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Abstract

We compute the fermionic (nf ) contributions to the flavour non-singlet structure functions in un-
polarized electromagnetic deep-inelastic scattering at third order of massless perturbative QCD.
Complete results are presented for the correspondingnf -parts of the three-loop anomalous dimen-
sion and the three-loop coefficient functions for the structure functionsF2 andFL. Our results
agree with all partial and approximate results available inthe literature. The present calculation
also facilitates a complete determination of the threshold-resummation parametersB2 andDDIS

2 of
which only the sum was known so far, thus completing the information required for the next-to-
next-to-leading logarithmic resummation. We find thatDDIS

2 vanishes in theMS scheme.
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1 Introduction

Structure functions in deep-inelastic scattering (DIS) form the backbone of our knowledge of the
proton’s parton densities, which are indispensable for analyses of hard scattering processes at
proton–(anti-)proton colliders like the TEVATRON and the future LHC. Structure functions are
also among the quantities best suited for precisely measuring the strong coupling constantαs.
Over the past twenty years DIS experiments have proceeded toa high (few-percent) accuracy
and a wide kinematic coverage [1]. More results, especiallyat high scalesQ2, can be expected
from the forthcoming high-luminosity phase of the electron–proton collider HERA at DESY. On
the theoretical side, at least the next-to-next-to-leading order (NNLO) corrections of perturbative
QCD need to be taken into account in order to make full use of these measurements and to make
quantitatively reliable predictions for hard processes athadron colliders.

The calculation of NNLO processes in perturbative QCD is farfrom easy. For deep-inelastic
structure functions, in particular, the current situationis that, while the coefficient functions are
known to two loops [2, 3, 4, 5, 6], only six/seven integer Mellin moments of the corresponding
three-loop anomalous dimensions have been computed for lepton–hadron [7, 8, 9] and lepton–
photon DIS [10], together with the same moments of the three-loop coefficient functions. The
hadronic results have been employed, directly [11, 12, 13, 14] and indirectly [15, 16] viax-space
approximations constructed from them [17, 18, 19], to improve the data analysis and some hadron-
collider predictions. However, the number of available moments is rather limited, and hence these
results cannot provide sufficient information at small values of the Bjorken variablex.

For the complete information one needs to obtain either all even or odd (depending on the quan-
tity under consideration) Mellin moments, or do the complete calculation in Bjorken-x space. We
have adopted the first approach. Following the formalism of ref. [20, 21, 7, 8] to obtain the lower
fixed moments, we have used recursive methods to extend the calculation to all values of the Mellin
momentN. This is by no means trivial, since before the start of the calculation the mathematics
of the answer was still poorly understood [22]. Hence it was first necessary to develop the under-
standing of harmonic sums [23, 24, 25, 26] and harmonic polylogarithms [27, 28, 29]. In addition
the Mellin transforms and the inverse Mellin transforms from Bjorken-x-space to Mellin space and
back had to be solved [29]. These conceptual problems have been overcome and the method has
been shown to work in a complete re-calculation of the two-loop coefficient functions [6].

The concept of working in Mellin space is not new. This methodwas already used in the early
QCD papers [30, 31, 32]. But even in the case of the two-loop anomalous dimensions it was still
possible to do the resulting sums in a rather direct manner [33, 23]. This changed with the two-
loop evaluation ofσL/σT in which Kazakov and Kotikov [34, 35] managed to obtain some of the
integrals via recursion relations or first order differenceequations.

In this article, we present the fermionic (nf ) corrections to the flavour non-singlet structure
functions in electromagnetic DIS at the three-loop level. This includes the three-loop anomalous
dimensions which are needed for the completion of the NNLO calculation, as well as the three-

1



loop coefficient functions which are, at least at largex, the most important contribution to the
next-to-next-to-next-to-leading order (N3LO) correction [36]. Of course, thenf -part is not the
complete calculation. Yet we decided to present it already now, because the complete calculation
(including the singlet part) will still take quite some (computer) time. Thus, for the time being,
NNLO calculations of the Drell-Yan process [37, 38] (which are relevant for luminosity monitoring
at TEVATRON and LHC [39, 40, 41]) and of Higgs production [38, 42] have to rely on parton
distributions evolved with the approximate splitting functions of ref. [19]. Our present calculation
provides a first check of the reliability of these approximations. More importantly, it turns out
that already this calculation is sufficient to provide the last relevant missing information for the
extension of the soft-gluon (threshold) resummation for DIS [43, 44, 45] to the next-to-next-to-
leading logarithmic accuracy [46]. In fact, our result for the resummation parameterDDIS

2 is most
intriguing and calls for further studies.

