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ABSTRACT
Variational segmentation models have proven to be extremely efficient for
segmenting and tracking boundaries and in most cases all of the
boundaries in an image. Such models are for global segmentation. For a
large class of image segmentation tasks where only one object is required
to be extracted automatically, global models cannot deliver the solution and
we need selective segmentation techniques.

In this paper, we propose a novel, variational and single level-set function
for the selective segmentation task. The model is much faster to implement
than the previously dual level set model by Rada-Chen [29] by having the
same efficiency and reliability. In comparing with interactive image
segmentation algorithm of Nguyen-Cai-Zhang-Zheng method [2], our
model shows some improvement in some cases. Several new ideas are
incorporated in this new work: i) the distance function is only needed
optionally and its inclusion does not affect the result; ii) an adaptive
parameter is introduced in the edge detection function; iii) a new area-
based fitting term is added to enhance the model’s reliability (different from
the idea of minimizing the area of the object). We develop an additive
operator splitting method for solving the resulting Euler-Lagrange equation.

Test results show that the new model finds the desired local boundaries
successfully in various challenging cases and indeed it is not much
dependent on the prior information of markers or the distance function
based on them. More importantly, the new model gives an overall
improvement over the previous models and can be recommended for
selective segmentation.

AMS subject classification: 62H35, 65N22, 68U10, 35A15, 65C20,
74G65, 74G75.
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1. INTRODUCTION
The progress in photography, imaging instruments, high resolution magnetic
resonance and the access to the three dimensional imaging has already provided
a lot of valuable information in different fields. Despite developments and
improvements in the technology a post process is required in order to separate
the objects from their surroundings. This procedure is referred to as
“segmentation” and different techniques have been developed so far, such as
histogram analysis and thresholding [24, 32, 37], region growing [1, 42], edge
detection and active contours [3, 10, 20], etc. Of all these techniques,
variational techniques [9, 26, 28] are proven to be very efficient for extracting
homogenous areas compared with other models such as statistical methods [32,
11, 13, 40] or wavelet techniques [19, 25, 35].

Most segmentation approaches from the last two decades can be put into two
important categories of segmentation methods: edge-based and region-based
methods. Of course, one may develop a hybrid method. Edge-based methods
refer to methods which drive the contours towards image edges using an edge
detector function. The “snake” algorithm by Kass et al. [20] was the first
variational method for object segmentation in images. Further development of
the “snake” algorithm was the Geodesic Active Contours model and the level-set
method have proven to be effective for such a model [3, 33, 7, 31]. Most models
use an edge detector function which depends on the gradient of a given image

[7, 16, 18] such as where u0 = u0(x, y) (in 2-D

case) defines the given image.
On the other hand, among region-based methods such as minimum

description length criteria [21], region growing and emerging [1], watershed
algorithms [37] etc., Mumford-Shah functional minimization [26] was found to
be the most efficient for the images with and without noise. It reconstructs the
image as a piecewise continuous function that is surrounded by discontinuities
represented by contours. For a given image u0 defined on a rectangular domain
Ω, Mumford-Shah [26] general model was reduced and converted to an easy
numerical represented model by Chan-Vese (CV) [9]. This model is a special
case of the piecewise constant where Mumford-Shah is restricted to only two
phases, representing the foreground and the background of the image. The
method was further extended for multiphases and for an phase number
automatically determined [9, 8, 10, 36]). The CV model is not based on the
gradient of the image for the stopping process so that it can detect contours both
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with and without gradients. The CV active contour model uses the energy
minimization functional given by:

(1)

where c1 and c2 are the average values of u0(x, y) inside and outside of the
variable contour Γ, also µ, λ1 and λ2 are non-negative fixed parameters. The
CV model [9] is non-convex but it can be converted into an equivalent and
convex one [6].

