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Abstract

Selective image segmentation is the task of extracting one object of interest from an image,
based on minimal user input. Recent level set based variational models have shown to
be effective and reliable, although they can be sensitive to initialization due to the mini-
mization problems being nonconvex. This sometimes means that successful segmentation
relies too heavily on user input or a solution found is only a local minimizer, i.e. not the
correct solution. The same principle applies to variational models that extract all objects
in an image (global segmentation); however, in recent years, some have been successfully
reformulated as convex optimization problems, allowing global minimizers to be found.

There are, however, problems associated with extending the convex formulation to the
current selective models, which provides the motivation for the proposal of a new selective
model. In this paper we propose a new selective segmentation model, combining ideas
from global segmentation, that can be reformulated in a convex way such that a global
minimizer can be found independently of initialization. Numerical results are given that
demonstrate its reliability in terms of removing the sensitivity to initialization present in
previous models, and its robustness to user input.
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1 Introduction

An important part of Image Processing is segmentation; the task of partitioning an image
into multiple regions (each sharing certain characteristics - such as texture, intensity, shape,
colour etc.). Given an image z(z,y) in a bounded domain 2 C R?, we look for an edge T that
partitions €2 into regions {€;, i = 1,2,...,1} in Q\ I'. Within Segmentation, there is the global
approach and the local approach. Global segmentation is the task of selecting all objects in
an image based on a certain characteristic, e.g. intensity, and has been widely studied over
the last twenty years [9, 21]. Selective segmentation is when only one object, from within all
objects, is selected [1, 27].
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We consider the variational approach to these problems. Within variational segmentation
techniques two main ideas have developed: edge-based methods and region-based methods.
An important region-based method, where the idea is to achieve segmentation through an
approximation of the original image, is the Mumford-Shah functional minimization |22]; there
exists a large literature extending this work. Edge-based methods drive an evolving contour
towards edges within an image using an edge detector function. This method was originally
proposed by Kass et al. [17]; further work by Caselles et al. led to the Geodesic Active
Contours model [5]. Recently, in order to incorporate the advantages of each idea, there has
been a tendency to combine edge-based and region-based approaches [19, 5].

The requirements for a selective segmentation model are that solutions are computed quickly
and they are reliable with minimal user input. Much research has been done in recent years
on developing this idea. In 2005, Gout, Le Guyader and Vese [14] introduced geometrical
constraints to Geodesic Active Contours similar to [5] in the form of a set of points on the
contour of interest. This idea was enhanced further by Badshah and Chen [1] in 2009, by
combining this work with the region-based idea of Mumford-Shah [22] and Chan-Vese [10]. In
2011, to increase model reliability, Rada et al. [27]| introduced a novel Dual Level Set Model,
where a local level set incorporates geometrical constraints similar to [14] and [1], locating an
object within a global level set. The selective model discussed in detail here is the Rada-Chen
model [28], introduced in 2012 to improve on [27] by using a single level set function, where
there is a constraint introduced on the area inside the contour. This has proven to be the most
effective model. Another idea of improving [1], that is not of the same type as [22], was proposed
by Badshah and Chen [2] in 2012, incorporating fitting based on coefficient of variation.

These models, either global or selective, are nonconvex, which can lead to problems in the
form of local minima. This means that finding the correct solution is dependent on initializa-
tion, which reduces their reliability. In recent years work has been done to reformulate global
segmentation models as convex minimization problems such that any local minimizer is a global
minimizer. The focus of this paper is to apply the convex reformulation of nonconvex global
models to selective segmentation. We remark that one of the current challenges in global seg-
mentation is reformulation into convex or relaxed models for multiphase cases [18, 15, 6, 3].
Other challenges include the idea of selective segmentation based on user input of 3-D images.
Chan-Vese has been generalized to 3-D by Zhang and Chen [31], and user input of a similar
type to [1, 28, 14] has been applied with active contours in 3-D by Le Guyader and Gout [13].
This involves the selection of points on slices of the 3-D data. Visualising objects in this way,
allowing for efficient user input, is a difficult problem. In relation to Rada-Chen [28], this input
would generate a polyhedron, with its volume providing a selection constraint.

The paper is organized as follows. In Section 2 the idea of global segmentation is discussed,
including brief reviews of the work of Mumford-Shah [22], Chan-Vese [10] and Chan-Esedoglu-
Nikilova [8]. This will detail how nonconvex segmentation models are reformulated as convex
minimization problems. In Section 3 selective segmentation is discussed with a review of the
most effective model by Rada-Chen [28]. Why this model does not fit in with the convex
reformulation idea is explained, motivating the proposal of a new model in Section 4. The
details of this model are discussed in the nonconvex setting and then reformulated as a convex
minimization problem. Details of an adjusted additive operator splitting (AOS) scheme, based
on Weickert et al. [29] and Tai. et al. [20], are also introduced. Section 5 presents results for



both the nonconvex and convex models. Conclusions of the paper are given in Section 6.