This article is organized as follows. In section 2 we outlinethose parts of the calculation, which
differ from previous two-loop [6] and fixed-N three-loop [7, 8, 9] analyses. The present calculation
does not yet involve the full complexity of the method, as themost difficult diagram topologies do
not occur. Therefore we postpone a full account to a later publication. In section 3 we present our
explicit even-N Mellin-space results, except for the rather lengthy expressions for the three-loop
coefficient functions which are deferred to appendix A. The corresponding three-loop quantities
in x-space can be found in section 4. Here, instead of writing down the cumbersome exact ex-
pressions for the coefficient functions, we follow the procedure applied in refs. [17, 18] to the
two-loop coefficient functions, and provide approximate parametrizations which are compact and
sufficiently accurate for all numerical applications. In section 5 we then discuss the implications
of our calculation on the soft-gluon resummation, before wesummarize our results in section 6.

2 Method

Because we are considering only the non-singlet structure functions in this paper, the method for
the calculation of their moments closely follows ref. [7]. Hence there is not much need to explain
the physics of the method here again. Thus we will discuss only the differences introduced by the
fact that we now compute all moments simultaneously as a function of the moment numberN.
SinceN is not a fixed constant, we cannot resort to the techniques of ref. [7], where the Mincer
program [47, 48] was used as the tool to solve the integrals. Instead, we will have to introduce new
techniques. However, we can giveN a positive integer value at any point of the derivations and
calculations, after which the Mincer program can be invokedto verify that the results are correct.
From a practical point of view this is the most powerful feature of the Mellin-space approach, as it
greatly simplifies the checking of all programs.

Similar to the fixed-N computations of refs. [8, 9], the diagrams are generated automatically
with a special version of the diagram generator QGRAF [49]. For all the symbolic manipulations
of the formulae we use the latest version of the program FORM [50]. The calculation is performed
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in dimensional regularization [51, 52, 53, 54] withD = 4−2ε. Hence the unrenormalized Mellin-
space results will be functions ofε, N, and the valuesζ3,...,5 of the Riemannζ-function. The
renormalization is carried out in theMS-scheme [55, 56] as described in ref. [7].

We distinguish three categories of diagrams: complete diagrams, composite building blocks
and basic building blocks. A complete diagram is a Feynman diagram with all its structure like
traces and dotproducts in the numerator. Such a diagram may lead to a large number of more
fundamental integrals that cannot be reduced by considerations of momentum conservation only.
For the understanding of composite and basic building blocks, one has to realize that in the frame-
work of the operator-product expansion we eventually have to takeN derivatives with respect to
the parton momentumP after whichP is put equal to zero. This projects out theN-th Mellin
moment [57] and it effectively amputates the legs of the parton, leaving us with propagator-type
diagrams. Therefore, we define the topology of a diagram as the propagator topology when the
P-momentum legs have been amputated. The three-loop propagator topologies of the BE (Benz)
type and of the O4 type are shown in fig. 1. For the notation we refer to refs. [47, 48]. The external
lines in the propagator topology are referred to asQ.
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Figure 1: The topologies BE (left) and O4 (right) of propagator-type diagrams, with the line num-
bering as employed in figs. 2 and 3 below. The external lines carry the momentumQ.

When the numbers of the position of the incoming and outgoingmomenta have been attached
we are referring to subtopologies. For instance, BE13 is a subtopology of type BE in which the
momentumP comes in in line 1 and leaves in line 3, assuming the numberingof the BE topology
as in fig. 1. We define basic building blocks (BBB) as integralsin which both the incoming and the
outgoingP-momentum are attached to the same line as, e.g., in BE22. In composite building blocks
(CBB), on the other hand, the incoming and the outgoingP-momentum are attached to different
lines, as in the case of BE13 mentioned above. Of course we could have introduced names for all
these three-loop four-point functions, but since eventually theP-momentum legs get amputated the
above notation seems the clearest scheme. In this way, it is only a small step to an easy pictorial
representation of the integrals as used in ref. [6].

