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Automated Vessel Segmentation Using Infinite
Perimeter Active Contour Model with Hybrid Region

Information with Application to Retinal Images
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Abstract—Automated detection of blood vessel structures is
becoming of crucial interest for better management of vascular
disease. In this paper, we propose a new infinite active contour
model that uses hybrid region information of the image to ap-
proach this problem. More specifically, an infinite perimeter
regularizer, provided by using Lebesgue measure of the
-neighborhood of boundaries, allows for better detection of

small oscillatory (branching) structures than the traditional
models based on the length of a feature's boundaries (i.e.,
Hausdorff measure). Moreover, for better general segmentation
performance, the proposed model takes the advantage of using
different types of region information, such as the combination of
intensity information and local phase based enhancement map.
The local phase based enhancement map is used for its superi-
ority in preserving vessel edges while the given image intensity
information will guarantee a correct feature's segmentation. We
evaluate the performance of the proposed model by applying
it to three public retinal image datasets (two datasets of color
fundus photography and one fluorescein angiography dataset).
The proposed model outperforms its competitors when compared
with other widely used unsupervised and supervised methods. For
example, the sensitivity (0.742), specificity (0.982) and accuracy
(0.954) achieved on the DRIVE dataset are very close to those of
the second observer's annotations.

Index Terms—Active contour, fundus, infinite perimeter, local
phase, segmentation, vessel.

I. INTRODUCTION

B LOOD vessels can be conceptualized anatomically as an
intricate network, or tree-like structure (or vasculature),

of hollow tubes of different sizes and compositions including
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arteries, arterioles, capillaries, venules, and veins. Their contin-
uing integrity is vital to nurture life: any damage to them could
lead to profound complications, including stroke, diabetes, arte-
riosclerosis, cardiovascular diseases and hypertension, to name
only the most obvious. Vascular diseases are often life-critical
for individuals, and present a challenging public health problem
for society. The drive for better understanding and management
of these conditions naturally motivates the need for improved
imaging techniques. The detection and analysis of the vessels
in medical images is a fundamental task in many clinical appli-
cations to support early detection, diagnosis and optimal treat-
ment. In line with the proliferation of imaging modalities, there
is an ever-increasing demand for automated vessel analysis sys-
tems for which where blood vessel segmentation is the first and
most important step.
As blood vessels can be seen as linear structures distributed

at different orientations and scales in an image, various kernels
(or enhancement filters) have been proposed to enhance them in
order to ease the segmentation problem [1]–[11]. In particular,
a local phase based filter recently introduced by Lathen et al.
[10] seems to be superior to intensity based filters [1]–[8] as it
is immune to intensity inhomogeneity and is capable of faith-
fully enhancing vessels of different widths. It is worth noting
that morphological filters such as path opening in combination
with multiscale Gaussian filters has also shown some interesting
results [9]. The main disadvantage of morphological methods is
that they do not consider the known vessel cross-sectional shape
information, and the use of an overly long structuring element
may cause difficulty in detecting highly tortuous vessels [12].
Recent years have witnessed the rapid development of

methods for vessel segmentation [12]–[14]. Broadly speaking,
all of the established segmentation techniques may be catego-
rized as either supervised [8] or unsupervised segmentation [6],
[10], [15], [16] with respect to the overall system design and
architecture. Supervised segmentation methods use training
data to train a classifier (e.g., k-nearest neighbors [17], support
vector machine (SVM) [18], [19], artificial neural networks
(ANN) [20], Gaussian mixture models (GMM) [8], [21], Ad-
aBoost [22], or conditional random fields (CRFs) [23]) so that it
can be used for the classification of image pixels as either vessel
or not in a new, previously unseen image. As such this approach
requires hand-labelled gold standard images for training, and
discriminative features, such as Gabor features [8], to be ex-
tracted for each pixel of an image. In contrast, unsupervised
segmentation refers to methods that achieve the segmentation
of blood vessels without using training data, or explicitly using
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any classification techniques. The lower requirement on the
data and training makes unsupervised segmentation methods
more applicable to a wider range of imaging modalities. This
category encapsulates most vessel segmentation techniques in
the literature, such as [6], [10], [15], [24]–[28], and our model
as described in this paper.
For unsupervised segmentation, different segmentation