2 Global Segmentation

In order to discuss the selective segmentation methods of interest, it is important to introduce
global variational image segmentation models. This is important for two reasons; firstly, it will
provide the foundation for the selective models introduced and secondly, it provides the method
for minimizing the associated functionals with the introduction of Active Contours Without
Edges [10] by Chan and Vese in 2001.

2.1 The Mumford-Shah Approach

One of the most important variational image segmentation models is by Mumford and Shah
[22], introduced in 1989, and forms the basis for this work as well as many others. Let € be
a bounded domain in R" and z be a bounded measurable function defined on 2. Here we
consider the case where n = 2. In the piecewise constant case, the image, z, is reconstructed
as a cartoon of the original where each region, €2;, consists of homogeneous intensity (with
i=1,...,1), separated by an edge set I', a closed subset of 2.

In 2001, Chan and Vese [10] introduced a particular case of the piecewise constant Mumford-
Shah functional. This was the two-phase example (I = 2), with ©; = in(I") and Qs = out(I'),
which looks for the best approximation of an image z by a function u taking only 2 values,

,— | €1 = average of z inside T,
co = average of z outside T'.

I :/ ds.
I

The piecewise constant two-phase Mumford-Shah (PC) functional is given as follows:

The length of the set I' is given by

PC(L.cr,e0) =l + A |

in(T

(z —¢1)2dQ +)\/ (z — c)% d. (2.1)
out(T")

It consists of the regularization term, |T'|, forcing the boundary between homogeneous regions
to be as short and as smooth as possible, and the fitting terms which force the boundary to
find regions of homogeneous intensity. Theoretical existence and regularity of minimizers of
the PC case (2.1), with respect to I', are discussed in [22]. However, minimizing PC (2.1)
is problematic due to the difficulty of tracking the movement of I' and the model was not
implemented directly until the work of [10].

2.2 The Chan-Vese Method

Active Contours Without Edges [10], by Chan and Vese, is an important milestone in variational
image segmentation. They applied the level set method to minimize the piecewise constant two-
phase Mumford-Shah functional, eqn. (2.1), and overcame the problematic tracking of I'. Chan



and Vese proposed to replace the unknown 1-D variable with a higher dimensional variable,
counterintuitively simplifying the problem. They applied the level set method [26], introduced
by Osher and Sethian in 1988, to (2.1). By tracking a variable of a higher dimension, where
the boundary is represented by a level set of this variable, topological changes in the boundary,
such as splitting into two or merging into one, are dealt with automatically. Formally, the
boundary I' is represented by the zero level set of the Lipschitz function ¢ such that

I ={( yeﬂwwy—o}
in(T) = {(z, 69|¢>xy > 0},
out() = {(.) € © | o(e.y) < 0).

The PC functional (2.1) is reformulated using the Heaviside function H and the Dirac delta ¢
defined by

) ={ g HomDZ0 ) = B ()

In order to compute the associated Euler-Lagrange (EL) equation for ¢ we consider regularized
versions of H and §, given as

H(¢) = ;(1 + 2 arctan f), 5c(p) =

™

ot
em(1+ ¢?/€?)

The PC functional (2.1) is then reformulated as follows:
CV (6,1, 00) = /5 IVHA)]d +A [ (2= r)Ho(6) o
Q

+ A/Q(z —2)?(1 — He(9)) dQ, (2.2)

where ¢(x,y) has been replaced with ¢ for simplicity; this notation will be continued from here.
Minimizing (2.2) with respect to the intensity constants ¢; and cg is given by:

fQ ¢)z dQ fQ )z dQ
2.3
Then, given these constants, (2.2) is minimized with respect to ¢:
Indin CV (¢, c1,c2) (2.4)

This leads to the EL equation
uS()V - (5) = N0) (=) = (2= 2)?) =0 i,
% = on 0.

The work of Chan and Vese is important to the consideration of selective segmentation as
it provides the method to tackle segmentation problems of this type in an efficient way. It
does however have a drawback in that it involves minimizing a nonconvex functional (2.2) over



characteristic functions. This means that there are local minima and a computed solution may
not be correct unless the initial guess is sufficiently close to the true solution. Fortunately, by
reformulating as the minimization of a convex functional, global minimizers of the nonconvex
problem (2.4) can be found. This idea has not yet been applied to selective segmentation
models, which also have local minima.

2.3 A Global Convex Reformulation

Important to the idea of reformulating a model to be convex is why this improves the reliability
of a solution. With that in mind, the fundamental idea behind convex minimization is now
discussed briefly in a general sense. Consider the problem of minimizing f(x) subject to x € S,
given a non-empty set S. A point x € S is called a feasible solution to the problem. If Xx € S
and f(x) > f(x) for each x € S, then X is a global minimum. If X € S and there exists an
e-neighbourhood N¢(X) around X such that f(x) > f(X) for each x € SN N(X), then x is called
a local minimum.

