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Abstract1

Selective image segmentation is the task of extracting one object of interest among2

many others in an image based on minimal user input. Two-phase segmentation models3

cannot guarantee to locate this object, while multiphase models are more likely to classify4

this object with another features in the image. Several selective models were proposed5

recently and they would find local minimizers (sensitive to initialization) because non-convex6

minimization functionals are involved. Recently, Spencer-Chen (CMS 2015) has successfully7

proposed a convex selective variational image segmentation model (named CDSS), allowing8

a global minimizer to be found independently of initialisation. However, their algorithm is9

sensitive to the regularization parameter µ and the area parameter θ due to nonlinearity in10

the functional and additionally it is only effective for images of moderate size. In order to11

process images of large size associated with high resolution, urgent need exists in developing12

fast iterative solvers. In this paper, a stabilized variant of CDSS model through primal-dual13

formulation is proposed and an optimization based multilevel algorithm for the new model14

is introduced. Numerical results show that the new model is less sensitive to parameter µ15

and θ compared to the original CDSS model and the multilevel algorithm produces quality16

segmentation in optimal computational time.17

AMS subject classifications: 62H35, 65N22, 65N55, 74G65, 74G7518

Key words: Active contours, image segmentation, level sets, multilevel, optimization19

methods, energy minimization20

1 Introduction21

Image segmentation is a fundamental task in image processing aiming to obtain meaningful22

partitions of an input image into a finite number of disjoint homogeneous regions. Segmentation23

models can be classified into two categories, namely, edge based and region based models; other24

models may mix these categories. Edge based models refer to the models that are able to25

drive the contours towards image edges by influence of an edge detector function. The snake26

algorithm proposed by Kass et al. [33] was the first edge based variational model for image27

segmentation. Further improvement on the algorithm with geodesic active contours and the28

level-set formulation led to effective models [14, 49]. Region-based segmentation techniques try29

to separate all pixels of an object from its background pixels based on the intensity and hence30

find image edges between regions satisfying different homogeneity criteria. Examples of region-31

based techniques are region growing [30, 9], watershed algorithm [30, 10], thresholding [30, 53],32

and fuzzy clustering [50]. The most celebrated (region-based) variational model for the images33

(with and without noise) is the Mumford-Shah [43] model, reconstructing the segmented image34

as a piecewise smooth intensity function. Since the model cannot be implemented directly and35

easily, the Mumford-Shah general model [43] was often approximated. The Chan-Vese (CV)36
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[21] model is simplified and reduced from [43], without approximation. The simplification is to37

replace the piecewise smooth function by a piecewise constant function (of two constants c1, c238

or more) and, in the case of two phases, the piecewise constant function divides an image into39

the foreground and the background. A new variant of the CV model [21] has been proposed40

by [8] by taking the Euler’s elastica as the regularization of segmentation contour that can41

yield to convex contours. Another interesting model named second order Mumford-Shah total42

generalized variation was developed by [26] for simultaneously performs image denoising and43

segmentation.44

The segmentation models described above are for global segmentation due to the fact that45

all features or objects in an image are to be segmented (though identifying all objects is not46

guaranteed due to non-convexity). Selective image segmentation aims to extract one object47

of interest in an image based on some additional information of geometric constraints [28,48

47, 52]. This task cannot be achieved by global segmentation. Some effective models are49

Badshah-Chen [7] and Rada-Chen [47] which used a mixed edge based and region based ideas,50

and area constraints. Both models are non-convex. A non-convex selective variational image51

segmentation model, though effective in capturing a local minimiser, is sensitive to initialisation52

where the segmentation result relies heavily on user input.53

While the above selective segmentation models are formulated based on geometric con-54

straints in [28, 29], there are another way of defining the geometric constraints that can be55

found in [41] where geometric points outside and inside a targeted object are given. Their mo-56

del make use the Split Bregman method to speed up convergence. Although our paper based on57

geometric constraint defining in [28, 29], later, we shall compare our work with [41].We called58

their model as NCZZ model.59

In 2015, Spencer-Chen [52, 51] has successfully designed a Convex Distance Selective Seg-60

mentation model (named as CDSS). This variational model allows a global minimiser to be61

found independently of initialisation, given knowledge of c1, c2. The CDSS model [52] is chal-62

lenging to solve due to its penalty function ν (u) being highly nonlinear. Consequently, the63

standard addition operator splitting method (AOS) is not adequate. An enhanced version of64

the AOS scheme was proposed in [52] by taking the approximation of ν ′ (u) which based on its65

linear part [52, 51]. Another factor that affects the [52] model is how to choose the combination66

values of the regularization parameters µ and θ (other parameters can be fixed as suggested by67

[52, 51]). For a simple (synthetic) image, it is easy to get a suitable combination of parameter µ68

and θ which gives a good segmentation result. However, for other real life images, it is not trivial69

to determine a suitable combination of µ and θ simultaneously; our experiments show that high70

segmentation accuracy is given by the model in a small range of µ and θ and consequently the71

model is not ready for general use. Of course, it is known that an AOS method is not designed72

for processing large images.73

We remark that the most recent, convex, selective, variational image segmentation model74

was by Liu et al. [35] in 2018. This work is based on [7, 12, 47]. We named their model as75

the CMT model. Although this paper is based on [52, 51], we shall compare our work with the76

CMT model [35] later.77

Both the fast solvers multilevel and multigrid methods are developed using the idea of78

hierarchy of discretization. However, multilevel method is based on discretize-optimize scheme79

(algebraic) where the minimization of a variational problem is solved directly without using par-80

tial differential equation (PDE). In contrast, a multigrid method is based on optimize-discretize81

scheme (geometric) where it solves a PDE numerically. The two methods are inter-connected82

since both can have geometric interpretations and use similar inter-level information transfers83

[32].84

Multigrid methods have been used to solve a few variational image segmentation models in85

the level set formulation. For geodesic active contours models, linear multigrid methods are86

developed [34, 45, 46]. In 2008, Badshah and Chen [5] has successfully implemented a nonlinear87
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multigrid method to solve an elliptical partial differential equation. In 2009, Badshah and Chen88

[6] have also developed two nonlinear multigrid algorithms for variational multiphase image89

segmentation. All these multigrid methods mentioned above are based on an optimize-discretize90

scheme where a multigrid method is used to solve the resulting Euler Lagrange partial differential91

equation (PDE) derived from the variational problem. While the practical performance of the92

latter methods (closer to this work) is good, however, the multigrid convergence is not achieved93

due to smoothers having a bad smoothing rate (and non-smooth coefficients with jumps near94

edges that separate segmented domains). Therefore the above nonlinear multigrid methods95

behave like the cascadic multigrids [42] where only one multigrid cycle is applied.96

An optimization based multilevel method is based on a discretize-optimize scheme where97

minimization is solved directly (without using PDEs). The idea has been applied to image98

denoising and debluring problems [16, 17, 18]. However, the method is found to get stuck to99

local minima due to non-differentiability of the energy functional. To overcome that situation,100

Chan and Chen [16] have proposed the “patch detection” idea in the formulation of the multilevel101

method which is efficient for image denoising problems. However, as image size increases, the102

method can be slow because of the patch detection idea searches the entire image for the possible103

patch size on the finest level after each multilevel cycle [32].104

This paper investigates both the robust modeling and fast solution issues by making two con-105

tributions. Firstly, we propose a better model than CDSS. In looking for possible improvement106

on the selective model CDSS, we are inspired by several works [11, 3, 4, 15, 20, 13] on non-107

selective segmentation. The key idea that we will employ in our new model is the primal-dual108

formulation which allows us to “ignore” the penalty function ν (u), otherwise creating problems109

of parameter sensitivity. We remark that similar use of the primal-dual idea can be found in D.110

Chen et al. [22] to solve a variant of Mumford-Shah model which handles the segmentation of111

medical images with intensity inhomogeneities and also in Moreno et al. [40] for solving a four112

phase model for segmentation of brain MRI images by active contours. Secondly, we propose a113

fast optimization based multilevel method for solving the new model, which is applicable to the114

original CDSS [52], in order to achieve fast convergence especially for images with large size. We115

will consider the differentiable form of variational image segmentation models and develop the116

multilevel algorithm for the resulting models without using a “patch detection” idea. We are117

not aware of similar work done for segmentation models in the variational convex formulation.118

The rest of the paper is organized in the following way. In Section 2, we first briefly review119

the non-convex variant of the Spencer-Chen CDSS model [52]. This model gives foundation for120

the CDSS. In Section 3, we give our new primal-dual formulation of the CDSS model and in121

Section 4 present the optimization based multilevel algorithm. We proposed a new variant of122

the multilevel algorithm in Section 5 and discuss their convergence in Section 6. In Section 7123

we give some experimental results before concluding in Section 8.124

2 Review of existing variational selective segmentation models125

As discussed, there exist many variational segmentation models in the literature on global126

segmentation and few on selective image segmentation models. For the latter, we will review two127

segmentation models below that are directly related to this work. We first review a nonconvex128

selective segmentation model called the Distance Selective Segmentation [52]. Then, we discuss129

the convex version of DSS called the Convex Distance Selective Segmentation model [52] before130

we introduce a new CDSS model based on primal-dual formulation and address the fast solution131

issue in these models.132

Assume that an image z = z (x, y) comprises of two regions of approximately piecewise133

constant intensities of distinct values (unknown) c1 and c2, separated by some (unknown) curve134

or contour Γ. Let the object to be detected be represented by the region Ω1 with the value c1135

inside the curve Γ whereas outside Γ, in Ω2 = Ω\Ω1, the intensity of z is approximated with136
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value c2. In a level set formulation, the unknown curve Γ is represented by the zero level set of137

the Lipschitz function such that138

Γ = {(x, y) ∈ Ω : φ (x, y) = 0} ,
Ω1 = inside (Γ) = {(x, y) ∈ Ω : φ (x, y) > 0} ,
Ω2 = outside (Γ) = {(x, y) ∈ Ω : φ (x, y) < 0} .