models have been proposed ranging from the primitive thresh-
olding technique [6], morphological path opening followed
by thresholding and fusion [9], to elegant approaches such as
active contour models [10], [15], [16], [29], [30]. In general, the
main limitations of thresholding based methods [6], [9] are that
it is difficult (or impossible) to determine optimum threshold
values and one is unable to take into account the geometry
information of the objects to be segmented, which limit its
potential to be generalizable to wider applications. In contrast,
active contour models have demonstrated good performance
in dealing with challenging segmentation problems including
vessel segmentation [15], [30]. As such we will focus on the
development of a new active contour model for improving
accuracy in vessel segmentation problems.
A number of active contour models have been proposed for

vessel segmentation problems, including the ribbon of twins
(ROT) model [15], geodesic active contour (GAC) model [10],
variations of the active contour without edge model (better
known as the CV model [31]) [16], [29], [32], and the distance
regularization level set evolution (DRLSE) model [33]. We
only make briefly comments on these models and will review
them in detail in the next section. As a parametric active contour
model, the ROT model is difficult to formulate and optimise
[15]. The GAC model requires careful good initialization
[10]. The CV and DRLSE models are easy to formulate and
optimize but the regularization term of the shortest smooth
boundary length makes them not necessarily suitable for vessel
segmentation problems. Of these models, only the ROT model
and the DRLSE model have been evaluated against public
datasets [15], [30]. On the other hand, a new infinite perimeter
active contour model [34] has shown convincing performance
in the detection of small oscillatory structures. This feature of
the model implies good performance expectations with vessel
segmentation problems. We also conjecture that models which
can include more image information may perform better. As
such, we propose a novel extension of the infinite perimeter
active contour model so that the newly proposed model is able
to take into account different types of image information. We
also investigate its performance with three public retinal image
datasets. The main reasons of using retinal images are twofold:
first, there are well-established public datasets available for
research and application purposes. These datasets are often
used as benchmarks for developing new segmentation algo-
rithms and for comparing them to state-of-the-art approaches.
Secondly, retinal vessel analysis is important to the study of
not only retinal diseases but also many systemic diseases (e.g.,
stroke and cardiovascular diseases) [12].
The remainder of this paper is structured as follows.

Section II provides an overview of some classic active con-
tour models with a focus on commonly used ones for the
vessel segmentation problem, and a brief introduction to

typical vessel enhancement filters. Section III details the pro-
posed infinite perimeter active contour model with hybrid
region terms. In Section IV, we describe the validation image
dataset, performance metrics and experiment configurations.
Section V presents our experimental results. Section VI con-
cludes the paper with a short discussion of our findings.

II. RELATED WORK

In this section, we provide some background knowledge of
the work for the benefit of the reader. We will first review some
classic active contour models including those used for vessel
segmentation applications in the literature, and then briefly in-
troduce some typical filters for vesselness enhancement.

A. Active Contour Models

1) Chan-Vese (CV) Model [31]: The CV model was initially
proposed by Chan and Vese to solve the piecewise constant seg-
mentation problem [31]. It has been widely used and extended
to address a wide range of segmentation problems.
Without loss of generality, here we choose the 2-dimensional

(2D) segmentation problem as an example. Denoting a given
image by , the CVmodel can be formulated
as the energy minimization problem below:

(1)

where and are the average of inside and outside
respectively, and are non-negative fixed param-
eters while is the dimensional Hausdorff measure
which, in the 2D case, denotes the length of a curve. The un-
known curve can be represented by the zero level set of Lip-
schitz function and we rewrite the energy function
in the form:

(2)

where denotes the Heaviside function. This model can be
solved by alternatively solving and , and , with
typically solved by gradient decent methods [31].
Effort has been made to modify the CV model so that it can

be used to address more complicated problems than just the
piecewise constant problem. For example, the so called Local
Morphology Fitting (LMF) model proposed by Sun et al. [16]
merely modifies the data (or region) terms and adds a level set
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regularization term with a positive weight . The energy func-
tional can be rewritten as:

(3)

where and are positive constants and and
denote the maximum fuzzy opening and minimum fuzzy

opening (see (11) and (13) of [16]). Note that the last term is
a distance regularization term proposed by an early version of
the DRLSE model [33] to avoid the re-initialization problem in
level set evolution.
The Region-Scalable Fitting (RSF) model [32] is another ex-

tension of the CVmodel in order to solve piecewise smooth seg-
mentation problems (e.g., uneven illumination). In this model,
the data terms are reformulated as follows:

where is chosen as a Gaussian kernel in [32], and
and are two functionals which approximate image inten-
sities inside and outside . Li et al. have shown the potential
of using the RSF model to segment blood vessels when there
is uneven illumination [32]. However, only a few examples are
shown without quantitative evaluations.
2) Distance Regularized Level Set Evolution (DRLSE)Model

