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The three-loop helicity-dependent splitting functions A. Vogt

1. Introduction: Polarized PDFs, their evolution, a? calculations, large-x limit

The unpolarized and polarized parton distributions of a longitudinally p@dtizdron are given by
fi (X7I12) - fiH(X7lJ2) + fiH(XaIJZ) and Af (X7u2) = fiH(leJlZ) - fiH(leJz) ) (11)

respectively, in terms of the quark and gluon distributidps and f;~ for the same and opposite

helicity. Herex is the parton’s momentum fraction, apddenotes the factorization scale which, in

the present context, can be identified with the renormalization scale witheutflagformation.
Their scale dependence is governed by the renormalization-grougienadguations

din 2 (B)fi(x,1?) = [(D)Rx(a(1?)) @ (8) fi(1?)] (), (1.2)

where® represents the standard Mellin convolution. The expansion of the tespsplitting
functions powers of the strong coupling constag(tu?) can be written as

(B)P1?) = Saodl AR with & = a,(u?)/(4m). (1.3)
The third-order (NNLO) contributionAP”iz) for the polarized case are the subject of this note.

The corresponding second-order order calculations were perfoimtee 1990s, when a lot
of attention was devoted to the polarized parton distributions in the wake o§pire-Crisis’ set
off by Ref. [1] in 1988. All these calculations were performed in the fraoré of dimensional
regularization, and thus had to address the treatment of the Dirac mgaitnio # 4 dimensions.

The splitting functionsAPc%) andAPq%) were obtained, together with the second-order coeffi-
cient functions for the structure functi@p in polarized deep-inelastic scattering (DIS) by Zijlstra
and van Neerven in 1993 [2], using the so-called Larin scheme [3] Wgn_ = iespwp YuYo Yo s
where the resulting contractions of theéensor are evaluated in terms of fDedimensional metric.

The complete matriAP”(l) was calculated in 1995 independently by Mertig and van Neerven
[4] and by Vogelsang [5]. The former calculation was performed in taméwork of the operator
product expansion (OPE) and used the ‘reading-point’ schemg fi@]. The latter calculation
was carried out in the lightlike axial-gauge approach and employed primagily Hooft/\Veltman
prescription fory; of Refs. [7] which, in the present context, is equivalent to the Larieseh

The relation of the prescriptions of Refs. [3, 7] to S scheme was addressed to second
order (NNLO) in 1998 in Ref. [8], where the transformation matrix is of terf

Zi(ay(H?)) = Biqdiq(aszis +a2[z8 +25)] +...) . (1.4)

Its non-singlet (ns) entries can be fixed by the relation between thespomding coefficient func-
tions forg, and the structure functioR; which is known to orden2 [9]. The critical part is thus
the pure-singlet (ps) part for which only that one calculation has bedommed so far.

For reasons that will become obvious below, it is important for us to caothieod— 1 threshold
limits of the splitting functions. Here itis reasonable to expect a helicity-flip seggion by a factor
of (1-x)2 or 1/N2 in Mellin space, cf. Ref. [10]. E.g., the differencgs’ = P\” — AP\” of the
(scheme-independent) leading-order (LO) unpolarized and polasditing functions read

6&8) =0, 5i(k0) = const: (1—x)2 + ... for ik=qg 9g, 99g. (1.5)
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Figure 1: The two-loop (NLO) splitting functionﬂ\PiSﬁ(x), compared to their unpolarized counterparts.

The results are shown as published in Refs. [4, 5] (‘M’) an@raén including an additional terrzg) =
—APég) in the transformation from the Larin scheme (‘A), which reves all(1—x)%* terms fromééé).

The corresponding NLO results are, in the standard version (denptétl below) of MS [4, 5],

5if<1) = 0((1-x)?) for ik =qg, gg(with a=1), qg(with a=2) (1.6)
538 = 8Cr(Ca—Cr) (2—X) In(1—X) + 4C¢ By — 6C2
+(20/3CrCa+2G2 —8/3Crn; ) (1—X) + O((1—-x)?) . (1.7)

The question arises whether théde- x)° and (1 — x)* terms are a physical feature or a scheme
artifact. Flavour-singlet physical evolution kernels for structure fioms in DIS, cf. Refs. [11,12],

dF  dC B dc e
dnQ? ~ gz | +CPT = (B(a) g/ +CPICTF = KF, (1.8)

if available for corresponding quantities, can provide insight on thistoures

2. a2 contributions via g, (at all N), and graviton-exchange DIS (for fixedN-values)

Following Refs. [13—-17], our third-order calculation of polarized DI®geeds via the optical
theorem, which relates probg{parton @) total cross sections (witQ? = —g? > 0 andp? = 0)
to forward amplitudes, and a dispersion relatiom jivhich provides thé-th Mellin moment

AV = [2dx xXNTTA(X) (2.1)

from the coefficient of 2p-q)N. The unpolarized case was first computed at éVen 10 in the
mid 1990s in Refs. [13, 14], using theINCER program for three-loop self-energy integrals [18].
The corresponding al and allx expressions were derived by us ten years ago [15-17].