The advantage of convex minimization is that supposing X is a local minimum, if f is convex
and S is a convex set, then X is a global minimum. It has been shown that minimizing the
piecewise constant two-phase Mumford-Shah functional with respect to I' can be reformulated
as a convex problem, by relaxation of the label set. We now introduce the theory behind
reformulating the functional (2.1), which we shall later apply to selective segmentation.

We consider the minimization of the piecewise constant two-phase Mumford-Shah functional
from (2.1) with respect to I'; reformulated to the minimization problem (2.4) by Chan and Vese
[10]. Observe that

Vg, cr1,c2) = /5 ) VH(p)| d2 —|—)\/z—cl )dQ+)\/ z— )} (1 — H(¢))dQ

is nonconvex due to the presence of H(¢). In 2006, Chan, Esedoglu and Nikilova [8] proposed
replacing H(¢) with w € [0,1] in (2.2), and obtained the following equivalent, convex, and
constrained minimization problem:

02521 {“/ﬂ |Vu| d + )\/Q (z—c1)? = (2 — 2)?) udQ}. (2.5)
Here the constraint 0 < u < 1 ensures that u is a valid Heaviside function and the equivalence
to Chan-Vese is in the sense of having the same EL equation. For any fixed c1,c2 € R, a
global minimizer for CV (-, ¢1, ¢2) can be found by carrying out the convex minimization (2.5)
[8]. Once the solution w is obtained, set ¥ = {(x,y) : u(z,y) > v} for v € (0,1) and then
in terms of piecewise-constant two-phase Mumford-Shah, I' = 9%. As remarked, the convex
problem (2.5) will find a global minimizer independently of the initial guess for u.

3 The Selective Segmentation Problem and Recent Models

The task of extracting only one object from an image is a challenging problem within segmen-
tation with applications in a number of areas, such as automated object detection in security



monitoring and feature selection in medical imaging. Within medical applications, advances in
this subject can improve quantitative diagnosis, help monitor treatment over time and improve
pre-operative planning.

Here, on image z, we assume the availability of nj(> 3) points inside the target object
that form a set A = {w; = (27,y7) € Q,1 < i < ng} that defines a polygon. A common
misconception is that if A is available any global, nonconvex model (such as |[10]|) can solve the
selective segmentation problem if one places the initial contour of ¢ near A. Indeed, this is true
for some simple and designed images where features in an image are distinct, but in general
this idea does not lead to a useful method for selective segmentation. We also remark that
our problem setting is not the same as that of using seeds for fuzzy membership approaches
[24, 32]. One model recently proposed by Nguyen et al. [25] attempts another kind of selective
segmentation in a similar way and works with a marker set A and another ‘anti-marker’ set B
which contains points not within the object to be extracted. It uses an edge detector and a
probability map, based on user input, but its results tend to be too dependent on user input.

In order for a selective method to be suitable in this context, it is imperative that a model
requires minimal user input and is reliable. Recent developments in the subject include Gout
et al. [14], Badshah-Chen |1] and Rada et al. [27], which include region, edge and geometrical
constraints. The geometrical constraints are used to modify the regularization term by a
distance function, for instance the following used in [1],

o ) -y’
d(x,y) = distance((z,y), A) = H <1 —e 22 e 22 >, V(z,y) € Q, (3.1)
i=1

where k is a positive constant. Alternative distance functions are also possible. It is also
possible to alter the regularization term with the addition of an edge detector (as in [5]), where
the strength of detection is adjusted by a parameter, j3:

o(V2) = e (3.2

These additions modify the regularization term [27, 1] to be:

/d-gds.
r

Of the selective models studied, two effective models capable of segmenting a wide range
of examples in a robust way are by Rada-Chen [28] (based on area constraints) and Badshah-
Chen [2] (based on non-Ls fitting). Here "robust" means that correct segmentations have been
obtained as long as the initial contour is strictly inside the object to be extracted.

As with Chan-Vese, these selective models are nonconvex. This means that the models
can find local minima, depending on the initialization of the contour (which are associated
with initial contours not strictly within the object to be extracted). This lack of convexity is
problematic for a selective segmentation model as reliability and consistency are key in possible
applications.