[33]: The energy of the DRLSE model is defined as

(4)

where is the distance regularization term,
is the external

energy term which indicates the length functional, and
the area penalization

term. Both and include an edge indicator function .
can be derived from the gradient of the image intensity,

, where is a
Gaussian function with the standard deviation , the symbol
represents convolution and is a weighting factor. Dizdaroglu
et al. used a phased based form in their vessel segmentation
work [30]. Different forms can be taken for the distance regu-
larization term :
has been widely used [16], [30], [32], [34].
3) Ribbon of Twins (ROT) Model [15]: The ROT model was

proposed specifically for the vessel segmentation problem. Two
twins of contours represent a ribbon along a vessel, with one

twin on each edge of the vessel. Each twin consists of two con-
tours, one inside and one outside the vessel. The two outside
contours are connected by pull forces to the inside contours,
while the inside contours are connected by push forces to each
other. The energy of the model is defined as:

(5)

where , and denotes the internal, photometric,
and ROT mode energy functions, respectively. are the
four linked active contours, where . This model is built
on parametric curves and as such it is difficult to formulate and
be solved efficiently. Moreover, its stability and performance
crucially depends on parameter choice.
4) Geodesic Active Contour (GAC)Model: Lathen et al. used

a GAC model for the segmentation of vessels [10]. The formula
is given below.

(6)

where is time, is the real part of the local phase map
which will be introduced in the following section, is the

curvature and is a regularization weight parameter. Al-
though the model works well with finding the blood vessels, it
does crucially depend on the choice of the seeds placed for the
initialization of the level set.
5) Infinite Perimeter Active Contour (IPAC) Model [34]:

The IPAC model was proposed for the segmentation of objects
with irregular boundaries. The energy function is given as:

(7)

where is the 2D Lebesgue measure of the -neigh-
borhood of the edge set and and are fitting term
parameters. Replacing with a smooth version
of it, such as or for

, positive decreasing function, and considering the
fact that the level set approach consists of working with
level set functions which are signed distance func-
tions from their zero level set , the term can be
rewritten as:

. Considering
the above, (7) has the following form:

(8)
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where is the distance regularization term as defined in
[33], which forces the level set to be a signed distance func-
tion. Similar to the CV model, can be solved by a gradient
decent method. It has been shown that this model has the ca-
pability of removing the noise, the cornering effect, resolution
and capability of keeping oscillatory parts of the boundaries and
performs better than the CV model [34].

B. Typical Vesselness Filters
Filters which can enhance vessel-like structures have played

an important role in the vessel segmentation problems [12].
Here, we review the three most influential filters [2], [6], [10].
1) Eigenvalue-Based Filter [2]: Proposed by Frangi et al.

[2], this filter is based on eigenvalues of the Hessian matrix
. For each pixel of a 2D image with intensity ,

the Hessian matrix can be formed by its 3 second derivatives,
, and , from which two eigenvalues can be

computed and ordered as as . The filter is given as

(9)

where is the blobness measure in 2D while
is the second order structureness. Here

and are constants which can be experimentally chosen for
specific applications.
2) Isotropic Undecimated Wavelet Filter [6]: The isotropic

undecimated wavelet transform (IUWT) has recently been used
for vessel segmentation and showed good accuracy and compu-
tational efficiency [6]. Applied to a signal , subsequent
scaling coefficients are calculated by convolution with a filter

(10)

where is derived from the cubic B-spline,
is the upsampled filter obtained by inserting zeros

between each pair of adjacent coefficients of . If is multi-
dimensional, the filtering can be applied separably along all di-
mensions. Wavelet coefficients are then the difference between
two adjacent sets of scaling coefficients, i.e.,

(11)

Reconstruction of the original signal from all wavelet coeffi-
cients and the final set of scaling coefficients is straightforward,
and requires only addition. After the computation of wavelet
levels

(12)

