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Abstract

We extend the threshold resummation expon@itsn Mellin-N space to the fourth logarithmic
(N3LL) order collecting the termsi2(asInN)" to all orders in the strong coupling constant
Comparing the results to our previous three-loop caloutetifor deep-inelastic scattering (DIS),
we derive the universal coefficienBy andBy governing the final-state jet functions to oraef,
extending the previous quark and gluon results by one andtders. A curious relation is found
at second order between these quantities, the splittingiturs and the large-angle soft emissions
in Drell-Yan type processes. We study the numerical efféti@N°LL corrections using both the
fully exponentiated form and the expansion of the coefficienction in towers of logarithms.



1 Introduction

Coefficient functions, or partonic cross sections, formlihekbone of perturbative QCD. These
quantities are defined in terms of power expansions in tlkagtcoupling constarts. In general,
only a few terms in this expansion can be calculated. It isdwaw possible, and necessary, to
resum the dominant contributions to all ordersiyclose to exceptional kinematic points. Close
to threshold, for example, where real emissions are kineaibt suppressed, the resummation
takes the form of an exponentiation in Mellsspace [1-4], with the momenb$ defined with
respect to the appropriate scaling variable, like Bjorken-deep-inelastic scattering (DIS) and
X; = 2py/+/Sin direct photon and inclusive hadron production.

The resummation exponents are given by integrals overifurein turn defined by a power
series in0s. Besides by dedicated calculations, the correspondingresipn coefficients can be
obtained by expanding the exponentials and comparing toeshdts of fixed-order calculations.
Hence progress in the latter sector also facilitates imguloesummation predictions. At present
the next-to-leading order (NLO) is the standard approxiomator many important observables,
facilitating a resummation with next-to-leading logantic (NLL) accuracy. For recent introduc-
tory overviews see, for instance, Refs. [5, 6]. The nextéat-to-leading order (NNLO) correc-
tions have been completed so far only for the coefficient tions for inclusive lepton-proton
DIS [7-11], the Drell-Yan process [12-14] and the relatedddiboson production [13, 15-17]
in proton-proton collisions. Consequently, the threshekElmmation has been carried out at the
next-to-next-to-leading logarithmic (NNLL) accuracy priibr these processes [18, 19].

Recently we have computed the complete three-loop coeffiftiactions for inclusive photon-
exchange DIS [11, 20]. Moreover, in the course of the catmnaof the third-order splitting func-
tions governing the NNLO evolution of the parton distriloums [21, 22], we have also computed
DIS by exchange of a scalar directly coupling only to gluofisgether these results enable us
to extend two more universal functions entering the resutlmma&xponents, the quark and gluon
jet functionsBy andBg collecting final-state collinear emissions, to the thirderinas. In fact,
already the second-order coefficient f8y represents a new result, relevant for future NNLL re-
summations of processes with final-state gluons at the RBawel.l Making use also of the results
of Refs. [23, 24] we can furthermore effectively, i.e., ugtie small contribution of the four-loop
cusp anomalous dimension, extend the threshold resummfationclusive DIS to an unprece-
dented next-to-next-to-next-to-leading logarithmiéi(h) accuracy.

The remainder of this article is organized as follows: afesralling the general structure of
the resummation exponents in Section 2, we extend the estjintegrations in Section 3 to the
fourth logarithmic (NLL) order. In Section 4 we determine the relevant expansuefficients
by comparison to our three-loop results for DIS and illustithe numerical effect of the L
contributions to the resummation exponent. In Section 5nesgnt the resulting predictions for the
leading seven large-terms of the four-loop coefficient function and discuss bigbrder effects
in terms of the expansion in towers of threshold logarith@st results are briefly summarized in
Section 6. Some basic relations for the integrations ofi@e& can be found in the Appendix.



2 The general structure

For processes with only one colour structure at the Borrl |éve resummed Mellin-space coeffi-
cient functionsCN (defined in theMS scheme) are given by a single exponential [1, 2]

CN(Q?)/ClH(Q%) = go(Q?) - exp[GN(Q?)] + O(N~HIn"N) . (2.1)

HereCY, denotes the lowest-order coefficient function for the pssagnder consideration, e.g.,
C[\'O =1 for DIS. The prefactog, collects, order by order in the strong coupling constagt
all N-independent contributions. The expon@ht contains terms of the form N to all orders
in as. Besides the physical hard scal (= —¢? in DIS, with g the four-momentum of the
exchanged gauge boson), both functions also depend omibierralization scalg, and the mass-
factorization scal@;. The reference to these scales will be often suppressededoityo

The exponential in Eq. (2.1) is build up from universal raigiafactors for each initial- and
final-state partorp, Ap andJ,, together with a process-dependent contributt For exam-
ple, the resummation exponents for inclusive deep-inelasattering, Drell-Yan (DY) lepton-pair
production and direct photon production \gg — gy and qg — qy [25] take the form

Ghy = 2InAg+ Inalt
Glhoey = INDa+InAp+Inde+INAZ . . (2.2)

The radiation factors are given by integrals over functiohthe running coupling. Specifically,
the effects of collinear soft-gluon radiation off an init&iate partorp = g, g are collected by