Both categories of segmentation models mentioned above are for global
segmentation due to the fact that all features are to be segmented. On the other
hand, in many segmentation problems, we need to segment a particular aimed
target object in the image and not all objects in it. This is a task of selective
segmentation in which an object of interest is detected, given some additional
information of geometric constraints. There are two ways to define geometric
constraints. This paper follows the first way of defining geometric constraints
in Gout-Guyader-Vese [15, 16, 18] who proposed an edge based method for
selective segmentation. This work was improved by a mixed edge-based and
region-based model by Badshah-Chen [4]. Other methods such as random
walks [17], geodesics [5] and graph cut [30] use the distributions probability,
edge based function or graph cut theory respectively. Those models are
effective in some cases and can produce spurious objects (i.e. fail the selection)
in some hard cases where the objects are near or the intensity difference is
small, as shown by the example given in Fig. 1, where the intensity difference
of triangle and rectangle is small.

The second way of defining geometric constraints can be found in [2] where
geometric points outside as well as inside an intended objects are given. In
addition, to speed up convergence, they make use of the Split Bregman method
[14]. Although this paper focuses on the first way of defining geometric
constraints, later, we shall compare our work with [2].

To improve the robustness of [4], in the recent work [29], we introduced a
dual level set by equipping it with two level sets, one capturing all the
boundaries (global level set) and a level set which evolves in the global level
set which keeps the boundaries on the aimed target object. To help the local
level set a new fidelity term that better splits the global domain was used. The

min , , min ( )
, ,c c c c

F c c u
1 2 1 2

1 2 1
Γ Γ

Γ Γ( ) = +µ λlength 00 1

2
( , )

�����������

( )
x y c dxdy−






∫inside Γ

��������������� ( , )
( )

+ −λ2 0 2

2
u x y c dxdy

outside Γ∫∫





Journal of Algorithms & Computational Technology Vol. 7 No. 4 511



model is a combination of edge detection, markers distance function and active
contour without edges. It has been shown that the model improves on old
models, and is more reliable for harder problems (such as the example given in
Fig. 1) where other models fail.
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Figure 1. (a) A 2D composite image of a triangle over a rectangle; (b) Intensities of the
image; (c) Vertical plane cut view through the middle of the image.



Although the Rada-Chen model [29] is reliable, its implementation is
much slower than before because the complexity is doubled from replacing
the previously single level set function by two level set functions. The
natural question arisen here is the following: how can we design a model
which uses only a single level set function and yet the reliability of selection
is achieved? To this end, this paper introduces a new method based on one
level set function, ensuring same or better performance compared with [2],
and gives the same result as our previous presented dual level set method
[29]. The new method is based optionally on the distance function from the
given geometrical points and can be used only if needed when it is feasible
to give an accurate estimate of the object of interest. The initial position of
points for the proposed model has to place them near the boundaries of the
target object. Our recommendation is to be placed inside the object so that
we avoid any wrong initialization of the level set. An adaptive parameter
edge detection function will be employed to better influence and decrease the
functional as soon as we are in the boundaries and a crucial new area-based
minimization fitting term is considered to enhance the model’s reliability.
Such an area fitting serves as a constraint rather than precise area preserving.
In cases we have a trained datum for the object of interest the model might
be transformed to a shape prior based segmentation, similar to Cremers-
Sochen-Schnörr [12] or in case of occlusions similar to Thiruvenkadam-
Chan-Hong [34]. This has not been concerned in this paper and will be in our
future work.

This paper is organized in the following way. Section 2 contains a review of
the Badshah-Chen model [4] and dual level-set model [29]. In Section 3 we
present our proposed new model of minimization and derive the Euler-
Lagrange equations. In Section 4 we describe the discretization of the method
and develop an additive operator splitting (AOS) algorithm for solving the
PDE, which is very efficient for this kind of problem. In Section 5 we give some
experimental results. Examples of application of the method to different data-
sets are presented. The new segmentation algorithm is compared to Badshah-
Chen [4] and the dual level set [29]. Conclusions are given in Section 6.