In vessel segmentation, the number of levels has to be tailored
according to the specific problem and the data in order to
achieve good vessel segmentation results.
3) Local Phase-Based Filter [10]: Local phase is an impor-

tant local feature that can measure structural information (e.g.,
lines and edges) of an image. It has recently been shown that
this information can be used to enhance vessels in a more pre-
cise way and produce promising segmentation results [10]. It is
worth noting that local phase and local energy are often used

interchangeably, following convention, here this filter is still re-
ferred to as a ‘local phase-based’ filter only, even though it has
been modulated by the local energy.
For imaging applications, local phase can be estimated by

using quadrature filters under the concept of monogenic signals.
A quadrature filter comprises a pair of even and odd filters with
phase difference of . Let and denote the even sym-
metric and odd-symmetric parts of a quadrature filter at scale
and orientation . At each point in an image , the filter re-
sponse is given by , while

and respectively, where
denotes a convolution operation. To avoid problem caused by

changes on structural direction, the absolute value of the imag-
inary part is used, so that . The response at
scale is thus defined as , where is the number
of directions under consideration (four directions (
and ) are used in this paper). By combining the responses
from each of the scales, the overall response is given below.

(13)

where is the number of scales and is a weighting parameter
with value . There are numerous quadrature filters that might
be used [35], but here we will stay with the optimized log-norm
filter with a view to optimal performance in both the spatial and
frequency domains [36]. More specifically, the center frequency
is , the bandwidth is 2 octaves, and the filter has a size of
15 15.
Following Lathen's work [10], in order to make the map

more regular for the purpose of segmentation and to minimize
noise, is further normalized to produce the final map,

, where is a small positive number. In
practice, the real part of , is used as the ‘vesselness
map’. This vesselness map has some unique properties. It has
a positive value inside the lines (or vessels) but a negative
value in the background, and has a zero value at the edge
of the line structures. Fig. 1 demonstrates the enhancement
results after applying the aforementioned three enhance-
ment methods: Eigenvalue-based [2], Wavelet-based [6], and
local phase method [10]. The example images as shown in
Fig. 1(A) were randomly chosen from the DRIVE, STARE and
VAMPIRE datasets (see Section IV for more details about these
three datasets). Illustrative enhancement results are shown in
Fig. 1(B)–(D).

III. INFINITE PERIMETER ACTIVE CONTOUR WITH HYBRID
REGION INFORMATION (IPACHI) MODEL

Inspired by the IPAC model [34], we propose a novel exten-
sion so as to integrate hybrid region information into the seg-
mentation model. The energy of the IPACHI model is:

(14)

where is the 2D Lebesgue measure, is the th region
information, and is the total number of different region terms.
The first term is the area of the -neighborhood of the edge
set . Here we consider , for
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Fig. 1. Enhancement results produced by the eigenvalue-based method [2], wavelet-based method [6] and local phase method [10], respectively. Three
images were randomly chosen from three datasets (one image per dataset). From top to bottom: DRIVE, STARE, and VAMPIRE. (B) Eigenvalue-based enhance-
ment results. (C) Wavelet-based enhancement results. (D) Local phase based enhancement results.

a large and even number , which is an approximation of the
-neighborhood area in a given image .
Different types of region terms can be used alone

or combined for the need of specific applications. In
particular, when

, becomes the set of region
terms used by the CV model and IPAC model [34]. Similarly,

becomes the set of terms used in region competition models.
More importantly, this formulation offers the flexibility of
using different types of region information to achieve better
segmentation, as shown by the work of using both spatial and
frequency information in one model [37]. The proposed model
could be extended for multiphase problems, limited by space,
this extension is not presented here.
For this vessel segmentation application, we propose to use

the ‘vesselness map’ of an image and the image
intensity as two distinct region terms to extract vessels mim-
icking an object with irregular and oscillatory boundaries. The
effectiveness of the local phase based enhancement filter will be
studied against two other filters [2], [6], which will be described
in the following section.

Using the Lipschitz level set function, the energy function of
our new model can be written:

(15)

where , , and are weighting parameters. The
parameters and are for the vesselness based term while

and for intensity based terms. is the edge stop-
ping function. Different to the model [34], here we use a func-
tion based on the concept of local phase since local phase is be-
lieved to produce more precise edges. In particular,
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where is the imaginary part of the
phase map. Note, the second term of (15) is introduced as dis-
tance regularization as proposed by Li et al. [33]. There are dif-
ferent ways to define the regularized counterpart of
the Heaviside function , and here it is defined as

(16)

and its corresponding delta function

(17)

Now the proposed model can be written:

(18)

By keeping fixed and deriving with respect to
and , we have equations for computing and

(19)

By keeping and fixed we have the equations for

(20)