Let n1 geometric constraints be given by a marker set

A = {wi = (x∗i , y
∗
i ) ∈ Ω, 1 ≤ i ≤ n1} ⊂ Ω

where each point is near the object boundary Γ, not necessarily on it [47, 54]. The selective139

segmentation idea tries to detect the boundary of a single object among all homogeneity intensity140

objects in Ω close to A; here n1 (≥ 3). The geometrical points in A define an initial polygonal141

contour and guide its evolution towards Γ [54].142

It should be remarked that applying a global segmentation model first and selecting an143

object next amount provide an alternative to selective segmentation. However this approach144

would require a secondary binary segmentation and is not reliable because the first round of145

segmentation cannot guarantee to isolate the interested object often due to non-convexity of146

models.147

2.1 Distance Selective Segmentation model148

The Distance Selective Segmentation (DSS) model [52] was proposed by Spencer and Chen149

[52] in 2015. The formulation is based on the special case of the piecewise constant Mumford-150

Shah functional [43] where it is restricted to only two phase (i.e. constants), representing the151

foreground and the background of the given image z (x, y).152

Using the set A, construct a polygon Q that connects up the markers. Denote the function153

Pd (x, y) as the Euclidean distance of each point (x, y) ∈ Ω from its nearest point (xp, yp) ∈ Q:154

Pd (x, y) =

√
(x− xp)2 + (y − yp)2 = min

q∈Q
‖(x, y)− (xq, yq)‖

and denote the regularized versions of a Heaviside function by155

Hε (φ (x, y)) =
1

2

(
1 +

2

π
arctan

(
φ

ε

))
.

Then the DSS in a level set formulation is to minimize a cost function defined as follows156

min
φ,c1,c2

D (φ, c1, c2) = µ

∫
Ω
g (|∇z|) |∇Hε(φ)| dΩ +

∫
Ω
Hε (φ) (z − c1)2dΩ

+

∫
Ω

(1−Hε (φ)) (z − c2)2dΩ + θ

∫
Ω
Hε (φ)Pd dΩ

(1)

where µ and θ are nonnegative parameters. In this model g(s) = 1
1+γs2

is an edge detector157

function which helps to stop the evolving curve on the edge of the objects in an image. The158

strength of detection is adjusted by parameter γ. The addition of new distance fitting term is159

weighted by the area parameter θ. Here, if the parameter θ is too strong the final result will160

just be the polygon P which is undesirable.161

2.2 Convex Distance Selective Segmentation model162

The above model from (1) was relaxed to obtain a constrained Convex Distance Selective Seg-163

mentation (CDSS) model [52]. This was to make sure that the initialisation can be flexible.164

The CDSS was obtained by relaxing Hε → u ∈ [0, 1] to give:165

min
0≤u≤1

CDSS (u, c1, c2) = µ

∫
Ω
|∇u|gdΩ +

∫
Ω
ru dΩ + θ

∫
Ω
Pdu dΩ (2)
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and further an unconstrained minimization problem:166

min
u
CDSS (u, c1, c2) = µ

∫
Ω
|∇u|g dΩ +

∫
Ω
ru dΩ + θ

∫
Ω
Pdu dΩ + α

∫
Ω
ν (u) dΩ (3)

where r = (c1 − z)2 − (c2 − z)2 and |∇u|g = g (|∇z|) |∇u|, ν (u) = max
{

0, 2
∣∣u− 1

2

∣∣− 1
}

is167

an exact (non-smooth) penalty term, provided that α > 1
2‖r + θPd‖L∞ (see also [19]). For fixed168

c1, c2, µ, θ, and κ ∈ [0, 1], the minimizer u of (2) is guaranteed to be a global minimizer defining169

the object by
∑

= {(x, y) : u (x, y) ≥ κ} [52, 19, 11]. The parameter κ is a threshold value and170

usually κ = 0.5.171

In order to compute the associated Euler Lagrange equation for u they introduce the regu-172

larized version of ν (u):173

ν (u) =

[√
(2u− 1)2 + ε− 1

]
H
(√

(2u− 1)2 + ε− 1
)
, H (x) =

1

2
+

1

π
arctan

(x
ε

)
.

Consequently, the Euler Lagrange equation for u in equation (3) is the following174

µ∇
(
g
∇u
|∇u|

)
+ f = 0, in Ω,

∂u

∂~n
= 0, on ∂Ω (4)

where f = −r − θPd − αν ′ (u). When u is fixed, the intensity values c1, c2 are updated by175

c1(u) =

∫
Ω uz dΩ∫
Ω u dΩ

, c2(u) =

∫
Ω (1− u) z dΩ∫
Ω (1− u) dΩ

.

Notice that the nonlinear coefficient of equation (4) may have a zero denominator where the176

equation is not defined. A commonly adopted idea to deal with this is to introduce a positive177

parameter β to (4), so the new Euler Lagrange equation becomes178

µ∇

g ∇u√
|∇u|2 + β

+ f = 0, in Ω;
∂u

∂~n
= 0, on ∂Ω

which corresponds to minimize the following differentiable form of (3)179

min
u
CDSS (u, c1, c2) = µ

∫
Ω
g

√
|∇u|2 + β dΩ +

∫
Ω
ru dΩ + θ

∫
Ω
Pdu dΩ + α

∫
Ω
ν (u) dΩ. (5)

According to [52, 51], the standard AOS which generally assumes f is not dependent on u180

is not adequate to solve the model. This mainly because the term ν ′ (u) in f does depend on u,181

which can lead to stability restriction on time step size t. Moreover, the shape of ν ′ (u) means182

that changes in f between iterations are problematic near u = 0 and u = 1, as small changes in183

u produce large changes in f . In order to tackle the problem, they proposed a modified version184

of AOS algorithm to solve the model by taking the approximation of ν ′ (u) which based on its185

linear part.186

A successful segmentation result can be obtained depending on suitable combination of187

parameter µ, θ and the set of marker points defined by a user. For a simple image such as188

synthetic images, this task of parameters selection is easy and one can get a good segmentation189

result. However, for real life images, it is non-trivial to determine a suitable combination of190

parameters µ and θ. It becomes more challenging if a model is sensitive to µ and θ where only191

a small range of the values work to give high segmentation quality. Hence, a more robust model192

that is less dependent on the parameters needs to be developed. In addition, to process images193

of large size, fast iterative solvers need to be developed as well. This paper is motivated by194

these two problems.195

We refer to the CDSS model solved by the modified AOS as SC0.196
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3 A reformulated CDSS model197

We now present our work on a reformulation of the CDSS model in the primal-dual framework198

which allows us to “ignore” the penalty function ν (u), otherwise creating problems of parameter199

sensitivity. We remark that similar use of the primal-dual idea can be found in [22] and [40]. To200

see more background of this framework, refer to the convex regularization approach by Bresson201

et al. [11], Chambolle [15], and others [3, 4, 20, 13].202

Our starting point is to rewrite (3) as follows:203

min
u,w

J (u,w) = µ

∫
Ω
|∇u|gdΩ +

∫
Ω
rw dΩ + θ

∫
Ω
Pdw dΩ + α

∫
Ω
ν (w) dΩ +

1

2ρ

∫
Ω

(u− w)2 dΩ

(6)
where w is the new and dual variable, the right-most term enforces w ≈ u for sufficiently small204

ρ > 0 and |∇u|g = g (|∇z|) |∇u| . One can observe that if w = u, the dual formulation is reduced205

to the original CDSS model [52].206

After introducing the term (u− w)2, it is important to note that convexity still holds with207

respect to u and w (otherwise finding the global minimum cannot be guaranteed). This can be208

shown below. Write the functional (6) as the sum of two terms:209

J (u,w) = S (u,w) +Q (u,w) , S (u,w) =

∫
Ω

1

2ρ
(u− w)2dΩ, TVg (u) =

∫
Ω
|∇u|g dΩ

Q (u,w) = TVg (u) +

∫
Ω

(r + θPd)wdΩ + α

∫
Ω
ν (w) dΩ.