Our intention is to introduce a new nonconvex selective model and reformulate it as a
convex minimization problem, in order to compute the original model’s global minimizer. Our



candidates are Rada-Chen [28] and Badshah-Chen [2]|. The fitting terms of [2]| are based on the
coefficient of variation rather than the mean intensity, used in [22, 10]. The convex reformulation
idea from Chan et al. [8] was applied to mean intensity fitting terms, so we intend to focus on
Rada-Chen [28] (which also uses mean intensity). Also, the geometrical constraints (3.1) used
in [2] can sometimes be too weak based on simple user input, whereas Rada-Chen [28] is less
sensitive to the choice of A. The area constraint of Rada-Chen [28] is an addition to Chan-Vese
[10], but is also unsuitable for the convex reformulation. We intend to discuss the reasons for
the lack of suitability in further detail. We provide important details of Rada-Chen [28] below,
to demonstrate why the convex reformulation fails here.

From the polygon formed by the marker set .4, denote by A; and Ag respectively the area
inside and outside the polygon. The Rada-Chen model [28] makes use of A; and A to achieve
selective segmentation. The initial contour starts from a polygon inside the object and the
additional terms restrict the area inside I' from growing larger than the target object (and
therefore outside the object boundary). It also incorporates the edge detector (3.2) into the
regularization term. We denote the weighted regularization term as

T, = /F o(|V2]) ds.

These additions to the piecewise-constant two-phase Mumford-Shah functional (2.1) give us
the following energy for selective segmentation:

RC(T, c1, ¢2) :u|F|g+)\/ (z —c1)? dmdy+/\/ (z —c2)? da dy
in(T") out(T")

0 2 2
e O e O

Using the level set formulation, this energy (3.3) becomes [28]:
RC(6,e1.c2) =p [ a(IV:)80)VH ()| dody
+ )\/Q(z —1)2H(¢) dx dy + )\/Q(z —¢)*(1 — H(¢)) dxdy
+§[</§2H(¢)d§dn —A1>2+ (/Q (1—H(¢))d¢dn —A2>2]. (3.4)

The energy is minimized successively with respect to the intensity constants, ¢; and ¢y given
by (2.3), and ¢. The nonconvex problem of minimizing (3.4) with respect to ¢,

m(gn RC(¢, c1,c2) (3.5)
leads to the EL equation, where g = g(|Vz|),

po(O)V - (g ) + =0 o, 5.0
9~ 0 on 09,



and f= —)\5e(¢){(z —c)? = (2 — 02)2}

- 96€(¢{(/QH€(¢) o - A1> - (A(1 — HL(6)dO —A2>}.

Solving (3.6) can be done with the introduction of an artificial time step and using the gradient
descent method:
96 _

Vo
= b0V - (a7 )+ 1

We now discuss the possibility of reformulating (3.5) into a convex minimization problem.
There are two reasons which mean this is not possible, which have to be considered for the
proposal of an appropriate model. Firstly, the additional terms, based on A; and As, only
incorporate the area of the object into the functional (3.4). This means that information
about the location of the object is provided by the initialization. Clearly, convex reformulation
where a global minimizer is found independently of initialization is not feasible in this case.
Secondly, the method of convex reformulation of Chan et al. [8] introduced above requires
linearity in H(¢), in the fitting term of (3.4). The area constraint of Rada-Chen |28] violates
this condition. This provides the two main considerations in proposing a new selective model,
suitable for convex reformulation, which we detail next.

4 The Proposed Model

In the following is the introduction of our new model that fits in with the idea of being refor-
mulated as a convex minimization problem and is broadly speaking analogous to Rada-Chen
[28]. It uses the same user input as [28], whilst instead of penalizing the area inside the contour
from growing too much, it penalizes the contour from moving further away from the polygon,
a set of points denoted by P, formed by the user input set, A. The new constraint is linear in
the indicator function and includes locational information of the target object, consistent with
the idea of convex reformulation.

4.1 A New Nonconvex Selective Model

The proposed nonconvex model, to be called Distance Selective Segmentation (DSS), has a
different area fitting term than Rada-Chen [28]. The function P4(x,y) is the normalized Eu-
clidean distance of each point (z,y) € Q from its nearest point in the polygon, made up of
(xp,yp) € P, constructed from the user input set, A:

Po(z,y) = \/(96 —ap)? + (y — 4p)?

Py(z,y) = M- (4.1)



The DSS functional is then defined as:

DSS(I',c1,¢2) = p|l'|g + 0/ Py(z,y)dQ
in(T")

—i—)\/ (z—c1)? dQ—l—)\/ (2 — c2)? dQ. (4.2)
in(T") out(T")

Here, we have the regularization and fitting terms from the piecewise constant two-phase
Mumford-Shah functional (2.1) with the addition of a new distance fitting term, normalized
so that Py(z,y) € [0,1]. For (z,y) € P, Py(z,y) = 0 and (4.2) reduces to (2.1), except the
regularization term is weighted by an edge detector function (3.2) as in [4, 28|. Introducing the
level set formulation, (4.2) reduces to the following model:

min {DSSLS(d),cl,cQ) :u/ 3e(9)g| Vol +9/ H(¢)Pyd2
Q Q

®,c1,C2

—|—)\/QHE(¢)(Z—01)2dQ—|—>\/Q(1—He(qﬁ))(z—cz)QdQ}, (4.3)

Here, if the area parameter, 6, is too strong the final result will just be the polygon P which
of course is undesirable. The idea behind the P, term is that it encourages H(¢) € Q\ P to
be 0, enforced more strictly the further from the object of interest a point is. The motivation
behind this new model is that it fits in with the idea of convex reformulation.