11 ((1-2°Q def 2
INAp(Q2, 1) / az%. o /u & Aolas(@) (2.3)
Collinear emissions from an ‘unobserved’ final-state patéad to the so-called jet function,
1 N-1_ (1-2)Q?
o Z 1 / dof e
ny(Q?) = [ dzf— [(1 o @ O FBoas(1-4Q)| L @)

Finally the process-dependent contributions from langgl@soft gluons are resummed by

intrA2\ __ 1 ZN_l_
INAM(Q?) = [ dz
0 —

The functiongy, in Eq. (2.1) and®, By andD in Egs. (2.3) — (2.5) are given by the expansions

:lgﬁj_izéﬁa's, (2.6)

wherelg = 0 with gy, = 1 for F = g,, andlg = 1 else. Here we have also taken the opportunity
to specify the reduced couplirsg employed for the rest of this article. The extent to whiclsthe
functions are known defines the accuracy to which the thiddbgarithms can be resummed.

L bag(1-2°Q?)) . (2.5)
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The situation for inclusive DIS is actually simpler thanirated in Eq. (2.2), as the function
(2.5) is found to vanish to all orders @y [23, 24],

DP'S =0, A =1. (2.7)

On the other hand, the resummation of processes with fourave rpartons at the Born level,
like inclusive hadron production ipp collisions [26], is more complicated than Eq. (2.1) due to
colour interferences and correlations in the large-angtegtuon emissions [3, 4]. However, the
process-independent functioAs andBj, retain their relevance also for such cases.

3 The resummation exponent to fourth logarithmic order

After performing the integrations in Egs. (2.3) — (2.5), thectionGN in Eq. (2.2) takes the form

GN(Q%) = InN-g1(A) + G(N) + asgz(A) + aZgs(A) + ..., (3.1)

whereA = BpasINN. For the actual computation of the functiogst is convenient to employ the
following representation for the scale dependencasaip to N°LO
2 2
2 as ash B1 B2
= — — S—InX+ = IN“X —InX—-1+X)+ 1-X
o) e + 35 [Bmex-mx-100-+ -
B3 S5 2 3y 1 1.2
= 1= (21-X)InX+=In“X—=In>°X—-=+X—-=X
+5a {Bo ( )InX + 51 n > HX—3
B1B2

Bs
+—(1-X
28
with as = ag(4?) and the abbreviatioX = 1+ asBoIn(g?/?). The terms up to the-th order in

as in Eq. (3.2) contribute tg,, in Eq. (3.1). Thus the calculation gf, requires the highest known
coefficient of the beta function of QC[B3 [27, 28].

=E2(2XInX —3InX — X (1— X))}%—O(aﬁ) (3.2)

Generalizing the approach of Ref. [18], the functignd) can be obtained using well-known
methods for Mellin transforms based on properties of haimeanms and harmonic polyloga-
rithms [29, 30] in addition to algorithms for the evaluatimmested sums [31]. The basic relations
for this approach, suitable for the evaluation of Eq. (3d.phy accuracy, are presented in the
Appendix. As a check we have also carried out the integrat&ong the lines of Ref. [19].

For the convenience of the reader, we first recall the knowuoltg forg,, g, andg,; [1, 2,
18, 19]. For brevity suppressing factors [@f (see below) and using the short-hand notations
Lgr = IN(Q?/W?) and Lg = In(u2/p?), these functions can be written as

g2\ = AL (A—-In(A-N)+A"tIn(@-n)), (3.3)
g\ = (AlBl—Az)()\+In(1—)\))+%A1B1In2(1—)\)
— (Alye— Bl) In(l—)\) —+ LqrA1|n(1—)\) + LAl (3.4)

3



af's(\) = %(Alﬁz—AlﬁﬂAzﬁl—Ag)(1+A_L)

1-A
R 2 R
g 2NN | (A, A Ina )

+ (A1P1Ye+ A2Pr — Bip1) (1 1 i A Ing_l—_)\)\) )

- <A1l32 + %Al(yg +42) +AzYe — B1Ye — ) (1 - i)

1-A
—H_qr [(Alye—A1[31+A2_Bl)<1_l_]')\>+A By <|n§-1_)\)\))]
L - L gh (1o 55) -LigAn (3.5)

The dependence @ is recovered by, — Ax/BE, Bx — Bi/BE, Bk — [3k/[3"+1 and multiplication
of g3 by Bo. In the same notation the new functign(to be multiplied by[3§) is given by

1 nd(1-A) 1 In?(1—A) 1

§(A13§Ve+ AoBi—BiBY) a—nz " E(Alﬁf — AP

In(1—A)
(1=2)?