2. REVIEW OF EXISTING VARIATIONAL SELECTIVE SEGMENTATION MODELS
As discussed, there exist many variational segmentation models in the literature
on global segmentation and few models on selective segmentation. For the
latter, we will review two segmentation models below that are directly related
to this work.
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2.1. Badshah-Chen model [4]
Below we start by reviewing the selective model by Badshah-Chen [4] which
combines the edge based model of Gout-Guyader-Vese [16, 18] with region
based information. For a given image u0(x, y), defined on the rectangular
domain Ω, the selective segmentation idea can be described as the detection of
image features that are defined in a closed domain to the geometrical points in
a set A = {w*

i = (x*
i ,y*

i ) ∈ Ω, 1 ≤i ≤ n1} ⊂ Ω, consisting of n1 distinct points
near boundary of the object to be detected [4, 16], shown in Fig. 2. The aim in
selective segmentation is to find an optimal contour ΓL ⊂ Ω near the set A,
which in contrast with the global contour (ΓG = ∂Ω), represents a object which
has minimal geometric distance from the set A. Using the notation Γ instead of
ΓL, the Badshah-Chen [4] minimization equation is:

(2)
min , , min ( , ) (
, , , ,Γ Γ

Γ
c c c c

F c c d x y g u
1 2 1 2

1 2 0( ) = ∇µ xx y ds

u x y c dxdy u x y c

, )

( , ) ( , )

( ){
+ − + −

∫Γ

λ λ1 0 1

2

2 0 2
22dxdy

outsideinside ( )( )
.

ΓΓ ∫∫





514 Improved Selective Segmentation Model Using One Level-Set

ω*2

ω*1

ω*3

c1

C2

Γg

Γg

Γl

c1

Ω

Figure 2. Graphical representation of the selective segmentation model. 3L is the desired
contour of the target object, w *i are the given markers of the object to be segmented, c1

and c2 are the mean intensities of the foreground and background respectively.



The first term is similar to the old Gut-Guyader-Vese model [16, 18], which
is a geodesic active contour model [7] with the geometrical constraints being
close to A, while the second and third term bring an implementation of the

region terms. In this model is an edge

detector function which helps to stop the evolving curve on the edges of the
objects in an image. Clearly the g (∇u0(x , y)) function is almost 0 on edges
where ∇u0(x , y) is large and 1 in flat regions where ∇u0(x , y) is small. The
d(x , y) function is a distance function, which will be required to stop the
evolving curve when approaching the points from set A. The function d is
defined in the following way [18]: 

(3)

(x , y) ∈ Ω. Clearly the function d acts locally and will be approximately 0 in
the neighborhood of points of A. Other options for d can be chosen [29]. The
aim is to find a contour Γ such that d � 0 or g � 0 along it. The contour Γ will
stop at local minima where d � 0 (in the neighborhood of points for A) or g � 0
(near object boundaries).

Introducing the level set functions φ(x , y) defined such that

the functional (2) becomes:

(4)

where H is the Heaviside function.
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Since the Heaviside function is not differentiable at the origin, they consider
the regularized version of H denoted by Hε and the corresponding d = H′ by δε.
Different regularized Heaviside functions can be used [9, 41], e.g the following
functions:

where is error function, twice the integral of the

Gaussian distribution with 0 mean and variance of . Through a behavior

analysis in [29] suggests that H1ε, or H2ε are more suitable due to the small
support in [−ε, ε] and H3ε may not be suitable for the extreme case where the
feature of interest is less than 2 pixels away from other features; adjusting ε will
resolve the problem. The minimization problem (4) in terms of the regularized
version of H is:

where W = d (x , y)g (∇z (x , y)). Keeping φ fixed and minimizing with 
re- spect to c1 and c2, one gets the following for computing c1 and c2
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(7)

if ∫Ω(1 – Hε(φ(x , y)))dxdy > 0 and ∫Ω Hε(φ(x , y)))dxdy > 0 (i.e if the curve has
a nonempty interior and exterior in Ω). Finally keeping c1 and c2 fixed, one can
minimize (5) with respect to φ(x , y). Thus we have the following Euler-
Lagrange equation for φ

