffusion model is only diffeomorphic with
the help of an optimized «. This shows that our model possesses the robustness (in
the sense of not requiring optimized «) with the help of a positive §.

Hence, this example demonstrates that our New 1-3 are robust and can all help
to get an accurate and diffeomorphic transformation.

TABLE 1
Test example 1 — Comparison of the new model (New 1-3) with the diffusion model based a
fized o and an optimized o for the latter. Clearly the latter model can produce an incorrect result if
not tuned while New 1-8 are less sensitive to o with the help of (.

[ First Test a =2 [ Resolution | Re_SSD [ mindet(Jy) [ maxdet(Jy) [ JSC | time (s) |

New 1 128 x 128 1.84% 0.0032 20.1582 99.35% 38.34

New 2 128 x 128 1.25% 0.0003 33.2404 99.54% 30.66

New 3 128 x 128 1.63% 0.0014 28.1372 99.26% 21.86
Diffusion Model 128 x 128 0.90% —36.7964 72.2924 98.41% 13.42
Second Test v = 430

New 1 128 x 128 7.83% 0.1337 4.8247 98.28% 3.16

New 2 128 x 128 7.80% 0.1300 4.8364 98.28% 3.24

New 3 128 x 128 7.78% 0.1260 4.8472 98.36% 3.03
Diffusion Model 128 x 128 7.75% 0.0066 4.8278 98.30% 1.08

5.2. Example 2 — Test of large deformation and comparison of models.
As known, if the underlying deformation is small, it is generally believed that most
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i n
/

a) Template (b) Reference
c) T(y) by New 1 y) by New 2 (e) T(y) by New 3 (f) T(y) by Diffusion
model

Fi1G. 3. Test example 1 results of Hand to Hand registration (a = 2): in the top row, there are
the template and reference. In the second row, there are the deformed templates obtained by model
(18) and the diffusion model separately. Though the last column is visually fine, the transform is
not correct — see Table 1.

F1G. 4. Zooming in the transformation (obtained by the diffusion model) where there is folding.

models can deliver diffeomorphic transformations. This belief is true if one keeps
increasing «, which in turn compromises the registration quality by resulting in an
increase in Re_SSD (as seen in 2 tests of « in Example 1 where the larger a = 430
achieves diffeomorphism for diffusion with a worse Re_SSD value).

Therefore to test the capability of a registration model, we need to take an exam-
ple that requires large deformation. To this end, we consider Example 2 — a classic
synthetic example consisting of a Disc and a C shape of resolution 128 x 128 as
shown in Figure 5 (a-b). We compare our 3 models (New 1-3) with 5 other mod-
els: the hyperelastic model, LDDMM, DDemons, QCHR and the diffusion model in
registration quality and performance. For this example, we use a five-step multilevel
strategy for our model, the hyperelastic model and the diffusion model. For LDDMM
and QCHR, we use a three-step multilevel strategy. We use a one-step multilevel
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TABLE 2
Test example 2 — Comparison of the new model (New 1-3) with 5 other models.

[ Resolution [ Re_SSD [ mindet(Jy) [ maxdet(Jy) [ JSC T time (s) |

New 1 128 x 128 0.06% 0.0042 22.4 95.57% 7.00
New 2 128 x 128 0.07% 0.0012 19.5 95.84% 10.10
New 3 128 x 128 0.06% 0.0034 22.6 95.37% 3.93
Hyperelastic Model 128 x 128 0.81% 0.2426 5.9 94.84% 1.84
LDDMM 128 x 128 0.06% 0.1175 12.0 96.00% 9.16
DDemons 128 x 128 1.71% 1.3 x 10~ 7 8.2 92.69% 57.27
QCHR Model 128 x 128 7.69% 0.0255 57.4 85.36% 141.86
Diffusion Model 128 x 128 1.25% —10.1612 162.5 94.21% 0.31

strategy for DDemons as we found that multilevel does not improve the results.

Following our stated strategy for choosing the parameter for our model, we set
B = 80,120,100 for New 1-3 respectively and fix o = 70. To be consistent, we also set
« = 70 for the diffusion model. For the hyperelastic model, LDDMM and QCHR, we
set respectively {a; = 100, a5 = 0, a,, = 18}, a =400 and {a = 0.1, 8 = 1} as used in
the literature [7, 37, 30] for the same example. For the parameters of DDemons, we
tried to optimize the parameters {os, 0,4} in the domain [0.5, 5] x [0.5, 5] and took the
optimal choice {os = 1.5,04, = 3.5}.