For the calculation of thenf -parts of the non-singlet structure functionsF2 andFL, one does
not need to consider all three-loop topologies. In fact, theonly genuine three-loop subtopologies
one has to solve are of the BE-type and of the O4-type, with twocomplete diagrams of either type
entering the calculation. These diagrams are displayed in figs. 2 and 3.
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Figure 2: The diagrams of topology BE which contribute to thefermionic part of the non-singlet
structure functionsF2 andFL. The subtopologies are BE1Q (left) and BE13 (right).
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Figure 3: The diagrams of topology O4, which contribute to the fermionic part of the non-singlet
structure functionsF2 andFL. These diagrams are examples of the subtopologies O41Q and O418.

The main problem we are faced with as compared to the corresponding two-loop calculation [6]
is that the necessary reduction equations become much more complicated. In addition the set of
equations that was available at that moment was not maximal,and the structure of the more com-
plicated topologies needs the maximal set of reduction equations. This involves some equations
in which the vanishing ofP ·P is an issue that should be considered with care, a point that will be
explained in full detail in a later publication in which we have to deal with all topologies.

For this calculation we first studied the basic building blocks. Here it is easy to expand the sin-
gle propagator that contains the momentumP to sufficient powers inP for theN-th moment. This
number of powers can be less thanN as there may be some powers ofP in the numerator already.
It should be noted that if we have a power ofP ·Q in the numerator we are effectively computing
the momentN−1 of the integral. At this point we write down all equations based on integration
by parts, all scaling relations and all form-factor equations that can be constructed. Next follows
a potentially difficult process in which we have to combine these relations to construct equations
that can systematically bring the powers of the denominators in the integral down, either reducing
them to zero or leaving them at a fixed unique value. When a lineis eliminated a simpler topology
is reached and we can refer to the reduction equations for that topology. This will eventually lead
to a topology that is simple enough so that we can calculate the integral.

A problem arises when a reduction equation cannot take the powern of a denominator beyond
one, because it is of the typenI(n+ 1) → I(n). Also when the power of a propagator is not
an integer, one can only try to reduce this power to a fixed value for which the line does not
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vanish. In these cases we leave the power either at one or at this fixed value (usually 1+ε) and we
continue with the next propagator. Eventually we will have integrals in which only the line with
the power that involvesN will not have a standard value. TheN will occur both in the power of
the denominatorp · p and in the numerator 2P · p whenp is the momentum associated to this line.
By this time our remaining equations which have also been treated to bring the powers of their
progagators to standard values may have become rather lengthy. But we still need them to bring
the difference of the powers in the numerator and the denominator to a fixed value, which can be
either 0, 1 or 2, something we have to leave open for reasons explained below. Now there are
several possibilities: If there is only one integral left ofthe type to be solved, the equation directly
determines the solution. This is however rarely the case. Usually there are several terms left, each
with a different power of 2P ·Q, leaving us with an equation of the type

a0(N) I(N)+a1(N) I(N−1)+ . . .+am(N) I(N−m) = G(N) (1)

in which the functionG refers to a potentially horrendous combination of integrals of simpler
topologies. Eq. (1) defines a recursion relation or difference equation of orderm. For the present
calculation we did not have to go beyond order 2. It should be noted that recently difference
equations have been encountered by Laporta in refs. [58, 59].

These difference equations can be solved by making the ansatz that the solution will be a
combination of harmonic sums. If the proper combination hasbeen selected, the coefficients of
the harmonic sums can be obtained by substituting the trial solution into the equation and solving
the resulting, potentially large set of linear equations. There can be several thousand equations in
such a system. Of course one has to have a solution for the function G(N) in eq. (1) first, and
m−1 boundary values are required. Because these boundary values are basically fixed integer-N
moments, they can be obtained using the Mincer program. The need for knowing the functionG
puts a rigid hierarchy in the order in which we have to treat the topologies.