For the functional Q (u,w), we can show that the weighted total variation term TVg (u) is convex210

below. The remaining two terms (depending on w only) are known to be convex from [52, 51].211

By definition of convex functions, showing that the weighted total variation is a convex can be212

done directly. Let u1 6= u2 be two functions and ϕ ∈ [0, 1]. Then213

TVg (ϕu1 + (1− ϕ)u2) =

∫
Ω
|∇ (ϕu1 + (1− ϕ)u2)|g dΩ

=

∫
Ω
|ϕ∇u1 + (1− ϕ)∇u2|g dΩ

≤ ϕ
∫

Ω
|∇u1|g dΩ + (1− ϕ)

∫
Ω
|∇u2|g dΩ

= ϕTVg (u1) + (1− ϕ)TVg (u2).

Similarly, for the functional S (u,w), let u,w : Ω ⊆ R2 → R and u1 6= u2 6= u3 6= u4. Then214

S [ϕ (u1, u2) + (1− ϕ) (u3, u4)] = S [ϕu1 + (1− ϕ)u3, ϕu2 + (1− ϕ)u4]

=

∫
Ω

[ϕu1 + (1− ϕ)u3 − ϕu2 − (1− ϕ)u4]2dΩ

=

∫
Ω

[ϕ (u1 − u2) + (1− φ) (u3 − u4)]2dΩ

≤ ϕ
∫
Ω

(u1 − u2)2dΩ + (1− ϕ)

∫
Ω

(u3 − u4)2dΩ

= ϕS (u1, u2) + (1− ϕ)S (u3, u4) .

Alternatively, the Hessian
[
(u− w)2

]
=

(
2 −2
−2 2

)
. Clearly the principal minors are ∆1 =215

2, ∆2 = 0 which indicates that the Hessian[(u− w)2] is positive semidefinite and so S (u,w)216

is convex.217

As the sum of two convex functions Q,S is also convex, thus J (u,w) is convex.218

Using the property that J is differentiable, consequently, the unique minimizer can be com-219

puted by minimizing J with respect to u and w separately, iterating the process until convergence220

[11, 15]. Thus, the following minimization problems are considered:221
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i). when w is given: min
u

J1 (u,w) = µ

∫
Ω
|∇u|gdΩ +

1

2ρ

∫
Ω

(u− w)2dΩ;222

ii). when u is given: min
w

J2 (u,w) =

∫
Ω
rwdΩ+θ

∫
Ω
PdwdΩ+α

∫
Ω
ν (w) dΩ+

1

2ρ

∫
Ω

(u− w)2 dΩ.223

Next consider how to simplify J2 further and drop its α term. To this end, we make use of224

the following proposition:225

Proposition 1 The solution of minw J2 is given by:226

w = min {max {u(x)− ρr − ρθPd, 0} , 1} . (7)

227

Proof : Assume that α has been chosen large enough compared to ‖f‖L∞ so that the exact228

penalty formulation holds. We now consider the w-minimization of the form229

min
w

∫
Ω

(
αν (w) + 1

2ρ(u− w)2 + wF (x)
)
dΩ, where the function F is independent of w. We use230

the claim made by [11].231

Claim [11]: If u (x) ∈ [0, 1] for all x, then so is w (x) after the w-minimization. Conversely, if232

w (x) ∈ [0, 1] for all x, then so is u (x) after the u-minimization.233

This claim allows us to “ignore” the ν (w) terms: on one hand, its presence in the energy is234

equivalent to cutting off w (x) at 0 and 1. On the other hand, if w (x) ∈ [0, 1], then the above235

w-minimization can be written in this equivalence form: min
w∈(0,1)

∫
Ω

(
1
2ρ(u− w)2 + wF (x)

)
dΩ.236

Consequently, the point-wise optimal w (x) is found as 1
ρ (u− w) = F (x) ⇒ w = u − ρF (x).237

Thus the w-minimization can be achieved through the following update:238

w = min {max {u (x)− ρF (x) , 0} , 1}. For minw J2, let F (x) = r + θPd. Hence, we deduce the239

result for w. �240

Therefore, our new model is defined as241

min
u,w∈(0,1)

J (u,w) = µ

∫
Ω
|∇u|gdΩ +

∫
Ω
rw dΩ + θ

∫
Ω
Pdw dΩ +

1

2ρ

∫
Ω

(u− w)2 dΩ.

In alternating minimization form, the new formulation is equivalent to solve the following242

min
u

J1 (u,w) = µ

∫
Ω
|∇u|gdΩ +

1

2ρ

∫
Ω

(u− w)2dΩ, (8)

min
w∈(0,1)

J2 (u,w) =

∫
Ω
rw dΩ + θ

∫
Ω
Pdw dΩ +

1

2ρ

∫
Ω

(u− w)2 dΩ. (9)

Notice that the term ν (w) is dropped in (9) and the explicit solution is given in (7) that is243

hopefully the new resulting model becomes less sensitive to parameter’s choice. Now it only244

remains to discuss how to solve (8).245

4 An optimization based multilevel algorithm246

This section presents our multilevel formulation for two convex models: first the CDSS model247

(5) (for later use in comparisons) and then our newly proposed primal-dual model in (8)-(9).248

For simplicity, we shall assume n = 2L for a given image z of size n × n. The standard249

coarsening defines L + 1 levels: k = 1 (finest) , 2, ..., L, L + 1 (coarsest) such that level k has250

τk × τk “superpixels” with each “superpixels” having pixels bk × bk where τk = n/2k−1 and251

bk = 2k−1. Figure 2 (a-e) show the case L = 4, n = 24 for an 16× 16 image with 5 levels: level252

1 has each pixel of the default size of 1 × 1 while the coarsest level 5 has a single superpixel253

of size 16× 16. If n 6= 2L, the multilevel method can still be developed with some coarse level254

superpixels of square shapes and the rest of rectangular shapes.255
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4.1 A multilevel algorithm for CDSS256

Our goal is to solve (5) using a multilevel method in discretize-optimize scheme without ap-257

proximation of ν ′ (u). The finite difference method is used to discretize (5) as done in related258

works [13, 16]. The discretized version of (5) is given by259

min
u
CDSS (u, c1, c2) ≡ min

u
CDSSa (u1,1, u2,1, ..., ui−1,j , ui,j , ui+1,j , ..., un,n, c1, c2)

= µ̄

n−1∑
i=1

n−1∑
j=1

gi,j

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)

2 + β
(10)

260

+

n∑
i=1

n∑
j=1

(
(c1 − zi,j)2 − (c2 − zi,j)2

)
ui,j + θ

n∑
i=1

n∑
j=1

Pdi,jui,j + α

n∑
i=1

n∑
j=1

νi,j

where µ̄ = µ
h , c1 =

n∑
i=1

n∑
j=1

zi,jui,j
/ n∑
i=1

n∑
j=1

ui,j , c2 =
n∑
i=1

n∑
j=1

zi,j (1− ui,j)
/ n∑
i=1

n∑
j=1

(1− ui,j),261

h =
1

(n− 1)
, νi,j =

[√
(2ui,j − 1)2 + ε− 1

](1

2
+

1

π
arctan

√
(2ui,j − 1)2 + ε− 1

ε

)
,

262

gi,j = (xi, yj) and Pdi,j = (xi, yj).

Here u denotes a row vector.263

As a prelude to multilevel methods, minimize (10) by a coordinate descent method (also264

known as relaxation algorithm) on the finest level 1:265

Given u(m)=
(
u

(m)
i,j

)
with m = 0;266

Solve u
(m)
i,j = arg min

ui,j∈R
CDSSloc (ui,j , c1, c2) for i, j = 1, 2, ..., n; (11)

Set u
(m+1)
i,j =

(
u

(m)
i,j

)
and repeat the above steps with m = m+ 1 until stopped.267

Here equation (11) is simply obtained by expanding and simplifying the main model in (10)268

i.e.269

CDSSloc (ui,j , c1, c2)

≡ CDSSa
(
u

(m−1)
1,1 , u

(m−1)
2,1 , ..., u

(m−1)
i−1,j , ui,j , u

(m−1)
i+1,j , ..., u

(m−1)
m,n , c1, c2

)
− CDSS(m−1)

= µ̄

[
gi,j

√(
ui,j − u(m)

i+1,j

)2
+
(
ui,j − u(m)

i,j+1

)2
+ β

+gi−1,j

√(
ui,j − u(m)

i−1,j

)2
+
(
u

(m)
i−1,j − u

(m)
i−1,j+1

)2
+ β

+gi,j−1

√(
ui,j − u(m)

i,j−1

)2
+
(
u

(m)
i,j−1 − u

(m)
i+1,j−1

)2
+ β

]
+ ui,j

(
(c1 − zi,j)2 − (c2 − zi,j)2

)
+ θPdi,jui,j + α (νi,j)

with Neumann’s boundary condition applied where CDSS(m−1) denotes the sum of all terms in270

CDSSa that do not involve ui,j . Clearly one seems that this is a coordinate descent method.271

It should be remarked that the formulation in (11) is based on the work in [13] and [16].272

Using (11), we illustrate the interaction of ui,j with its neighboring pixels on the finest level273

1 in Figure 1. We will use this basic structure to develop a multilevel method.274
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Figure 1: The interaction of ui,j at a central pixel (i, j) with neighboring pixels on the finest level 1.
Clearly only 3 terms (pixels) are involved with ui,j (through regularization)