We now present the comparative results. Figure 5 (c-j) show that except for
the diffusion model, all the other models can produce the accepted registered results.
Especially, our model and LDDMM are slightly better than the hyperelastic model,
DDemons and QCHR. It is pleasing to see that the new model produces equally
good results for this challenging example. From Table 2, we see that our New 1-3,
hyperelastic model, LDDMM, DDemons and QCHR produce mindet(Jy,) > 0 i.e.
the transformations obtained by these five models are diffeomorphic but the diffusion
model fails again with mindet(.Jy) < 0.

Because New 1-3 are motivated by the QCHR model, we now discuss the results
about these two types of models. On the one hand, according to Table 2, we can
find that our model takes less time. This is because, as we have mentioned, the
algorithm for QCHR needs to solve alternatively two subproblems (including several
linear systems) in each iteration. Its convergence cannot be guaranteed. However,
our model only needs to solve one linear system in each iteration. In addition, we
employ the Gauss-Newton method which can be superlinearly convergent under the
appropriate conditions. As we have also remarked, the QCHR algorithm can have
convergence problems. This is now illustrated in Figure 6 where we plot the relative
residual of our model (New 3) and the relative residual of QCHR. We observe that
New 3 decreases to below 1072 though not monotonically, but the relative residual of
QCHR does not decrease and is over 0.1.

On the other hand, we can compare the obtained solutions’ quality by checking
the energy functionals. Using the same QCHR functional, the QCHR solution for
Example 2 has the value 1042 while the transformation obtained by New 3 gives the
value 147 which is much smaller. This indicates that the result obtained by the QCHR,
algorithm is not accurate. This is consistent with the fact that the Re_SSD and JSC
of New 3 are also better than QCHR. Both discussions reach the same conclusion:
the QCHR algorithm cannot obtain the minimizer of the original QCHR functional.

5.3. Example 3 — Comparison of models for a challenging test. Here,
we illustrate the fact that area preservation between images can become unnecessary
and trying to enforce it (as in the hyperelastic model) can fail to register an image.
We choose the particular template and reference images, as shown in Figure 7 (a-b),
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N

(a) Template T’ ) Reference R
y) 0.1% by New 1 (d) T(y) 0.1% by New 2 (e y) 0.1% by New 3 (f ) 0.8%

by Hypereldbtlc

AR

(g) T(y) 0.1% (h) T(y) 1.7% i) T(y) 7.7% by T(y) 1.3%
by LDDMM by DDemons QCHR 6 landmarks by Diffusion model

F1G. 5. Test example 2 results of Disc to C. The percentage value shows Re_SSD error. In the
top row, there are the template and the reference. In the second and third row, there are the deformed
templates obtained by New 1-3 and 5 other models separately. The landmarks in the template and
reference are only used for QCHR and the last result (j) by Diffusion is evidently not correct.

having significantly different areas in their main features — here the area of ’Disc’
is much larger than ’C’. The resolution of the images is 512 x 512. We test the
performance of New 1-3 and other models. In this example, we use a seven-step
multilevel strategy for New 1-3, the hyperelastic model and the diffusion model. For
LDDMM and QCHR, we use a five-step multilevel strategy. We use a single level for
DDemons (since multilevels do not help).

In choosing the parameters for all the models to register this example, we first
follow our strategy to set 8 = 250,50, 100 for New 1-3 respectively and fix o = 50.
To be consistent, we also set « = 50 for the diffusion model. For the hyperelastic
model, we also set oy = 50 because it contains the diffusion term, and take ag = 0.
For the third parameter «, in the hyperelastic model, we test it in the range [55, 150]
and choose its optimal value o, = 75. For LDDMM and QCHR, we set the default
value @ = 400 and {« = 0.1, 8 = 1} as the previous example. For the parameters of
DDemons, we test the parameters {05, 0,} in the domain [0.5,5] x [0.5, 5] and choose
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== Relative Residual of Our model 3
=%+ Relative Residual of QCHR

Fic. 6. Example 2 Relative Residual of New 8 and QCHR: The solid line indicates the relative
residual of New 3. And the dot line shows the relative residual of the second subproblem in QCHR.
Here, we can find that in the same 50 iterations, the relative residual of New 3 is decreasing to below
10~2, however the relative residual of QCHR is not decreasing and over 0.1. Hence, the convergence
of the algorithm for QCHR can not be guaranteed.

its optimal choice {os = 2,0, = 5}. Hence we would expect the hyperelastic model
and DDemons to perform well.

