
NIKHEF 04-011 hep-ph/0408244

August 2004

Efficient evolution of unpolarized and polarized

parton distributions with QCD-PEGASUS

A. Vogt

NIKHEF Theory Group

Kruislaan 409, 1098 SJ Amsterdam, The Netherlands

Abstract

The Fortran package QCD-Pegasus is presented. This program provides fast, flexible
and accurate solutions of the evolution equations for unpolarized and polarized parton dis-
tributions of hadrons in perturbative QCD. The evolution is performed using the symbolic
moment-space solutions on a one-fits-all Mellin inversion contour. User options include
the order of the evolution including the next-to-next-to-leading order in the unpolarized
case, the type of the evolution including an emulation of brute-force solutions, the evo-
lution with a fixed number nf of flavours or in the variable-nf scheme, and the evolution
with a renormalization scale unequal to the factorization scale. The initial distributions
are needed in a form facilitating the computation of the complex Mellin moments.



Program Summary

Title of program: QCD-Pegasus

Version: 1.0

Catalogue identifier :

Program obtainable from: http://arxiv.org/archive/hep-ph and its mirror sites by

downloading the source of hep-ph/0408244

Distribution format : uuencoded compressed tar file

E-mail : avogt@nikhef.nl

License: GNU Public License

Computers: all

Operating systems: all

Program language: Fortran 77

Memory required to execute: negligible (< 1 MB)

Other programs called : none

External files needed : none

Number of bytes in distributed program, including test data etc.: 240 578

Keywords: unpolarized and longitudinally polarized parton distributions, Altarelli-Parisi

evolution equations, Mellin-space solutions

Nature of the physical problem: solution of the evolution equations for the unpolarized

and polarized parton distributions of hadrons at leading order (LO), next-to-leading order

and next-to-next-to-leading order of perturbative QCD. Evolution performed either with

a fixed number nf of effectively massless quark flavours or in the variable-nf scheme. The

calculation of observables from the parton distributions is not part of the present package.

Method of solution: analytic solution in Mellin space (beyond LO in general by power-

expansion around the lowest-order expansion) followed by a fast Mellin inversion to

x-space using a fixed one-fits-all contour.

Restrictions on complexity of the problem: The initial distributions for the evolution are

required in a form facilitating an efficient calculation of their complex Mellin moments.

The ratio of the renormalization and factorization scales µr/µ has to be a fixed number.

Typical running time: one to ten seconds, on a PC with a 2.0 GHz Pentium-IV processor,

for performing the evolution of 200 initial distributions to 500 (x, µ) points each. For

more details see section 6.
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1 Introduction

Parton distributions form indispensable ingredients for analyses of hard processes with

initial-state hadrons, investigated in fixed-target experiments and at colliders like HERA,

RHIC, TEVATRON and the forthcoming LHC. The task of determining these distribu-

tions can, in principle, be divided in two steps. The first is the determination of the

non-perturbative initial distributions at some (usually rather low) scale µ0. The second

is the perturbative calculation of their scale dependence (evolution) to obtain the results

at the hard scales µ. For the foreseeable future, the non-perturbative input cannot be

calculated from first principles with a sufficient accuracy. Instead the initial distributions

have to be fitted – and re-fitted once new data become available – using a suitable set of

hard-scattering observables. In practice the evolution thus enters in both steps.

Two methods for solving the evolution equations have been most widely applied in

parton-distribution analyses. The first is the direct numerical integration of these integro-

differential equations in (x, µ)-space, where x stands for the momentum fraction carried

by the partons. Publicly available programs of this type can, for example, be found in

refs. [1, 2] and [3]. In the second approach a Mellin transformation is applied to turn

the evolution equations into systems of ordinary differential equations (depending on the

Mellin variable N) which are more easily accessible to a further analytic treatment. A

C++ code of this type has been published in ref. [4]. More programs of both types have

been used and/or informally circulated in the perturbative-QCD community.

In this article we present another N -space evolution package. For easier reference

the program has been given a name, QCD-Pegasus or Pegasus in short, standing for

‘Parton Evolution Generated Applying Symbolic U -matrix Solutions’. Here ‘U -matrix’

is a usual name for the key technical ingredient in the solutions which dates back, at

least, to ref. [5]. The present program is a descendant of the code written by the present

author fifteen years ago for the GRV analyses started in ref. [6]. Since then it has been

almost completely rewritten more than once. Various intermediate versions have been

regularly used in QCD studies by the author and by others. The present last incarnation

of the program includes, in a now hopefully sufficiently well documented and user-friendly

manner, the evolution of unpolarized and helicity-dependent parton densities up to (in the

former case) the next-to-next-to-leading order (N2LO) of perturbative QCD for any fixed

ratio of the factorization and renormalization scales. The user can choose between various

ways to truncate contributions of higher order (including emulations of the brute-force

solutions) in both the fixed flavour-number and the variable-nf evolution schemes.

This manual is organized as follows. In section 2 we recall the formalism used for the

N -space evolution of the parton distributions. Topics related to the inverse Mellin trans-

formations of the solutions and the initial distributions are then discussed in section 3.

A compact user guide for the program is provided in section 4, followed in section 5 by

a short reference manual of all routines. In section 6 we briefly address the accuracy and

speed of the evolution by QCD-Pegasus, before we conclude in section 7.
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2 The evolution equations and their solution

In this section we discuss, in some detail, the formalism employed in the program for the

Mellin-space solution of the evolution equations. In the course of the discussion we point

out some default choices made in the present version of the program, explain the main

options available to the user, and indicate some structural restrictions.

2.1 The running coupling constant

As the reader will see below, the strong coupling constant as plays a more central role in

the present approach to the evolution of parton densities than usually in x-space programs.

We therefore start the discussion with as for which we employ the normalization

as ≡
αs

4π
. (2.1)

At NmLO the scale dependence of as is given by

d as

d lnµ2
r

= βNmLO(as) = −
m∑

k=0

ak+2
s βk , (2.2)

where µr denotes the renormalization scale and nf stands for the number of effectively

massless quark flavours. nf is considered a fixed number until section 2.7. The expansion

coefficients βk of the β-function of QCD are known up to k = 3, i.e., N3LO

β0 = 11 − 2/3 nf

β1 = 102 − 38/3nf

β2 = 2857/2 − 5033/18nf + 325/54 n 2
f

β3 = 29243.0 − 6946.30 nf + 405.089n 2
f + 1093/729n 3

f . (2.3)

Here the scheme-dependent quantities β2 [7, 8] and β3 [9] refer to the usual MS scheme.

Only this scheme has been implemented in the program so far. For brevity the irrational

coefficients of β3 in Eq. (2.3) have been truncated to a sufficient accuracy of six digits.

Eq. (2.2) can be integrated in a closed form only at low orders, and even then one only

arrives at an implicit equation for as(µ
2
r) beyond LO. The exact solution at NLO which

expresses as(µ
2
r) in terms of its value as(µ

2
0) at a reference scale µ2

0, for example, reads

1

as(µ2
r)

=
1

as(µ2
0)

+ β0 ln

(
µ2

r

µ2
0

)
− b1 ln

{
as(µ

2
r) [1 + b1as(µ

2
0)]

as(µ2
0) [1 + b1as(µ2

r)]

}
(2.4)

with bk ≡ βk/β0. The program uses Eq. (2.4) only at LO (b1 = 0), as in general a

numerical iteration is required otherwise anyway. Beyond LO the value of as(µ
2
r) is by

default determined directly from Eq. (2.2) by a fourth order Runge-Kutta integration [10].

All known orders m ≤ 3 in Eq. (2.2) are available in the routine for as to which m is

transferred as NAORD. In the context of the evolution program, NAORD is not set externally

but specified via the order chosen for the splitting functions, see section 2.2.
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Another very common approach, used for instance by the Particle Data Group [11],

is to expand the solution in inverse powers of LΛ ≡ ln(µ2
r/Λ

2) where Λ is the QCD scale

parameter. Up to N3LO this expansion yields [12]

as(µ
2
r) =

1

β0LΛ
−

1

(β0LΛ)2
b1 lnLΛ +

1

(β0LΛ)3

[
b21
(
ln2 LΛ − lnLΛ − 1

)
+ b2

]

+
1

(β0LΛ)4

[
b31

(
− ln3 LΛ +

5

2
ln2 LΛ + 2 lnLΛ −

1

2

)
− 3b1b2 lnLΛ +

b3
2

]
. (2.5)

Eq. (2.5) solves the evolution equation (2.2) only up to higher orders in 1/LΛ. As explained

in section 2.4, this is an unwanted feature for the N -space evolution which especially

bedevils direct comparisons to x-space evolution programs. Therefore the use of Eq. (2.5)

is not a standard option in the present evolution package.

2.2 The general evolution equations

The scale dependence of the parton distributions is governed by the evolution equations

∂

∂ lnµ2
fi(x, µ

2) = Pij(x, µ
2) ⊗ fj(x, µ

2) . (2.6)

Here µ represents the factorization scale, and for the moment we put µr = µ. fi(x, µ
2)

stands for the number distributions of quarks, antiquarks and gluons in a hadron, where x

represents the fraction of the hadron’s momentum carried by the parton. Summation over

the parton species j is understood, and ⊗ stands for the Mellin convolution. Eq. (2.6)

thus represents a system of 2nf +1 coupled integro-differential equations. The NmLO

approximation for the splitting functions Pij(x, µ
2) reads

P NmLO
ij (x, µ2) =

m∑

k=0

ak+1
s (µ2)P

(k)
ij (x) . (2.7)

The splitting functions for the spin-averaged (unpolarized) case are now known at N2LO

(≡ NNLO) [13, 14]. Note that Pij(x, µ
2) depends on µ only via the coupling as(µ

2), a

feature which forms the basis for the N -space solution of Eq. (2.6) discussed in section 2.4.

The splitting functions for the general case µr 6= µ can be obtained from Eq. (2.7) by

Taylor-expanding as(µ
2) in terms of as(µ

2
r). Up to N3LO this leads to

Pij(x, µ, µr) = as(µ
2
r) P

(0)
ij (x)

+ a2
s (µ

2
r)
(
P

(1)
ij (x) − β0P

(0)
NS (x)L

)
(2.8)

+ a3
s (µ

2
r)
(
P

(2)
ij (x) − 2β0LP

(1)
ij (x) −

{
β1L− β2

0L
2
}
P

(0)
ij (x)

)

+ a4
s (µ

2
r)
(
P

(3)
ij (x) − 3β0LP

(2)
ij (x) −

{
2β1L− 3β2

0L
2
}
P

(1)
ij (x)

−
{
β2L− 5/2 β1β0L

2 + β3
0L

3
}
P

(0)
ij (x)

)
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with L ≡ ln(µ2/µ2
r). If L is a fixed number, then also in Eq. (2.8) the coefficients of ak

s (µ
2
r)

depend only on x, and the algorithms described below are applicable. In other words, the

program is not designed to deal with choices like µ2
r = M2 + µ2 where M is some mass

scale. Note, however, that no such restriction is in place between physical scales and µ.