But it is important to clarify whether the idea behind this segmentation model, i.e. the
distance constraint, works as it is. The answer is yes. Comparisons of (4.3) with Rada-Chen
[28] are made for three examples and shown in Figures 1-2 of Section 5.1. There, one clearly
observes that the two sets of segmentation results are successful. That is, (4.3) is a valid
selective segmentation in its own right. In the third example, where the initial guess is altered,
both results are unsuccessful as local minima have been found. We look to correct this fault in
DSS (4.3) by convexification of the model.

4.2 A Selective Convex Reformulation

We now present details for the convex reformulation of (4.3). As in [8] the DSS™S energy can
be made convex by making the adjustment H.(¢) — wu € [0, 1] to give the Convex Distance
Selective Segmentation (CDSS) functional:

CDSS(u,c1,c2) z,u/ |Vulg dQ —1—)\/ ru dS) +9/ Pyu dQ (4.4)
Q Q Q

where r = (2 — ¢1)? — (2 — ¢2)? and |Vu|, = g(|V2])|Vul|. Given initial values for ¢; and cs,
based on the set A, our model consists of the following constrained minimization problem:

min CDSS(u,cy,c2). (4.5)
0<u<1

Define ¥ = {(z,y) : u(x,y) > ~} for v € (0,1). Following the work of Chan et al. [8], we can
demonstrate that a minimizer for DSS (4.3) is given by (4.5). Using the Coarea formula [11],



for the first term, the weighted total variation (TV) norm, in (4.2), we get
1
| vulyan = [ o(vahPer({(w.0)  uiep) > 23:2) by
1 1
- /O o(IV=Per (S(7): ) dy = /0 Dl dy. (4.6)

For the remaining terms in (4.2) we first need to introduce a definition. Let u be a non-negative,
real-valued, measurable function on 2. Then with y a characteristic function,

’LL(X) = A Xu(x)>t dt.

For the first fitting term, as u € [0, 1], we have

1 1
/ (2 — 1) ud = / (2 — 1)’ / X dy A9 = / / (2 = €1)X(y) Ay
Q Q 0 0 Q

:/1/ (2 — )2 ddy, (4.7)
0 JX(v)

and for the other two terms, similarly, we have

1 1
/(z—cz)2udQ: / / (z — )2 dQdy = C—/ / (z — )2 dQ dr, (4.8)
Q 0 JE() 0 JO\ZE(y)
1
/ Py dQ) = / / P, dQdy, (4.9)
Q 0 JE()

where C' = [(z — ¢2)*d and is independent of u. Combining equations (4.6)-(4.9):

1
CDSS(u,c1,c2) :/ {\F\g+)\/ (z —¢1)*d
0 (M)

—i—)\/ (2 — c2)?d +9/ PddQ}d’y—C
Q\X(v) Z(v)

1

:/ DSS(T,cy,c9)dy — C.

0

Since C' is independent of wu, it follows that if u is a minimizer of CDSS(-,c1,c2) then for
€ (0,1) the set I' = 3(~) is a minimizer of DSS(-, 1, c2). However, the convex minimization

problem (4.5) will provide us with the ability to find a global minimizer, independently of

initialization.

4.3 Unconstrained Minimization

The constrained minimization problem (4.5) can be replaced by an unconstrained one:

u

min{CDSS(u,cl,CQ) —,u/ |Vul|, dQ +/ ru dQ +0/ PyjudQ +a/ v(u) dQ}
Q Q Q Q

10



where v(u) = max{0, 2|lu — 1/2| — 1} is an exact penalty term [16], provided that
o > Z||Ar+0P;|| L (see aproof in [8] for a related problem). In order to compute the associated
EL equation for u we introduce a regularized version of the penalty function, v(u):

Vel(u):Hq( (2u—1)2+61—1>[ (2u—1)2+61—1},

where He, (z) = 1(1+ 2 arctan ﬁ) Then we get the following EL equation for u:

s

Vu = i
PV - (9W> —Ar—0FP—av, =0 in®, (4.10)
% -0 on Of).

To minimize for the intensity values, we use the following equations:

_ JouzdQ2
- fﬂudQ ’

 Jo(—u)zdQ

el =y

c1(u) (4.11)

4.4 Numerical Aspects
Equation (4.10) can be solved by the gradient descent method by solving the following:

ou gVu
i AR (W) —Ar —0P;—avl, . (4.12)
!