The test results for Example 3 are presented in Table 3 and Figure 7. Although
all models except for the diffusion model produce diffeomorphic transformations, we
can see visually that only 3 models (our New 2-3 and LDDMM) produce acceptable
results, also confirmed by the table:

e The badly deformed template generated by our New 1 shows that the model
lacks robustness;

e The hyperelastic model, though producing a diffeomorphic transform, fails
(despite using an optimized parameter) because this model including a reg-
ularization term (det(Jy) — 1)*/(det(Jy))? tends to preserve area. If we do
not optimize parameters for the hyperelastic model, our tests show that its
results are even worse.

e In the previous example, we have pointed out that QCHR needs more com-
puting time and, from Table 3, we see that the time for QCHR is about 20
times as long as our New 3;

e The DDemons is trapped in a local minimum and its cpu time is also excessive
(> 5000 seconds). We also try to apply a multilevel strategy to DDemons,
but for this example the result is not satisfied. The Re_SSD, JSC and cpu
time of our New 3 are all slightly better than the second best LDDMM;

e Both Tables 2 and 3 show that the diffusion model produces solutions having
a negative Jacobian (folding) which might be viewed non-physical; this model
is included only for reference.

Hence, our model has advantages over other models for large deformation registrations
not requiring preserving area.

We now give 2 remarks on comparing New 3 (or New 2) and QCHR. As remarked,
QCHR regularizes the Beltrami coefficient only and the landmarks supplied to QCHR
can severely affect the results while our model regularizes the deformation rather than
Beltrami coefficient. Both points can be further tested below.

(i). On the first point, regularizing the Beltrami coefficient only leads to smooth
Beltrami coefficient. To compare smoothness of solutions by New 3 and QCHR, we
compute three smoothness measures ||Vul|rz, ||u(y)llzz, |Vi(y)||z2 and present them
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TABLE 3
Ezample 8 — Comparison of the new model (New 1-3) with 5 other models.

Resolution [ Re-SSD | mindet(Jy) | maxdet(Jy) [ JSC | time (s) |

New 1 512 x 512 3.06% 0.0328 38.2272 78.93% 402.87
New 2 512 x 512 0.08% 0.0035 64.4950 97.84% 281.95
New 3 512 x 512 0.07% 0.0064 60.1743 97.82% 202.17
Hyperelastic Model 512 x 512 3.85% 0.4895 7.0781 75.49% 46.16
LDDMM 512 x 512 0.41% 0.0184 40.2544 95.05% 218.32
DDemons 512 x 512 2.83% 9.6 x 10~ ° 34.8529 80.56% > 5000
QCHR Model 512 x 512 2.03% 0.0207 4.4744 84.24% 4716.7
Diffusion Model 512 x 512 0.52% —38.8337 286.3411 94.68% 5.52
(a) Template T’ ) Reference R
y) by our model 1 (d) T'(y) by our model 2 ( y) by our model 3 ( y) by Hyperelastic
model
y) by LDDMM (h) T(y) by DDemons (i) T(y) by QCHR with (j) T'(y) by Diffusion

20 p&lrb of landmarks Inodel

FiGg. 7. Ezample 3 results of a large Disc to small letter C : in the top row, there are the
template and reference. In the second and third row, there are the deformed templates obtained by
model (18) and other models separately. The landmarks in the template and reference are only used

for QCHR.

in Table 4. Clearly the table indicates that QCHR does generate a smoother Beltrami
coefficient than our model New 3 for both Examples 2-3, not a smoother deformation
field. Hence, the model which only regularizes the Beltrami coefficient rather than
the deformation is not sufficient to produce an accurate deformed template.