I
CRl e

— AB1(Y2 + 22) + Ao — 2A2B1Ye — AsB1 + 2B1B1Ve + 2B2B1)

(B A N (CABE - A+ 2 A In(1 ) + (A

1 1
— A1B1B2 — A1BTVe + A1B2Ye — AoB2 + AoBo 4 B1BF — B1By) <— ——

2 1—A\
11 1,1 . 1 1 1 ;
2 y2) + (5P GABe — G~ SANLa + e+ 2
, 5 1 5 1
+A2B1ye —A2(Ye +{2) — 6A2[31 + §A2[32 + 6A3[31 —AgYe — §A4 —B2P1
1 1

+ Bl(yg +02) +2Boye + BS) <1 — W> + = (AlB% — 2A1B1B2 + A1P33

1 1 1
+ AgB2 — AR+ Agfr — A4>7\ +Lgr [(A1[31 A1B2) <2 1313 (1-n)2 )

1 5 1 1 1
+ <§A1(Ve +Q2) — éA2B1 +AgYe + §A3 —B1Ye— BZ) <1 - m)

g\ =

+

+(A181ye+A231—Blgl)W 1 18zlr(l (1 )7\)] 2 [1(A1ye

1 In(l A) 1 1
o8 (1= i) + AP s (- )
4Ly Agh — L2 <A2+ %Al[ﬁ))\ e %Al)\. (3.6)

The resultsgjiDY for the Drell-Yan process and, with slightly different ch@entsA; andD;, Higgs
production via gluon-gluon fusion, are related to Eqgs. (3.83.6) as follows: the function cor-
responding to Eq. (3.3) reads’" (A) = 2gP'S(2\), while the functiongg®Y,gPY andg?Y are
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obtained from Egs. (3.4) — (3.6) by replacing— 2\ everywhere and substitutiry) — D;/2 in
all terms. Finally, the constants have to be changed acwidiye. — 2ye and{, — 2"¢,,. The
generalization of Eqgs. (3.3) — (3.6) to other processedwimp Eqs. (2.3) — (2.5) is obvious.

The functionsy, (A) collecting the leading logarithmis(asl )¢ depend o\, only and are finite
forall \. The N*-1LL contributionsgn~1(A) to Eq. (3.1) including\,, B,_1 andDy,_1, on the other
hand, exhibit Landau poles at the moments= exp1/(Boas)] for DIS andN = exp/1/(2Bpas)]
for the DY case (and at both values in general). As obvious fim. (3.3) — (3.6) the strength of
these singularities increases with the logarithmic onderching[1 — (2)A] 2 at the N'LL level.

4 Resummation coefficients and numerical stability

Since observables are independent, order by ordet,inf the factorization scale, the functions
Ap in Egs. (2.3) and (2.4) are given by the lafyesoefficients of the diagonal splitting functions
for pr = 1,

Pop(0s) = —Ap(as) INN+0O(1) , (4.1)
which in turn are identical to the anomalous dimension of Y line with a cusp [32]. The first
and second order coefficients have been known for a long timehird order has been recently
completed by us. The expansion coefficients (2.6) for thelgcase read [21, 33]

Aq1 = 4Ce
Ags = 8&{(?—2—@)@—%@
Pas = 160e [CF (5~ G o+ g Lot G B) + Oy (5020
+ Cany (—%93+1—9012—ng) + nf (—2%)] - (4.2)

Heren; denotes the number of effectively massless quark flavousCa andCa are the usual
colour factors, wittCg = 4/3 andCa = 3 in QCD. The gluonic quantities are given by

Agi = Ca/Cr Agi - (4.3)
The perturbative expansion 8§ is very benign. Fon, = 4, for example, Egs. (4.2) lead to
Aq(as) = 0.424405(1 + 0.6381as + 0.510002 + ...) . (4.4)

Consequently, already the effectAf on the resummed coefficient functions is very small [18,19],
and a simple estimate suffices for the presently unknowrttieander coefficient$\s enteringg,.
With the [0/2] results differing by less than 10%, we will eloypthe [1/1] Padé approximants

Aqs ~ 7849, 4313, 1553 for n; = 3,4, 5, (4.5)

corresponding to an estimate ¢f0.4075a3 for the next term in Eq. (4.4).
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For the determination of the coefficierBswe also need the constaNtpiece,g, in Eq. (2.1),
for inclusive DIS. The corresponding expansion coeffigggt can be obtained by Mellin invert-

ing the +-distribution and(1 — x) parts of thek-th order coefficient functiongz. Again using the
expansion parameteg = 0/ (41), the presently known terms [7, 10, 20] are given by

0> = Cr(—9—-200+2y2+3ye) , (4.6)
331 51 27 111
gos° = CF (? — SV TVEHeyS2vs+ ~5 (2~ 18yl ~ ay2L;

5465 3155 367 ,
72 " 5g YeT 1gle

—66Z3+24VeZ3+ _122) —|—CAC|: <—

22, 1139, 22 464
D g o e~ BLa g K 400l + 508
457 247 29, 4, 4
+Can( 36 27 Y gve——ve+§lz+ §Ve12+§Z3) (4.7)
and
7255 1001 187 , 93, 4 5 6197
Oo3” = CE’(— s T g Vet Yo 5V Metbyetzve— G