A brief account of the extension of the latter calculations to the polarizedtsteufunction
g, was presented at Loops & Legs 2008 [19], where we focused orethating expressions for
APq(é) and P(%) which can by extracted from the! poles of the unfactorized structure functions.
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The resultingCFZnf contribution to the latter function, in the standdidscheme, is given by

§ DPZ(N)|czy = 28Pog(—S 425 2 2+4S1 3+2S1111~ Stio— 5121

+4S3+29 2-6911+6S2+7S%1—-3%)
—3Z3(2D3 +4D? —9Dg+12D;) + 4S 3(DF —2Do+2D;) +8S; »(2D# — Do+ Dy)
—2$,1(4D§ +2D% —11Dg + 11D1) + S1.1.1 (5D — 2D# —21/2Dg + 12D;)
—2S,,(2D§ —2D% ~5Dg+5D1) +2S3(3D& 46D — 11Dg + 11D;) (2.2)

+2S ,(8D3 ~5D& —6D7+10Dg — 9D;) — S;1 (10D3 + 6D3 — 35/2DF — 5D?
+29Dg — 36D1) +2S (4D3 + 6D3 — 10D3 — 4D? +17Dg — 22D;) —6D2(S 2+ 1)

+S1(7Dg +4D7 — 43/2D3 — 15D3 + 99/2D3 + 18D7 — 78Dg + 329/4D;) + 32D?
—15/2D§ — 3D7 +59/8D3 4 53/4D3 + 77/8D& + 213/8D3 — 1357/32D¢ + 777/16D1

in terms ofDx = (N+k) 1 andApgg = 2D, — Dy, with all harmonic sums [20] at argumet

This result shows some interesting features. The weight-4 sums in the firsbivg have the
same coefficient in the unpolarized case of Ref. [16], wiAgxg is replaced by its counterpgugg.
The lower-weight denominator structure is simpler in the present case, mititveo terms with
D, (third line from below) which do not lead to additional denominator primes dtvadues of
N. As in previous results in massless QCD, Hq.(2.2) does not include sumidéth—1. The
largeN suppression 05(55) by two powers of IN holds separately for each harmonic sum. Finally
the coefficientﬂag’_l, Df and$; 1 1 are predictable in terms af— 0 andx— 1 knowledge, i.e., by
Ref. [21] and by éxtending Ref. [22], see also Ref. [23], and R&f to the present case.

The lower-row splitting functionsAPéﬁ) and APQ%) enter standard (electroweak gauge-boson
exchange) DIS only at order?. Hence an additional probe directly coupling to gluons is required.
Following Ref. [11], the computation d%, has been complemented by DIS via a scglavith a
@GH G,y coupling to gluons, i.e., the Higgs boson in the heavy-top limit, in Refs. [14, 16]

In the polarized case a non-(pseudo) scalar probe is required,timsbio our statement in the
penultimate paragraph of Ref. [19], which was based on an incorracthlifed diagram database.
One way to address this issue would be to extent the calculations to a supesyc case, as done
in the context of NNLO antenna functions in Ref. [24]. Instead we cangiglaviton-exchange
DIS, as described in Ref. [25], see also Ref. [26], which providesrélevant structure functions,
Hk, k=1-4,6, that can be combined to provide unpolarized and polarized analofjinessystem
(F2,Fp), plus an analogue of the standard longitudinal structure fungtion

A major drawback of this approach is that it leads to a very large numbégloéhtensor inte-
grals, far beyond those tabulated during the calculatidf, @ndF, [15-17] and its later extension
to g, [19]. We have therefore decided to (first) fall back to fiX¢dalculation using NNCER [18],
for which we have improved our diagram management and, in particuldnjgheN efficiency of
the MINCER program, see Ref. [27]. These improvements have allowed us to calcolateed
graviton-exchange DIS at the third order completely for the 12 odd moments X 25. The first
moments are directly accessible neither in our calculation nor via operator mlagments [25].

The calculations were performed on computers at DESY-Zeuthen (mami§ifocER devel-
opment), NIKHEF (hardest diagrams at highest valuds)adind theul ggcd cluster in Liverpool
(bulk production, using more than 200 cores), using the latest versibRO@RM [28].
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As an example, we here show the calculated moments @3part of APg(g) in the Larin scheme.