(ii). On the second point, we now illustrate the importance of landmarks for
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(100 III

(a) T with T with (c) T with (d) R with (e) R with (f) R with
4 landmarks b landmarks 16 landmarks 4 landmarks 6 landmarks 16 landmarks
(g) T with T with (i) T with () R with (k) R with (1) R with
4 landmarks 8 landmarks 20 landmarks 4 landmarks 8 landmarks 20 landmarks
) T(y) JSC (n) T(y) JSC (o) T(y) JSC (p) T(y) JSC (q) T(y) JSC (r) T(y
83 15% 85 36% 90 16% 54.14% 6a 78% 84 24%

Fi1G. 8. Tests of QCHR with different landmarks: Example 2 (row 1) and Ezample 3 (row 2).
On the left 3 columns of row 3, we show the registered templates for row 1. On the right 3 columns
of row 3, we show the registered templates for row 2. Here, we can see that the accuracy of QCHR
improves with the increase of landmarks.

TABLE 4
Comparison of smoothness measures for solutions obtained by New 3 and QCHR. The Beltrami
coefficient u obtained by QCHR is smoother than New 3 and the displacement u obtained by New 3
is smoother than QCHR.

\ [ Vullpe [ ez [ 1Ve)2 [ Re-SSD |

Example 2

QCHR with 16 pairs of landmarks ‘ 2.1099 ‘ 0.6930 ‘ 0.2782 ‘ 4.90%
New 3 | 1.6155 | 0.5024 | 0.2800 | 0.06%

Example 3

QCHR with 20 pairs of landmarks [ 1.5366 | 0.5853 | 0.0868 [ 2.03%
New 3 | 1.3913 | 0.3352 | 0.1090 | 0.07%

QCHR although for other problems the model can yield good results without any
landmarks. Fig. 8 shows three sets of increasing number of landmarks for Examples
2-3. We observe that more landmarks lead to better results in terms of JSC values.

As a final comparison of New 3 with LDDMM and QCHR, Figure 9 plots the
magnitudes of the Jacobian determinants of their transformations. It can be seen
that New 3 and LDDMM give a similar pattern but both are different from QCHR.

5.4. Example 4— Comparison of the new model with other models. In
the final test, we test a pair of anonymized CT images in resolution 512 x 512 from
the Royal Liverpool University Hospital. Figure 10 (a-b) show the template and the
reference. The template was taken in September 2016 and the reference was taken in
May 2016. We want to compare the changes of our interested regions of abdominal
aortic aneurysm with stents inserted inside them (with cross sections shown as two
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(a) det( Jy¢ ) det(Jyqour) det(Jyd) ) ) det(Jy; o)

Fi1G. 9. Example 3 Illustration of Jacobian determinants of the transformations obtained by our
New 8, QCHR and LDDMM for Example 2 (left two plots) and Exzample 3 (right two plots). Note
all values are positive (since all models are diffeomorphic) and New 8 has similar distributions to
LDDMM, different from QCHR.

TABLE 5
Ezxample 4 — Comparison of New 1-8 with 5 other models

[ Resolution [ Re-SSD [ mindet(Jy) | maxdet(Jy) [ JSC |

New 1 512 x 512 4.75% 0.0124 52.6802 94.19%

New 2 512 x 512 3.49% 0.0068 46.6383 94.39%

New 3 512 x 512 3.47% 0.0051 49.9309 95.34%
Hyperelastic Model 512 x 512 4.44% 0.4181 3.6192 93.51%
LDDMM 512 x 512 5.18% 0.0319 20.8164 93.79%
DDemons 512 x 512 18.89% 0.1846 2.6309 87.40%
QCHR Model 512 x 512 26.71% 0.0481 16.2555 85.68%
Diffusion Model 512 x 512 10.02% 0.0342 7.3450 93.65%

while ‘circles’ in images in Figure 10 (a-b)) during these 4 months. In addition, the
interested region is used to compute JSC. The small white region on top of the
images helps us to identify the correct slice to compare.

Here, following the previous example, we use the same multilevel strategy: a
seven-step multilevel strategy for our model, the hyperelastic model and the diffu-
sion model, a five-step multilevel strategy for LDDMM and QCHR and a one-step
multilevel strategy for DDemons.

Following our strategy for choosing the parameter of our model, we set a« = 20 and
set 6 = 100, 40, 75 with New 1-3 respectively. For the diffusion model and LDDMM,
we test a from [100,2000] and set the optimal value 1300 and 500 respectively. For
the hyperelastic model, we set {ay = 20, a5 = 0,a,, = 50}. We use the default value
{a=0.1,8 = 1} for QCHR. For the parameters of DDemons, we test the parameters
{0s,04} in the domain [0.5, 5] x [0.5, 5] and choose {5 = 4,0, = 4.5}.