The order m in Eq. (2.7) (denoted by NPORD) and the ratio µ2/µ2
r (denoted by FR2) are

initialization parameters of the evolution package. The values m = 0, 1 and 2 are available

at present for the standard MS factorization scheme. An extension to m = 3 — based

on future partial results or even Padé estimates for P
(3)
ij — may be useful for uncertainty

estimates in special cases, e.g., in determinations of as from structure functions [15].

2.3 The flavour decomposition

It is convenient to decompose the system (2.6) as far as possible from charge conjuga-

tion and flavour symmetry constraints alone. The gluon-quark and quark-gluon splitting

functions are flavour independent

Pgq ≡ Pgqi
= Pgq̄i

, Pqg ≡ nf Pqig = nf Pq̄ig . (2.9)

Any difference qi−qj and qi−q̄j of quark and (anti-)quark distributions therefore decouples

from the gluon density g. Hence the combination maximally coupling to g is the flavour-

singlet quark distribution

qs =

n
f∑

r=1

(qr + q̄r) (2.10)

evolving according to

d

d lnµ2

(
qs

g

)
=

(
Pqq Pqg

Pgq Pgg

)
⊗

(
qs

g

)
. (2.11)

The singlet quark-quark splitting function Pqq is specified in Eq. (2.15) below.

In order to decouple the non-singlet (difference) combinations, we make use of the

general structure of the (anti-)quark (anti-)quark splitting functions,

Pqiqk
= Pq̄iq̄k

= δikP
v

qq + P s
qq

Pqiq̄k
= Pq̄iqk

= δikP
v

qq̄ + P s
qq̄ . (2.12)

In general (beyond NLO), Eq. (2.12) leads to three independently evolving types of non-

singlet combinations. The flavour asymmetries q±
ns and the total valence distribution qv

ns,

q±
ns,ik = qi ± q̄i − (qk ± q̄k) , qv

ns =

n
f∑

r=1

(qr − q̄r) , (2.13)

respectively evolve with

P ±
ns = P v

qq ± P v
qq̄ ,

P v
ns = P v

qq − P v
qq̄ + nf(P

s
qq − P s

qq̄) ≡ P −
ns + P s

ns . (2.14)
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Finally the singlet splitting function (2.15) can be expressed as

Pqq = P +
ns + nf(P

s
qq + P s

q̄q) ≡ P +
ns + Pps . (2.15)

In the expansion in powers of as, the flavour-diagonal (‘valence’) quantity P v
qq in Eq. (2.12)

starts at first order. P v
qq̄ and the flavour-independent (‘sea’) contributions P s

qq and P s
qq̄ —

and hence the ‘pure-singlet’ term Pps in Eq. (2.15) — are of order a2
s . A non-vanishing

P s
ns ∼ P s

qq − P s
qq̄ in Eq. (2.14) occurs for the first time at the third order.

For the evolution of the flavour asymmetries in Eq. (2.13) we use the basis

v±l =
k∑

i=1

(qi ± q̄i) − k(qk ± q̄k) (2.16)

with k = 1, . . . , nf and the usual group-theoretical notation l = k2 − 1. After performing

the evolution, the individual quark and antiquark distributions can be recovered using

qi + q̄i =
1

nf

qs −
1

i
v+

i2−1 +

n
f∑

k=i+1

1

k(k − 1)
v+

k2−1 (2.17)

where v+
0 ≡ 0, together with the corresponding equation for the differences qi − q̄i.

2.4 The N -space solutions

In the next two sections we describe the algorithm employed for the solution of the evolu-

tion equations in Mellin-N space. Thus we now switch to the moments of all x-dependent

quantities,

a(N) =
∫ 1

0
dx xN−1 a(x) . (2.18)

The advantage of this transformation is that is turns the Mellin convolutions into simple

products,

[a⊗ b](N) = a(N) b(N) , (2.19)

which greatly simplifies all further manipulations. The disadvantage of working inN -space

is that all quantities have to be known for complex values of N for the final transformation

back to x-space. The resulting limitations of the program are discussed in section 3.

As discussed above, we restrict ourselves to situations where the scale µ enters the

right-hand side of Eq. (2.8) only through the (monotonous) coupling as ≡ as(µ
2
r = κµ2).

Hence we can switch to as as the independent variable. Using a matrix notation for the

singlet system (2.11), the combination of Eqs. (2.2) and (2.7) yields

∂q(N, as)

∂as
= {βNmLO(as)}

−1
P NmLO(N, as) q(N, as)

= −
1

β0as

[
P (0)(N) + as

(
P (1)(N) − b1P

(0)(N)
)

+ a2
s

(
P (2)(N) − b1P

(1)(N) + (b21 − b2)P
(0)(N)

)
+ . . .

]
q(N, as)

= −
1

as

[
R0(N) +

∞∑

k=1

ak
s Rk(N)

]
q(N, as) . (2.20)
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In the last line we have introduced the recursive abbreviations

R0 ≡
1

β0

P (0) , Rk ≡
1

β0

P (k) −
k∑

i=1

bi Rk−i (2.21)

for the splitting function combinations entering the new expansion (2.20). bk has been

defined below Eq. (2.4), and P (k) is the coefficient of ak+1
s in Eq. (2.8). As in Eq. (2.21),

we will often suppress the explicit reference to the Mellin variable N below.

The singlet splitting-function matrices Rk of different orders k do not commute. There-

fore the solution of Eq. (2.20) cannot be written in a closed exponential form beyond LO.

Instead we employ a series expansion around the lowest order solution,

q LO(N, as, N) =
(
as

a0

)−R0(N)

q(N, a0) ≡ L(N, as, a0) q(N, a0) (2.22)

with a0 ≡ as(µ
2
r,0=κµ2

0). This expansion reads

q(N, as) = U(N, as) L(N, as, a0) U−1(N, a0) q(N, a0) (2.23)

=
[
1 +

∞∑

k=1

ak
s Uk(N)

]
L(as, a0, N)

[
1 +

∞∑

k=1

ak
0 Uk(N)

]−1

q(a0, N) .

Here the third, as-independent factor normalises the evolution operator to the unit matrix

at µ2
0, instead of to the LO result (2.22) at infinitely high scales. The evolution matrices

Uk are constructed from the splitting function combinations R l≤k in the next section.

Eqs. (2.20) and (2.23) offer various ways to define the NmLO solution which differ in

terms of order n > m. In the program the choice between the resulting options is made by

the initialization parameter IMODEV. One obvious choice is to keep the terms originating

from βNmLO in Eq. (2.2) and P NmLO in Eq. (2.7) to all orders (in practice: to a sufficiently

high order) in both (2.20) and (2.23). This is equivalent to a direct iterative solution of

Eq. (2.6) as performed by standard x-space evolution programs, to which the results can

then be compared directly. This mode for the evolution is invoked for IMODEV = 1.

Note that this equivalence only holds if as(µ
2
r) solves Eq. (2.2) exactly. Otherwise, for

example if Eq. (2.5) is used, the evolution equation (2.20) in as is obtained from Eq. (2.6)

by dividing the l.h.s. and the r.h.s. by quantities which differ somewhat, viz das/d lnµ2
r

and βNmLO. The difference introduced by this mismatch is a higher-order effect, but its

numerical impact is far from negligible, e.g., most of the difference between the two parts

of table 1 in the 1996 NLO comparisons [16] arises from this source.

One can equally well take the point of view that at NmLO terms beyond am
s should be

removed in the square brackets in Eq. (2.20), as these terms would receive contributions

from P (n>m) and βn>m. At N2LO, for example, one then retains only the terms explicitly

written down in the second and third line of Eq. (2.20). If still ‘all’ orders are kept in

the solution (2.23), one arrives at a second iterative option employed for IMODEV = 2.

Finally one can instead apply the same reasoning to the matrices Un>m in Eq. (2.23)

which would also receive contributions from P (n>m) and βn>m. Expanding also the U−1
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term in Eq. (2.23), necessary in the singlet case as explained below Eq. (2.31), one then

arrives at the so-called truncated solution. Up to N3LO this solution is thus given by [17]

qN3LO(as) =
[
L + as U1 L − a0 L U1

+ a2
s U2 L − asa0 U1 L U1 + a2

0 L
(
U 2

1 − U2

)

+ a3
s U3 L − a2

sa0 U2 L U1 + asa
2
0 U1 L

(
U 2

1 − U2

)

− a3
0 L

(
U 3

1 − U1 U2 − U1 U2 + U3

) ]
q(a0) , (2.24)

where we have suppressed all arguments of L(N, as, a0) for brevity. The NLO (NNLO)

approximations are obtained from Eq. (2.24) by respectively retaining only the first (first

and second) line in the square bracket. These truncated NmLO solutions (at present

implemented for m ≤ 2) are employed by the program for any value of IMODEV other than

1, 2 and, for the non-singlet cases, 3. The latter case is addressed in section 2.6.

The approaches discussed above obviously differ only in terms beyond the order under

consideration. The iterative procedures introduce more scheme-dependent higher-order

terms into the evolution of observables in a general factorization scheme. On the other

hand, the truncated solution does not satisfy the evolution equations (2.6) literally, but

only in the sense of a power expansion, i.e., up to terms of order n > m like Eq. (2.5) for

the coupling constant. The differences between the respective results can be regarded as

a lower limit for the uncertainties due to higher-order terms.

2.5 The evolution matrices Uk

Inserting the ansatz (2.23) into the evolution equations (2.20) and sorting in powers of

as, one arrives at a chain of commutation relations for the expansion coefficients Uk(N) :

[ U1,R0] = R1 + U1

[ U2,R0] = R2 + R1 U1 + 2 U2 (2.25)
...

[ Uk,R0] = Rk +
k−1∑

i=1

Rk−i U i + kUk ≡ R̃k + kUk .