Solving the difference equations is rather slow work. Hencewe compute their solutions only
once and tabulate the results. We usually do this for severalvalues of the difference of the powers
of the numerator and the denominator as mentioned above eq. (1). The reason behind this is that
the equations we use for either raising or lowering this difference may contain a so-called spurious
pole inε when we try to bring this value to one. The concept of spuriouspoles is rather important.
The rule of the triangle [60, 61], for instance, can involve afactor proportional to 1/ε when an
integral is being reduced. Close inspection reveals that when powers of the loop momentum are
present in the numerator, it is possible that more than one ofsuch poles is generated before a
denominator is removed. The resolved triangle [62] shows, however, that it is possible to sum
all contributions of such a reduction and that eventually there can be no more than one pole per
eliminated line. This means that the extra poles should cancel between the many generated terms.
But when we work only a to given cutoff in powers ofε (both for reasons of economy and because
we cannot evaluate some integrals easily beyond certain powers inε) these temporary poles could
spoil the final result in the same way as such things can happenin numerical calculations at fixed
precision. We call them spurious poles, because in principle they can be avoided. One of the
greatest difficulties in deriving reduction equations is toindeed avoid such spurious poles. For
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some integrals, no spurious-pole free formula could be found for the last reduction when bringing
the difference of the power of the denominator and the numerator either from 2 to 1 or from 0 to 1.
This problem has been circumvented by solving the resultingdifference equations for the three
cases 0, 1 and 2 separately.

Since the evaluation of all the basic building block integrals that can occur requires very much
computer time, we decided to tabulate all these integrals for the complicated topologies. This saves
much computer time, because each integral is typically usedmany times. Also the more compli-
cated topologies use many integrals of a less complicated type, hence their evaluation becomes
much faster once the latter integrals have been tabulated.

The next step is the evaluation of the composite building blocks. Here again we first construct
all possible equations. It turns out to be most economic to leave the propagators with the momen-
tum P unexpanded. The fact that eventually an expansion toN powers ofP will take place then
requires some special calculational rules. If for instancean equation is multiplied byP ·Q, we
have to replaceN by N−1 at the same time. Such rules can be major sources of errors. Hence it is
very fortunate that at any moment we can decide thatN has a fixed value like four or five and then
evaluate the integrals in the equation with the Mincer program to see whether it is still correct.

The equations are used to set up a reduction scheme that is similar to the one for the BBB’s. If a
line is eliminated we obtain either a simpler topology or a BBB. Otherwise we reduce the power of
a denominator to a standard value and continue with the next line. In numerous cases a reduction
can only be done by means of a difference equation (1). If thisis a first order difference equation it
can be solved directly, introducing one sum. Such sums are ofa benign type and can be evaluated
afterwards. If the difference equation is of a higher order we have to consider all more fundamental
integrals first before we can solve the equation. The furtherreduction scheme becomes then rather
complicated, but not impossible. On the average each subtopology can require several weeks of
work before it has been completely solved by these methods.

Analogous to the BBB case discussed above, we have tabulatedthe more complicated CBB
integrals entering the calculation. It is not only a matter of computer time that renders this neces-
sary. Also the size of the intermediate expressions becomesa most relevant factor: if one is not
careful, even a hard disk of 100 GBytes can become restrictive. In practice, already expressions
significantly larger than 10 GBytes took too long for evaluation without further optimization. A
careful hierarchy of tabulation managed to avoid these problems.

Having programs for all basic and composite building blocksrenders the remainder of the
calculation rather straightforward. The major differenceto the fixed-moment calculations is now
that we obtain much longer results due to the presence of the parameterN in the answer. We have
checked the correctness of each individual diagram for several values ofN, by comparing with the
results of a Mincer calculation. In addition we have compared the complete renormalized results
with the results in the literature for the available values of N.
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3 Results in Mellin space

Here we present theN-space coefficient functions and the anomalous dimensions up to the third
order in the renormalized couplingαs. All results are given in theMS-scheme with the renormal-
ization scales identified with the physical hard scaleQ. Thus the perturbative expansion of the
non-singlet coefficient functions and anomalous dimensions can be written as

Ci,ns(αs,N) =
∞

∑
n=0

( αs

4π

)n
c(n)

i,ns(N) , (2)

γns(αs,N) =
∞

∑
n=0

(αs

4π

)n+1
γ(n)

ns (N) (3)

with i = 2,L in eq. (2). There is no need to consider different choices of the scales, as they do not
require functions beyond those introduced in eqs. (2) and (3). Recall that forF2 the (n+1)-loop
anomalous dimensions and then-loop coefficient functions together form the NnLO approximation
of (renormalization-group improved) perturbative QCD.