An approximation can be done by introducing an artificial time
step so as to derive the gradient descent method. Thus for fixed

and , which will be updated at each step, we solve
the above equation which can be written shortly:

(21)

with
. After solving these

equations, the level set will define the object (vessels in
this application).
In the following we will show the discretization of the new

model equation in , using finite differences in an explicit
scheme for a given initial level set . After

and have been computed from (19) we fix them
and then solve the partial differential equation (PDE) for .
Once is found, then update and and so on. To
solve the above PDE in (20), we first recall the usual notations:
let the size of a given image be and let and

be the space step in the and directions, let be the
time step and , for and

be the grid points. Let
be an approximation of , where and
will be given (initial guess). The finite differences are denoted
by

(22)

For a given , first compute and and then
discretize (20), compute by the following discretization
and linearization of (20) in

(23)

For , which has been used in this paper for
our experiments, we have
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(24)

For a fast solution of (20) we can use iterative methods as well,
but this is not the purpose of the paper.

IV. DATASETS AND EVALUATION CRITERIA
We have employed three public retinal image datasets for the

purpose of evaluation of our segmentation model. All of the
images in these three datasets are centered at the macula, the
center of the retina. In this section, we will first provide a brief
introduction to these datasets, followed by an introduction to the
evaluation metrics used in our experiments.

A. Datasets

DRIVE1 (Digital Retinal Images for Vessel Extraction) con-
sists of a total of 40 color retinal images, obtained in the course
of a diabetic retinopathy screening program in the Netherlands.
The images were acquired using a Canon CR5 non-mydriatic
3-CCD camera (Canon, Tokyo, Japan) with a 45 degree field
of view. Each image resolution is 768 584 pixels. The set
of 40 images was divided into a test and a training set, each
containing 20 images.
STARE2 (STructured Analysis of the Retina) contains 20 color
retinal images, 10 of which show evidence of pathology. The
digitized slides were captured by a TopCon TRV-50 fundus
camera (Topcon, Tokyo, Japan), and the photos were digitized
to 605 700 pixels.
VAMPIRE comprises eight ultra-wide field of view retinal
angiographic images acquired with an OPTOS P200C camera
(Optos PLC, Dunfermline, UK). Four of the images are from
an AMD retina, while the other four are from a healthy retina.
Each image has a size of 3900 3072 pixels [38].

B. Evaluation Metrics

Four commonly used metrics were employed to evaluate
the performance of the competing methods in terms of pixels:

,
and the area under a receiver operating characteristic curve,

. and indicate the true
positive (correctly identified vessel pixels), true negative (cor-
rectly identified background pixels), false positive (incorrectly
identified vessel pixels), and false negative (incorrectly identi-
fied background pixels), respectively. Sensitivity is a measure
of effectiveness in identifying pixels with positive values:
specificity performs the same function for pixels with negative
values. Accuracy and AUC indicate the overall classification

1http://www.isi.uu.nl/Research/Datasets/DRIVE/
2http://www.ces.clemson.edu/~ahoover/stare/

performance. In essence, vessel segmentation can be viewed
as an imbalanced data classification problem, in which there
are typically much fewer vessel pixels than the background
pixels. In such a case accuracy (Acc) will be skewed by the
dominant classes, while AUC on the other hand has the ability
to reflect the trade-offs between the sensitivity and specificity.
In particular, the above definition of AUC proposed by Hong et
al. [39] is specifically for the case to evaluate the segmentation
(or classification) performance when only one operating point
is used. In contrast, conventionally AUC is estimated from a
number of operating points. Take thresholding segmentation
as an example, one can obtain many possible operating points
when varying the threshold values. The conventional AUC
is then estimated from these operating points. From our ob-
servation, this may not be particularly useful for comparing
the performance of different models as in practice, to use a
classifier, one normally has to choose an operating point (or
a threshold). That is, when comparing different methods, the
one with the larger AUC may not be the one with the better
performance at the chosen threshold (or limited range). From
the above observations, it appears that the definition

is more suited to comparing the performance
of unsupervised segmentation methods.
A widely used overlap metric, the Dice coefficient (DC),

is also introduced for comparing the agreement between the
manual annotations (or ground truth) and result of segmentation
method: , where is the ground
truth and indicates the segmentation result. The DC ranges
from 0 (no agreement) to 1 (perfect agreement). A DC value
higher than 0.70 generally indicates excellent agreement [40].
Statistical analysis was performed to evaluate the effect of

different factors, such as the dataset, enhancement filters and
segmentation programs, on the segmentation performance.
Analysis of variance (ANOVA) with Tukey post hoc analysis
was performed using SPSS version 21.0 (SPSS Inc., Chicago,
IL, USA). A value of 0.05 is deemed statistically significant.