With the optimized parameters, all the models in this example generate diffeo-
morphic transformations as seen from Table 5. DDemons and QCHR for this example
are not as good as other models because they give worse Re_SSD and JSC. A worse
JSC means the interested regions obtained by these two methods have significant
differences from the reference (Figure 10 (h-i)). The diffusion model obtains a good
JSC, however its deformed template is a bit far (overall) from the reference (since
Re_SSD = 10.02%). The other 2 models (Hyperelastic, LDDMM) generate good
Re_SSD and JSC. However, our models produce the lowest Re_SSD and the best
JSC. Hence, for this example of real images, our model is competitive to the state-
of-the-art methods. Though there is broad agreement between Re_SSD and JSC,
one has to combine with segmentation models to ensure the strict agreement.
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(a) Template T' (b) Reference R

(¢) T(y) by New 1(d) T(y) by New 2 (e) T(y) by New 3 (f) T(y) by Hyperelastic
JSC 94.2% JSC 94.4% JSC 95.3% model JSC 93.5%

(g) T(y) by LDDMM (h) T'(y) by DDemons (i) T'(y) by QCHR with (j) T(y) by Diffusion
JSC 93.8% JSC 87.4% 5 pairs of landmarks model JSC 93.7%
JSC 85.7%

Fic. 10. Ezample 4 — Registration results of a pair of CT images: the template T and the
reference R in the top row. The contours show the regions of interest. In the second and third rows,
we show the deformed templates obtained by 8 models. The 5 landmarks in the template and the
reference are only used by QCHR.

REMARK. According to the above four examples, our New 1 is not robust while
New 2-3 can both generate accurate and diffeomorphic transformations. However, we
recommend New 3 as the first choice because of the least computing time and the best
quality, and New 2 as the second choice.

We also test these four examples with the Dirichlet boundary condition. Similar
results for Examples 1 and 4 are obtained. However, for Examples 2 and 3, the trans-
formations would be different since the boundary is better modeled by the Neumann’s
condition.

6. Conclusions. Controlling mesh folding is a key issue in image registration
models to ensure local invertibility. Many existing models either do not impose any
further controls on the underlying transformation beyond smoothness (so potentially
generating unrealistic or non-physical transforms or mapping) or impose a direct (often
strongly biased e.g. towards area or volume preservation) control on some explicit
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function of the measure det(Jy). This paper introduces a novel, unbiased and robust
regularizer which is reformulated from Beltrami coefficient framework to ensure a
diffeomorphic transformation. Moreover we find that a direct approach (our New 1)
from this Beltrami reformulation provides an alternative but less competitive method
but further refinements (especially our New 3) of this new regularizer can give rise
to more robust models than the existing methods. We highly recommend our model
New 3 i.e. (18) with ¢ = ¢s.

In designing optimization methods for solving the resulting highly nonlinear vari-
ational model, we give a suitable approximation of the exact Hessian matrix which is
necessary to derive a convergent iterative method. Our test results can show that the
new model (New 1-3, especially New 3) is competitive with the state-of-the-art mod-
els. The main advantage lies in robustness. Our future work will include extensions
to 3D problems, multi-modality models and development of faster iterative solvers.

Appendix A. Computation of matrices A and G in §4.1.2. Set B =
LRI ® 3711,h c RQn(n-ﬁ—l)XZ(n-ﬁ—l)z’ C=L® 371{/1 ® Iny1 € Rzn(nJrl)w(nJrl)z7

al,h - = B c Rn,n-&-l’ A= |:g:| c R4n(n+1)><2(n+1)27

-1 1

where ® denotes a Kronecker product. To represent the difference between interior
and boundary pixels, we need to introduce a diagonal matrix

Gy 0 0 0
0 G2 0 0 4n(n+1)x4n(n+1)
0o 0 G ofFSE ’

0 0 0 G

(51) G =

where (G1 and G are diagonal matrices. For G1, G1,,,,, 414, = 1if 0 <0 <n—
1,L1<j<n-lor$if0<i<n—1,j=0,n. Similarly, for G, Gs

1if1§i§n—1,0§j§n—1or%ifizO,n,Ogjgn—l.

i 1g(nt 1) it g (k1)

Appendix B. Computation of the vector F(U) in §4.1.3. We demonstrate
how to build the linear interpolation L in AV3V,V5, in Figure 2.