The Newton method is used to solve the one-dimensional problem from (11) by iterating275

u(m) → u→ u(m+1):276

µ̄gi,j
2ui,j−u

(m)
i+1,j−u

(m)
i,j+1√(

ui,j−u
(m)
i+1,j

)2
+
(
ui,j−u

(m)
i,j+1

)2
+β

+ µ̄gi−1,j
ui,j−u

(m)
i−1,j√(

ui,j−u
(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

+µ̄gi,j−1
ui,j−u

(m)
i,j−1√(

ui,j−u
(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

+
(

(c1 − zi,j)2 − (c2 − zi,j)2
)

+ θPdi,j + ανi,j
′ = 0

giving rise to the form277

unewi,j = uoldi,j − T old/Bold (12)

where278

T old = µ̄gi,j
2uoldi,j −u

(m)
i+1,j−u

(m)
i,j+1√(

uoldi,j −u
(m)
i+1,j

)2
+
(
uoldi,j −u

(m)
i,j+1

)2
+β

+ µ̄gi−1,j
uoldi,j −u

(m)
i−1,j√(

uoldi,j −u
(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

+µ̄gi,j−1
uoldi,j −u

(m)
i,j−1√(

uoldi,j −u
(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

+
(

(c1 − zi,j)2 − (c2 − zi,j)2
)

+θPdi,j + ανi,j
′ (old)

279

Bold = µ̄gi,j
2√(

uoldi,j −u
(m)
i+1,j

)2
+
(
uoldi,j −u

(m)
i,j+1

)2
+β

− µ̄gi,j

(
2uoldi,j −u

(m)
i+1,j−u

(m)
i,j+1

)2√((
uoldi,j −u

(m)
i+1,j

)2
+
(
uoldi,j −u

(m)
i,j+1

)2
+β

) 3
2

+µ̄gi−1,j
1√(

uoldi,j −u
(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

− µ̄gi−1,j

(
uoldi,j −u

(m)
i−1,j

)2√((
uoldi,j −u

(m)
i−1,j

)2
+
(
u
(m)
i−1,j−u

(m)
i−1,j+1

)2
+β

) 3
2

+µ̄gi,j−1
1√(

uoldi,j −u
(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

− µ̄gi,j−1

(
uoldi,j −u

(m)
i,j−1

)2√((
uoldi,j −u

(m)
i,j−1

)2
+
(
u
(m)
i,j−1−u

(m)
i+1,j−1

)2
+β

) 3
2

+ανi,j
′′ (old).

To develop a multilevel method for this coordinate descent method, we interpret solving

(11) as looking for the best correction constant ĉ at the current approximation u
(m)
i,j on level 1

(the finest level) that minimizes for c i.e.

min
ui,j∈R

CDSSloc (ui,j , c1, c2) = min
c∈R

CDSSloc
(
u

(m)
i,j + c, c1, c2

)
.
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Hence, we may rewrite (11) in an equivalent form:280

Given
(
u

(m)
i,j

)
with m = 0,281

Solve ĉ = arg min
c∈R

CDSSloc
(
u

(m)
i,j + c, c1, c2

)
, u

(m)
i,j = u

(m)
i,j + ĉ for i, j = 1, 2, ..., n; (13)

282 Set u
(m+1)
i,j =

(
u

(m)
i,j

)
and repeat the above steps with m = m+ 1 until a prescribed283

stopping on m.284

It remains to derive the simplified formulation for each of the subproblems associated with285

these blocks on level k e.g. the multilevel method for k=2 is to look for the best correction286

constant to update each 2× 2 block so that the underlying merit functional, relating to all four287

pixels (see Fig.2(b)), achieves a local minimum. For levels k = 1, ..., 5, Figure 2 illustrates the288

multilevel partition of an image of size 16×16 pixels from (a) the finest level (level 1) until (e) the289

coarsest level (level 5). Observe that bkτk = n on level k, where τk is the number of boxes and bk290

is the block size. So from Figure 2(a), b1 = 1 and τ1 = n = 16. On other levels k = 2, 3, 4 and 5,291

we see that block size bk = 2k−1 and τk = 2L+1−k since n = 2L. Based on Figure 1, we illustrate292

a box � interacting with neighboring pixels • in level 3. In addition, Figure 2 (f) illustrates that293

fact that variation by ci,j inside an active block only involves its boundary of precisely 4bk − 4294

pixels, not all b2k pixels, in that box, denoted by symbols C, B, ∆, ∇. This is important in295

efficient implementation.296

With the above information, we are now ready to formulate the multilevel approach for297

general level k. Let’s set the following: b = 2k−1, k1 = (i− 1) b+ 1, k2 = ib, `1 = (j − 1) b+ 1,298

`2 = jb, and c = (ci,j) . Denoted the current ũ then, the computational stencil involving c on299

level k can be shown as follows300

(14)

The illustration shown above is consistent with Figure 2 (f) and the key point is that interior301

pixels do not involve ci,j in the formulation’s first nonlinear term. This is because the finite302

differences are not changed at interior pixels by the same update as in303 √
(ũk,l + ci,j − ũk+1,l − ci,j)2 + (ũk,l + ci,j − ũk,l+1 − ci,j)2 + β

=
√

(ũk,l − ũk+1,l)
2 + (ũk,l − ũk,l+1)2 + β.

10



(a) Level 1:τ2
1 = 162 variables (b) Level 2:τ2

2 = 82 variables

(c) Level 3:τ2
3 = 42 variables (d) Level 4:τ2

4 = 22 variables

(e) Level 5:τ2
5 = 1 variable

(f) Level 3 block with b23 = 16
pixels but only 12 effective terms
in local minimization CDSSloc

Figure 2: Illustration of partition (a)-(e). The red “×” shows image pixels, while blue • illustrates the
variable c. (f) shows the difference of inner and boundary pixels interacting with neighboring pixels •.
The four middle boxes � indicate the inner pixels which do not involve c, others boundary pixels denoted
by symbols C, B, ∆, ∇ involve c as in (13) via CDSSloc.
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Then, minimizing for c, the problem (13) is equivalent to minimize the following304

FSC1 (ci,j) = µ̄
`2∑
`=`1

gk1−1,`

√
[ci,j − (ũk1−1,` − ũk1,`)]

2 + (ũk1−1,` − ũk1−1,`+1)2 + β

+µ̄
k2−1∑
k=k1

gk,`2

√
[ci,j − (ũk,`2+1 − ũk,`2)]2 + (ũk,`2 − ũk+1,`2)2 + β

+µ̄gk2,`2

√
[ci,j − (ũk2,`2+1 − ũk2,`2)]2 + [ci,j − (ũk2+1,`2 − ũk2,`2)]2 + β

+µ̄
`2−1∑
`=`1

gk2,`

√
[ci,j − (ũk2+1,` − ũk2,`)]

2 + (ũk2,` − ũk2,`+1)2 + β

+µ̄
k2∑

k=k1

gk,`1−1

√
[ci,j − (ũk,`1−1 − ũk,`1)]2 + (ũk,`1−1 − ũk+1,`1−1)2 + β

+
k2∑

k=k1

`2∑
`=`1

(ũk,` + ci,j)
(

(c1 − zk,`)2 − (c2 − zk,`)2
)

+θ
k2∑

k=k1

`2∑
`=`1

(ũk,` + ci,j)Pdk,` + α
k2∑

k=k1

`2∑
`=`1

ν (ũk,` + ci,j)

(15)

where the third term may be simplified using (c− a)2+(c− b)2+β = 2
(
c− a+b

2

)2
+2
(
a−b

2

)2
+β.305

Further the local minimization problem for block (i, j) on level k with respect to ci,j amounts306

to minimising the following equivalent functional307

FSC1 (ci,j) = µ̄
`2∑
`=`1

gk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β + µ̄

k2−1∑
k=k1

gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+µ̄
`2−1∑
`=`1

gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β + µ̄
k2∑

k=k1

gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+µ̄
√

2gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+ β

2 +
k2∑

k=k1

`2∑
`=`1

(ci,j)
(

(c1 − zk,`)2 − (c2 − zk,`)2
)

+θ
k2∑

k=k1

`2∑
`=`1

(ũk,` + ci,j)Pdk,` + α
k2∑

k=k1

`2∑
`=`1

ν (ũk,` + ci,j)

(16)
where we have used the following notation (which will be used later also):308

hk,` = ũk+1,` − ũk,`, υk,` = ũk,`+1 − ũk,`, υk2,`2 = ũk2,`2+1 − ũk2,`2 ,
hk2,`2 = ũk2+1,`2 − ũk2,`2 , ῡk2,`2 =

υk2,`2+hk2,`2
2 , h̄k2,`2 =

υk2,`2−hk2,`2
2 ,

hk1−1,` = ũk1,` − ũk1−1,`, υk1−1,` = ũk1−1,`+1 − ũk1−1,`, υk,`2 = ũk,`2+1 − ũk,`2 ,
hk,`2 = ũk+1,`2 − ũk,`2 , hk2,` = ũk2+1,` − ũk2,`, υk2,` = ũk2,`+1 − ũk2,`,
υk,`1−1 = ũk,`1 − ũk,`1−1, hk,`1−1 = ũk+1,`1−1 − ũk,`1−1.