V. EXPERIMENTS AND RESULTS
In this section we present experiments to evaluate the perfor-

mance of our proposed model. We first evaluate the effect of
vessel enhancement on the performance of the proposed model
across all three datasets, and then compare our model with sev-
eral popular active contour methods in the literature. For the
DRIVE dataset, the manual segmentations from set A are used
as the ground truth. For the STARE dataset, the first observer's
manual segmentations are used as the ground truth. For the
VAMPIRE dataset, the manual annotations provided are used
as the ground truth and the images were downsampled to a size
of 1950 1536 pixels. All of the experiments were performed
in Matlab version 2013a (Mathworks, Natick, CA) on a PC with
3.1 GHz Intel Core system and 8 GB RAM.
Our proposed segmentation model contains two essential

components: Infinite perimeter regularization and hybrid region
information. Their effect on the segmentation performance is
evaluated under three different datasets.
First, the effect of three different vessel enhancement filters

was evaluated. We used the IPACHI model and included the
intensity term all the time, we compared inclusion of the local
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Fig. 2. Illustrative enhancement results using different enhancement methods and their subsequent IPACHI-based segmentation results. (A) A randomly
chosen image from the DRIVE dataset. (B)–(D) Enhancement results on (A) by using the eigenvalue-based (FR), wavelet-based (IUWT), and local phase-based
(LP) filters respectively. (E) Expert's annotation. (F)–(H) IPACHI-based segmentation results on (B)–(D).

phase based filter (LP) with inclusion of the other two enhance-
ment filters: Frangi's eigenvalue based filter (FR) [2] and the
wavelet filter (IUWT) [6].

A. Comparison With the Enhancement Methods

For reproduction purposes, all of the parameters used on the
aforementioned filters are shown as follows. Eigenvalue-based
(FR) scales: 1–8, scale ratio: 2; wavelet (IUWT) scales: 2–3;
local phase (LP) scales: 2–3. Note, these values were recom-
mended by the previous studies [2], [6], [10], respectively.
These free parameters may be adjusted to produce better results
according to the nature of the images, but it is unlikely to affect
the ranking of the overall segmentation model when compared
to other state-of-the-art models.
Fig. 2 shows an example of the segmentation results using

the IPACHI model when a randomly chosen image from the
DRIVE dataset was enhanced by the FR, IUWT, and LP sepa-
rately. It can be seen from Fig. 2(B) that the FR tends to only
enhance the larger vessels as does the IUWT (Fig. 2(C)). The
IUWT also enhances the non-vessel area (the background),
which in turn increases the difficulty of segmentation. As for
the LP enhancement results, seen in Fig. 2(D), the edges of
the vessels at different scales are enhanced, which make them
stand out more from the background. The segmentation results
derived from the observer, FR, IUWT and LP enhancements
are shown in Fig. 2(E)–(H). As expected, more vessels are
segmented when the LP enhancement filter is used. Moreover,
the IPACHI method (Fig. 2(H)) is sensitive in detecting the
finer vessels. Table I further confirms this observation, the
evaluation results of LP in terms of Se, Sp, Acc, AUC and
DC reach the highest value in each of the three datasets. For

TABLE I
SEGMENTATION PERFORMANCE OF USING THREE DIFFERENT ENHANCEMENT
METHODS (LP, WL, FR) WITH THE PROPOSED SEGMENTATION MODEL

ON THE DRIVE, STARE, AND VAMPIRE DATASETS. LP: LOCAL PHASED
BASED FILTER; WL: WAVELET-BASED (IUWT) FILTER; FR: FRANGI'S
EIGENVALUE-BASED FILTER; SE: SENSITIVITY; SP: SPECIFICITY; ACC:
ACCURACY; AUC: AREA UNDER CURVE; DC: DICE COEFFICIENT

example, the Se of the LP is 0.146 higher than that of the FR in
the STARE dataset.
Statistical analysis results show that there is statistically sig-

nificant difference in Acc, Se and Sp for three filters (LP, IUWT
and FR) in the DRIVE dataset. The Se of the LP
for all datasets is statistically significantly higher than that of the
other two filters. The mean standard deviation (STD) of the
AUC value is and
for the LP, FR and IUWT, respectively. The difference between
these values is statistically significant (ANOVA, ).
The AUC value of the LP is significantly higher than that of the
other two filters (both ), while the IUWT outperforms
the FR .