in Ω, with

2.2. Dual Level-set Selective Segmentation Model [29]
The dual level-set selective segmentation model is based on the construction of
two level-sets, respectively global and local level-sets, which essentially carry
out a global segmentation and local selective segmentation. In this model new
region-based terms are required and employed for the local level- sets. Denote
by ΓG = ∂ΩG in Ω the global curve for locating of the features of the image u0
and the desired selective curve by ΓL = ∂ΩL in Ω, where naturally assume ΩL
is contained in ΩG, we have:
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where g (∇u0(x , y)) and d(x , y) are defined as in [4] and the parameters µ1,
µ2, λ1G , λ2G , λ1, λ2, λ3 are all positive. To penalize the level set function to a
signed distance function a new term similar to [22] idea is used. Adding the

term we avoid re-initialization so, with

W = dg (∇u0), (8) is written as

Here µL, µG are positive. Keeping φ fixed and minimizing with respect to c1
and c2, we compute c1 and c2 as follows (letting T = 1 – Hε(φL)):
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if we assume the φG(x , y) has neither empty interior nor empty exterior.
Keeping c1 and c2 fixed and minimizing (9) with respect to φL(x , y) and 

φG (x , y) the following Euler-Lagrange equation can be derived:

and

where

The equations for φL and φG will be iteratively updated. The model showed
good accuracy in hard problems but slow convergence due to updating two
level-sets rather than one.

3. A NEW ONE LEVEL SELECTIVE SEGMENTATION MODEL
In this section we propose a novel one level selective segmentation variational
model, using the key idea of area fitting. For a given image u0(x , y), defined on
the rectangular domain Ω, our aim is to detect an image feature/object that is close
to the geometrical domain of the points A = {w*
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which are placed inside the object or in the boundaries, and at the same time are
an indicator of where our initialization for the level set has to be placed. The
given points can be at the same time an indicator of the relative size of the
object in the area term so, if we consider the polygon area constricted with the
given points, we can get an approximate ratio of the object in comparison with
the whole domain Ω. On the other hand, the mean intensity of this polygon is
approximately the intensity of the target object, which we will denote by c1 in
what follows.

Since the distance function gives a local weight in a small neighborhood on
given markers, to have a good influence from this function we need to increase
the number of points in the set A and for more they have to be near the
boundaries, which is not practically convenient. For this reason we want the
program to be less dependent of the distance function and only needed when it
is feasible to give an accurate estimate of the object of interest. In this way we
do not fail in cases where inaccurate geometrical information is given. We start
by constructing the energy minimization functional:

where λ1, λ2, µ, ν and are empirical weights, g is the edge detector function
applied to the original image, c1 is the known mean of the polygon constructed
with the given markers (with the supposition that the markers are placed inside
the object or not too far the boundaries), c2 is a region term defined below in
equation (16) representing the mean intensity outside the target object. We
remark that in region growing methods c1 would be the intensity of a given
pixel (i.e. unreliable due to noise or non-homogeneity) but our mean is a more
reliable quantity; moreover we also have the option of updating c1. The function
g is an adaptive parameter edge detection function given by:
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with k a positive constant. The constant k is used to help to sharpen the edges
especially when the intensity difference is small, since in this case we know that
near the edges ∇u0(x , y) might be not big enough that the function g(∇u0(x , y))
is approximately 0. In case of strong noise a smooth version of u0(x , y) can be
used, e.g Gσ(x , y) * u0(x , y), a Gaussian convolution with Gσ(x , y) = σ–1/2e–x 2 +

y2/4σ, which helps to eliminate the height of non-desired frequencies.
Analyzing the energy above we can notice that the first term (weighted by µ)

is the regularizer of the inverse problem and expresses the weighted geodesic
length of the contour. The second and the third term (weighted by λ1, λ2) are
region fitting terms to the mean intensity inside the object and outside it
respectively. The forth and fifth term (weighted by ν) are a priori terms stating
that the volume area of each object remains close to a reference area (or volume
for 3-D) Ai , i = 1, 2. In our case we compute Ai as an area of the polygon inside
and outside the given markers. In this way we have an approximation of the
area of the object we are looking to capture. Rewriting the above equation in
terms of the level-set we have:

The non-differentiable H function can be replaced by Hε a regularized Heav-
iside function as in [3, 9] and we get:

(15)
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where δε(φ(x , y) is a regularized Delta function corresponding to the Heav-
iside function introduced above. Keeping φ(x , y) fixed and minimizing with
respect to the unknown intensity outside the object, one gets the following
equations for computing c2:

(16)

if ∫Ω (1–Hε(φ(x , y)))dxdy > 0 (i.e if the curve is nonempty in Ω). We have to
mention that c1 can be considered as an unknown and minimized with respect

to it to obtain in the case of wrong

markers placed outside the object.
Keeping c1 and c2 fixed and denoting W = g (∇u0), we minimize (15) with

respect to φ(x , y) and get the following Euler-Lagrange equation:

(17)

where Derivation of the Euler-Lagrange equation is given in the

Appendix.
In case the markers are near the boundaries W = g(∇u0(x , y)) can be

replaced by W = d (x ,y)g (∇u0(x ,y)), similar to Badshah-Chen or Gout-
Guyader [4, 18]. In equation (17) balloon terms such as αW ∇φ can be added
to speed up the convergence. The final equations of φ can be written in the
form:
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To avoid re-initialization of the level set function φ(x , y), a term can be
added in (18) such that the level set can be automatically scaled. To penalize
the level set function from a signed distance function with new term similar
to the Li-Xu-Gui-Fox idea [22] can be used avoiding re-initialization

. After derivation this term will have the form

For more about re-initialization techniques you can refer to [22, 27]. In our
experiments re-initialization was not required.

The approximation of equation (18) can be done by introducing an artificial
time step t and getting the gradient descent method. In this way we get the
following evolution equation:

(19)

with Neumann boundary conditions.

4. AN ADDITIVE OPERATOR SPLITTING ALGORITHM
In order to solving equation (19), a fast and a low computational cost method is
required. The additive operator splitting (AOS) method, proposed by Tai et al.
[23] and Weickert [39] is widely applied to a diffusion equation, see [4, 18, 38].
This method allows the decomposition of the two-dimensional problem into
two one-dimensional ones. To implement this algorithm in our method we have
to make the discretization of the equation (19), form a semi-implicit linear
system and develop the iterative approximation scheme which solves a
diagonally dominant tridiagonal linear system.

We first recall the evolution equation satisfied by:
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where φ(x , y, 0) = φ0(x , y) and To avoid singularities we can 

replace the term ∇φ with , for a small β. Denoting 

and , equations (20) can be written in the compact form:

(22)

Discretizing in the spatial step, the equation (20) can be rewritten in the
matrix-vector form:

where ∆t is the time step size, n denotes the nth iteration and Al is the diffusion
quantity in the l direction (l = 1 and l = 2 respectively for x and y direction for
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the two dimensional case). We can rewrite the above equation in the semi-
implicit form:

which, by employing the AOS scheme, can be split additively as shown below
to define the AOS solution

(23)

Here the matrices A1, for l = 1, 2, are tridiagonal matrices derived using
finite differences:
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Algorithm 1 AOS Method Algorithm for Solving the One Level Selective
Method: φk ←OLSS(φ(0), A, µ,ν,β, α, ε, maxit, tol).