+ 5—Ve12 +66y2Lo — 36Y2Lz — 4yalo — 41103 — 346yel3 — 60y2L3

+ 48323~ = 2 1 84yel3+ Velz + 556023 — 80ye(2(3+ 13845
8144, , 176 > (9161 16981 5563 ,
~240els + 37502 — _Z3> CaCt ( 12 24 Y~ 35 e
8425 433 44 19154 28495 592
a4 Vet g Vet gVt g 512— 2 Velo— 5 ¥ela —BYSLz
284 49346 11419
Vel — 13+7SZVe13+—V {3 —80y3L3 + >7 (3
299 142 389
3 VeZz 2Z2 82823+ 96yel2(3 — TZS—HLZO/eZS

23098, 536 , . [ 1909753 599375 50689 ,
315SZ ZS) +CACF( 1044 ' 729 " 1e2 Ye
4649 . 121 . 78607 18179 778 . 88 2

81 Ye + 27 Ye — 12 — VeZZ
11501 121 4, 78607 18179 778 2 88 3
O<3+ o7 Y~ gg (27 g7 Yel2 — eZz——Velz
3496 176 416 12016 248
+—1213 —Velzls - —Zs + 235 — 315 - 3 13)

341 2003 83, 6835 70, B 1073
+CF”f< 36 108 18% 27 g¥ g% 5 22
2177 112,

32 1076
+—= >7 eZ2+—VeZ2+ Volo+ 613— VeZS+ Ve13 VeZz2




10802,, 40 784 142883 160906
- 135% 1213——15) ‘f‘CACan( 186 729 Ye

7531, 1552, 44 3333 5264 56,
— g1 Yo~ g7 Ve —2—7\'3 ]Zz 81 Yel2 + 3VeZ2+ V 30

2141 1976 164 128
R BT+ Byl ontd - 3 zzz3+—zs)

9517 8714 470 116 4 2110
+Cen? | - + + o o+ 55 9
F ( 486 729 Ye 81 Ye 81 Ye 27y§ Zz vele

116 80 64 292 d2P%pc
_—VeZZ + 8_1Z3 + —Vels 13512)

224 32 1280 )

fl11(64+ 16072

C

_13 _122__(5 (4.8)

Note the new flavour structuri1; [20, 34] ingys. This contribution, introducing the colour factor
dabcdabc/nc, for the first time leads to a difference between the flavangist and non-singlet
coefficient functions for the photon-exchange structurecfion R in the soft-gluon limit, with
fIlS=3(e) andfl$, = (€)2/(e?), where(eX) represents the average of the chatyéor the active
quark flavours{ek) = ne 12?;1 e,". Correspondingly, the largd-coefficient functions foZ- and
W-exchange DIS will differ from each other and frda#™ at ordera?. Based on the size of the
fl11 termin Eq. (4.8), however, we expect these differences taupeerically insignificant.

Now the coefficientd, x entering the jet function (2.4) can be derived successifrely the
In N terms of thek-loop DIS coefficient functionsg%. Expansion of Egs. (3.1) and (3.3) — (3.6)
in powers ofag yields

1) _
C27q NN - Alye_

1
Coal,y — 2-1Po (Y2 +22) + A2Ye — B1BoVe — B2+ Gga(ArYe — B1)

1 1
€24y §A1[3<2)(V§’ +3Yel2+203) + —Alﬁl(vé +22) + AoBo(Ve +{2)
+ AgYe — B1(BaYe + B5C2 + B5YE) — 2B2BoYe —
+ 0o2(ArYe — B1) + 901<§A1 Bo(Y2 +22) +A2Ye — B1BoYe — Bz) . (49

The coefficients of IhN, 2< | <2k in 0(2"21 on the other hand, are completely fixed by lower-order
resummation coefficients, thus providing an explicloop check of the exponentiation formula.
Comparison of the relations (4.9) with the correspondirsgits from the fixed-order calculations
of Refs. [7, 10, 20], using Egs. (4.2), (4.6) and (4.7), |eads

Bqi = —3Cr . (4.10)
3 3155 44
Bq72 = Cé |i—§ + 12(2 — 24Z3:| ‘|‘C|:CA |: H A 12+40Z3
247 8
Ceny { Zz} | (4.11)



29 288
Bys = C? {—7 —18(> —68{3— — Zz +32(2(3+ 24015}
712 272
+CAC|: { 46+ 287(r — — Zg - — 12 — 160203 — 120&5}
599375 32126 21032 652 176
+CACr { 729 T 81 o+ 7 (3— EZ 1213—23215}
5501 8714 232
CF £ { 54 - 500+ — Z3} +Cen¢ { ﬁ —12 _13}
160906 9920 776 208
e g - g e g et 1 4.12)

Eqg. (4.10) is, of course, a well-known result [1, 2]. Eq. @.has been derived by us before [35],
establlshlngDD'S 0 from then In°N term at three loops. For our new result (4.12), on the other
hand, we have to rely on the subsequent all-order proofs ofZ&g) in Refs. [23,24]. The QCD
expansion 0B8q analogous to Eq. (4.4) appears far less stable than thafor

Bq(0s,nf=4) = —0.318305(1 — 1.22705 — 3.40502 + ...) . (4.13)