B. Comparison With the Other Active Models
In this section, the proposed IPACHI segmentation model is

compared with four other active contour models: Chan-Vese
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TABLE II
PERFORMANCE OF DIFFERENT SEGMENTATION MODELS ON THE DRIVE, STARE, AND VAMPIRE DATASETS.

SE: SENSITIVITY; SP: SPECIFICITY; ACC: ACCURACY; AUC: AREA UNDER CURVE; DC: DICE COEFFICIENT

TABLE III
PERFORMANCE OF DIFFERENT SEGMENTATION METHODS ON THE DRIVE AND STARE DATASETS.

SE: SENSITIVITY; SP: SPECIFICITY; ACC: ACCURACY; AUC: AREA UNDER CURVE

(CV), Ribbon of Twins (ROT), distance regularized level set
evolution (DRLSE) [30] and infinite perimeter (IPAC) [34]. The
CV and IPAC segmentation models are implemented based on
the original papers [31], [34]. The evaluation results of the ROT
and DRLSEmodels from the respective original papers are used
[15], [30]. For completeness, the evaluation results of a method
described in [38], which is referred to as VP, is also included
as the VP is the only segmentation method that has previously
been tested on the VAMPIRE dataset. The evaluation results of
these models on the DRIVE, STARE, and VAMPIRE datasets
are demonstrated in Table II. Note, for the ROT, DRLSE, and
VP methods, only the results provided from the original paper
are included in Table II (i.e., ROT on the DRIVE and STARE
datasets, DRLSE on the DRIVE, and VP on the VAMPIRE). It
can be observed fromTable II that the results of IPACHI in terms
of Se, Sp, and AUC outperform the competitors in the DRIVE
and STARE datasets. In particular, the Se, Sp, Acc, AUC, and
DC of the IPACHI model have the highest scores in the DRIVE
dataset, which are 0.742, 0.982, 0.954, 0.862, and 0.782, re-
spectively. For the STARE dataset, the Se, Sp, Acc, AUC, DC
of the IPACHI model also have the highest score: 0.780, 0.978,
0.956, 0.874 and 0.801, respectively. For the VAMPIRE dataset,
similar to the results on the other two datasets, the IPACHI
model also yields the best results for Se, Sp, Acc, AUC, and DC.
ANOVA tests on Acc, Se and Sp were performed to evaluate the
difference between different segmentation models with respect

to each of the three datasets. The ROT and DRLSE methods
were not included in these tests as no results on individual im-
ages were provided. The VP method was included as the results
on individual cases are available. Briefly, for the DRIVE and
STARE datasets the ANOVA test was performed on CV, IPAC
and IPACHI. For the VAMPIRE dataset, the ANOVA test was
performed on VP, CV, IPAC and IPACHI. The statistical anal-
ysis results showed that: the Acc, Se and Sp of the IPACHI is
significantly higher than the other two methods (CV and IPAC)
for the DRIVE dataset (all ) and for the STARE
dataset ( for Acc, and Sp; for Se), and
for the VAMPIRE dataset the Acc, Se, and Sp of the IPACHI are
again significantly higher than those of the CV, VP, and IPAC
models (all ).