One option to solve (4.12) is an explicit scheme, which is computationally cheap but stability
conditions often lead to a very restricted time step, 7. The resulting system of equations from
a semi-implicit scheme is laborious to solve. This means that neither method is suitable for
a model where computational speed is required. Instead we apply the semi-implicit additive
operator splitting (AOS) proposed by [20, 29]. To avoid singularities we replace |Vu| with

g
[Vaule, *

Vule, = (/u2 +u§ + €2 for small €y, and denote W = Freezing W linearizes the

equation and (4.12) can be rewritten in the form:

ou

5= u(@x(Wﬁxu) + ay<Wayu>) +f

After discretization rewrite in the matrix-vector form (4" = u" + 7f):

n+1 __

YT

(I — 27 pAg(u™) 0. (4.13)

M:

/=1

Here, Ay is the diffusion quantity in the £ direction (¢ = 1,2 for x and y directions respectively)
and was derived using the finite difference method, 7 is the time step size and n denotes the

n' iteration. The matrices A, are given as follows, where Wi = W(u%), and h, and h, are

11



the grid sizes in the z and y directions respectively:

(Al (u")u”“) y = <8x (W"@munﬂ))

,J
(Wz‘rjrl/lj (al’unﬂ)iﬂ/z,j = Wili)a, (8“7“”“)@'1/2,]')

n n n+1 n+1 n n n+1 n+1
( iv1,; + Wiy (“m,j — Ui ) WA W (“w - “z’Lj) )

T -

2 hy 2 hy
_ gt (Wi Wi Lt Wit + Wi
— Wi+l Qh% i—1,5 2h%

n+1 iT:Li-l,j + ”in—Lj + 2”5]‘
X

and similarly,

(AQ(U”)UTL-H)' — <8y(Wnayun+1)) — <W+1+Z’]>+un+1 <”—1+z;>

i i i+l 2h2 bi—1 2h?
n n n
na1 (Wi + Wiy +2W7;
— .
i 202

The benefits of this method are that at each iteration the solution to two tridiagonal linear
systems is required, which can be computed efficiently with the Thomas Algorithm |29, pp.5-6].
However, the original AOS method described above generally assumes f is not dependent on
u. Actually, in our case, the term v/(u) in f does depend on u, which can lead to stability
restrictions in practice. This prompts us to consider an extension of the original AQOS, to
improve performance and ensure stability of the scheme.

4.4.1 An Improved AOS Method

The changes in f in (4.12) between iterations result in stability restrictions on 7. The shape of
v!(u) means that changes are problematic near u = 0 and u = 1, as small changes in u produce
large changes in f. In order to overcome this, we define an interval I, where we adjust the
equation based on the linear part of v/(u) and the difference in u between iterations. This
minimizes the changes in f from n to n + 1. We will demonstrate the adjustments made by
first looking at the equation in the z-direction, ¢ = 1 (similar for the y-direction, ¢ = 2), for
the original AOS scheme [29], that we will call AOSy from here. Denoting

12



"= —ravl(u™) — 7(0P; + Ar):

8u1 VUTILJrl f
v J

o <|Vu7f|62 T

ut -t o (VT L f
or M\ varl, ) T2

Vun+1 B
un+1:un+27_ v< 1 >+fn
N T

(1 = 2rpAQu})) ™ =+

W = (= A + ). (4.14)
Cz):) fo

We make an adjustment to the equation based on the Taylor expansion of v/ (u) at u = 0;
vi(u) = ag + bou + O(u?), and at u = 1; v.(u) = a1 + bju + O(u?). Note that by = by, so we
call the first order coefficient b from here. This allows us to approximate v/(u) in an interval,
I, with a linear function, bu. The interval is,

I :=[0-¢,0+¢U[l—¢ 1+
Denote a binary function, b™ given by:

i _ b, if uj; € I
W] 0, elsewhere.

Then, with B" = diag(rab™), we can adjust (4.14) as follows:

+1
Vul
’vurll ez

(I +B" - 2TuA1(u?)> ult =l + Tab™ul +

T =l 4 27V - < > — rab™u 4 rab ™t 4 1

~ —1 ~ _
utl = (1 v B - QTuAl(u’f)> (Wl + robul + 7). (4.15)
Ql fl

This scheme improves the performance of AOSy because the changes in f; (4.15) between
iterations is limited, compared to fy (4.14). The addition of Tal;"u? - Tal;”u?ﬂ has the effect
of approximating the change in v/ between n and n+1, in I,. We call the above scheme A0S,
(4.15) from here. In Weickert et al. [29] conditions for a discrete scale space were provided,
required for convergence. The conditions for Q(u") = (g;;(u™)) are as follows, where N is
number of pixels and J :={1,..., N}:

(D1) Continuity in its argument:
Q € C(RY,RV*N)

(D2) Symmetry:
¢ij = i, Vi,5 € J
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(D3) Unit row sum:

Zqij =1, VielJ
Jj€J

(D4) Nonnegativity:
(D5) Positive diagonal:
q; >0, YieJ
(D6) Trreducibility:
For any 7,5 € J there exist kg, ..., k, € J with kg =¢ and k., = j
such that qx,k,,, #0 for p=0,...,r — 1.