First of all, denote the 3 vertices of this triangle by V; = xb!, V5 = x*! and
Vs = x'518 Set L(Vy) = (ut,uyt), L(Va) = (u3',u3") at the vertex pixels, and
L(Vs) = (u1®"® uy™'®) at the cell centre (approximated values). Here the linear
approximations are L(z1, z2) = (a121 + a2x2 + as, 41 + asx2 + ag).

After substituting V7, V5 and V5 into L, we get

1,1 1.5,1.5
(x% — a:fs x% - :c§5> (al) (ul’ —uy )
2 1.5 1 1.5 = 2,1 1.5,1.5 | »
r] — Iy Ty — Ty a9 ul’ — Uy ’

1,1 1.5,1.5
x% — x%b w% — x%ﬁ ag\ _ fug —uy
. . = 2,1 1.5,1. .
x%—x%s x%—x%g’ as uy’ —u25’ 5
Then

1 1.5 1 1.5 1,1 1.5,1.5
(52) S e A e A I L S i
a2 det \ —27 +xy° Ty — Xy uyt — w0 ’
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1,1 1.5,1.5
(53) ay 1 (xd—2dd 2l 4+ 2d5\ (uy —uy™
=7 . . 2,1 1.5,1.5
as det \—22 + 1% 2} —2}® uy — Uy ’
st —ld gh—ald
Where det = 2 1.5 1 1.5
Ty — &1 Ty — X

According to (52) and (53), we can formulate two matrices D1 € RAn*x(n+1)* and
D2 € R4 *(n+1)? quch that
a1 —as = [D1,—D2U = A,U € R™ %1 a, +a, = [D2, D1|U = AU € R***1 and
a; +as = [D1,D2]U = AsU € R X1 a, —a, = [D2,—D1|U = AU € RIn*x1,
Here, ag = (ajp, ..., aé"z)T, 0 =1,2,4,5, where al, = aé’j’k and | = (k—1)n?+(j—1)n+i.
Next using the Hadamard product ®, we get a compact form for

F'(U) =AU AU + AU 0 AU,
(54) FP(U) =1/((A3U +2) © (AU +2) + AU @ A,U),
FU) =forf cRWx

Appendix C. Computing the gradient and approximated Hessian of the
term (37). Here, as an example, we set n = 2 and ¢ = ¢ to compute the gradient
and approximated Hessian of the discretized Beltrami term (37).

Because of n = 2, we have

/.00 2,0 0,2 2,2 0,0 2,0 0,2 2,2\T 18x1
U= (U, oy U ey Uy ey U Uy ey Uy ey U™y ey’ )" ER .

From (52)-(53), we can formulate two matrices D1, D2 € R15%9 respectively by:

-2 2 -1 -1 11
—2 2 -1 -1 11
-2 2 -1 -1 11
~2 2 -1 -1 11
-1 1 -1 1 —2 2
-1 1 -1 1 -2 2
-1 1 -1 1 —2 2
-1 1 -1 1 —2 2
-2 2 -1 -1 11
~2 2 -1 -1 11
-2 2 -1 -1 11
—2 2 -1 -1 11
-1 1 -1 1 —2 2
-1 1 -1 1 —2 2
-1 1 -1 1 —2 2
I -1 1 -1 1 | ~2 2 |

Then we can build A7, As, A3 and A4 and compute ¥, 7> and ¥ by (54). According
to (39), we have dr € R16*18,

When ¢(v) = ¢1(v), we have ¢} (v) = ﬁ, o (v) = ﬁ and so deo(r) =
((Flfl)g s eees (sz_l)?, )T in (38). In (40) the ith diagonal element [d?¢(F)];; = ﬁ, 1 §I
i ; 16. Similarly when ¢(v) = ¢2, d(ﬁ(f’) = ((;fiz)lz,..., (;iliz)lz)T and [dz(é(F)]ii =
(,%ji_t;l« When ¢(v) = ¢3, do(r) = ((,{?rf)s y s (r{fillﬁ)z)T and [d2¢(F)]ii = (g':it)%l-

Hence, we can get ds in (38) and Hs in (40).
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