There are, actually, three different non-singlet combinations of coefficient functions and split-
ting functions. These combinations all coincide at orderαs, but they all differ beyond the second
order. Only the so-called ‘+’-combinations (involving sums over quarks and antiquarks) are probed
in electromagnetic DIS, hence only these quantities are addressed in the present article. Conse-
quently our results below apply directly only to all even-integer values ofN from which, however,
the results for arbitraryN can be uniquely inferred by analytic continuation.

Our N-space results are expressed in terms of harmonic sumsS~m(N). In the following all
harmonic sums are understood to have the argumentN, i.e., we employ the short-hand notation
S~m ≡ S~m(N). In addition we use operatorsN± andN±i which shift the argumentN of a given
function by±1 or a larger integeri,

N± f (N) = f (N±1) , N±i f (N) = f (N± i) . (4)

We normalize the trivial leading-order (LO) coefficient function and recover, of course, the
well-known result for the LO anomalous dimension [30, 31]

c(0)
2,ns(N) = 1 , (5)

γ(0)
ns (N) = CF(2(N− +N+)S1−3) . (6)

In our notation, the next-to-leading order (NLO) non-singlet coefficient function forF2 [56] and
the corresponding anomalous dimension [33, 23] read

c(1)
2,ns(N) = CF(7N+S1 +2S1−9+(N− +N+)[2S1,1−3S1−2S2]), (7)

γ(1)
ns (N) = 4CACF

(

2N+S3−
17
24

−2S−3−
28
3

S1+(N− +N+)
[151

18
S1+2S1,−2−

11
6

S2

])
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+4CFnf

( 1
12

+
4
3

S1− (N− +N+)
[11

9
S1−

1
3

S2

])

+4CF
2
(

4S−3+2S1+2S2−
3
8

+N−

[

S2+2S3

]

− (N− +N+)
[

S1+4S1,−2 +2S1,2+2S2,1+S3

])

. (8)

At next-to-next-to-leading order (NNLO, N2LO), we have re-calculated the coefficient function

c(2)
2,ns of refs. [2, 6], and we have computed all fermionic contributions to the splitting functionγ(2)

ns ,

then1
f terms being a new result of this article. The fermionic NNLO corrections — the complete

expression for theN-space coefficient function can be found in ref. [6] — are given by

c(2)
2,ns(N) = 4CFnf

(

(1−N+)
[122

27
S1+

7
6

S1,1

]

− (N−−1)
[ 89

108
S1−S2

]

− (N− +N+)
[5

6
S3

+
13
18

S1,1+
1
3

S1,1,1−
2
3

S2,1−
1
3

S1,2

]

−
1
6

S1,1+
457
144

−
247
108

S1+
19
6

N+S2

)

, (9)

γ(2)
ns (N) = 16CACFnf

(3
2

ζ3−
5
4

+
10
9

S−3−
10
9

S3+
4
3

S1,−2−
2
3

S−4+2S1,1−
25
9

S2+
257
27

S1

−
2
3

S−3,1−N+

[

S2,1−
2
3

S3,1−
2
3

S4

]

+(1−N+)
[23

18
S3−S2

]

− (N− +N+)
[

S1,1+
1237
216

S1

+
11
18

S3−
317
108

S2 +
16
9

S1,−2−
2
3

S1,−2,1−
1
3

S1,−3−
1
2

S1,3−
1
2

S2,1−
1
3

S2,−2+S1ζ3 +
1
2

S3,1

])

+16CFnf
2
( 17

144
−

13
27

S1 +
2
9

S2+(N− +N+)
[2

9
S1−

11
54

S2+
1
18

S3

])