The ingredients for the resummation of inclusive DIS are somplete, and in the left part of
Fig. 1 we show the corresponding LL, NLL2NL and N3LL approximations to the exponent (3.1)
resulting, foras = 0.2 and three flavours, from Egs. (3.3) — (3.6), (4.2), (4.5) @nt0) — (4.12).
For these parameters the expansion (3.1) is stable iN-ttamge shown in the figure. For example,
the relative NLL corrections amount to 2% & = 10 (\ = 0.33) and 4% alN = 40 (\ = 0.53),
whereas the correspondingIN figures read 9% and 12%. The large third-order contributim
B actually stabilizeg,(A): for Bqz = 0 the N'LL term at N = 40 would instead reach 12%, i.e.,
the size of the previous order. The effect of b8y ands, on the other hand, is very small, as
their respective nullification would change the result eseN = 40 by only 0.6% and 0.1%.

In the right part of Fig. 1 and in Fig. 2 the exponentiated ltssare convoluted with the typical
input shapexf = x%(1 —x)3 for a couple of values foos and n;. The Mellin inversion is in
principle ambiguous due to the Landau poles briefly adddeasthe end of Section 3. We employ
the standard ‘minimal prescription’ (thus adopting thealdixed-order contour) of Ref. [36], to
which the reader is referred for a detailed discussion. &t soft-gluon enhancements up to
almost an order of magnitude, as shown in the figures, thétirmpiN3LL corrections remain far
smaller than their RLL counterparts and amount to less than 10% everfos 0.3. Note that
the dependence am is larger than the effect af,. Thus, at this level of accuracy, a reliable
understanding of heavy-quark mass effects is called forialthe limitx — 1.

The gluonic coefficients corresponding to Egs. (4.10) —3¥%can be obtained in the same
manner from DIS by exchange of a scagawith a pointlike coupling to gluons, like the Higgs
boson in limit of a heavy top quark. We have derived the cpading coefficient functionsgg
up tok = 3 already during the calculations for Ref. [22], as a proaddhis type is required to
access the lower row of the flavour-singlet splitting fuaotmatrix. Comparing those results to
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Figure 1: Left: the LL, NLL, NLL and N°LL approximations for the resummation exponent for
standard DIS. Right: the convolutions of the exponentiadsdlts with a typical input shape.
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Figure 2: As the right part of the previous figure, but for defiént value ofh; (left) andas (right).



Egs. (4.9) forcég yields

Bg1 = _1_;-CA+§nf = —Po, (4.14)
Bg2 = CZ {—%ﬂ %SZH 1613] + Cany {42—278— ?zz] + 2Ceng — g—gnfz ., (4.15)
R e e S S

CEn | “Taee — gp G g Gt 15 | - Cin

54 9 3
48829 716 176 }

8579 832 32 47 32
+ CaCrry [——1612— 13—3122} + Cen? |:_—+§Zs:|

Can? | — -
+ A”f[ 1458 T 27 2T 57 3

200 8
S B
+ ng {243 912} , (4.16)

where Egs. (4.15) and (4.16) are new results.rkot 4 the numerical expansion 8f reads

By(als) = —0.6631a5(1 — 0.7651as — 2.696a2 + ...) , (4.17)

exhibiting an enhanced third order correction similar @t if B, in Eq. (4.13).

The gluonic threshold resummation resulting from Eqgs.)(a8l (4.14) — (4.16) is illustrated
in Fig. 3 using the practically irrelevant scalar-exchapgecess, with same parameters as in Fig. 1
for direct comparison. The soft and collinear radiatioreeti§ are much larger here due to the larger
colour charge of the gluons, but the qualitative patteraiker similar to ‘normal’ inclusive DIS.

As mentioned above, the (closely related) Drell-Yan preaasd Higgs boson production via
gluon-gluon fusion presently represent the only other ggses for which the NNLL threshold
resummation is known, witB; = 0 and [18, 19]

1616 176 224 32
DI = (Cr.Cal [CA (—7+?12+5613) + g (f - 312)} : (4.18)

Extending a result given in Ref. [18], we notice the follogriconspicuous relation between these
coefficients andBp >:

1

1
5DP" — Bz - P\ = 7BoCr
1 1 1
5D —Bgz- Py = 3B <4CA+580) : (4.19)
where Pélg denotes the coefficients &1 — x) in the diagonal two-loop splitting functions, and
the colour structures on the right-hand sides are thogg oindBp 1 = —PF()%), multiplied by 3.

Note especially the non-trivial cancellation of &function terms between the three contributions
on the left-hand sides of Egs. (4.19) and the vanishing ofitjie-hand sides fopy — O.
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Figure 3: As Fig. 1, but for inclusive DIS by exchange of a acaldirectly coupling to gluons.