For the flavour-singlet system (2.11) these equations can be solved recursively by applying

the eigenvalue decomposition of the LO splitting function matrix [17, 18], completely

analogous to the classical truncated NLO solution with only U 1 in ref. [5]. One writes

R0 = r−e− + r+e+ , (2.26)

where r− (r+) stands for the smaller (larger) eigenvalue of R0,

r± =
1

2β0

[
P (0)

qq + P (0)
gg ±

√(
P

(0)
qq − P

(0)
gg

)2
+ 4P

(0)
qg P

(0)
gq

]
. (2.27)
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The matrices e± denote the corresponding projectors,

e± =
1

r± − r∓

[
R0 − r∓ I

]
, (2.28)

and I the 2×2 unit matrix. Thus the LO evolution operator (2.22) can be represented as

L(as, a0, N) = e−(N)
(
as

a0

)−r
−

(N)

+ e+(N)
(
as

a0

)−r+(N)

. (2.29)

Inserting the identity

Uk = e− Uke− + e− Uke+ + e+ Uke− + e+ Uke+ (2.30)

into the commutation relations (2.25), one finally obtains the coefficients in Eq. (2.23),

Uk = −
1

k

[
e−R̃ke− + e+R̃ke+

]
+

e+R̃ke−

r− − r+ − k
+

e−R̃ke+

r+ − r− − k
. (2.31)

Note that the poles in U k(N) at N -values where r−(N)−r+(N)±k vanishes are cancelled

by the U−1 term in the solution (2.23). The expansion of U−1 mentioned above Eq. (2.24)

achieves this cancellation also for the truncated solutions. This can be made directly

visible by inserting the explicit forms (2.29) and (2.31) into the solution (2.24) and writing

the contributions in an appropriate order. At NLO, for example, one arrives at

q(as) =

{(
as

a0

)−r
−

[
e− + (a0 − as) e−R1e− (2.32)

−
(
a0 − as

(
as

a0

)r
−
−r+

)
e−Rke+

r+ − r− − 1

]
+ ( + ↔ − )

}
q(a0) .

Not only the denominator in the second line vanishes for r+ − r− = 1, but also its

coupling-constant prefactor in the round brackets.

2.6 Non-singlet cases and symmetry breaking

Eq. (2.25) also holds for the scalar evolution of the non-singlet combinations (2.13) of the

quarks distributions, but with the obvious simplification that the right-hand sides vanish.

This facilitates a direct recursive solution for U ns
k in which, unlike the singlet results (2.31),

no spurious poles occur. Consequently the truncated solution can be written down also

without the expansion of U−1 in this case, at NmLO yielding

q±,v
ns (as) =

[
1 +

m∑

k=1

ak
s U

±,v
k

][
1 +

m∑

k=1

ak
0 U

±,v
k

]−1 (as

a0

)−Rns
0

q±,v
ns (a0) . (2.33)

This solution is accessed by IMODEV = 3 (together with Eq. (2.24) for the singlet case).

Both iterated non-singlet solutions can be written down in a compact closed form at

NLO. Hence instead of the expansion (2.23) we use for IMODEV = 1

q±
NLO(as) = exp

{
U ±

1

b1
ln

(
1 + b1as

1 + b1a0

)}(
as

a0

)−Rns
0

q±
ns(a0) , (2.34)
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and for IMODEV = 2

q±
NLO(as) = exp

{
(as − a0)U

±
1

}(as

a0

)−R ns
0

q±
ns(a0) . (2.35)

At NNLO the non-singlet solutions have been programmed analogous to the singlet case.

Due to the differences of P +
ns and P −

ns for m ≥ 1 and of P −
ns and P v

ns for m ≥ 2 in

Eq. (2.14), qualitatively new effects arise at the respective orders m, namely a breaking

of symmetries imposed on the initial distributions.

Consider the NLO evolution of an input u = uv + ū, d = dv + d̄ with an SU(2)-

symmetric sea, ū(µ2
0) = d̄(µ2

0). The initial distributions for the evolution of v−3 and v+
3 in

Eq. (2.16) are then identical, but due to R+
1 6= R−

1 not the results of the evolution,

(uv − dv)(as) =
{

1 + (as − a0)R
−
1

}(as

a0

)−Rns
0

(uv − dv)(a0)

v+
3 (as) =

{
1 + (as − a0)R

+
1

}(as

a0

)−Rns
0

(uv − dv)(a0) . (2.36)

Subtracting these two (truncated) solutions yields

2(ū− d̄)(as) = (as − a0)
(
R+

1 −R−
1

)(as

a0

)−Rns
0

(uv − dv)(a0) . (2.37)

Hence a flavour symmetry of the input sea quark densities is not preserved by the NLO

evolution, if the valence distributions (as in the case of the proton) are not identical. The

same procedure applied to v−8 and qv in Eq. (2.13) shows that s 6= s̄ at NNLO even for

(s− s̄)(µ2
0) = 0. Both effects are very small. The reader is referred to ref. [19] for a further

discussion of especially the strange-sea asymmetry.

2.7 The treatment of heavy flavours

The evolution of the strong coupling and the parton distributions can be performed in

both the fixed flavour-number scheme (FFNS) and the variable flavour-number scheme

(VFNS). This choice is made via the initialization parameter IVFNS. The former scheme

is used for IVFNS = 0, any other value leads to the latter. The number of flavours nf for

the FFNS evolution is specified by the initialization parameter NFF. The values NFF =

3 . . . 6 can be used. For IVFNS 6= 0 the number assigned to NFF is irrelevant.

In the VFNS case we need the matching conditions between the effective theories with

nf and nf + 1 light flavours for both the strong coupling as and the parton distributions.

For as these conditions have been determined at N2LO and N3LO in refs. [20] and [12],

for the unpolarized parton densities they are known to N2LO from ref. [21].

In the present program the transitions nf → nf + 1 are made, for both as and the

parton densities, when the factorization scale equals the pole masses of the heavy quarks,

µ2 = m2
h , h = c, b, t . (2.38)
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For this choice the matching conditions for the parton distributions read up to Nm=2LO

l
(n

f
+1)

i (x,m2
h) = l

(n
f
)

i (x,m2
h) + δm2 a

2
s A

ns,(2)
qq,h (x) ⊗ l

(n
f
)

i (x,m2
h) (2.39)

where l = q, q̄ and i = 1, . . . nf , and

g(n
f
+1)(x,m2

h) = g (n
f
)(x,m2

h) + (2.40)

δm2 a
2
s

[
A

S,(2)
gq,h (x) ⊗ q

(n
f
)

s (x,m2
h) + A

S,(2)
gg,h (x) ⊗ g(n

f
)(x,m2

h)
]

(h+ h̄)(n
f
+1)(x,m2

h) = δm2 a
2
s

[
Ã

S,(2)
hq (x) ⊗ q

(n
f
)

s (x,m2
h) + Ã

S,(2)
hg (x) ⊗ g(n

f
)(x,m2

h)
]

with h = h̄. The coefficients A(2) for the spin-averaged case can be found in Appendix B

of ref. [21] from where also their notation has been taken over. Due to our choice (2.38)

for the thresholds only the scale-independent parts of the expressions for A(2) are needed.

The corresponding Nm LO relation for the coupling constant at µ2
r = κµ2 is given by

a
(n

f
+1)

s (κm2
h) = a

(n
f
)

s (κm2
h) +

m∑

n=1

(
a

(n
f
)

s (κm2
h)
)n+1

n∑

l=0

cn,l ln l κ . (2.41)

The pole-mass coefficients cn≤3,l in Eq. (2.41) can be inferred from Eq. (9) of Ref. [12],

where 4 a
(n

f
−1)

s is expressed in terms of 4 a
(n

f
)

s , i.e., the matching is written backward in

nf for a different normalization of the coupling. In our notation these coefficients read

c1,0 = 0 , c1,1 =
2

3

c2,0 =
14

3
, c2,1 =

38

3
, c2,2 =

4

9
(2.42)

and

c3,0 = 340.729 − 16.7981nf

c3,1 =
8941

27
−

409

27
nf , c3,2 =

511

9
, c3,3 =

8

27
. (2.43)

As in Eq. (2.3), we have truncated the irrational N3LO coefficients to six digits here.

Note that, while the parton distributions are continuous at the flavour thresholds for our

choice (2.38) up to NLO, the same holds for the NLO coupling constant only under the

additional condition µr = µ leaving only the vanishing coefficient c1,0 in Eq. (2.41). At

NNLO we use a
(n

f
+1)

s (κm2
h) on the right-hand sides of Eqs. (2.39) and (2.40).

If the program is run in the variable flavour-number mode, the initial distributions

are specified for nf = 3, and Eq. (2.40) is employed at least for the charm distributions.

Therefore the initial factorization scale µ0 has to satisfy µ0 ≤ mc and, consequently, not

too small a value should be chosen for κ. The inclusion of top (and bottom) among the

partons can be switched off by simply assigning a sufficiently large value to the respective

mass. The masses mh, like µ0, the initial coupling as(µ
2
0) and the initial light-parton

distributions, are not fixed at the initialization of the program, but are defined (and can,

of course, be re-defined) at a later stage as explained below.
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3 Complex moments and the Mellin inversion

In this section we discuss the issues related to the inverse Mellin transformation required

for recovering the x-space parton distributions (and, in general, related observables) from

the N -space expressions used for the intermediate calculations. The discussion includes

our choice of the Mellin-inversion contour, the required analytic continuations and the

restrictions on the form of the initial distributions resulting from our approach.

3.1 From moments to x-space

We first consider the inverse transformation of the Mellin moments (2.18). If, as in our

cases, a(x) is piecewise smooth for x > 0, the corresponding Mellin inversion reads

a(x) =
1

2πi

∫ c+i∞

c−i∞
dN x−Na(N) , (3.1)

where the real number c has to be such that
∫ 1
0 dx x

c−1a(x) is absolutely convergent [22].

Hence c has to lie to the right of the rightmost singularity Nmax of a(N). The contour

of the integration in Eq. (3.1) is displayed in Fig. 1 and denoted by C0. Also shown is

a deformed route C1, yielding the same result as long as no singularities Ni of a(N) are

enclosed by C0 − C1. The Ni are real with Ni < Nmax < c for the NmLO evolution of

parton distributions, thus this requirement is fulfilled automatically in our case.

Im N

Re Nc

φ

C0C1

×××××

Figure 1: Two integration contours for the inverse Mellin transformation in Eq. (3.1).
The crosses schematically indicate the singularities of the moment-space function a(N).