Calculate the edge based function and area of the polygon (distance function
optional);
n = 1, Compute f from equation (21), φ(1) = φ(0);
for iter = 1 : maxit do
Compute φ(n) using (23):

If φ(n+1) – φ(n) < tol or iter > maxit, set φ(k)← φ(n–1) Break; else φ(k)←
φ(n–1)

update f from equation (21)

end for

5. EXPERIMENTAL RESULTS
In order to illustrate the performance and the accuracy of the proposed method,
experiments were carried out on synthetic, CT and MRI 2-D images. We like to
emphasize that in all the results shown below for the new method the distance
function was not considered, in other words d(x , y) = 1. Three kinds of
experimental results are shown:

• demonstrating that our new segmentation method works better than the
Badshah-Chen model [4] for segmenting hard cases, such as the objects
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shown in Fig. 1;
• comparing with the Nguyen-Cai-Zhang-Zheng model [2] which is the

state-of-the-arts method and is known for its robustness, accurate
boundary with a small amount of user interaction. It should be noticed
that our model performs better then Nguyen-Cai-Zhang-Zheng model
in some cases where the objects have same intensity and the boundaries
are vague or object with same intensity;

• comparing with the Rada-Chen model [29] which is known for good
performance in selecting the right object in cases of low intensity
difference or with objects which are close to each other.

In the following experiments the parameters ∆t, λ1, λ2, α, h (step size), ε and
β, have been fixed at ∆t = 0.1, λ1 = λ2 = 1, α = −0.01, h = 1, ε = 1, and 
β = 10–6, respectively. Differently sized images n × n = 128 × 128, 256 × 256
have been tested and show the same satisfactory results. To stop the program,
the relative residual 10–2 has been used.

Through the experiments it was observed that the parameters µ, ν can be in
a range between µ = 100 to n2/10 and ν = 0.1 to 1 which gave similar result.
Increasing of the parameter k gives better performance in hard cases. In hard
cases we considered k greater than 100.

The first initial level set has been constricted as a sign distant function of
the given polygon constructed with the markers. This initialization has been
found as more proper in our experiments. The experimental results show that
if the markers are outside the object but not inside nearby objects the method
works, in contrast with the case where the markers are placed near the
boundaries or inside other objects in which the method fails by capturing the
nearby objects.

Since H3ε has a bigger support in the interval [–ε, ε], which means that with
it a moderately large ε may lead to spurious results, in our experiments for the
local level set, as approximations for the heaviside function we use H1ε or H2ε
with ε = h = 1, and for the global level set H3ε with ε = h = 1;.

5.1. Test Set 1 — Robustness and Accuracy of the New Model, and Comparison
with Badsah-Chan Model
In the first test set, we demonstrate the ability of recognizing objects which
have a small intensity difference. Fig. 1 shows a rectangle and triangle with a
non empty intersection and with small intensity difference of those two objects.
The Fig. 3 (c) and (d) presents the satisfactory experimental results using the
new model algorithm for capturing both of these objects separately, while the
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old Badshah-Chan model would easily fail in this case, as shown in Fig. 3(b),
where all black area was segmented. The real life image or the medical images
are a real challenge for segmentation in general and especially for selective
segmentation, due to poor quality and noise. In Fig. 4(c) and (d) we show that
the model works satisfactorily with this kind of images. All these images have
been shown as hard cases in the Rada-Chen [29] paper and segmented correctly
by a dual level set, results which are the same with the one we already showed
in Fig. 3 (c), (d), Fig. 4(c) and (d).

5.2. Test Set 2 — Comparison with Model [2]
For the test images in Fig. 3 and 4(c) and for almost all the images we present
in this paper, we see that the Nguyen-Cai-Zhang-Zheng model [2] gives same
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Figure 3. Test Set 1 – Comparison with Badshah-Chen model [4]: (a) First level set; 
(b) Unsuccessful result by [4] model for the case of two object with small intensity

difference; (c-d) Successful result by new model for the case of two objects with small
intensity difference.