5 Fourth-order predictions and tower expansion

Another manner to organize the all-order information emcbith Egs. (2.1) — (2.5) is to re-expand
the exponential,

0 2k
CMQ)/ClH(@) = 1+ Y &l § o In*'*IN, (5.1)
k=1 I=1

and retain only those terms in the second sum which are coefplexed by the available infor-
mation on the expansion coefficients in Eq. (2.6). Using tiation

00

g(A) = Y giA (5.2)
=

for the expansion of Egs. (3.3) — (3.6) together with Eq.Xf6g,, the quantitieg, in Eq. (5.1)
receive contributions from the following coefficients:

G - O11

Co * T 012, On

Cs * t+ G013, G225, Yoz
Cua * + Y14, G235 Ua1
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Cs * + G5, Goas U932, Qo2

Cee - + 9165 G255, U335, Om

Gz ¢ + 017, 92, Y31, Ya2, o3

Ckg © + %18, 27, O35, a3, Os1 --- - (5.3)

The complete relations for the first four termg ... ¢, can be found in Ref. [37] in a slightly
different notationg,; — ds, (i.€., the second index denoting the total poweagin Eq. (3.1)).
Note that the quantities; vanish factorially fork — o and fixedl.

Taking into account Eq. (2.7) and considering the coeffickgras either known or irrelevant,
the functiong; for inclusive DIS is completely specified by its leading teohtained by matching
to thei-th order calculation of the coefficient functions as in H4s9). The same holds for other
processes, at least for cases like Egs. (2.2), once theedmqoefficientd; are known from DIS.

The leading three towers of logarithms, for anyk andl = 1, 2, 3, are fixed by a one-loop
calculation (providingy;; fori =0, 1, 2) together with the NLL resummation (addigg, andg,,
for k > 2). This is the status for many important observables [5C8)crespondingly, a two-loop
computation of the process under consideration spegfieandg,, and hence fixes, together with
the NNLL resummation, also the next two towers. This is theueacy reached for the Drell-Yan
process and Higgs production [18, 19]. Finally a three-loomputation combined with the3NL
resummation fixes the first seven towecg, for | =1, ..., 7. With the results of Ref. [20] and
Sections 3 and 4, we have now reached this point for the steitinctionf in DIS.

The resulting four-loop predictions, xspace expressed in terms of the coefficients of the
+-distributions?y = [(1—x)~*In(1— )], for the six highest terms read

(4) 16
- 4
Cz,q D, 3 CF ) (5 )
4 308 56
csy . ~28CF — =5~ CaC2 4 5 Ciny (5.5)
998 1936
cs .= CF[ 18— 12812] + CaCE [?—4812} — - CAC?
5
164 704 64
- ?anf - ECACF2 f 27Can : (5.6)
400 27835 6800
cs) , = G {210+ 6oozz+—zg] + CaCE [——27 g Cat 40013]
4
24040, 440 1331 4630 1040
2n2 | &Yy Ty . 3 YV YR
- CACE { 27 Zz] 57 CACr + Cény { 27 Zz]
8120 80 242 640 44
+ CaC2ny {7 - —12} -5 C 2Cen; — 57 ——Cn? — 3CACan
.8
Can ) (57)

27
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ey 5 = c? {%)’ 12647, — 107203+ & 12} Cice {%6127 - %68 2}

4o [_ 15334_ 41:2412 - 88900Z 312812}

4 cic? {2145;:63_ 522971212_ 13824Z 86412]

.\ cén {_ 220+ 72916ZZ 188813] + C2Cen, [—%32 + %52 2}

o [FELRA 240,1216,) o 1800 2

+ C2n [%228— %Zz} - ZE%ZCF : (5.8)

csy , = G {—@ — 28080, + 139203 — 183673 — 640223 + 412815}

4o ‘13390+ 30;04Zz+ 27316Zs 12906Z2 36480000 72 015}

ez :22;52339_ 86980412_ 24;344Zs 4034Z2 83200t 139%5}

+ CACr - 641%5289+ 4%121 145205 2013 Zz]

4 CaCEn, {712?;1362_ 8220704Zz - 105001 37724

+ CRCeny {%189 - 50%, a5t + 56&4 (5.9)

+Cny |25 - 2t 038+ &32&2} JEagead

— CaCr 1 {%33— @312 - 1613] nf [552;8— 6;341 30413}

The seventh term witkD; is not exactly known, since the fourth-order contributiort;, has not
been computed so far. Inserting the numerical values forllthenctions and the QCD colour
factors, incIudin\cpl""bcdabc/nC = 5n; /18, the resummation prediction is given by

cg’) o = —286702+ 642190n; —201924n? + 2.0166nf3 —63.402fl11n +Agsa . (5.10)

1
As mentioned above, numerically insignificant are both theeutainty due td\q 4 (estimated in
Eqg. (4.5)) and the singl¢inon-singlet difference introduced by tfig; contribution of Eq. (4.8). It
is also interesting to note that the fourth coefficigbf the beta function [27, 28] with its quartic
group invariantsl2®®d andd 2 only enters the eighth tower, starting at the fifth ordemdn
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k Ca G Cis Ca Cs Cke Ce7