For solution on the coarsest level, we look for a single constant update for the current309

approximation ũ that is310

min
c
{FSC1 (ũ+ c) =

n∑
i=1

n∑
j=1

(ũi,j + c)
(

(c1 − zi,j)2 − (c2 − zi,j)2
)

+µ̄
n−1∑
i=1

n−1∑
j=1

gi,j

√
(ũi,j + c− ũi,j+1 − c)2 + (ũi,j + c− ũi+1,j − c)2 + β

+θ
n∑
i=1

n∑
j=1

Pdi,j (ũi,j + c) + α
n∑
i=1

n∑
j=1

ν (ũi,j + c)}

which is equivalent to311

min {
c

FSC1 (ũ+ c) =
n∑
i=1

n∑
j=1

(ũi,j + c)
(

(c1 − zi,j)2 − (c2 − zi,j)2
)

+θ
n∑
i=1

n∑
j=1

Pdi,j (ũi,j + c) + α
n∑
i=1

n∑
j=1

ν (ũi,j + c)}.
(17)
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The solutions of the above local minimization problems, solved by a Newton method as312

in (12) or a fixed point method for t iterations (inner iteration), defines the update solution313

u = u+Qkc where Qk is the interpolation operator distributing ci,j to the corresponding bk×bk314

block on level k as illustrated in (14). Then we obtain a multilevel method if we cycle through315

all levels and all blocks on each level until the relative error in two consecutive cycles (outer316

iteration) is smaller than tol or the maximum number of cycle, maxit is reached.317

Finally our proposed multilevel method for CDSS is summarized in Algorithm 1. We will318

use the term SC1 to refer this multilevel Algorithm 1.319

Algorithm 1 SC1 – Multilevel algorithm for the CDSS model

Given z, an initial guess u, the stop tolerance (tol), and maximum multilevel cycle (maxit) with
L+ 1 levels,

1) Set ũ = u.

2) Smooth for t iteration the approximation on the finest level 1 that is solve (11) for i, j =
1, 2, ...n

3) Iterate for t times on each coarse level k = 2, 3, ...L, L+ 1 :
> If k ≤ L, compute the minimizer c of (16)
> Solve (17) on the coarsest level k = L+ 1
> Add the correction u = u+Qkc where Qk is the interpolation operator distributing ci,j to
the corresponding bk × bk block on level k as illustrated in (14).

4) Check for convergence using the above criteria. If not satisfied, return to Step 1. Otherwise
exit with solution u = ũ.

In order to get fast convergence, it is recommended to start updating our multilevel algorithm320

from the fine level to the coarse level. In a separate experiment we found that if we adjust the321

coarse structure before the fine level, the convergence is slower. In addition, we recommend the322

value of inner iteration t = 1 is used to update the algorithm in a fast manner.323

4.2 A multilevel algorithm for the proposed model324

We now consider our main model as expressed by (8)–(9). Minimizations of J is with respect325

to u in (8) and w in (9) respectively. The solution of (9) can be obtained analytically following326

Proposition 1. It remains to develop a multilevel algorithm to solve (8).327

Similar to the last subsection, the discretized form of the functional J1 (u,w) of problem (8)328

is as follows:329

min
u
{J1 (u,w) = µ̄

n−1∑
i=1

n−1∑
j=1

gi,j

√
(ui,j − ui,j+1)2 + (ui,j − ui+1,j)

2 + β +
1

2ρ

n∑
i=1

n∑
j=1

(ui,j − wi,j)2}

(18)
Clearly this is a much simpler functional than the CDSS model (10) so the method can be330

similarly developed.331

Consider the minimization of (18) by the coordinate descent method on the finest level 1:332

Given u(m)=
(
u

(m)
i,j

)
with m = 0;333

Solve u
(m)
i,j = arg min

ui,j∈R
J loc1 (ui,j , c1, c2) for i, j = 1, 2, ..., n; (19)

Set u
(m+1)
i,j =

(
u

(m)
i,j

)
and repeat the above steps with m = m+ 1 until a prescribed334

stopping on m.335
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Here336

J loc1 (ui,j , c1, c2) = J1 − J0 = µ̄gi,j

√(
ui,j − u(m)

i+1,j

)2
+
(
ui,j − u(m)

i,j+1

)2
+ β

+µ̄gi−1,j

√(
ui,j − u(m)

i−1,j

)2
+
(
u

(m)
i−1,j − u

(m)
i−1,j+1

)2
+ β

+µ̄gi,j−1

√(
ui,j − u(m)

i,j−1

)2
+
(
u

(m)
i,j−1 − u

(m)
i+1,j−1

)2
+ β

+ 1
2ρ(ui,j − wi,j)2.

The term J0 refers to a collection of all terms that are not dependent on ui,j . For ui,j at337

the boundary, Neumann’s condition is used. Note that each subproblem in (19) is only one338

dimensional, which is the key to the efficiency of our new method.339

To introduce the multilevel algorithm, it is of interest to rewrite (19) in an equivalent form:340

341

ĉ = arg min
c∈R

J loc1

(
u

(m)
i,j + c, c1, c2

)
, u

(m)
i,j = u

(m)
i,j + ĉ for i, j = 1, 2, ..., n. (20)

Using the stencil in (14), the problem (20) is equivalent to minimize the following342

F2 (ci,j) = µ̄

`2∑
`=`1

gk1,`

√
[ci,j − (ũk1−1,` − ũk1,`)]

2 + (ũk1−1,` − ũk1−1,`+1)2 + β

+µ̄

k2−1∑
k=k1

gk,`2

√
[ci,j − (ũk,`2+1 − ũk,`2)]2 + (ũk,`2 − ũk+1,`2)2 + β

+µ̄gk2,`2

√
[ci,j − (ũk2,`2+1 − ũk2,`2)]2 + [ci,j − (ũk2+1,`2 − ũk2,`2)]2 + β

+µ̄

`2−1∑
`=`1

gk2,`

√
[ci,j − (ũk2+1,` − ũk2,`)]

2 + (ũk2,` − ũk2,`+1)2 + β

+µ̄

k2∑
k=k1

gk,`1−1

√
[ci,j − (ũk,`1−1 − ũk,`1)]2 + (ũk,`1−1 − ũk+1,`1−1)2 + β

+
1

2ρ

k2∑
k=k1

`2∑
`=`1

(uk,` + ci,j − wk,`)2.

(21)

After some algebraic manipulation to simplify (21), we arrive at the following343

F2 (ci,j) = µ̄
`2∑
`=`1

gk1−1,`

√
(ci,j − hk1−1,`)

2 + υ2
k1−1,` + β + µ̄

k2−1∑
k=k1

gk,`2

√
(ci,j − υk,`2)2 + h2

k,`2
+ β

+µ̄
`2−1∑
`=`1

gk2,`

√
(ci,j − hk2,`)

2 + υ2
k2,`

+ β + µ̄
k2∑

k=k1

gk,`1−1

√
(ci,j − υk,`1−1)2 + h2

k,`1−1 + β

+µ̄
√

2gk2,`2

√
(ci,j − ῡk2,`2)2 + h̄2

k2,`2
+ β

2 + 1
2ρ

k2∑
k=k1

`2∑
`=`1

(uk,` + ci,j − wk,`)2.

(22)
On the coarsest level (L+ 1), a single constant update for the current ũ is given as344

min {
c

F2 (ũ+ c) =
1

2ρ

n∑
i=1

n∑
j=1

(ui,j + c− wi,j)2} (23)

which has a simple and explicit solution.345

Then, we obtain a multilevel method if we cycle through all levels and all blocks on each346

level. The process is stopped if the relative error in two consecutive cycles (outer iteration) is347

smaller than tol or the maximum number of cycle, maxit is reached.348
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The overall procedure to solve the new primal-dual model is given in Algorithm 2. We will349

use the term SC2 to refer this algorithm to solve the proposed model expressed in (8) and (9).350

Again, in order to update the algorithm in a fast manner, we recommend to adjust the fine351

level before the coarse level and to use the inner iteration t = 1.352

Algorithm 2 SC2 – Algorithm to solve the new primal-dual model

Given image z, an initial guess u, the stop tolerance (tol), and maximum multilevel cycle
(maxit) with L+ 1 levels. Set w = u,

1) Solve (8) to update u using the following steps:

i). Set ũ = u.

ii). Smooth for t iteration the approximation on the finest level 1 that is solve (19) for
i, j = 1, 2, ...n

iii). Iterate for t times on each coarse level k = 2, 3, ...L, L+ 1 :
> If k ≤ L, compute the minimizer c of (22)
> Solve (23) on the coarsest level k = L+ 1
> Add the correction u = u + Qkc where Qk is the interpolation operator distributing
ci,j to the corresponding b× b block on level k as illustrated in (14).

2) Solve (9) to update w:

i). Set w̃ = w.

ii). Compute w using the formula (7).