It is useful to rewrite Eq. (3.1) as an integration over a real variable. We are dealing

with functions which satisfy a∗(N) = a(N∗), where ∗ denotes the complex conjugation.
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In this case contours characterized by the abscissa c and the angle φ as in Fig. 1 yield

xa(x) =
1

π

∫ ∞

0
dz Im

[
eiφ x1−c−z exp (iφ) a(N = c+ zeiφ)

]
. (3.2)

While formally the integral does not depend on c > Nmax and π > φ ≥ π/2, a suitable

choice of these parameters is obviously useful for an efficient numerical evaluation. In

particular, it is advantageous to choose φ > π/2 since then the factor exp
(
z log 1

x
cosφ

)

introduces an exponential dampening of the integrand with increasing z, in addition to

the oscillations already present for φ = π/2, i.e., the textbook contour C0. Consequently

a smaller upper limit zmax can be employed in the numerical implementation of Eq. (3.2).

The contour implemented in the present program forms a practitioner’s compromise

between speed and accuracy for the cases encountered in QCD evolutions. The same

contour is employed for all inversions, and on that contour a fixed set of intervals is

defined. For each of these intervals we perform a standard eight-point Gauss-Legendre

integration [10]. As said, all this is done regardless of x, the initial distributions and all

evolution parameters discussed in the previous section. Hence all moments of the splitting

functions, evolution-operator coefficients and matching conditions need to be calculated

only once on the resulting fixed grid of complex N -values at the initialization of the

program. Note that this approach is rather different from that of refs. [23, 4], where a

parabolic contour is optimized with respect to the shape of the initial distributions.

Specifically, we choose φ = 3/4 π (too close to neither C0 nor the singularities of the

integrands) and c = 1.9 (see below). The upper limit zmax depends on x in accordance

with the ln(1/x) damping mentioned below Eq. (3.2) above: Eight intervals covering the

region 0 < z < 5 are used for x < 0.01 (of which four have 0 < z < 1). Three more

intervals with 5 < z < 14 are added for 0.01 ≤ x < 0.3, and another three covering

14 < z < 32 are included for 0.3 ≤ x < 0.7. Above the latter value of x the final four

intervals with 32 < z < 80 are included as well. Under these conditions the chosen value

c = 1.9 for the abscissa is a compromise between high accuracy for very small quantities at

very large x (improved for larger values) and very small x (improved for smaller values).

This standard setup, used for the default initialization parameter IFAST = 0 is suffi-

cient for a five-digit accuracy of the evolution of the proton structure at 10−7 ≤ x ≤ 0.9,

with the exception of the tiny antiquark distributions at x ≃ 0.9. A yet faster, but at very

large and very small x-values less reliable inversion can be invoked by IFAST 6= 0. The

program then runs with minimally 4 and maximally 10 (instead of 8 and 18) intervals.

3.2 Splitting functions and matching coefficients

The complex-N moments required for the evolution cannot be computed by direct numer-

ical integrations of Eq. (2.18) on our tilted contour C1 shown in Fig. 1. Therefore we have

to work with the proper analytic continuations or, where these are not known, with suffi-

ciently accurate x-space parametrizations of which the moments are known analytically.

That situation already occurs at NLO, but becomes more severe at higher orders.
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The unpolarized NLO splitting functions have been programmed, long ago, using the

integer-N results in Eq. (2.5) of ref. [24] (see also section 5 of ref. [25]) and in Appendix

B of ref. [26], together with the analytic continuations provided in Appendix A.1 of

ref. [6]. With one exception, these analytic continuations can be expressed in terms of

the complex polygamma functions ψ(n)(z). These functions are calculated from their

asymptotic expansions [27], after for |Im(z)| < 10 using the functional equations to shift

the argument to Re(z) > 10. The exception are the moments

∫ 1

0
dx xN−1Li2(x)

1 + x
(3.3)

where Li2 is the standard dilogarithm. Improving on Eq. (A.6) of ref. [6], these moments

can be approximated to a sufficient accuracy by inserting the parametrization

1

1 + x
∼= 1 − 0.9992 x+ 0.9851 x2 − 0.9005 x3

+ 0.6621 x4 − 0.3174 x5 + 0.0699 x6 (3.4)

into Eq. (3.3) and using the standard expression [28] for the moments of Li2(x). A useful

list of Mellin transforms can also be found in the appendix of ref. [29], see also ref. [30].

The polarized NLO splitting functions [31, 32, 33] involve the same set of functions; they

have been implemented using the appendix of ref. [34].

The recent complete integer-N expressions for the unpolarized NNLO splitting func-

tions [13, 14] in moment space include harmonic sums [35] up to weight five, of which

the analytic continuations are not known at present. We therefore resort to the accurate

x-space parametrizations of these functions provided in Eqs. (4.22) – (4.24) of ref. [13]

and Eqs. (4.32) – (4.35) of ref. [14]. The complex moments of these approximations

can be expressed in terms of the polygamma functions. Based on the accuracy of these

parametrizations and the size of the NNLO effects in the evolution [13, 14], we expect

that the relative errors introduced by this procedure amount to about 10−4 or less.

Finally we need, for the NNLO variable flavour-number evolution, the complex mo-

ments of the flavour-matching coefficients A(2) of ref. [21]. These can be expressed in

terms of the psi-functions ψ(n)(z) as well, with the exception of Ã
S,(2)
hg (x) in Eq. (2.40).

Also for this function the program presently uses the moments of a parametrization, viz

Ã
S,(2)
hg (x) ∼= − 1.111 ln3(1 − x) − 0.400 ln2(1 − x) − 2.770 ln(1 − x)

− 187.8 + 249.6 x− 146.8 ln2 x ln(1 − x) − 93.68 lnx

− 3.292 ln2 x− 1.556 ln3 x− 24.89 x−1 − 0.006 δ(1 − x) . (3.5)

The convolution of the approximation (3.5) with typical gluon distributions differs from

the exact results by less than one part in a thousand except close to zeros of these results.

Note that the parametrization (3.5) has been employed for the approximate [36] VFNS

NNLO part of the 2001/2 evolution benchmarks presented in table 6 of ref. [37].
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3.3 The initial distributions

Also the initial conditions fi(x, µ
2
0) for the evolution are, of course, needed by the program

in a form which facilitates a computation of the moments on the Mellin inversion contour.

This is, presumably, the most severe restriction of the flexibility of the N -space approach

as compared to direct numerical x-space solutions. For the latter, all quantities are usually

defined on discrete grids of x-values, hence no functional form whatsoever is required for

fi(x, µ
2
0). For the present program a functional form is definitely needed, and furthermore

that form should preferably be such that its complex moments can be readily computed.

This is, for example, not the case for the form employed in the CTEQ 6 analysis [38],

xfi(x, µ
2
0) = Ni x

ai(1 − x)bi (1 + Ai x)
ci edix . (3.6)

An N -space evolution of Eq. (3.6) would require an accurate internal re-parametrization.

What can be readily handled by an N -space program, on the other hand, should be

perfectly adequate for a sufficiently general ansatz for the initial distributions. In the

present version of the program, we have included the two six-parameter standard forms

xfi(x, µ
2
0) = Ni pi,1 x

p
i,2(1 − x)p

i,3

[
1 + pi,5 x

p
i,4 + pi,6 x

]
(3.7)

and

xfi(x, µ
2
0) = Ni pi,1 x

p
i,2(1 − x)p

i,3

[
1 + pi,4 x

0.5 + pi,5 x+ pi,6 x
1.5
]
. (3.8)

The moments of these functions are given in terms of Euler’s Beta function B(z1, z2).

This function is implemented using the asymptotic expansion of the logarithm of the

Gamma function (the Stirling formula) [27] at Re(z1) > 5 and Re(z2) > 5 together with

the functional equation. The N -dependent argument z1 is first inverted for Re(z1) < −10,

i.e., the asymptotic expansion is invoked for z ′
1 = 1 − z1 − z2.

Speed is a much more important issue here than for the initialization of the splitting

functions, U -matrix elements and matching conditions: In fits of the parton densities, we

need to deal efficiently with a large number of calls of the initial distributions, each of

which in turn requires on the order of 103 evaluations of B(z1, z2). Note that the last

term in the square bracket in Eq. (3.7), like the corresponding last two terms in Eq. (3.8),

does not require new calls of B(z1, z2) since the functional equation in the first argument

can be used instead. Therefore the extension of Eqs. (3.7) and (3.8) to (many) suitably

chosen higher powers of x does not pose any efficiency problems.

The ansatz (3.7) or (3.8) is used for the initial u and d valence-quark distributions

uv = u − ū, dv = d − d̄, the corresponding antiquark (sea) densities L+ = 2(ū + d̄ )

and L− = d̄ − ū, the gluon distribution g, and for the strange-flavour combinations

s± = s± s̄. Heavy-flavour initial distributions h(x, µ2
0) are obviously not required for the

VFNS evolution starting with nf = 3, see section 2.7. At present, independent shapes

for h(x, µ2
0) are not included for the FFNS evolution either. The definitions and available

user-options for the extra coefficients Ni in Eqs. (3.7) and (3.8) will be explained below.
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4 A brief Qcd-Pegasus user guide

Most of the routines building up the evolution package are not directly called by the

user for standard applications. All he/she needs to interact with, are the routines for the

initialization of the program, the specification of the initial distributions and parameters

like as(µ
2
0), and for reading out the results of the evolution. In this section we describe the

available input and output variables of these routines and show a small example program.

4.1 General initialization

All input-independent quantities required for the unpolarized evolution (the polarized

case is deferred to section 4.5) and nf -matching described the section 2 are initialized by

CALL INITEVOL(‘EVOLPAR’) .

The integer parameter EVOLPAR defines how values are assigned to the six initialization

parameters NPORD, FR2 introduced in section 2.2, IMODEV discussed in sections 2.4 and

2.6, IVFNS and NFF of section 2.7 and IFAST defined in section 3.1. For EVOLPAR = 1,

INITEVOL reads these parameters from a six-line file usrinit.dat looking like

0 IFAST

1 IVFNS

4 NFF

1 IMODEV

1 NPORD

1.0D0 FR2 .

For EVOLPAR = 2, INITEVOL obtains the corresponding values by calling the subroutine

USRINIT (IFAST, IVFNS, NFF, IMODEV, NPORD, FR2)

provided by the file usrinit.f . For any other other value of EVOLPAR, the program

uses a default set of initialization parameters, actually the values displayed above.