+16CF
2nf

(23
16

−
3
2

ζ3

+
4
3

S−3,1−
59
36

S2+
4
3

S−4−
20
9

S−3+
20
9

S1−
8
3

S1,−2−
8
3

S1,1−
4
3

S1,2+N+

[25
9

S3−
4
3

S3,1

−
1
3

S4

]

+(1−N+)
[67

36
S2−

4
3

S2,1 +
4
3

S3

]

+(N− +N+)
[

S1ζ3−
325
144

S1−
2
3

S1,−3 +
32
9

S1,−2

−
4
3

S1,−2,1+
4
3

S1,1+
16
9

S1,2−
4
3

S1,3 +
11
18

S2−
2
3

S2,−2+
10
9

S2,1+
1
2

S4−
2
3

S2,2−
8
9

S3

])

. (10)

The corresponding formulae for the longitudinal coefficient functionCL,ns are deferred to the
appendix, together with the rather lengthyN-space results for the fermionic parts of the third-order

coefficient functionsc(3)
i,ns, i = 2,L , which partly also represent new results of this article (the nf

2

term forF2 has already been presented in ref. [63]). Notice thatc(3)
L,ns can be considered a NNLO

quantity, sinceCL vanishes at orderα0
s. On the other handc(3)

2,ns represents, at least at largeN, the

dominant part of the N3LO corrections toF2 [36].

As briefly mentioned at the end of section 2, we have subjectedour results to a number of
checks. First of all, we have calculated some lower even moments in an arbitrary covariant gauge
with the Mincer program [47, 48], keeping the gauge parameter ξ in the gluon propagator. All

dependence onξ does cancel in the final results. Secondly thenf
2-contribution toγ(2)

ns is known

from the work of Gracey [64] and we agree with his result. Furthermore the coefficients of lnk N,

k = 3, . . .5, of c(3)
2,ns(N) agree with the prediction of the soft-gluon resummation [65]. Finally, we

have checked the result of each individual diagram for several integer values ofN by comparing
with the results of a Mincer calculation. Thus, as the strongest check, our results reproduce the
fixed even momentsN = 2, . . . ,14 computed in refs. [7, 8, 9].
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4 Third-order results in x-space

The x-space coefficient functions and the splitting functions are obtained from the results of the
previous section by an inverse Mellin transformation, which maps the harmonic sums of moment
space [23, 24, 25, 26] to harmonic polylogarithms inx-space [27, 28, 29]. This transformation can
be performed by a completely algebraic procedure [29, 6] based on the fact that the harmonic sums
also occur as coefficients of the Taylor expansion of harmonic polylogarithms.

Here we confine ourselves to the third-order results; for thetwo-loop non-singlet splitting
functions and coefficient functions the reader is referred to refs. [67, 2, 6]. For brevity the exact
results are written down only for the splitting function, conventionally related to the anomalous
dimension (3) by

γ(n)
ns (N) = −

Z 1

0
dx xN−1P(n)

ns (x) . (11)

The fermionic part ofP(n)
ns involves only simpler harmonic polylogarithms which can beexpressed

in terms of the usual (poly-)logarithms. Thex-space analogue of eq. (10), graphically displayed in
fig. 4, can thus be written as

P(2)
ns (x) = 16CACFnf

(

pqq(x)
[5

9
ζ2−

209
216

−
3
2

ζ3−
167
108

ln(x)+
1
3

ln(x)ζ2−
1
4

ln2(x) ln(1−x)

−
7
12

ln2(x)−
1
18

ln3(x)−
1
2

ln(x)Li2(x)+
1
3

Li3(x)
]

+ pqq(−x)
[1

2
ζ3−

5
9

ζ2−
2
3

ln(1+x)ζ2

+
1
6

ln(x)ζ2−
10
9

ln(x) ln(1+x)+
5
18

ln2(x)−
1
6

ln2(x) ln(1+x)+
1
18

ln3(x)−
10
9

Li2(−x)

−
1
3

Li3(−x)−
1
3

Li3(x)+
2
3

H−1,0,1(x)
]