3) Check for convergence using the above criteria. If not satisfied, return to Step 1. Otherwise
exit with solution u = ũ and w = w̃

5 A new variant of the multilevel algorithm SC2353

Our above proposed method defines a sequence of search directions based in a multilevel setting354

for an optimization problem. We now modify it so that the new algorithm has a formal decaying355

property.356

Denote the functional in (18) by g(u) : Rn2 → R and represent each subproblem by

c∗ = argmin
c∈R

g(u` + cp`), u`+1 = u` + c∗p`, p` = ẽ`(mod K)+1, ` = 0, 1, 2, . . .

where K =
∑L

k=0
n2

4k
= (4n2 − 1)/3 is the total number of search directions across all levels357

1, 2, . . . , L + 1 for this unconstrained optimization problem. We first investigate these search358
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directions {ẽ} and see that, noting bk = 2k−1, τ = n/bk,359

level k = 1, ẽj = ej , j = 1, 2, . . . , n2;

level k = 2, ẽn
2+j = esj + esj+1 + esj+n + esj+n+1, j = 1, 2, . . . ,

n2

4
,

sj = bk[(j − 1)/τk]n+ (j − τ [(j − 1)/τk]− 1)bk + 1;

level k = 3, ẽn
2+n2/4+j =

3∑
`=0

3∑
m=0

esj+`n+m, j = 1, 2, . . . ,
n2

42
,

sj = bk[(j − 1)/τk]n+ (j − τ [(j − 1)/τk]− 1)bk + 1;

...
...

...

level k = L+ 1, ẽK =
n−1∑
`=0

n−1∑
m=0

esj+`n+m =
n2∑
`=1

e`, j = n2/4L = 1,

sj = bk[(j − 1)/τk]n+ (j − τ [(j − 1)/τk]− 1)bk + 1 = 1,

where ej denotes the j-th unit (coordinate) vector in Rn2
, and on a general level k, with τk× τk360

pixels, the j−th index corresponds to position (j − τk[(j − 1)/τk], [(j − 1)/τk] + 1) which is,361

on level 1, the global position ([(j − 1)/τk]bk + 1, (j − τk[(j − 1)/τk]− 1)bk + 1) which defines362

the sum of unit vectors in a bk × bk block – see Figure 2 (c-d). Clearly the sequence {p`} is363

essentially periodic (finitely many) and free-steering (spanning Rn2
) [44].364

Recall that a sequence {u`} is strongly downward (decaying) with respect to g(u) i.e.365

g(u`) ≥ g(v`) ≥ g(u`+1), v` = (1− t)u` + tu`+1 ∈ D0, ∀ t ∈ [0, 1]. (24)

This property is much stronger than the usual decaying property g(u`) ≥ g(u`+1) which is366

automatically satisfied by our Algorithm SC2.367

By [44, Thm 14.2.7], to ensure the minimizing sequence {u`} to be strongly downward, we368

modify the subproblem minJ loc1 (u` + cp`, c1, c2) to the following369

u`+1 = u` + c∗q`, c∗ = argmin{c ≥ 0 | ∇JT q` = 0}, ` ≥ 0 (25)

where the `-th search direction is modified to

q` =

{
p`, if ∇JT p` ≤ 0,
−p`, if ∇JT p` > 0.

Here the equation∇JT q` = 0 for c and the local minimizing subproblem (20) i.e. minc J
loc
1 (ûi,j+370

c, c1, c2) are equivalent. Now the new modification is to enforce c ≥ 0 and the sequence {q`} is371

still essentially periodic.372

We shall call the modified algorithm SC2M.373

6 Convergence and complexity analysis374

Proving convergence of the above algorithms SC1-SC2 for

min
u∈R

g(u)

would be a challenging task unless we make a much stronger assumption of uniform convexity for375

the minimizing functional g. However it turns out that we can prove the convergence of SC2M376

for solving problem (18) without such an assumption. For theoretical purpose, we assume that377

the underlying functional g = g(u) is hemivariate i.e. g(u + t(v − u)) = g(u) for t in [0, 1] and378

u 6= v.379

To prove convergence of SC2M, we need to show that these 5 sufficient conditions are met380
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i) g(u) is continuously differentiable in D0 = [0, 1]n
2 ⊂ Rn2

;381

ii) the sequence {q`} is uniformly linearly independent;382

iii) the sequence {u`} is strongly downward (decaying) with respect to g(u);383

iv) lim
`→∞

g′(u`)q`/‖q`‖ = 0,384

v) the set S = {u ∈ D0 | g′(u) = 0} is non-empty.385

Here q′(u) = (∇g(u))T . Then we have the convergence of {u`} to a critical point u∗ [44, Thm
14.1.4]

lim
`→∞

inf
u∈S
‖u` − u∗‖ = 0.

We now verify these conditions. Firstly condition i) is evident if β 6= 0 and condition386

ii) also holds since ‘essentially periodic’ implies ‘uniformly linearly independent’ [44, §14.6.3].387

Condition v) requires an assumption of existence of stationary points for g(u). Below we focus388

on verifying iii)-iv). From [44, Thm 14.2.7], the construction of {u`} via (25) ensures that the389

sequence {u`} is strongly downward and further lim`→∞ g
′(u`)q`/‖q`‖ = 0. Hence conditions390

iii)-iv) are satisfied.391

Note condition iii) and the assumption of g(u) being hemivariate imply that lim`→∞ ‖u`+1−392

u`‖ = 0 from [44, Thm 14.1.3]. Further condition iv) and the fact lim`→∞ ‖u`+1 − u`‖ = 0 lead393

to the result lim`→∞ g
′(u`) = 0. Finally by [44, Thm 14.1.4], the condition lim`→∞ g

′(u`) = 0394

implies lim`→∞ infu∈S ‖u` − u∗‖ = 0. Hence the convergence is proved.395

Next, we will give the complexity analysis of our SC1, SC2 and SC2M. Let N = n2 be the396

total number of pixels (unknowns). First, we compute the number of floating point operations397

(flops) for SC1 for level k as follows:398

Quantities Flop counts for SC1

h, υ 4bkτ
2
k

θ terms 2N

data terms 2N
α terms 2N

s smoothing
steps

38bkτ
2
k s

399

Then, the flop counts for all level is WSC1 =
L+1∑
k=1

(
6N + 4bkτ

2
k + 38bkτ

2
k s
)

where k = 1400

(finest) and k = L+ 1 (coarsest). Noting bk = 2k−1, τk = n/bk, N = n2, we compute the upper401

bound for SC1 as follows:402

WSC1 = 6(L+ 1)N +
L+1∑
k=1

(
4N

bk
+

38Ns

bk

)
= 6(L+ 1)N + (4 + 38s)N

L∑
k=0

(
1

2k

)
< 6N log n+ 14N + 76Ns ≈ O (N logN)

Similarly, the flops for SC2 is given as403

Quantities Flop counts for SC2

h, υ 4bkτ
2
k

ρ term 2N
w term 6N

s smoothing
steps

31bkτ
2
k s

404
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Hence, the total flop counts for SC2 is WSC2 = 6N +
L+1∑
k=1

(
2N + 4bkτ

2
k + 31bkτ

2
k s
)
. This405

gives the upper bound for SC2 as406

WSC2 = 6N + 2(L+ 1)N +
L+1∑
k=1

(
4N

bk
+

31Ns

bk

)
= 6N + 2(L+ 1)N + (4 + 31s)N

L∑
k=0

(
1

2k

)
< 2N log n+ 16N + 62Ns ≈ O (N logN)

Finally, the approximate cost of an extra operation ∇JT q` in SC2M is 2N that results to407

the total flop counts for SC2M as WSC2M = 6N +
L+1∑
k=1

(
4N + 4bkτ

2
k + 31bkτ

2
k s
)
. This gives the408

upper bound for SC2M as409

WSC2M = 6N + 4(L+ 1)N +

L+1∑
k=1

(
4N

bk
+

31Ns

bk

)
= 6N + 4(L+ 1)N + (4 + 31s)N

L∑
k=0

(
1

2k

)
< 4N log n+ 18N + 62Ns ≈ O (N logN)

One can observe that both SC1, SC2 and SC2M are of the optimal complexity O(N logN)410

expected of a multilevel method and WSC1 > WSC2M > WSC2.411

7 Numerical experiments412

This section will demonstrate the performance of the developed multilevel methods through413

several experiments. The algorithms to be compared are:414

Name Algorithm Description

CMT Old :
The selective segmentation model proposed by Liu et al. [35] solved
by a multilevel algorithm.

NCZZ Old :
The interactive image segmentation model proposed by Nguyen et
al. [41] solved by a Split Bregman method.

BC Old :
The selective segmentation model proposed by Badshah and Chen
[7] solved by an AOS algorithm.

RC Old :
The selective segmentation model proposed by Rada and Chen [47]
solved by an AOS algorithm.

SC0 Old : The modified AOS algorithm [52] for the CDSS model [52].

SC1 New : The multilevel Algorithm 1 for the CDSS model [52].

SC2 New : The multilevel Algorithm 2 for the new primal-dual model (8)–(9).

SC2M New : The modified multilevel algorithm for SC2.