The available initialization options can be briefly summarized as follows :

IFAST

Speed/accuracy flag for the Mellin inversion. IFAST = 0 is the standard. Any other value

leads to a faster, but especially for very large and very small x less reliable version.

IVFNS

Switches between the evolution with a fixed number of flavours (for IVFNS = 0) and that

in the variable flavour-number scheme, starting with nf = 3 (for any other value).

NFF

The fixed number nf of flavours (between 3 and 5) for IVFNS = 0. Unused for IVFNS 6= 0.
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IMODEV

Switches between the various evolution modes beyond LO. IMODEV = 1 and 2 invoke the

respective iterated solutions of the evolution equations truncated in ∂/∂ lnµ2 and ∂/∂as.

Other values (IMODEV = 3 is special) lead to the faster truncated solutions. IMODEV = 1

emulates the standard x-space treatment if as(µ
2
r) is adequate, i.e., not truncated itself.

NPORD

The perturbative order m = 0, 1 or 2 of the evolution, defined as the ‘m’ in NmLO.

FR2

The constant ratio µ2/µ2
r of the factorization scale µ and the renormalization scale µr.

4.2 Input parameters and initial distributions

The input parameters and initial light-parton distributions for the evolution are set by

CALL INITINP(‘INPPAR’) .

Analogous to EVOLPAR in the previous section, the integer parameter INPPAR specifies how

the input parameters are read in. If INPPAR is neither 1 nor 2, the program will evolve a

default input, viz the one used for the 2001/2 benchmark tables [37],

xuv(x, µ
2
0) = 5.107200 x0.8 (1 − x)3

xdv(x, µ
2
0) = 3.064320 x0.8 (1 − x)4

xg (x, µ2
0) = 1.700000 x−0.1(1 − x)5 (4.1)

xd̄ (x, µ2
0) = .1939875 x−0.1(1 − x)6

xū (x, µ2
0) = (1 − x) xd̄ (x, µ2

0)

xs (x, µ2
0) = xs̄ (x, µ2

0) = 0.2 x(ū+ d̄ )(x, µ2
0)

with

αs(µ
2
0 =2 GeV2) = 0.35 (4.2)

and, in the variable flavour-number case

mc = µ0 , mb = 4.5 GeV , mt = 175 GeV . (4.3)

INITINP reads these parameters from a file usrinp.dat for INPPAR = 1. For the above

input (using the ansatz (3.7) for definiteness) that file may look like

2.0D0 M20

0.35D0 ALPHSI

2.0D0 MC2

20.25D0 MB2

3.0625D4 MT2

1 NFORM
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1 IMOMIN

0 ISSIMP

2.0D0, 0.8D0, 3.0D0, 0.5D0, 0.0D0, 0.0D0 PUV

1.0D0, 0.8D0, 4.0D0, 0.5D0, 0.0D0, 0.0D0 PDV

0.193987D0, 0.9D0, 6.0D0, 0.5D0, 0.0D0, 0.0D0 PLM

0.136565D0, -0.1D0, 6.0D0, 0.5D0, 0.0D0, -0.5D0 PLP

0.0D0, 0.9D0, 6.0D0, 0.5D0, 0.0D0, 0.0D0 PSM

0.027313D0, -0.1D0, 6.0D0, 0.5D0, 0.0D0, -0.5D0 PSP

1.0D0, -0.1D0, 5.0D0, 0.5D0, 0.0D0, 0.0D0 PGL .

For INPPAR = 2, INITINP obtains the corresponding values by calling the subroutine

USRINP (PUV, PDV, PLM, PLP, PSM, PSP, PGL, M20, ALPHSI,

, MC2, MB2, MT2, NFORM, IMOMIN, ISSIMP)

provided, for example, by the file usrinp.f . This subroutine can also be modified to

form a fit-parameter interface to programs like Minuit.

The input parameters and options for the initial distributions presently available are :

M20

The initial factorization scale µ2
0. Equal to or smaller than m2

c for the VFNS evolution.

ALPHSI

The strong coupling αs [not our internal as ≡ αs/(4π)] at M20 = µ2
0 (even for µr 6= µ).

MC2 < MB2 < MT2

The squared c, b and t masses for the VFNS case IVFNS 6= 0. Irrelevant for IVFNS = 0.

NFORM

Switches between the functional forms (3.7) for NFORM = 1, and (3.8) for NFORM = 2.

IMOMIN

For IMOMIN = 0, NL+
=Ns+

= 1 is used in Eqs. (3.7) and (3.8). Otherwise these factors are

such that pL+,1 = PLP(1) and ps+,1 = PSP(1) are the corresponding momentum fractions.

ISSIMP

Switches between the full input ansatz (for ISSIMP = 0) and a simplified input (otherwise),

s+ s̄ = PSP(1)·L+ with s = s̄, for the initial strange-flavour distributions.

PUV, PDV, PLM, PLP, PSM, PSP, PGL

The dimension-6 arrays for the input parameters pi,j in Eqs. (3.7) and (3.8) for uv, dv,

L− = d̄− ū, L+ = 2(d̄+ ū), s± = s± s̄ and g. PUV(1) and PDV(1) are the respective quark

numbers (first moments), 2.D0 and 1.D0 for the case of the proton. PGL(1) is the total

fractional momentum carried by the partons (usually 1.D0). NL
−

= Ns
−

= 1. PSM(5) is

not used, the corresponding input parameter is fixed by the vanishing of the first moment.
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4.3 The x-space parton distributions

The evolved parton distributions Mellin-inverted to x-space are accessed by

CALL XPARTON (PDFX, AS, ‘X’, ‘M2’, ‘IFLOW’, ‘IFHIGH’, ‘IPSTD’) .

Here PDFX is the double-precision parton output array, user-declared before as PDFX(-6:6).

AS (also double-precision, as all real variables) returns the corresponding value as(µ
2
r(µ

2)).

X and M2 are simply the x and µ2 for which the evolved partons are requested from

XPARTON. The other three (integer) parameters are flags helping to avoid wasting time.

For IPSTD = 0, the notation for the index of PDFX is

PDFX(0) = g, PDF(1) = uv, PDFX(-1) = u+ ū, PDF(2) = dv, . . .

and otherwise

PDFX(0) = g, PDF(1) = u, PDFX(-1) = ū, PDF(2) = d, . . . .

Note that XPARTON return xg etc. IFLOW and IFHIGH are lower and upper limits for the

values of this index for which the Mellin-inversion is actually performed. For example, if

the program is run for nf = 3 parton flavours, there is no point (except once, for checking)

in letting the program work to produce the inevitable zeros for c(x, µ2) etc, thus IFLOW

= −3 and IFHIGH = 3 should be used. If, moreover, the user is interested (this time)

only in the combinations qi + q̄i and the gluon density, then IPSTD = 0, IFLOW = −3 and

IFHIGH = 0 would be most efficient. Also the calculation of the valence distributions is,

in terms of speed, better performed using IPSTD = 0.

4.4 An example program with output

We now present a small main program (provided by the file lh01tab.f ) which can be

used to check whether the evolution package is working properly at least up to NLO. The

internal standard inputs are used in the calls of both INITEVOL and INITINP.

PROGRAM LH01TAB

*

IMPLICIT DOUBLE PRECISION (A - Z)

DIMENSION PDFX(-6:6), XB(11)

PARAMETER ( PI = 3.1415 92653 58979 D0 )

INTEGER K1

*

* ..Access the input parton momentum fractions and normalizations

COMMON / PANORM / AUV, ADV, ALS, ASS, AGL,

, NUV, NDV, NLS, NSS, NGL

*

* ..The values for mu^2 and x
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DATA M2 / 1.D4 /

DATA XB / 1.D-7, 1.D-6, 1.D-5, 1.D-4, 1.D-3, 1.D-2,

, 1.D-1, 3.D-1, 5.D-1, 7.D-1, 9.D-1 /

*

* ..General initialization (internal default)

CALL INITEVOL (0)

*

* ..Input initialization (internal default)

CALL INITINP (0)

*

* ..Output of the momentum fractions and normalizations

WRITE(6,10) AUV, ADV, ALS, ASS, AGL

10 FORMAT (2X,’AUV =’,F9.6,2X,’ADV =’,F9.6,2X,’ALS =’,F9.6,

, 2X,’ASS =’,F9.6,2X,’AGL =’,F9.6)

*

WRITE(6,11) NUV, NDV, NLS, NSS, NGL

11 FORMAT (2X,’NUV =’,F9.6,2X,’NDV =’,F9.6,2X,’NLS =’,F9.6,

, 2X,’NSS =’,F9.6,2X,’NGL =’,F9.6,/)

*

* ..Loop only over x (M2 is fixed in the Les-Houches tables)

DO 1 K1 = 1, 11

X = XB (K1)

*

* ..Call of the Mellin inversion, reconstruction of L+ and L-

CALL XPARTON (PDFX, AS, X, M2, -5, 2, 0)

LMI = (PDFX(-2) - PDFX(-1) - PDFX(2) + PDFX(1)) * 0.5

LPL = PDFX(-1) + PDFX(-2) - PDFX(1) - PDFX(2)

*

* ..Output to be compared to the upper part of Table 4

IF (K1 .EQ. 1) WRITE (6,12) AS * 4*PI

12 FORMAT (2X,’ALPHA_S(MR2(M2)) = ’,F9.6,/)

*

IF (K1 .EQ. 1) WRITE (6,13)

13 FORMAT (2X,’x’,8X,’xu_v’,7X,’xd_v’,7X,’xL_-’,7X,’xL_+’,

, 7X,’xs_+’,7X,’xc_+’,7X,’xb_+’,7X,’xg’,/)

*

WRITE (6,14) X, PDFX(1), PDFX(2), LMI, LPL, PDFX(-3),

, PDFX(-4), PDFX(-5), PDFX(0)

14 FORMAT (1PE6.0,1X,8(1PE11.4))

*

1 CONTINUE

STOP

END
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Here is what this program returns. The main table has been slightly edited (mainly

E-07 → E-7 etc.), to avoid having to use a yet smaller font.