+(1+x)
[1

6
ζ2 +

1
2

ln(x)−
1
2

Li2(x)−
2
3

Li2(−x)

−
2
3

ln(x) ln(1+x)+
1
24

ln2(x)
]

+(1−x)
[1

3
ζ2−

257
54

+ ln(1−x)−
17
9

ln(x)−
1
24

ln2(x)
]

+δ(1−x)
[5

4
−

167
54

ζ2 +
1
20

ζ2
2+

25
18

ζ3

])

+16CFnf
2
(

pqq(x)
[ 5

54
ln(x)−

1
54

+
1
36

ln2(x)
]

+(1−x)
[13

54
+

1
9

ln(x)
]

−δ(1−x)
[ 17

144
−

5
27

ζ2+
1
9

ζ3

])

+16CF
2nf

(

pqq(x)
[5

3
ζ3−

55
48

+
5
24

ln(x)+
1
3

ln(x)ζ2+
10
9

ln(x) ln(1−x)+
1
4

ln2(x)+
2
3

ln2(x) ln(1−x)+
2
3

ln(x)Li2(x)

−
2
3

Li3(x)−
1
18

ln3(x)
]

+ pqq(−x)
[10

9
ζ2−ζ3 +

4
3

ln(1+x)ζ2−
1
3

ln(x)ζ2−
5
9

ln2(x)

+
20
9

ln(x) ln(1+x)−
1
9

ln3(x)+
1
3

ln2(x) ln(1+x)+
20
9

Li2(−x)+
2
3

Li3(−x)+
2
3

Li3(x)

−
4
3

H−1,0,1(x)
]

+(1+x)
[ 7

36
ln2(x)−

67
72

ln(x)+
4
3

ln(x) ln(1+x)+
1
12

ln3(x)+
2
3

Li2(x)

+
4
3

Li2(−x)
]

+(1−x)
[1

9
ln(x)−

10
9
−

4
3

ln(1−x)+
2
3

ln(x) ln(1−x)−
1
3

ln2(x)
]

−δ(1−x)
[23

16
−

5
12

ζ2−
29
30

ζ2
2+

17
6

ζ3

])

, (12)
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where we have introduced
pqq(x) = 2(1−x)−1−1−x (13)

and all divergences forx→ 1 are understood in the sense of+-distributions. In eq. (12) we have
left one particular harmonic polylogarithm, H−1,0,1(x), unsubstituted. This function is given by

H−1,0,1(x) ≡
Z x

0

dz
1+z

Li2(z) = Li2(x) ln(1+x)+
1
2

S1,2(x
2)−S1,2(−x)−S1,2(x) , (14)

where the representation by the Nielsen functionS1,2 has been derived in ref. [66]. H−1,0,1(x) can
also be expressed in terms of trilogarithms, albeit with more complicated arguments [6].

-180

-160

-140

-120

-100

0 0.2 0.4 0.6 0.8 1

x

(1−x) P (2) (x)+,1

exact

N = 2...12

x

(1−x) P (2) (x)+,2

-3

-2

-1

0

0 0.2 0.4 0.6 0.8 1

Figure 4: Thenf
1 andnf

2 partsP(2)
+,1(x) andP(2)

+,2(x) of the three-loop non-singlet splitting function
(12), multiplied by(1−x) for display purposes. Also shown in the left part (dashed curve) is the
uncertainty band derived in ref. [19] from the lowest six even-integer moments [7, 8, 9].

The x-space coefficient functions involve harmonic polylogarithms of weight four, which in
general cannot be expressed in terms of standard polylogarithms and Nielsen functions anymore.
Instead of writing down the cumbersome exact expressions, we prefer to present sufficiently accu-
rate, compact parametrizations in terms of the+-distributions and end-point logarithms

Dk =

[

lnk(1−x)
1−x

]

+

, L1 = ln(1−x) , L0 = lnx . (15)

It is convenient to apply this procedure (which has been employed in ref. [17] for the two-loop
coefficient functions) also to thenf

1 part of the splitting function (12). Inserting the numerical

10



value of the QCD colour factors, this function can be approximated by

P(2)
ns (x) ∼= nf (−183.187D0−173.927δ(1−x)−5120/81L1−197.0+381.1x+72.94x2

+44.79x3−1.497xL3
0−56.66L0L1−152.6L0−2608/81L2

0−64/27L3
0)