The matrix Q1 (4.15) does not fulfil this criteria, specifically (D2) Symmetry and (D3) Unit
row sum. In order to satisfy these conditions, we must first make the following adjustment,
compared to (4.15). Again, we only consider the z-direction here:

1
Vupt
[Vulle,

((I +B") ~ 2TMA1(U?)) uit = (I+ B")uf + f*

U?H =ul + 27uV - ( > — 7'cyl~)”u’fJrl + Tal;"u? —

it = (1 =27l + B () (uf + (L + BT

QQ f2

(4.16)

Depending on the choice of ¢, there is unit row sum and symmetry in Q2 (4.16). By increasing
¢, such that b = b, (D2) and (D3) are fulfilled for AOS,. As u € [0,1], ¢ = 0.5 is enough to
ensure this. This adjustment consists of multiplying 7 by a scalar, dependent on b and «. This
can be interpreted as automatically setting the time step to 7:
T
1+ 7ab’
This restricts the size of time step based on the prominence of the penalty function, dictated
by the size of «, and represented by b. We will present results for A0Sy, AOS; and AOS; in
Section 5. For the schemes above (AOSy, A0S, AOSs), as before, the corresponding equation

for u;LH is solved and then the complete update is given by:

7=

(4.17)

1 n+1
un—f—l — urlH_ + ’LL2+
2
4.4.2 The New Algorithm

The algorithm computes a solution for a sequence of alternating minimization problems. For
each fixed ¢; and ce we have a new minimization problem, which is solved using A0Sy, AOS,
or AOS,. The final solution, when ¢; and ¢o have converged, is denoted u*.
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Algorithm AOS method for CDSS

: Set u, 6. Calculate g and P, using (3.2) and (4.1) respectively.
. Initialize u(®) such that I is the boundary of P.

: for k + 1 : mazit do

Calculate cgk) (u*=1) and cék) (u*=1) using (4.11)
Calculate 7" = X ((z — cgk))2 — (2 — cgk))2> +6P,.

60 Set a® = ||r{]| .

7: u®) « min, CDSS (cgk), cgk),a(k)) using AOS scheme.

8

9

Tt W N

: end for

ot uk),

5 Experimental Results

This section will show three sets of experiments to test the effectiveness of our new algorithms
and to compare them with the existing model. In the following we select the parameters as
follows. We have found that setting e; = 1072 produces a tight approximation of v(u). We
fix the penalty parameter at o = ||Ar + 0P|, which is enough to enforce the constraint [8].
We set the time step at 7 = 1072 and ¢ = 0.1, except in Test Set 3, where they are varied to
demonstrate the benefits of the improved AOS method. The only restriction on ey is that it is
small; we select it as e = 107%. We have to consider the balance between the regularization
and fitting term, which will change for each problem. Here we set A = 1 and vary u for each
problem, depending on the shape and smoothness of the boundary of the desired object. It
might be worth considering the work of Mylona et al. [23] who automatically optimize these
parameters based on image information. The following tests use only three points input by the
user, i.e. n; = 3. The model is capable of achieving the desired result with a simple shape
within the target, even for awkwardly shaped targets as seen in Figs. 3 and 4. The resilience
to these selections is discussed further in 5.2. This leaves the main choice for a successful
segmentation as the distance selection parameter, 6. In these tests, it varies between 1 and
4.5. The basis for this choice is the size of the target object and its proximity to other image
features of similar intensity, and can be intuitively selected quite reliably.

In Test Set 1 results are presented for the proposed nonconvex Distance Selective Segmen-
tation (DSS) model and compared to the successful Rada-Chen model [28], demonstrating its
robustness in difficult cases, whilst underlining the need for the convex reformulation. In Test
Set 2, results are presented for the Convex Distance Selective Segmentation (CDSS) model,
demonstrating its success in segmentation of a range of examples independently of initialization
and its robustness to user input. Test Set 3 demonstrates quantitative improvement of the new
AOS method, in relation to one example. All images tested are of size 128x128.