AUV = 0.333333 ADV = 0.137931 ALS = 0.136565 ASS = 0.027313 AGL = 0.364858

NUV = 5.107200 NDV = 3.064320 NLS = 0.775950 NSS = 0.155190 NGL = 1.700000

ALPHA_S(MR2(M2)) = 0.116032

x xu_v xd_v xL_- xL_+ xs_+ xc_+ xb_+ xg

1.E-7 1.0927E-4 6.4125E-5 4.3925E-6 1.3787E+2 6.7857E+1 6.7139E+1 6.0071E+1 1.1167E+3

1.E-6 5.5533E-4 3.2498E-4 1.9829E-5 6.9157E+1 3.3723E+1 3.3153E+1 2.8860E+1 5.2289E+2

1.E-5 2.7419E-3 1.5989E-3 8.5701E-5 3.2996E+1 1.5819E+1 1.5367E+1 1.2892E+1 2.2753E+2

1.E-4 1.3039E-2 7.5664E-3 3.5582E-4 1.4822E+1 6.8739E+0 6.5156E+0 5.1969E+0 8.9513E+1

1.E-3 5.8507E-2 3.3652E-2 1.4329E-3 6.1772E+0 2.6726E+0 2.3949E+0 1.7801E+0 3.0245E+1

1.E-2 2.3128E-1 1.2978E-1 5.3472E-3 2.2500E+0 8.4161E-1 6.5235E-1 4.3894E-1 7.7491E+0

1.E-1 5.5324E-1 2.7252E-1 9.9709E-3 3.9099E-1 1.1425E-1 6.0071E-2 3.5441E-2 8.5586E-1

3.E-1 3.5129E-1 1.3046E-1 3.0061E-3 3.5463E-2 9.1084E-3 3.3595E-3 1.9039E-3 7.9625E-2

5.E-1 1.2130E-1 3.1564E-2 3.7719E-4 2.3775E-3 5.7606E-4 1.6761E-4 1.0021E-4 7.7265E-3

7.E-1 2.0102E-2 3.0932E-3 1.3440E-5 5.2605E-5 1.2166E-5 2.7408E-6 2.0095E-6 3.7574E-4

9.E-1 3.5232E-4 1.7855E-5 8.6806E-9 2.0302E-8 3.9024E-9-2.638E-10 5.839E-10 1.1955E-6

The first line of the output provides the respective momentum fractions carried by the

valence quarks, the light-quark sea and the gluons at the initial scale. This information

has been obtained by accessing the common-block PANORM filled for this purpose by the

inner input routine not described in this section. The second line are the corresponding

normalization factors, cf. Eq. (4.1). The rest is a set of reference results which agree,

except for some marginal offsets at x = 0.9 for the tiny sea-quark distributions, with the

upper part of table 4 in ref. [37]. A test run by the user should lead to the same numbers.

A final remark on the efficient calculation of the parton distributions at several scales.

XPARTON saves the moments used for the inversion, and will re-use them the next time —

recall that the a(N) in Eq. (3.2) do not know about x — unless the input or the scale

µ2 have been changed. Consequently one should first perform the Mellin inversion for all

desired x-values at one scale before proceeding to the next scale, instead of ordering the

calls of XPARTON in another manner. The same applies, of course, also to corresponding

routines determining observables like structure functions from the N -space expressions.

4.5 The longitudinally polarized case

The evolution of the polarized parton distributions is performed completely analogous to

the unpolarized case discussed above. Indeed, one could write the program such that the

same user-interface routines would deal with both cases. Here we have decided to keep at

least the polarized and unpolarized initialization and input routines separate.

CALL INITPOL(‘EVOLPAR’)

initialises the polarized evolution. The options are almost identical to those discussed in
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section 4.1. The order of the evolution is restricted to NPORD = 0 and 1 at present, since the

polarized three-loop splitting functions are not yet known. The respective files supplying

the initialization parameter for EVOLPAR = 1 and 2 are usrpinit.dat and usrpinit.f

providing the subroutine USRPINIT. The defaults are the same as in section 4.1.

The input parameters and initial polarized distributions for the evolution are set by

CALL INITPINP(‘INPPAR’) .

The corresponding data files are usrpinp.dat and usrpinp.f containing the routine

USRPINP. Instead of Eq. (4.1) the default toy input for program checks reads

x∆uv = +1.3 x0.7 (1 − x)3 (1 + 3x)

x∆dv = −0.5 x0.7 (1 − x)4 (1 + 4x)

x∆g = +1.5 x0.5 (1 − x)5

x∆d̄ = x∆ū = −0.05 x0.3 (1 − x)7

x∆s = x∆s̄ = +0.5 x∆d̄ . (4.4)

The other input parameter have to same meaning (and the same defaults) as in section

4.2, with the exception of

IMOMIN

For IMOMIN = 0 (used as the internal default here), we put Ni = 1 in Eqs. (3.7) and (3.8)

for all seven input combinations uv, dv, L− = d̄ − ū, L+ = 2(d̄ + ū), s± = s ± s̄ and g.

Otherwise all Ni are chosen such that the first elements of PUV, PDV, PLM, PLP, PSM, PSP

and PGL represent the first moments of the respective initial distributions. PSM(5) is a

normal input parameter in the polarized case.

4.6 Output in N -space

The above setup assumes that the user is interested in the x-space parton distributions

as obtained by the method outlined in section 3.1. For those who want to evolve fixed

moments (e.g., momentum fractions) or prefer to invert the N -space results by other

means (e.g., Monte-Carlo integration), we also provide the user-interface subroutine

NPARTON (PDFN, AS, ‘N’, ‘M2’, ‘IPSTD’, ‘IPOL’, ‘EVOLPAR’, ‘INPPAR’) .

There is no point to have separate overall and input initialization calls here, as all quanti-

ties need to be recalculated each time anyway as N is a (double-complex) free parameter.

Consequently the calls of the initialization and input routines have been integrated into

NPARTON, which therefore takes over the respective parameters EVOLPAR and INPPAR (the

options remain as before). In this case also the choice between the unpolarized (IPOL =0)

and polarized evolution (otherwise) is made via the call of NPARTON. Note that this mode

of using the program is an option for which the code has not really been optimized. The

double-complex output array has to be declared as PDFN(-6:6) in the calling program.
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5 A short reference guide

In this section we provide brief descriptions of the subroutines and functions included in

the evolution package. Unless specified otherwise, the function or subroutine ‘ROUTINE’

is stored in the file ‘routine.f’, where more information can be found. This results in

quite a few files, but it appears easier this way to keep track of future upgrades and user

modifications. A very large part of the internal communications in the program proceeds

via named common-blocks. A corresponding list is included at the end of this section.

5.1 Initialization routines

The main initialization routine for the N -space based parton evolution is

5.1.1 INITEVOL(‘IPAR’)

The options for IPAR have already been discussed in section 4.1. This routine sets some

constants like the Euler-Mascheroni constant γe ≡ ZETA(1), the lowest values of the

Riemann’s Zeta function, ζ i>1 = ZETA(i), and the lowest SU(3) invariants CA, CF and

TR. It provides the fixed array NA of complex moments and the corresponding weights

WN for the Gauss integrations discussed in section 3.1. The analytically continued simple

harmonic sums Si(N) are calculated for i = 1, . . . , 6 on these support points and stored

as S(K,i) where K is the parameter of the array NA. Finally the routine calls, depending

on the initialization parameters discussed in section 4.1, the subroutines for the N -space

splitting functions, nf -matching conditions and evolution matrices listed below.

INITEVOL also sets a couple of internal initialization parameters. The consistency of

the order NAORD of the coupling constant (see section 2.1) with that of the parton evolution

is enforced by NAORD = NPORD. The number of steps for the Runge-Kutta integration of

Eq. (2.2) and the maximal power of as in the U -matrix solution (2.23) are set to

NASTPS = 20 and NUORD = 15 .

Note that NUORD is presently restricted by array declarations to values of 20 or less.

5.1.2 USRINIT (IFAST, IVFNS, NFF, IMODEV, NPORD, FR2)

The subroutine providing the initialization parameters if INITEVOL is called with IPAR= 2.

5.1.3 BETAFCT

Provides the values BETA(0), . . ., BETA(3) (2.3) of the QCD β-function for nf = 3, . . . , 6.

5.1.4 PSI(Z), DPSI(Z,M) in the file psifcts.f

The complex ψ-function PSI(Z) and its m-th derivatives ψ(m)(z) = DPSI(Z,M) calculated

using the functional equations and the asymptotic expansions as discussed in section 3.2.
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5.1.5 PNS0MOM, PSG0MOM in the file pnsg0mom.f

The lowest-order non-singlet (routine PNS0MOM) and singlet (routine PSG0MOM) N -space

splitting function P0NS and P0SG on the array NA with parameter KN defined by INITEVOL,

as all splitting functions for nf = 3, . . . , 6. The singlet sector uses (also at higher orders)

the matrix notation (2.11) with the array arguments 1 = q and 2 = g.

5.1.6 PNS1MOM

The subroutine for the NLO non-singlet splitting functions P1NS at µr = µ on the array

NA. The routine needs to be called before PSG1MOM, since it provides part of P (1)
qq , see

Eq. (2.15), and the non-trivial analytic continuations according to Appendix (A.1) of

ref. [6] and Eq. (3.4). Starting from NLO the three cases (2.14) are included via an

additional array dimension with arguments 1 = +, 2 = - and 3 = v (= - at NLO).

5.1.7 PSG1MOM

The corresponding subroutine for the NLO singlet splitting functions P1SG(KN,NF,i,j).

5.1.8 PNS2MOM

The NNLO non-singlet splitting functions P2NS in N -space, as always on the array NA, as

obtained from the accurate x-space parametrizations (4.22)–(4.24) of ref. [13] since the

complex moments of the exact results are presently unknown. Analogous to the NLO

case, this routine needs to be called before the singlet case PSG2MOM. Also here µr = µ.

5.1.9 PSG2MOM

The corresponding routine for the singlet quantities P2SG, using (4.32)–(4.35) of ref. [14].

5.1.10 LSGMOM

The eigenvalue decomposition (2.26)–(2.28) of the LO singlet splitting-function matrix

P0SG divided by BETA0. The N - and nf -dependent eigenvalues are denoted by R(KN,NF,l),

the corresponding projection operators by E(KN,NF,i,j,l) with l = 1, 2.

5.1.11 USG1MOM

The subroutine for the NLO singlet evolution matrix U1= U1(KN,NF,I,J) in N -space

obtained from Eq. (2.31) for k = 1. Here and in the following routines the terms arising

from µr 6= µ in Eq. (2.8) are included. This routine needs to be called before USG1HMOM.