415

There are five sets of tests carried out. In the first set, we will choose the best multilevel416

algorithm among SC1, SC2 and SC2M by comparing their segmentation performances in terms417

of CPU time (in seconds) and quality. The segmentation quality is measured based on the418

Jaccard similarity coefficient (JSC):419

JSC =
|Sn ∩ S∗|
|Sn ∪ S∗|

where Sn is the set of the segmented domain u and S∗ is the true set of u (which is only easy to420

obtain for simple images). The similarity functions return values in the range [0, 1]. The value421

1 indicates perfect segmentation quality while the value 0 indicates poor quality.422

In the second set, we will perform the speed, quality, and parameter sensitivity test for the423

chosen multilevel algorithm (from set 1) and compare its performance with SC0. In the third,424

fourth, and fifth set, we will perform the segmentation quality comparison of the chosen425
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Problem 1 Problem 2 Problem 3 Problem 4

Problem 5 Problem 6 Problem 7 Problem 8

Figure 3: Segmentation test images and markers.

multilevel algorithm (from set 1) with CMT model [35], NCZZ model [41], and BC model [7]426

and RC model [47] respectively.427

The test images used in this paper are listed in Figure 3. We remark that Problems 1-2 are428

obtained from the Berkeley segmentation dataset and benchmark [38], while Problems 3-4 are429

obtain from database provided by [25]. All algorithms are implemented in MATLAB R2017a430

on a computer with Intel Core i7 processor, CPU 3.60GHz, 16 GB RAM CPU.431

As a general guide to choose suitable parameters for different images, our experimental432

results recommend the following. The parameters µ̄ = µ can be between 10−5 and 5× 105,433

β = 10−4, ρ in between 10−5 and 10−1, and γ in between 1/2552 and 10. Tuning the parameter434

θ depends on the targeted object. If the object is too close to a nearby boundary then θ should435

be large. Segmenting a clearly separated object in an image needs just a small θ.436

7.1 Test Set 1: Comparison of SC1, SC2, and SC2M437

In the first experiment, we compare the segmentation speed and quality for SC1, SC2 and438

SC2M using test Problem 1-4 with size of 128× 128. Here, we take µ̄ = 1, β = 10−4, ρ = 10−3,439

θ = 1000 (Problem 1-3), θ = 2000 (Problem 4), ε = 0.12, γ = 10, tol = 10−2 and maxit = 104.440

Figure 4 shows successful selective segmentation results by SC1, SC2 and SC2M for Problem441

4. The segmentation quality for all algorithms is the same (JSC=0.96). However, SC2 performs442

faster (4.9 seconds) than SC1 (10.5 seconds) and SC2M (6.3 seconds).443

The remaining results are tabulated in Table 1. We can see for all four test problems, SC2444

gives the highest accuracy and performs the fastest compared to SC1 and SC2M.445

Next, we test the performance of all the multilevel algorithms to segment Problem 5 in446

different resolutions. We take µ̄ = 1, β = 10−4, ρ = 10−5, θ = 5000, ε = 0.12, γ = 10,447

tol = 10−3 and maxit = 104. The segmentation results for image size 1024× 1024 are shown in448

Figure 5. The CPU times needed by SC2 to complete the segmentation of image size 1024×1024449

is 413.2s while SC1 and SC2M need 690.6s and 636.1s respectively which implies that SC2 can450

be 277s faster than SC1 and 222s faster than SC2M. All the algorithms reach equal quality of451

segmentation.452

The remaining result in terms of quality and CPU time are tabulated in Table 2. Column453

6 (ratios of the CPU times) shows that SC1, SC2 and SC2M are of complexity O (N logN).454
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Table 1: Test Set 1 – Comparison of computation time (in seconds) and segmentation quality of SC1,
SC2, and SC2M for Problem 1- 4. Clearly, for all four test problems, SC2 gives the highest accuracy and
performs fast segmentation process compared to SC1 and SC2M.

Algorithm Problem Iteration
CPU time

(s)
JSC

1 6 7.0 0.82

SC1 2 12 20.0 0.82

3 15 24.4 0.91

4 6 10.5 0.96

1 5 5.9 0.82

SC2 2 8 8.7 0.82

3 4 4.9 0.91

4 4 4.9 0.96

1 5 7.9 0.79

SC2M 2 8 11.7 0.82

3 5 7.9 0.85

4 4 6.3 0.96

SC1 SC2 SC2M

Figure 4: Test Set 1 – Segmentation of Problem 4 using our multilevel algorithms SC1, SC2, and SC2M
with same quality (JSC=0.96) achieved. However, SC2 performs faster (4.9 seconds) compared to SC1
(10.5 seconds) and SC2M (6.3 seconds).

SC1 SC2 SC2M

Figure 5: Test Set 1 – Segmentation of Problem 5 of size 1024x1024 for SC1, SC2, and SC2M. SC2 can
be 277 seconds faster than SC1 and 222 seconds faster than SC2M : see Table 2. All algorithms give
similar segmentation quality.
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Table 2: Test Set 1 – Comparison of computation time (in seconds) and segmentation quality of SC1,
SC2 and SC2M for Problem 5. The time ratio, tn/tn−1 close to 4.4 indicates O(N logN) speed. Clearly,
all algorithms have similar quality but SC2 is faster than SC1 and SC2M for all image sizes.

Algorithm
Size

N = n× n
Unknowns

N
Iteration

Time,

tn

tn
tn−1

JSC

128× 128 16384 6 10.6 1.0

SC1 256× 256 65536 7 43.5 4.1 1.0

512× 512 262144 7 173.7 4.0 1.0

1024×1024 1048576 7 690.6 4.0 1.0

128× 128 16384 8 8.7 1.0

SC2 256× 256 65536 7 23.7 2.7 1.0

512× 512 262144 8 103.9 4.4 1.0

1024×1024 1048576 8 413.2 4.0 1.0

128× 128 16384 8 11.6 1.0

SC2M 256× 256 65536 7 36.5 3.1 1.0

512× 512 262144 8 156.7 4.3 1.0

1024×1024 1048576 8 636.1 4.1 1.0

SC1 SC2 SC2M

Figure 6: Test Set 1 – The residual plots for SC1, SC2, and SC2M to illustrate the convergence of the
algorithms. The extension up to 10 iterations shows that the residual of the algorithms keep reducing.
The residual for SC2 and SC2M decrease rapidly compared to SC1.

Again, we can see that for all image sizes, all algorithms have equal quality but SC2 is faster455

than other algorithms.456

To illustrate the convergence of our multilvel algorithms, we plot in Figure 6 the residuals457

of SC1, SC2 and SC2M in segmenting Problem 5 for size 128× 128 based on Table 2. There we458

extend the iterations up to 10. As we can see, the residuals of the algorithms keep reducing.459

The residuals for SC2 and SC2M decrease more rapidly than SC1.460

Based on the experiments above, we observe that SC2 performs faster than the other two461

multilevel algorithms. In addition, for all problems tested, SC2 gives the higher segmentation462

quality than SC1 and SC2M. Therefore in practice, we recommend SC2 as the better multilevel463

algorithm for our convex selective segmentation method.464

7.2 Test Set 2: Comparison of SC2 with SC0465

The second set starts with the speed and quality comparison of SC2 with SC0 in segmenting466

Problem 5 with multiple resolutions. We take µ̄ = µ = 1, β = 10−4, ρ = 10−5, θ = 5000,467

ε = 0.01, γ = 10, tol = 10−6 and maxit = 5000.468
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Table 3: Test Set 2 – Comparison of computation time (in seconds) and segmentation quality of SC0 and
SC2 for Problem 5 with different resolutions. Again, the time ratio, tn/tn−1 ≈ 4.4 indicates O(N logN)
speed since NL = n2L = (2L)2 = 4L and kNL logNL/(kNL−1 logNL−1) = 4L/(L− 1) ≈ 4.4. Clearly, all
algorithms have similar quality but SC2 is faster than SC0 for all image sizes. Here, (**) means taking
too long to run. For image size 512× 512, SC2 performs 33 times faster than SC0.

Algorithm
Size

N = n× n
Time,

tn

tn
tn−1

JSC

128× 128 243.5 1.0

SC0 256× 256 872.7 3.6 1.0

512× 512 3803.1 4.4 1.0

1024×1024 ** ** **

128× 128 8.6 1.0

SC2 256× 256 27.2 3.2 1.0

512× 512 112.0 4.1 1.0

1024×1024 453.6 4.1 1.0

The segmentation results are tabulated in Table 3. The ratios of the CPU times in column469

4 show that SC0 and SC1 are of complexity O(N logN). The symbols (**) indicates that too470

much time is taken to complete the segmentation task. For all image sizes, SC0 and SC2 give471

the same high quality.472

Next, we shall test parameter sensitivity for our recommended SC2. We focus on three473

important parameters: the regularization parameter µ, the regularising parameter β and the474

area parameter θ. The SC2 results are compared with SC0.475

Test on parameter µ. The regularization parameter µ in a segmentation model not only476

controls a balance of the terms but also implicitly defines the minimal diameter of detected477

objects among a possibly noisy background [54]. Here, we test sensitivity of SC2 for different478

regularization parameters µ in segmenting an object in Problem 6 and compare with SC0 in479

terms of segmentation quality. We set β = 10−4, ρ = 10−5, ε = 0.01, γ = 1/2552, θ = 5000,480

tol = 10−5 and maxit = 104.481

Figure 7a shows the value of JSC for SC0 and SC2 respectively for different values of µ.482