1| 2.66667| 7.0784 — — — — —
2 || 3.55556| 26.2834| 40.760| —67.13 — — —
3 || 3.16049| 44.9210| 238.885| 470.82| —620.3| —1639 —
4 || 2.10700| 48.7090| 477.854| 2429.46| 5240.0| —1824| —30318
51 1.12373| 38.3254| 581.518| 5015.18| 25150.5| 48482 11268
6 || 0.49944| 23.5617| 505.972| 6432.95| 52129.7| 225320 675012
7 | 0.19026| 11.8592| 340.954| 5933.61| 68602.9| 485712| 2494841
8| 0.06342| 5.0463| 186.822| 4244.45| 65550.0) 668223| 4979993
9| 0.01879| 1.8583| 86.041| 2467.72| 48805.8| 666670| 6718531
10 || 0.00501| 0.6028| 34.118| 1204.34| 29604.7| 517490| 6747332

Table 1: Numerical values of the four-flavour coefficieqfsin Eq. (5.1) for the quark coefficient

function in DIS. The first six columns are exact up to the nuoatitruncation, and the same for
F1, F» andFRs. The seventh column refers 8 andF, for the photon-exchange flavour-singlet
case,fl11 =1/10 [27], and uses the estimate (4.5) for the four-loop cugpreatous dimension.

The numerical values of thi-space coefficients,, in Eq. (5.1) are presented in Table 1
for | <7 andk < 10. Recall that also these coefficients refer to an exparnsiag = as/(4m).
Whatever the normalization of the expansion parameterghiewythe coefficients in each column
(tower) finally vanish fotkk — o, as mentioned below Eqg. (5.3). Thus the series (5.1) coaserg
at all N # 0 for any finite number of tower$nay, i.€., with the upper limit in the second sum
replaced byimax. The Mellin inversion of the product with the parton distritons fN is therefore
well-defined, in contrast to the fully exponentiated reslisgtussed above.

Before we turn to the higher-order predictions, it is instiee to compare the approximations
by the leading large-and largeN terms to the completely known two- and three-loop coefficien
functions [7, 10, 20]. This is done in Fig. 4 for the successapproximations in terms of the
+-distributions?x defined above Eq. (5.4). The corresponding results for tharesion in powers
of In N are presented in Fig. 5. Obviously both expansions repetheexact large-behaviour
(up to terms not increasing &s- 1 for the ratios shown in the figures) at ordgfonce all enhanced
terms, D with k=0, ...,2n—1 or In'"N with | = 1, ..., 2n, have been taken into account. The
x-space expansion, however, would lead to a gross overdstifmanly the terms up ti ~ n+1
were known. The convergence in tNespace approach, on the other hand, is much smoother, with
a good approximation already reached aftézrms.

A similar pattern is found for the fourth-order coefﬁcieunf:tionc(z‘f()q illustrated in the same

manner in the left part of Fig. 6: the expansion in decreapimgers of InN stabilizes after the

fourth term. Based on these results and the higher-orddiicerts shown in Table 1, we expect
that the firstl logarithms should provide a good estimate up to about itieorder inas, but

severely underestimate the effect of the coefficient famstiof much higher orders. Consequently,
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ot R B B
R 1]
sl (&chofyt gl gl (&Sanf i

.. N i Xf — X05(1_X)3 ::’l’. |

' -oLecs 1/2 B

_ ag=02, N=4 |

0.6 0.7 0.8X 0.9 1 06 0.7 0.8X 0.9 1

Figure 4: Convolution of the two-loop (left) and three-logjght) contributions to the DIS coeffi-
cient functionsC; g with a typical input shape. Shown are the full results [7200 and the large-
expansion by successively including the +-distributidpsrespectively starting withD; and Ds.

15l (&co0f)/f 1 sl (&cP,0f)/f I
xf = x> (1-x)° _

seex 12 y

—_— 5/6 InNterms

0.7 0.8 0.9 1
X
Figure 5: As the previous figure, but for larfjeexpansion in terms of decreasing powers dflin
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the tower expansion should underestimate the correctmmartlsx — 1, where more and more
orders become relevant. This is exactly the pattern showherright part of Fig. 6, where the
predictions of all effects beyond orde¢ are compared between the tower expansion and the full
exponentiation (for the latter again using a ‘minimal-grggion’ contour [36]). Both approaches
agree very well, for the chosen input parameterg,<a0.93, but start to diverge at=z 0.95 where

the exponentiation is also intrinsically more stable.

15+ — 3 —
: (asc(4)Df)/f i1 Zas(c(k)Df)/f ;

I xf = x*°(1-x)° ]

2 | . —

L e 5 i

i —-.—-— 7 towers 'If i

- - - - NNLL ii

ag=0.2, N=4
I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1

0.8 0.85 0.9 0.95 X 0.8 0.85 0.9 0.95

Figure 6: Left: the successive approximations of the fawpl coefficient functlorcg) by the
largeN terms specified in Table 1, illustrated by the convolutlothva typical quark dlstrlbutlon
Right: corresponding results for the effect of all ordergdrel a as obtained from the tower
expansion with up to seven towers and from the exponenuialgixlo NPLL accuracy.