Procedures (presently absent) for scheme transformations of the splitting functions (pro-

vided in MS by the above routines) would have to be called before this routine.
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5.1.12 USG1HMOM

Adds the higher-order contributions Uk = U1H(K,..) to the U -matrices for the iterated

NLO solutions of the evolution equations discussed in section 2.4. Note that there are

no non-singlet routines corresponding to USG1MOM and USG1HMOM since U±
1 are trivial and

Eqs. (2.34) and (2.35) are used for the iterated non-singlet solutions instead of Eq. (2.23).

5.1.13 UNS2MOM

The routine for the NNLO non-singlet evolution operators UNS2, including the higher-

order pieces for the iterative solutions. Also here the quantities for the evolution of q±v
ns

are included by an extra array dimension with the argument 1 = +, 2 = - and 3 = v.

5.1.14 USG2MOM

As the subroutine USG1MOM, but providing U2 for the truncated NNLO solution (k = 2).

5.1.15 USG2HMOM

As USG1HMOM, but adding the higher terms U2H required for the iterated NNLO solutions.

The singlet U -matrix routines partly build upon each other, hence they should be called

in a proper order, like the one used in this list.

5.1.16 ANS2MOM

The a2
s (NNLO) non-singlet coefficient A

ns,(2)
qq,h = A2NS(KN) for the MS flavour-number

transition (2.39) at µ2 = m2
h, obtained from the x-space results in Appendix B of ref. [21].

5.1.17 ASG2MOM

The a2
s (NNLO) N -space singlet coefficients A2SG in Eq. (2.40) obtained from the same

source. The routine uses A2NS, hence it is to be called after ANS2MOM. The moments of

the parametrization (3.5) are used for Ã
S,(2)
hg = A2SG(KN,1,2).

5.2 Input and flavour-threshold routines

The steering routine for the N -space distributions at initial scale and flavour thresholds is

5.2.1 INITINP(‘IPAR’)

The options switched by IPAR have already been discussed in section 4.2. This routine calls

the appropriate routine INPLMOM1 or INPLMOM2 and calculates the initial value of as for the

evolution, which is unequal to the (properly normalized) input parameter in section 4.2
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for µr 6= µ. For IVFNS 6= 0, EVNFTHR is then used to store also the parton distributions

at the heavy-flavour thresholds µ2 = m2
h. This is another efficiency measure: Recall that

the evolution is performed in fixed-nf steps, using Eqs. (2.39)–(2.41) in between. For all

values µ2 > m2
b , e.g., the evolution to µ2 = m2

b is thus the same for a given input, and

there is no point to repeat this part of the computation for every new value of µ2.

5.2.2 USRINP (PUV,...,PGL, M20, ASI, MC2,MB2,MT2, NFORM,IMOMIN,ISSIMP)

The subroutine providing the input parameters if INITINP is called with IPAR= 2.

5.2.3 INPLMOM1 (PUV, PDV, PLM, PLP, PSM, PSP, PGL, IMOMIN, ISSIMP)

This routine calculates, from the input parameters discussed already in section 4.2, the

moments of the ansatz (3.7) on the array NA and stores them in the basis (2.16) with the

notation qv
ns(N) = VAI(KN), qs = SGI, v−k = M‘k’I, v+

k = P‘k’I and g = GLI for k = 3, 8.

Also the common-block with the second moments and normalizations shown in section

4.4 is written here. The routine sets the flag IINNEW = 1 to inform other routines, like

XPARTON discussed in 4.3, that a new input call has taken place.

5.2.4 INPLMOM2 (PUV, PDV, PLM, PLP, PSM, PSP, PGL, IMOMIN, ISSIMP)

As the previous routine, but for the ansatz (3.8) for the three-flavour initial distributions.

Other input forms can be added as INPLMOM3 etc. if needed, which requires only a minimal

additional modification of INITINP in section 5.2.1.

5.2.5 EBETA(Z1,Z2) in the file ebetafct.f

The complex Beta function EBETA(Z1,Z2) calculated from the asymptotic expansion of

ln Γ(z) as discussed in section 3.2. Called (only) by the routines for the N -space inputs.

5.2.6 EVNFTHR (MC2, MB2, MT2)

For IVFNS = 1, this routine is used to evolve as and the partons from the three-flavour

initial scale to the four- to six-flavour thresholds µ2 = m2
h. The results for as are stored

as ASC, ASB and AST, those for qv
ns as VAC, VAB and VAT, etc. For m2

t > 1010 or m2
b,t > 1010

(in GeV2, as always), the corresponding parts of the calculations are skipped.

5.2.7 ASNF1 (ASNF, LOGRH, NF) in the file asmatch.f

This functions computes a
(n

f
+1)

s = ASNF1 from a
(n

f
)

s = ASNF and ln(µ2
r/m

2
h) = LOGRH

according to Eqs. (2.41)–(2.42) at maximally N3LO. The order of the nf -matching is set

by NAORD specified via the initialization parameter NPORD, see section 5.1.1.
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5.3 Evolution and Mellin-inversion routines

5.3.1 AS (R2, R20, AS0, NF) in the file asrgkt.f

Returns as = AS at the renormalization scale µ2
r = R2 as obtained beyond LO from a

fourth order Runge-Kutta integration of Eq. (2.2) in NASTPS steps from the initial value

a0 = AS0 at µ2
r,0 = R20 at order NAORD for NF quark flavours. At LO Eq. (2.4) is used.

Possible other versions have to be provided (in the same notation) by the use her-/himself.

5.3.2 ENSG0N (ENS, ESG, ASI, ASF, S, KN, NF)

The subroutine for the LO non-singlet and singlet N -space evolution operators (2.22) at

a fixed number of flavours NF. The respective kernels ENS and ESG(I,J), I, J = 1, 2 with

1 = q, 2 = g, are returned for a moment N specified via the counter KN on the array

NA. The initial and final scales are specified by the respective values a0 = ASI and as =

ASF of the coupling constant. S = ln(a0/as) is not calculated internally for efficiency.

5.3.3 ENS1N (ENS, ALPI, ALPF, S, KN, NF)

This routine returns one of the NLO hadronic non-singlet kernels ENS(K) (2.33)–(2.36)

for the evolution of the ‘+’ (K=1) and − = v (K=2,3) combinations (2.13) of quark

distributions. The mode of the evolution is set via the initialization parameter IMODEV.

The input arguments of the routine are as described for the previous routine.

5.3.4 ESG1N (ESG, ASI, ASF, S, KN, NF)

As ENS1N, but for the singlet kernels ESG(I,J) according to Eqs. (2.23) and (2.24).

5.3.5 ENS2N (ENS, ASI, ASF, S, KN, NF, NSMIN, NSMAX))

As ENS1N, but for the NNLO kernels ENS(K) using Eqs. (2.23), (2.24) and (2.33). The

additional arguments NSMIN and NSMAX set the range in K for which ENS(K) is defined. This

allows to save time, e.g., in e.m. structure-function calculations requiring only ENS(1).

5.3.6 ESG2N (ESG, ASI, ASF, S, KN, NF)

As ESG1N, but for the NNLO kernels ESG(I,J) governing the evolution of the flavour-

singlet parton distributions. Recall that all these kernels assume a fixed ratio µ/µr.

5.3.7 EVNVFN (PDFN, ASI, ASF, NF, NLOW, NHIGH, IPSTD)

The subroutine providing the N -space parton distributions PDFN for the variable flavour-

number evolution. These results are returned for the part NLOW < KN < NHIGH of the

array NA in a notation chosen via IPSTD as discussed in section 4.3. The routine makes

use of the flavour-threshold results stored by EVNFTHR described in section 5.2.6.
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5.3.8 EVNFFN (PDFN, ASI, ASF, NF, NLOW, NHIGH, IPSTD)

As EVNVFN, but for the fixed flavour-number evolution with 3 ≤ NF ≤ 5 partonic flavours.

5.3.9 XPARTON (PDFX, AS, ‘X’, ‘M2’, ‘IFLOW’, ‘IFHIGH’, ‘IPSTD’)

The top-level evolution and Mellin-inversion routine for standard use of the program,

discussed already in section 4.3. It checks whether the previous results for as and PDFN can

be re-used (same M2 and no new input call), calculates the otherwise required quantities,

calls EVNVFN or EVNFFN if necessary, and carries out the Gauss integrations.

5.4 Routines for the polarized case

To avoid a substantial duplication of code at this point, the polarized evolution uses the

internal routines described above as far as possible. Thus a simultaneous evolution of

unpolarized and polarized parton distributions, e.g., for N -space analyses of pp scattering

with only one proton polarized, is not possible at this point. The additional routines are:

5.4.1 INITPOL(‘IPAR’)

The polarized version of the main initialization routine INITEVOL in section 5.1.1. The

same options are available except for the restriction of the evolution to LO and NLO.

5.4.2 USRPINIT (IFAST, IVFNS, NFF, IMODEV, NPORD, FR2)

The subroutine providing the input parameters for INITPOL if called with IPAR= 2.

5.4.3 PSG0PMOM

The lowest-order polarized singlet N -space splitting function P0SG corresponding to the

unpolarized routine in section 5.1.5. Note that there is no corresponding non-singlet

routine, as in this case the unpolarized and polarized splitting functions are identical.

5.4.4 PNS1PMOM, PSG1PMOM

The polarized counterparts of PNS1MOM and PSG1MOM described in sections 5.1.6 and 5.1.7.

The same array names and arguments are employed for use by the general U -matrix and

evolution routines in sections 5.1 and 5.3. The non-singlet quantities are identical to the

unpolarized case, but with the ‘+’ and - = v entries interchanged.

5.4.5 ANS2PMOM, ASG2PMOM

The subroutines for the polarized case corresponding to ANS2MOM and ASG2MOM in sections

5.1.16 and 5.1.17. Presently these are dummy routines. The presence of the arrays A2NS

and A2SG is technically required in EVNFTHR (section 5.2.6).
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5.4.6 INITPINP(‘IPAR’)

The input initialization routine for the polarized evolution corresponding to INITINP in

section 5.2.1. IPAR switches the input options as discussed in section 4.2 and 4.5.

5.4.7 USRPINP (PUV,...,PGL, M20, ASI, MC2,MB2,MT2, NFORM,IMOMIN,ISSIMP)

The subroutine providing the input parameters for INITPINP if called with IPAR= 2.

5.4.8 INPPMOM1, INPPMOM2

The input-moment subroutines corresponding to INPLMOM1 and INPLMOM2 in sections 5.2.3

and 5.2.4. The only difference of the input options has been discussed in section 4.5. The

common-block PANORM now returns the first instead of the second moments as AUV etc.