N = 3: 1865057776

N = 5: 94735693037500

N = 7: —509428539731193616640000

N = 9: —26688472096920'56710659600000

N =11: -33495665891708296%608887229282640000

N =13: —75177476729014802250730490947198868256000 (2.3)
N = 15: —233668190199130264541801/4D47226916198744678400000

N =17: -305214227818628090680174170983873282508311259589115520000

N =19: -57067964868465680757819979197 3481379363596 7590259537308862400000

N =21:-2044304092089235762279148843319B85H456787045956248050132280576000

N =23:-289119840113761409530260333250139823368907019270988141152999601215071395840

N = 25: -1890473255283802937678830745102921869936887426908528565021863360305851160000000000

Returning to the largedimit, we note that the unpolarized structure functibhs(LO: quarks,
due to forming a suitable linear combinationt$f andH3) andH; (LO: gluons, from the outset)
and their polarized counterpatts, Hg form a set of quantities as mentioned at the end of Section 1.
Comparing the NLO evolution kernm%) and K&), which we have calculated at &l / all x, we
can conclude that the largebehaviour ofAPg%) of Refs. [4, 5] discussed above is not physical.
Consequently one may expect the existence of a simple additional NNLGamauagion that
restores also the/N? suppression oﬁéé)(N) = g(é)(N) —APQ%)(N). As shown in Fig. 2, where
all non+y andnfl colour factors have been combined for brevity, this expectation apfelbegus-
tified. Hence the three-loop analogue of Eq.](1.7) can be predicteddwer-order information.
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Figure 2: The moments of the three-loop (NNLO) splitting functidkl?éﬁ) in QCD determined using the
MINCER program for gravition-exchange DIS. The results are shapasately for thenfO andnf1 partin the
Larin scheme (‘L), the standafdS scheme according to Ref. [8] (‘M’) and with a NNLO additaerm

28 = —%APéé)" in the transformation from the Larin schemeM& (‘A).
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3. All-N expressions, using end-point knowledge and number-theoipols

We illustrate the determination of the allexpressions for the critical® parts ofAPg(g)(N). Anal-
ogous to Eq.[(2]2), the coefficients of the weight-4 sums are fixed by thelanzed case. This
leaves %32 coefficients of sums at weight three and below combined with poweks bfand
(N+1) 1, plus up to 11 sums combined witN—1) ~1. Of these 75 unknowns, the 24 coefficients
of D& andD} can be eliminated using the empiricalN? largeN suppression oﬁég)(N) in the
A-scheme, and a further 6 from smal&nd largex constraints as discussed below §qg.](2.2).

We have developed FORM tools which analyze the prime decomposition of ihidatad
moments and facilitate the derivation of relations between the remaining casi¢rehich are all
integer if suitably normalized) using the Chinese remainder theorem. Thesetwved sufficient,
sometimes together with a brute-force scan of a few remaining variabledy®ssmpler cases.
Itis however rather hard to get more than about ten relations for theudtiffig parts ofAPg(g)(N).

Motivated by Ref. [29], we have turned to professional number-themmls for these cases,
in particular the program provided atww. nunbert heory. or g/ php/ axb. ht m  which
‘Solves a system of linear Diophantine equations using the Hermite normmaldban integer
matrix via the Havas-Majewski- Matthews LLL-based algorithm. ... . Vie.finthe solutions X
with minimal length, using a modification of the Fincke-Pohst algorit[80].

Since that algorithm looks for short vectors, it is best for our purpésesliminate, say, six
‘unpleasant’ coefficients, in particular those of the low-weight combinaiiy D2, D3S;, D25,
using the moments 8 N < 13, and to use the above program for the remaining six equations.

Using the moments shown on the previous page, this procedure leadsMesttieeme result

§ AP (N)|co = 20pgg(~S a+6S 2 24451 54251111+ Si15

+35121-3S134+2S 2+2911-2S))
+6{3Apgq(2S1 —3) — 4S 3(2D§ — Do +D1) —8S, 2 (D7 —2Dg +2D;)
4+S111(2D§ —5D% —6Dg —3/2D1) — 2S; 2 (D7 4 4Dg — Dy)
—$1(4DE +4D? —4Dg + 7D1) + S3(2DE + D? +6Dg — 3/2D3) (3.1)
—S »(8D3+4Dj +18D? — 26Dg +24D;) +2S, (D3 +2D7 + 10Dg — 4Dy)
~S11(6D§+6D3 +4DE +5D7 +2Dg —7/4D1) — 6D_1(S 2+1)
—S1(6D§ + 7D +4D§ 4 23/2D3 — 27/2D2 + 39/4D7 — 8D 4 23/4D1)
—8DJ —12D3 +23Dg — 28D7 — 39/4D§ — 427/8D3 — 341/8D3 — 767/8D?
+2427/16D — 4547/32D;

with Apgq = 2Dg — D1 and, againDx = (N+ k)~* and all harmonic sums taken at argumbsint
The corresponding expressions for theCAZ andG2Ca parts are somewhat lengthier; while the
n;-dependent terms are much simpler and do not requirélth5 moment. The determination

of the allN result for the NNLO gluon-gluon splitting functioﬁPéé) proceeded in an analogous
manner; finding the alN form of itsCA3 part was the overall most difficult task.