satisfactory results as our model. For briefness we will not show too many
results that both models give satisfactory results; Fig. 5 shows the successful
segmentation of the kidney by Nguyen-Cai-Zhang-Zheng model in a CT
image. This test set also includes a few examples where our model performs
better than model [2]. Although the performance of Nguyen-Cai-Zhang-Zheng
model [2] is much better than other methods such as [4], its results still contain
some artifacts due to similar appearance. The method cannot handle
transparent or semi-transparent boundaries; Fig. 6 gives a failure example,
where our method is able to segment the target cell in a clean way while model
[2] fails. Fig. 7 shows another example where model [2] fails while our model
succeeds in Fig. 8(a).
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Figure 4. Test Set 1 – Comparison with the Badshah-Chen model [4]: (a) Unsuccessful
result by [4] model for the case CT images where the organs are nearby, with small

intensity difference and in presence of noise; (b) Unsuccessful result by [4] model for the
case of a biological image where the cells are of the same intensity or with small

intensity difference; (c) Successful results with the new model in case of CT images
where the organs are nearby, with small intensity difference and in presence of noise; 

(d) Successful result by new model for the case of a biological image where the cells are
of the same intensity or with small intensity difference.



5.3. Test Set 3 — comparison with model [29]
We continue our experiments by giving more examples and compare our
model with the DLSS method [29]. Here we show 12 more different images,
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(a) Two types of strokes has been labeling some foreground and background pixels

(b) Successful segmentation of the kidney by Nguyen-Cai-Zhang-Zheng model (2)

Figure 5. Test Set 2 – Comparison with Nguyen-Cai-Zhang-Zheng model [2].
Successful result by Nguyen-Cai-Zhang-Zheng model for the case of kidney

segmentation in a CT image.



which can be found as successfully selected by the DLSS method [29]. All
of the testing examples, as shown in Fig. 8, give satisfactory segmentation
which is almost the same result as with the DLSS method, which for the sake
of brevity we do not show. The first five images in Fig. 8, (a), (b), (c), (d),
(e) respectively, are artificial images and from the results we conclude that
the model works satisfactorily for cases where the features are nearby and
with different shapes, while the last images, Fig. 8 (f), (g), (h), (i), (j), (k),
(l), show an accurate segmentation of biological and medical images, which
are considered as much more hard cases due to the low-quality data. Since in
the case of the dual level sets two level set need to be updated the model
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(a) Two types of strokes has been labeling
some foreground and background pixels

(b) Unsuccessful result of the cell by
Nguyen-Cai-Zhang-Zheng model (2)

Steps 0

(c) In green are 4 given markers and in
blue the first level set

(d) Successful segmentation of the cell
with the new model

Figure 6. Test Set 2 – Comparison with Nguyen-Cai-Zhang-Zheng model [2]. Successful
result by new model for the case of two cells with same intensity and semi-transparent

boundaries.



suffers from slow convergence. Table 1 shows clearly this fact. In this table
we compare in CPU time the new model with the old dual level set model
[29], and find out that the new model is at least two or three times faster,
result which was obtained in all the experiments we did without exceptions.

6. CONCLUSIONS
In this paper we presented a new variational selective segmentation model with
one level set function which performs reliable segmentation, improving on two
related models proposed recently. Numerical experiments show that the new
model delivers similar results for easier problems to old models, such as the
Badshah-Chen model [4] and the Nguyen-Cai-Zhang-Zheng model [2], and
improves on these models in hard cases where objects are nearby or have a
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(a) (b)

(c) (d)

Figure 7. Test Set 2 – Unsuccessful result by Nguyen-Cai-Zhang-Zheng model [2] for
the spiral object. The first column shows the given strokes for the foreground (in red)

and background (in blue), while the second column shows the segmentation result with
the Nguyen-Cai-Zhang-Zheng model [2]. Our new method shows successful result for

this case as shown in Fig. 8(a).
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Figure 8. (continued)



small intensity difference. The model produces equally as reliable results for
harder problems as the Rada-Chen [29], improving the speed of [29] by at least
two times in comparison.
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Figure 8. Test Set 3 – Comparative results with Rada-Chen [29] model (a-l) Successful
segmentation of different images.