5.5 Routines for output in N -space

The user interface for obtaining the results of the evolution at any complex value of N is

5.5.1 NPARTON (PDFN, AS, ‘N’, M2’, ‘IPSTD’, ‘IPOL’, ‘EVOLPAR’, ‘INPPAR’)

briefly discussed in section 4.6. PDFN(-6:6) is the double complex output array with two

options switched by IPSTD as explained for the analogous x-space array PDFX in section

4.3. AS returns the corresponding value as(µ
2
r(µ

2)) with µ2 = M2 (both double-precision).

Note that NPARTON is called without previous initialization and input calls as these calls

are issues by this routine using the values of IPOL, EVOLPAR and INPPAR.

5.5.2 INITMOM (IPOL, EVOLPAR)

The special initialization routine called by NPARTON. Depending on IPOL this routine takes

over the respective roles of INITEVOL in section 6.1.1 or INITPOL in section 6.4.1 in the

calculations for one moment N . The array dimension NA for the standard setup is formally

kept in order to comply with the fixed declarations in the low-level routines.

5.6 A list of common blocks

Here we present the list of common blocks mentioned above, ordered alphabetically. The

dimensions of the array variables are not indicated for brevity. Most, but not all of the

variables stored by these common blocks have been mentioned above.

COMMON / ANS2 / A2NS

COMMON / ASFTHR / ASC, M2C, ASB, M2B, AST, M2T

COMMON / ASG2 / A2SG
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COMMON / ASINP / AS0, M20

COMMON / ASPAR / NAORD, NASTPS

COMMON / BETA / BETA0, BETA1, BETA2, BETA3

COMMON / COLOUR / CF, CA, TR

COMMON / EVMOD / IMODEV

COMMON / FRRAT / LOGFR

COMMON / HSUMS / S

COMMON / INPNEW / IINNEW

COMMON / INVFST / IFAST

COMMON / ITORD / NUORD

COMMON / KRON2D / D

COMMON / LSG / R

COMMON / MOMS / NA

COMMON / NCONT / C, CC

COMMON / NFFIX / NFF

COMMON / NFUSED / NFLOW, NFHIGH

COMMON / NNUSED / NMAX

COMMON / ORDER / NPORD

COMMON / PABTHR / VAB, M3B, M8B, M15B, M24B, SGB, P3B, P8B, P15B,

, P24B, GLB

COMMON / PACTHR / VAC, M3C, M8C, M15C, SGC, P3C, P8C, P15C, GLC

COMMON / PAINP / VAI, M3I, M8I, SGI, P3I, P8I, GLI

COMMON / PANORM / AUV, ADV, ALS, ASS, AGL, NUV, NDV, NLS, NSS, NGL

COMMON / PATTHR / VAT, M3T, M8T, M15T, M24T, M35T, SGT, P3T, P8T,

, P15T, P24T, P35T, GLT

COMMON / PNS0 / P0NS

COMMON / PNS1 / P1NS

COMMON / PNS2 / P2NS

COMMON / PSG0 / P0SG

COMMON / PSG1 / P1SG

COMMON / PSG2 / P2SG

COMMON / R1SG / R1

COMMON / R2SG / R2

COMMON / RZETA / ZETA

COMMON / SPSUMS / SSCHLP, SSTR2P, SSTR3P

COMMON / U1HSG / U1H

COMMON / U1SG / U1

COMMON / U2HSG / U2H

COMMON / U2NS / UNS2

COMMON / U2SG / U2

COMMON / VARFLV / IVFNS

COMMON / WEIGHTS/ WN
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6 Accuracy and speed of the program

The main numerical step in an N -space evolution program is the inverse Mellin trans-

formation of the final results back to x-space. As discussed in section 3.1, the present

program uses a one-fits-all grid of fixed N -values for optimal performance in large com-

putations. The accuracy of the programmed inversion can be tested most easily calling

XPARTON at this initial scale M2 = µ2
0 and dividing by the known x-space initial distri-

butions. This has been done in Fig. 2 for the two extreme shapes in Eq. (4.1), uv and

us ≡ ū. Recall that xuv vanishes as x0.8 for x→ 0, while xus ∼ (1 − x)7 for x→ 1.
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Figure 2: The up-valence and up-sea distributions at the initial scale (4.2) obtained by
the standard and fast Mellin inversions, divided by the exact x-space inputs in Eq. (4.1).
The same four curves are shown in the left (right) part for small (large) values of x.

The results for the standard inversion using up to 144 moments (IFAST = 0) for this

test do not show any noticeable deviations from the exact values at 10−6 < x < 0.9 for uv,

and at 10−11 < x < 0.8 for us. These ranges refer to the program’s default value c = 1.9

of the contour abscissa in Eq. (3.2). Smaller values would improve the inversion of uv at

extremely small x at the cost of worsening that of us at very large x.

The faster, but close to the end-points inevitably less reliable option using between 32

and 80 moments (IFAST = 1) can be safely employed at least for 10−4 <
∼ x <

∼ 0.7, where

the upper limit includes the effect of the further softening of the sea-quark distributions by

the evolution. In many applications the small (and anyway poorly known) distributions

xuv at smaller x and us at larger x are practically irrelevant; then the fast inversion can

be used over the full range of x shown in the figure.
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At NNLO the present overall accuracy of the program at ‘normal’ values of x is

dominated by that of the parametrizations of the corresponding splitting functions and

the nf -matching coefficient discussed in section 3.2. An update of the NNLO benchmark

results in ref. [37] with the complete three-loop splitting functions of refs. [13, 14] will be

presented elsewhere [39]. For checks of tables 5 and 6 in ref. [37] the user needs to employ

the previous approximations [36] instead of the routines 5.1.8 and 5.1.9. For the moment

these approximations are still available as pns2mold.f and psg2mold.f .

Finally we illustrate the speed of the program. For this purpose the input (4.1) is

evolved, using Eqs. (4.2) and (4.3), for variable nf to 20 scales µ2 and the results are

Mellin-inverted at 25 values of x at each scale. The chosen scales and values of x are

DATA MS / 2.0D0, 2.7D0, 3.6D0, 5.D0, 7.D0, 1.D1,

1 1.4D1, 2.D1, 3.D1, 5.D1, 7.D1, 1.D2,

2 2.D2, 5.D2, 1.D3, 3.D3, 1.D4, 4.D4,

3 2.D5, 1.D6 /

DATA XB / 1.D-8, 1.D-7, 1.D-6,

1 1.D-5, 2.D-5, 5.D-5, 1.D-4, 2.D-4, 5.D-4,

1 1.D-3, 2.D-3, 5.D-3, 1.D-2, 2.D-2, 5.D-2,

2 1.D-1, 1.5D-1, 2.D-1, 3.D-1, 4.D-1, 5.D-1,

3 6.D-1, 7.D-1, 8.D-1, 9.D-1 / .

The whole calculation, including the input initialization but excluding the general ini-

tialization, is then repeated 200 times. Thus we perform precisely 10 5 calls of XPARTON.

The times (in seconds) required for this computation on a 2.0 GHz Pentium-IV processor

are listed below for various values of NPORD, IMODEV and IFAST (defined in section 4.1).

The value of the latter parameter is given after the name of the compiler. We have used

the GNU compiler g77 (version 3.2-36) with -O2 and the (non-commercial) ‘Intel Fortran

Compiler 8.0 for Linux’ ifort with -xW (optimization with -O2 is the default for ifort).

Type of evolution g77,0 g77,1 ifort,0 ifort,1

LO 7.8 4.3 2.5 1.4

IMODEV=0, NLO 8.2 4.5 2.7 1.5

IMODEV=0, NNLO 9.2 5.0 3.2 1.8

IMODEV=1, NLO 10.7 5.8 3.8 2.1

IMODEV=1, NNLO 11.3 6.2 4.4 2.4

Thus roughly 10 4 to 10 5 Mellin inversions of the complete set of partons can be per-

formed per second under the above conditions, depending on the initialization parameters

and the available compiler. As expected, the evolution becomes somewhat slower with in-

creasing order, and the iterative solutions (involving high orders of the evolution matrices

U) are slower than the truncated evolution.
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7 Summary and outlook

We have presented the fast, flexible and accurate Fortran package QCD-Pegasus

solving the evolution equations for the unpolarized and polarized parton distributions

of hadrons in perturbative QCD. The code is designed such that the program is relatively

fastest when this is most needed, viz in large repetitive computations like fits of the initial

distributions or error analyses according to refs. [40, 41, 42]. In standard applications,

the user needs to interact with only very few top-level routines which communicate the

evolution parameters and initial distributions to, and the results of the evolution from

the lower-level routines actually performing the underlying evolution in Mellin-N space.

The full potential of the N -space approach is realized once not only the parton evolu-

tion, but also the convolutions with the partonic cross sections (coefficient functions) are

performed (as multiplications of the moments) before Mellin-inverting back to x-space.

Doing this poses no problems if the coefficient functions are known (to a sufficient accu-

racy) in a form facilitating the calculation of their complex-N moments. Even if this is

not the case — for example, if coefficient functions are only known via x-space Monte-

Carlo programs including experimental cuts — there are efficient methods to proceed in

N -space, see ref. [43] and especially refs. [44, 45]. Sample routines for the latter proce-

dure will be presented elsewhere for representative observables in ep and pp/pp̄ scattering.

The user can then implement the processes he or she is interested in along these lines.

QCD-Pegasus can of course also be used efficiently within ‘normal’ x-space analyses.

If additional routines are included to deal with the additional ‘pointlike’ solution, the

program can also be used for the QCD evolution of the parton distributions of the photon.

These routines largely exist, but have not been included in this first public version of the

program. An even easier extension would be the evolution of also ‘timelike’ distributions

(fragmentation functions) of effectively massless partons. Considerably larger modifica-

tions would be required to include other (hypothetical) light coloured particles like a light

gluino which would lead to a enlarged 3 × 3 flavour-singlet sector. This extension was

actually present in an earlier incarnation of this program, see ref. [46], but has not been

pursued anymore since the light-gluino window is now generally considered closed.

The code of QCD-Pegasus can be obtained by downloading the source of this article

from the hep-ph preprint archive. Relevant changes of the code, if required, will be com-

municated by replacing the article in this archive. The program is distributed under the

GNU public license, with the obvious additional requirement that scientific publications

(including preprints) which have been prepared using the present code, or a modified

version of it, should include a reference to the present article. The author can be reached

by electronic mail for bug reports, comments and questions.
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