6 Summary

We have extended the threshold resummation exponentsid, P9] for few-parton processes to
the fourth logarithmic (RLL) order collecting the termaZ(asInN)X to all orders inas. For our
reference process, inclusive deep-inelastic scatteg)( the NPLL contributions are specified
by two universal expansion parameters: the four-loop cuspnalous dimensiodg4 and the
third-order quantityBy 3 which defines the jet function resumming collinear radmatdf an un-
observed final-state quark. The former coefficient has nemhlsemputed so far, but can be safely
expected to have a very small effect of less than 1%. In faet,perturbative expansion up to
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Az [21, 22] does not exhibit enhanced higher-order correstiandA4 can be estimated by Padé
approximations. We have calculated the more importantrskcoefficientBy 3 by comparison of
the expanded resummation result to our recent third-oreulation of electromagnetic DIS [20].

The perturbative expansion Bf; seems to indicate, as far as this can be judged from the first
three terms, the onset of a factorial enhancement of theshigitder coefficients. However, the
rather large size of the coefficieBt, 3 actually stabilizes the logarithmic expansion of the ceeffi
cient functions. In fact, the LL corrections are very small at large sca@s and even facilitate
a reliable prediction of the soft-gluon effects at scalesoasas Q? ~ 4 Ge\? (corresponding
to as ~ 0.3) down to very small invariant mass®&¢ of the hadronic final state iep — eX,

W2 — mf) ~ 0.5 Ge\2. Thus we expect our results to be useful also for low-scale daalyses
using parton-hadron duality concepts.

The threshold resummation can also be employed to preddsy by order ims, the leading
In N contributions to the higher-order coefficient functionst the level of accuracy reached in
the present article for inclusive DIS, the exponentiatiaedithe seven highest terms' ik with
2l -6 < n< 2k, at all orderk > 4 of as. Already the highesk powers of InN provide a good
estimate of the soft-gluon enhancement of kHeop coefficient functions at least fér< 7, in
contrast to the (expected, see Ref. [36]) worse behavialmeaforresponding expansiondspace
+-distributions. Except very close to threshold, wherenwmy orders iras become important,
the summation of the above sevidrspace logarithms to all orders yields a good agreement with
the exponentiated coefficient function. This agreemenh&rrconfirms the ‘minimal prescription’
[36] used for defining the in principle ambiguous Mellin ins®n of the resummation exponential.

Besides the standard (gauge-boson exchange) processver@lsa considered DIS by ex-
change of a scalar directly coupling to gluons. By comparisibthe resummation to our unpub-
lished three-loop coefficient function for this process \aeéhderived, for the first time, the second
and third order contributions to the coefficidy governing the jet function of a final-state gluon.
The quantityBg > will be employed to extend the NNLL resummation to more psses, once the
corresponding NNLO results required to fix the process-déest large-angle soft contribution
become available. Finally we would like to draw attentiorthe curious relation (4.19) which
connects, for both the quark and gluon channels, the seaated-splitting functions, jet functions
and the two-parton (Drell-Yan) large-angle soft emissiors non-trivial manner.
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Appendix

Here we show some key elements of the calculation of the resiion exponentg; presented in
Section 3. Useful auxiliary relations (fox| < 1) are

1 > Fr(n—e+i)
N Al
(1—x)n-¢ Z) M(n—¢) |' ’ (A1)

Ink(1—x) 1

—_— = —_— . A.2

(1—x)n-¢ (68) (1—x)n-¢ (A-2)
The Mellin transforms of the +-distributions follow fromehesults for harmonic polylogarithms

[30] and are given by
1

/ N-1 k+1
dz 1 In(1-2) = (=) kI ,1(N), (A.3)

/ -7 gooe
k+1

whereSy, . m(N) denotes the harmonic sums [29]. Egs. (A.1) — (A.3) lead torthster formula
for the derivation of the functiong;,

q 1 1
/ “1-2 (1+aln(1—2z)"¢

© r(n—g+i) i - (i+i-1 '
B Z) e (aso)' S1, . 1(N) J;( j ) (—asBoln E) (A.4)

i+1

with a= (asfo) /(1+asBoInQ?/1?). The double sum in Eq. (A.4) can be solved to the desired log-
arithmic accuracy with the algorithms for the summationedted sums [31] coded iroRm [38].
The expansion of the Gamma function in powers &fr positive integers reads

TS 1Sy + 2(S0a(n) — Sa(n) + (S0 - Sta(n
—S1(n) +S3(n) +€*(Sp1.1(N) — S112(n) — S121(N)

+S13(N) — S211(N) +S22(n) +Sa(n) —Su(n)) + O(°) . (A5)

Finally, with 6j; = 1 fori > j and®;; = O else, the sumS,

151, 2(N) = (SUN) -+ 5~ DSN)(SHN)) 2+ 311~ 1)(i - 2SN (S N)

1(N) are factorized according to

1

4&mw)@@w4+m (A6)

+%i(i ~1)(i—2)(i - 3) (S4(N)+ 5

~ BIn'N+ %Gisi(i —1)In' 2N+ %Gmi(i —1)(i—2)%In"3N

4

whereN = Ne¥e and the algebraic properties of harmonic sums have beer{28fed

+}9i5i(i —1)(i—2)(i—3) (a4+ %zf) IN—4N+..., (A.7)
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