Table 1. Required CPU time for successful selective segmentation for some of the 
tested images.

DLSS method New method

Figure CPU time CPU time

Fig. 3(c) (256 × 256) 68.5938 18.7188

Fig. 3(d) (256 × 256) 49.1250 18.9688

Fig. 8(e) (128 × 128) 65.32 36.703

Fig. 8(f) (128 × 128) 69.120 21.890

Fig. 8(l) (128 × 128) 32.601 11.890



APPENDIX: DERIVATION OF EULER-LAGRANGE EQUATION FOR THE NEW MODEL
Keeping c1 and c2 fixed, we minimize (15) with respect to φ(x , y) to derive
briefly the Euler-Lagrange equation. We recall that F is differentiable in the
Gâteaux sense at φ ∈X if the limit

is defined for any ψ ∈X. Coming back to our problem, let us determine the
Gâateaux derivative of the energy Fε and find the first variation of the functional
Fε with respect to φ such that:

Using the notation φ, u0 instead of φ(x , y), u0(x , y) we have
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Scaling ν and computing the derivatives we have:

or

where ψ is a test function of the same type as φ. Applying Green’s identity
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to the second integral of (24) by taking ψ = v and for

the second integral we rewrite them respectively as

where . Thus equation (24) becomes

This gives

⇒

∇( ) ( ) ∇ + ∇( ) ( )
∇

∂
∂

′∫µ δ φ φ ψ µ
δ φ

φ

φg u dxdy g u
n0 0ε

ε

Ω
� ψψ

µ δ φ
φ

φ

ds

g u

−

( )∇ ⋅ ∇( ) ∇

∇













∂∫ Ω

ε 0 ψψ µ δ φ φ
φ

φ
ψ

δ φ

dxdy g u dxdyL− ( ) ∇( )∇ ⋅
∇

∇

+ ( )

′∫∫ ε

ε

0ΩΩ

λλ λ1 0 1

2

2 0 2

2
u x y c u x y c, ,( )−( ) − ( )−( )









( ) −








− −

∫

∫

ψ

ν δ φ φ ξ η

dxdy

H d d A

Ω

Ωε ε( ) 1 1 HH d d A dxε φ ξ η ψ( )( ) −


















∫Ω 2 ddy =










∫ 0.

Ω

µ δ φ φ ψ µ
δ φ

φ

φg u dxdy g u
n

∇( ) ( ) ∇ + ∇( ) ( )
∇

∂
∂

′
∂∫0 0ε

ε

Ω
� ψψ

µ δ φ
φ

φ

ds

g u

Ω∫

− ∇ ( ) ∇( )) ∇

∇












.

ε 0 ψψ

δ φ λ λ

dxdy

u x y c u x y c

Ω∫

+ ( ) ( )−( ) − ( )−(ε 1 0 1

2

2 0 2, , ))









+ ( ) ( ) −


∫

∫

2

1

Ω

Ω

ψ

ν δ φ φ ξ ηε

dxdy

H d d Aε 




− − ( )( ) −












 ∫ 1 2H d d Aε φ ξ η

Ω



 =











∫ ψdxdy 0
Ω



∇ =
∂
∂

φ
φ.� �n
n

g u dx g u∇( ) ( ) ∇

∇
∇ = − ∇ ∇( ) ( )

∇
∇




∫ 0 0δ φ

φ

φ
ψ

δ φ

φ
φε

ε. .
Ω









+ ∇( ) ( )
∇

∂
∂

∫Ω
ψ

δ φ

φ

φ
ψ

dxdy

g u
n0

ε
� dds,

∂∫ Ω

�
w g u= ∇( ) ( )

∇
∇0

δ φ

φ
φε

Journal of Algorithms & Computational Technology Vol. 7 No. 4 537



Since W=g (∇u0) the Euler-Lagrange equation for φ can be derived:

(25)

in Ω, where the boundary condition reduces to the

Neumann boundary condition. Equation (25) can be rewritten as:

(26)

in Ω with 
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