C. Comparison With the Other Methods
By means of the previous experiments we have demonstrated

that the proposed model is both effective and efficient for vessel
segmentation. To emphasize the effectiveness of our model, we
compare our model with other existing state-of-the-art vessel
detection methods on two most popular public datasets: DRIVE
and STARE. The VAMPIRE dataset is not used here as it is rel-
atively new, and consequently there are relatively few results in
the literature. Table III shows the performance of our method
and the others on both the DRIVE and STARE datasets in terms
of sensitivity, specificity, accuracy, and AUC: the results have
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been ordered by the category the methods belonging to. The
Dice coefficient value is not reported in this table as this is not
provided by the other methods. We chose the most recent seven
supervised methods [7], [8], [17], [18], [21]–[23]. We selected
nine unsupervised segmentation methods [5], [6], [11], [12],
[15], [41]–[43]. The results on the DRIVE dataset show that the
sensitivity of our model is the highest among the unsupervised
methods with and .
Although one of the supervised methods [23] has a higher sen-
sitivity, it has a much lower specificity than most of the other
methods. Similarly, on the STARE dataset, our model has the
best performance in terms of sensitivity, specificity, and accu-
racy among the unsupervised methods, and , which
is only 0.003 lower than the method proposed by [21]. How-
ever, the Se score of our model is 0.086 higher than that of [21].
In terms of AUC, our model is only behind the second human
observer and the COSFIRE filter based method [11]. However,
it is not clear to us why the COSFIRE method [11] has a higher
AUC value than ours while its Se, Sp and Acc are all similar
to ours on the DRIVE dataset, and all lower than ours on the
STARE dataset. This may be due to the difference in how AUC
is computed by the two studies, which suggests it may not be
appropriate to directly compare the AUC values between dif-
ferent methods unless the information on how it is computed is
provided.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have proposed a new infinite perimeter ac-
tive contour model with hybrid region terms for the vessel seg-
mentation problem. This model has been applied to three pub-
licly available retinal datasets and the results demonstrate that it
outperforms most of the existing methods in terms of segmen-
tation accuracy.
Vessel segmentation still remains a challenging medical

image analysis problem despite considerable effort in research.
Many factors come together to make this problem difficult
to be addressed. The images under consideration often come
with noise and blur, and suffer from uneven illumination (or
biased field in magnetic resonance imaging [MRI]) problems.
In addition, although vessels in an image are similar to each
other in general, they have different widths and orientations and
sometimes different appearances in terms of intensity, color or
local shape, which may become more complicated when dis-
ease is present. If a segmentation method cannot handle these
factors effectively then its performance will be less satisfactory
or at least will not be generalizable to wider applications. For
example, enhancement based on intensity values may not be
able to overcome the intensity variation in the image. In terms
of the segmentation algorithm itself, it is expected that it will be
robust and accurate in dealing with the aforementioned factors.
Active contour models appear to be a natural choice as they can
take into account the geometry information of the object as well
as other useful information such as intensity. The success of the
proposed approach benefits from several novel improvements.
By introducing infinite perimeter regularization, the model
is better suited to detecting vasculature structures than the
conventional shortest length constraint. The new model also

benefits from integration of different region forms, such as the
local phase map and the intensity of the image. The phase map
provides a more reliable and accurate vesselness map while the
intensity information helps to exclude some potential outliers
in the image. The evaluation results on the three widely used
retinal datasets have demonstrated the superiority of our model.
To the best of the authors' knowledge, this is the first work

in which a segmentation model has been evaluated on both
color fundus and fluorescein angiography images. Color fundus
imaging is the only established imaging technique that has
been used in the screening of diabetes and is also widely used
by opticians and in hospitals. Fluorescein angiography is pri-
marily used in the differential diagnosis of retinal disease and
treatment planning. Our model has shown good performance
for both imaging modalities. Incorporation of our proposed
method of extracting and analyzing vasculature promises a
wide range of applications. For example, the model will be
applicable to the management of other eye conditions such as
corneal neovascularization [44].
The detection of vessels is essentially the first and an im-

portant step for automated vessel analysis tools. After vessel
segmentation, it is possible to perform more advanced analysis,
such as measurements of diameters and tortuosity of the vessels,
classification of veins and arteries, calculation of the arteriove-
nous ratio, and more importantly the study of the diagnostic and
prognostic values of these features on eye disease and system-
atic diseases (e.g., stroke, hypertension etc).
Although in this paper we have only evaluated our newmodel

on retinal images, the model is well suited to address segmen-
tation problems in images of other organs acquired using dif-
ferent imaging techniques such as CT, MRI and X-ray images.
Three-dimensional (3D) images are becoming widely used in
healthcare settings. It would be straightforward to extend our
model to 3D. Local phase can be defined in 3D space by means
of monogenic signal. In particular, here we used the optimized
lognormal filters to derive the local phase: certain other filters,
such as the Cauchy filter [35], may equally be used. We expect
that the possible gain would be small. In addition, filter opti-
mization should be considered to achieve good performance in
both the frequency and spatial domains. The program uses stan-
dard Matlab tools is not optimized for speed. It is our plan to op-
timize the code for efficiency and then share the refined source
code with the research community in vessel analysis. We are
hoping that by doing this more researchers can apply our models
to their own applications.
In conclusion, we have proposed an efficient and effective

infinite perimeter active contour model with hybrid region terms
for vessel segmentation with good performance. This will be a
powerful tool for analyzing vasculature for better management
of a wide spectrum of vascular-related diseases.
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