5.1 Test Set 1 — comparisons of two nonconvex models

In Fig. 1 results are presented for three examples for Rada-Chen [28] and in Fig. 2 the same
examples are presented for DSS. Results demonstrate that the new model can also produce
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Figure 1: Results for Rada-Chen |28], for three test problems (given by rows 1-3). From left to
right: initialization (with user input set A), final contour, object selected

the successful results of Rada-Chen |28], whilst both models are sensitive to initialization, as
evident in row 3 of each figure. The nature of the failure in each case is due to finding a local
minimum, as is possible for the nonconvex formulation. This is evident from the fact that the
user input set, A, is the same for rows 2 and 3 whilst the initializations are different, and one
case fails where as the other succeeds. This provides the motivation for convexifying the energy
in the DSS case, as this cause of failure is removed.

5.2 Test Set 2 — demonstration of independence of initialization of CDSS

In Fig. 3 results for CDSS are presented for three examples. The function is initialized as the
given image, with successful segmentation in each case. In Figs. 4 and 5 the same object is
selected, with different user input for each. The solution (ground truth) is given by an ideal
user input set, A*, which is the shape of the target object and would require nq to be large.
This is not feasible in practice, as it essentially consists of a manual segmentation. We intend
to demonstrate that an acceptable approximation of the solution can be achieved with only
three points (n; = 3), even when segmenting a difficult shape. We have two choices of user
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Figure 2: Results for DSS, for three test problems (given by rows 1-3). From left to right:
initialization (with user input set A), final contour, object selected

input, A4 from Fig. 4 and Aj from Figure 5. Whilst Aj is close to the boundary of the target
(and closer to the ideal user input, A4*), A4 is a more interior selection. These produce slightly
different results, but both are acceptable. This demonstrates that even with a simple user
input far from the ideal, such as A4, we get an acceptable result. A more appropriate user
input (i.e. closer to the ideal), such as As, produces a better result, but still only requires
three points. One observes that the initializations were deliberately chosen to be not within
the object intended (which would fail with all other nonconvex models) and yet CDSS "knows"
where the intended object is and finds it correctly. These examples demonstrate the robustness
of the model; successful segmentation is possible for a wide range of user input.

5.3 Test Set 3 — demonstration of effectiveness of the new AOS algorithm

In Fig. 6 the residual is shown for AOS) for two different time steps; 7 = 1072 and 7 = 1073, It
demonstrates that for a stable convergence, the time step is limited to 7 = 1073, In Fig. 7 the
residual is shown for AOS; for 7 = 1072 for two different choices of the restriction parameter;
¢ = 0.01 and ¢ = 0.1. It demonstrates that the improved AOS (AOS]) can achieve stable
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Figure 3: Results for CDSS, for three test problems (given by rows 1-3). From left to right:
initialization (with user input set \A), final contour, object selected.

convergence for a higher time step than original AOS (AOSy), for an appropriate selection of <.
In Fig. 8 the residual is shown for AOS; for 7 = 107! for two different choices of the restriction
parameter; ¢ = 0.1 and ¢ = 0.5. It demonstrates that the improved AOS (AOS;) can achieve
stable convergence for higher time steps, depending on the selection of ¢. We have found that
the fastest stable convergence is for 7 = 1072,¢ = 0.1.

In Fig. 9 the residual is shown for AOS; for 7 = 1 for two different choices of the restriction
parameter; ¢ = 0.1 and ¢ = 0.5. It demonstrates that AOS, can achieve stable convergence
for a higher time step than AOSy and AOSi, for an appropriate selection of ¢, i.e. b =b.
This scheme (AOSs) complies with the discrete scale space conditions [29] for ¢ = 0.5, and
has stable convergence for large time steps. It can be seen as a variable time step, given by 7
(4.17), dependent on the contribution of the penalty term.

Further improvements in the computational speed of minimizing CDSS can be explored
by applying recent optimization techniques, developed to efficiently solve convex optimization
problems in imaging. These include the Split Bregman method, applied to convex segmentation
problems by Goldstein et al. [12]; Chambolle et al. [7] introduced a fast primal dual algorithm
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Figure 4: User input set 1 for CDSS. From left to right, top to bottom: initialization, Py
function (with user input set A4), final contour, object selected.

applicable to convex segmentation; and Yuan et al. [30] introduced a max flow based algorithm
for binary labelling problems. These methods would further improve the results for CDSS, in
terms of computational efficiency.

6 Conclusions

In this paper we discussed the drawbacks of current selective segmentation models and proposed
a new model where a global minimizer can be found independently of initialization. The results
presented show that the proposed model is reliable and efficient in a wide range of examples and
is not sensitive to user input. We have also introduced improvements to the AOS scheme used in
previous selection models [1, 2, 27, 28], based on the Taylor expansion of our proposed penalty
function. These demonstrate improved reliability, and an improvement in computational speed.
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Figure 5: User input set 2 for CDSS. From left to right, top to bottom: initialization, Py
function (with user input set As), final contour, object selected.
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