While it is easy to recognize, by looking at the pattern of the coefficientsttven or not the
correct allN form is returned by the solution of a Diophantine system, it is necessaryitatea
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the results. For this purpose the results are Mellin-invertedgpace expressiorﬂd:’éé) (x) and

APéS)(x) in terms of harmonic polylogarithms [31], from which arbitrary moments candterd
mined. The results can thus be compared to additional moments calculated usiogrylsuch as

—APQ(,S)(N =27) = 4609770383587605432813291530849726335264810727
982934508627216318966565777854990940800000800. . . (3.2)

with  Total execution time: 256 874 306.6 sec. Maximum disk spA@81 024 031 636 bytes.

Further highN checks have been performed beég)(N:ZQ) in the planar limitCya—2C — 0
atn; = 0, which combines the three difficult all-expressions, and for the crucigf parts of

APéS)(N) atN =27 andN = 29. The functions&kPég)(x) andAPg(,é) (x) pass all these tests.

Finally thesex-space expressions also facilitates the determination of the first moments,

Apég)(Nzl) — %37CFCA2 — 4761C,:ZCA+ 6—23CF3+ (%1 _72Z3>CFQAnf
107 13
_ (T _7253>C,:2nf - §Can2 , (3.3)

2 2857 1415 205 79 11
Apég)(Nzl) = B4 C/f LY CAan - 18 Cr Cang +C|:2nf + 571CAnf2 +3 Cr nfz

= BYs. (3.4)

The agreement, for all six colour factors,m?éé)(N =1) with the NNLO contribution [32] to the
B-function of QCD in theMS scheme provides another strong check of our results.

The new splitting functionﬁ\Pég) (X) andAPéé) (x) are shown in Fig. 3. As in the previous
figures, the curves are scaled such that the results are approximatebrted from the small
parameter, = a,/(4m) in Eq. (L.B) to an expansion im,. In Fig. 4 the impact of these results on
the evolution is illustrated for a sufficiently realistic model input [33] at a naldugie value of,.

LN L O L B B I B B R N B B LI L B B L R N I L B RN B B

2f . (1-%) ARP(x)

APQEJZ)(X)

- unpol

P T T
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1. 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1 l 1 1 1
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X X

Figure 3: The NNLO splitting functionsé&Péé)(x) (left) andAPg%) (x) (right) compared to the corresponding
unpolarized quantities. The results are shown inhandA schemes for three light flavouns.
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Figure 4: The LO, NLO and NNLO approximations to the scale derivatiwkEthe polarized singlet quark
(left) and gluon (right) distributions in the standard vens(‘M’) of the MS scheme [4, 5, 8], for the (order-
independent) benchmark initial distributions of Refs.][88a low scalgu? with a_(u?) = 0.3.

4. Summary and outlook: more checks and calculations

We have finally, 10 years after publishing their unpolarized counterfi&t$6], derived all NNLO
helicity-difference splitting function&P”(Z) (X). The last part, the lower I‘O\AXF’éé) andAPéS) of
the flavour-singlet matrix, has been obtained by a combination of brute-mnmputations using
MINCER [18], insights into the structure of these functions, and number-theoly [(8@).

The three-loop MNCER computations of graviton-exchange DIS [25] have also been per-
formed for the unpolarized case and, also to very high values of the MellmemtN, for the
upper row for which we had calculated the Hllresults before [19]. The resulting agreement with
the corresponding splitting functions provides checks of our treatmemtaefton-exchange DIS
and of the MNCER code as modified for much better larlygperformance.

Our results agree with all previous partial results — if interpreted properlgarticular, the
leading smallx terms of Ref. [21] apply to the NNLO physical kernels in the off-diagmaales, not
to the correspondini1S splitting functions — and expectations for the high-energy and threshold
limits, the first moments cAPyq and the leading large; contributions [34].

As for the unpolarized case, the numerical effects of these NNLO catitiis are small
down to low values ok after the convolution with realistic quark and gluon initial distributions.
The published version of th®1S scheme, defined by the transformation correcting for the use
of, e.g., the Larin scheme fgg in dimensional regularization, is somewhat unphysicalxfer 1
already at NLO. However this does not appear to be a practically relpvalblem, hence we see
no reason to advocate a change of the scheme after almost 20 year® afdtd_analyses.

Nevertheless, a re-calculation of the critical NNLO transformation quazfﬁh(and a check
of zng = 0) would be worthwhile. In fact, its extension to the third order would sufficéx the
N3LO quark coefficient function fog,, as we obtained the Larin-scheme result some years ago.
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