Clearly, SC2 is successful for larger range of µ than SC0. This finding implies that SC2 is less483

dependent to parameter µ than SC0.484

Test on area parameter θ. As a final comparison of SC0 and SC2, we will test how the485

area parameter θ effects the segmentation quality of SC0 and SC2. For this comparison, we486

use Problem 6 and set µ̄ = µ = 100, β = 10−4, ρ = 10−3, ε = 0.01, γ = 1/2552, tol = 10−5
487

and maxit = 104. Figure 7b shows the value of JSC for SC0 and SC2 respectively for different488

values of θ. We observe that SC2 is successful for a larger range of θ than SC0. This finding489

implies that SC2 is less sensitive to parameter θ than SC0.490

Test on parameter β. Finally, we examine the sensitivity of our proposed SC2 on491

parameter β. The parameter β is used to avoid singularity or to ensure the original cost492

function is differentiable and it should be as small as possible (close to 0) so that the mo-493

dified cost function (having β) in (18) is close to the original cost function in (8). We have494

chosen to segment an object (organ) in Problem 6. Six different values of β are tested:495

β = 1, 10−1, 10−5, 10−10, and 10−15. Here, µ̄ = 100, ρ = 10−3, θ = 5500, γ = 1/2552,496

tol = 10−3 and maxit = 104. For quantitative analysis, we compute the energy value in equa-497

tion (6) (that has no β) and the JSC value. Both values are tabulated in Table 4. One can498

see that as β decreases, the energy value gets closer to each other. The segmentation quality499

measured by JSC values remain the same as β decreases. This result indicates that SC2 is not500

sensitive to β; large energy values for large β are expected.501
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(a) (b)

Figure 7: Test Set 2 – The segmentation accuracy for SC0 and SC2 in segmenting Problem 6 using
different values of parameter µ in (a) and parameter θ in (b). The results demonstrate that SC2 is
successful for a much larger range for both parameters.

Table 4: Test Set 2 – Dependence of our SC2 on β for segmenting Problem 6 in Figure 3.

β JSC Energy

1 0.95 -5.326416e+04

10−1 0.95 -5.325908e+04

10−5 0.95 -5.326213e+04

10−10 0.95 -5.326153e+04

10−15 0.95 -5.326122e+04

7.3 Test Set 3: Comparison of SC2 with CMT model [35]502

In this test set 3, we investigate how the number of markers and threshold values will effect503

the segmentation quality for CMT model [35] and our SC2. For this purpose, we use the test504

Problem 4. We set µ̄ = 10−5, β = 10−4, ρ = 20, θ = 3.5, γ = 20, tol = 10−3 and maxit = 104.505

The first row in Figure 8 shows the Problem 4 with different number of markers. There are 4506

markers in (a1), 6 markers in (b1) and 9 markers used in (c1). The results given by CMT and507

SC2 using the markers with different threshold value are plotted respectively in the second row.508

We observe that CMT performs well only when the number of markers used is large while509

our SC2 is less sensitive to the number of markers used. In addition, it is clearly shown that510

the range of threshold values that work for SC2 is wider than CMT. Consequently, our SC2 is511

more reliable than CMT.512

7.4 Test Set 4: Comparison of SC2 with NCZZ model [41]513

For almost all of the test images in Figure 3, we see that the NCZZ model [41] gives same514

satisfactory results as our SC2. For brevity, we will not show too many cases where both515

models give satisfactory results; Figure 9 shows the successful segmentation of an organ in516

Problem 7 of size 256 × 256 by NCZZ model. There two types of markers are used to label517

foreground region (red) and background region (blue) for the NCZZ model [41] as shown in518

Figure 9(a). Successful segmentation results (zoom in) by NCZZ model [41] and our SC2 for519

Problem 7 are shown in (b) and (c) respectively using the following parameters; µ̄ = 0.01,520

β = 10−4, ρ = 10−3, θ = 3000, γ = 10, tol = 10−2 and maxit = 104.521

However, according to the authors [41], the model unable to segment semi-transparent boun-522

daries and sophisticated shapes (such as bush branches or hair in a clean way. In Figure 10,523

we demonstrate the limitation of NCZZ model using Problems 1 and 8. The set of parameters524
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(a1) (b1) (c1)

(a2) (b2) (c2)

Figure 8: Test Set 3 – Comparison of SC2 with CMT model [35]. First row shows different numbers
of markers used for Problem 4. Second row demonstrates the respective results (a2), (b2) and (c2) for
(a1), (b1) and (c1) with different threshold values. Clearly, CMT performs well only when the number
of markers used is large while our SC2 seems less sensitive to the number of markers used. Furthermore,
the range of threshold value that works for SC2 is wider than CMT.

(a) (b) NCZZ (c) SC2

Figure 9: Problem 7 in Test Set 4 – Two types of markers used to label foreground region (red) and
background region (blue) for NCZZ model [41] in (a). Successful segmentation result (zoom in): (b) by
NCZZ model [41] and (c) by our SC2 (only using foreground markers).
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(a) (b) NCZZ (c) SC2

(d) (e) NCZZ (f) SC2

Figure 10: Problems 1,8 in Test Set 4 – (a) and (d) show the foreground markers (red) and background
markers (blue) for NCZZ model [41]. Zoomed segmentation results in (b) and (e) demonstrate the
limitation of NCZZ model [41] that is unable to segment semi-transparent boundaries and sophisticated
shapes (such as bush branches or hair as explained in [41]) in a clean way. Our SC2 gives cleaner
segmentation for the same problems as illustrated in (c) and (f).

are µ̄ = 0.01, β = 10−4, ρ = 10−3, θ = 2000 (Figure 10(a)),θ = 400 (Figure 10(d)), γ = 10,525

tol = 10−2 and maxit = 104.526

Zoomed segmentation results in Figure 10(b) and (e) demonstrate the limitation of NCZZ527

model [41]. As comparison, our SC2 gives cleaner segmentation as illustrated in Figure 10(c)528

and (f) for the same problems.529

7.5 Test Set 5: Comparison of SC2 with BC [7] and RC [47]530

Finally, we compare the performance of SC2 with two non-convex models namely BC model531

[7] and RC model [47] for different initializations in segmenting Problem 3. We set µ̄ = 128 ×532

128 × 0.05, β = 10−4, ρ = 10−4, θ = 1000, γ = 5, tol = 10−4 and maxit = 104. Figures 11(a)533

and 11(b) show two different initializations with fixed markers.534

The second row shows the results for all three models using the first initialization in (a) and535

the third row using the second initialization in (b). It can be seen that under different initiali-536

zations, our SC2 will result in the same, consistent segmentation curves (hence independent of537

initializations) showing the advantage of a convex model. However, the segmentation results for538

BC and RC models are heavily dependent on the initialization; a well known drawback of non-539
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(a) Initialization 1 (b) Initialization 2

(c) BC model (d) RC model (e) SC2

(f) BC model (g) RC model (h) SC2

Figure 11: Test Set 5 – Performance comparison of BC, RC and SC2 models using 2 different ini-
tializations. With Initialization 1 in (a), the segmentation results for BC, RC, and SC2 models are
illustrated on second row (c-e) respectively. With Initialization 2 in (b), the results are shown on third
row (f-h). Clearly, SC2 gives a consistent segmentation result indicating that our SC2 is independent of
initializations while BC and RC are sensitive to initializations due to different results obtained.

convex models. In addition, the segmentation result of non-convex models is not guaranteed to540

be a global solution.541

8 Conclusions542

In this work, we present a new primal-dual formulation for CDSS model [52] and propose an543

optimization based multilevel algorithm SC2 to solve the new formulation. In order to get a544

stronger decaying property than SC2, a new variant of SC2 named as SC2M is proposed. We545

also have developed a multilevel algorithm for the original CDSS model [52] called as SC1.546

Five sets of tests are presented to compare eight models. In Test Set 1 of the experiment,547

we find that all the multilevel algorithms have the expected optimal complexity O(N logN).548

However, SC2 converges faster than SC1 and SC2M. In addition, for all tested images, SC2549

gives high accuracy compared to SC1 and SC2M. Practically, we recommend SC2 as the better550

multilevel algorithm for convex and selective segmentation method. In Test Set 2, we have551

performed the speed and quality comparisons of SC2 with SC0. Results show that SC2 performs552

much faster than SC0. Both algorithms deliver same high quality for the tested problem. We553

also have run the sensitivity test for our recommended algorithm SC2 towards parameters µ554

and θ. Comparison of SC2 with SC0 shows that SC2 is less sensitive to the regularization555

parameters µ and θ. Moreover, SC2 is also less sensitive for parameter β. In Test Set 3, we556
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compare the segmentation quality of SC2 with the recent model CMT. The result demonstrates557

that SC2 performs better than CMT even for few markers. Moreover, the range of threshold558

values that work for SC2 is wider than CMT. In Test Set 4, the segmentation quality of SC2559

is compared with NCZZ model. For the tested problem, it is clear that SC2 has successfully560

reduced the difficulty of NCZZ model that is unable to segment semi-transparent boundaries561

and sophisticated shapes. The final Test Set 5 demonstrates the advantage of SC2 being a562

convex model (independent of initializations) compared to two non-convex models (BC and563

RC).564

In future work, we will extend SC2 to 3D formulation and develop an optimization based565

multilevel approach for higher order selective segmentation models.566
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