+ nf
2 (−D0− (51/16+3ζ3−5ζ2)δ(1−x)+x(1−x)−1L0(3/2L0+5)+1

+(1−x)(6+11/2L0+3/4L2
0)) 64/81 . (16)

Corresponding parametrizations for the three-loop coefficient functions read

c(3)
2,ns(x)

∼= nf (640/81D4−6592/81D3+220.573D2+294.906D1−729.359D0

+2572.597δ(1−x)−640/81L4
1+167.2L3

1−315.3L2
1+4742L1

+762.1+7020x+989.4x2+L0L1(326.6+65.93L0+1923L1)

+260.1L0+186.5L2
0+12224/243L3

0+728/243L4
0)

+ nf
2 (64/81D3−464/81D2+7.67505D1+1.00830D0−103.2655δ(1−x)

−64/81L3
1+15.46L2

1−51.71L1+59.00x+70.66x2+L0L1(−80.05

−10.49L0+41.67L1)−8.050L0−1984/243L2
0−368/243L3

0) , (17)

c(3)
L,ns(x)

∼= nf (1024/81L3
1−112.4L2

1+340.3L1+409−210x−762.6x2−1792/81xL3
0

+L0L1(969.2+304.8L0−288.2L1)+200.8L0+64/3L2
0+0.046δ(1−x))

+ nf
2 (3xL2

1 +(6−25x)L1−19+(317/6−12ζ2)x−6xL0L1 +6xLi2(x)

+9xL2
0− (6−50x)L0) 64/81 . (18)

The nf
2 parts ofP(2)

ns andc(3)
L,ns, the+-distribution contributions (up to a numerical truncationof

the coefficients involvingζi ), and the rational coefficients of the (sub-)leading regular end-point
terms are exact in eqs. (16) – (18). The remaining coefficients have been determined by fits to the
exact results, for which we have used the Fortran package of ref. [68]. The above parametrizations
deviate from the exact expressions by one part in thousand orless, an accuracy which should be
amply sufficient for foreseeable numerical applications.

5 Implications for the threshold resummation

The large-N / large-x behaviour of the three-loop splitting functions and coefficient functions is of
special interest in connection with the soft-gluon (threshold) exponentiation [43, 44, 45] at next-to-
next-leading logarithmic (NNL) accuracy. Here the coefficient function forF2,ns can, up to terms
which vanish forN → ∞, be written as

C2,ns(αs,N) = (1+asg01+a2
sg02+ . . .) exp[Lg1(asL)+g2(asL)+asg3(asL)+ . . . ] (19)

with as = αs/(4π) andL = lnN. The functionsgl depend on (universal) coefficientsAi≤ l and
Bi≤ l−1 and process-dependent parametersDDIS

i≤ l−1 as described in ref. [46], where also the explicit

11



expressions for the functionsg1,2,3 can be found. Hence the NNL functiong3 involves the new

coefficientsA3, B2 andDDIS
2 . These coefficients can be fixed by expanding eq. (19) in powers of

αs and comparing to the result of the full fixed-order calculations.

In theMS scheme adopted in this article, the parameterA3 is simply the coefficient of lnN in

γ(2)
ns (N) or, equivalently, of 1/(1−x)+ in P(2)

ns (x). Its fermionic part is thus known from eq. (12),

A3

∣

∣

∣

nf

= CACFnf

[

−
836
27

+
160
9

ζ2−
112
3

ζ3

]

+C2
Fnf

[

−
110
3

+32ζ3

]

+CFnf
2
[

−
16
27

]

. (20)

The numerical value can be read off from eq. (16). Like for thewhole of P(2)
ns (x), as shown in

fig. 4, this result is consistent with, but supersedes the estimate derived in ref. [19] from the first
six even-integer moments. Parallel to our workA3|nf

has also been calculated in ref. [69].

The combinationB2 + DDIS
2 has been determined in ref. [46] by comparing the expansion of

eq. (19) to the lnN term of the two-loop coefficient functionc(2)
2,ns of ref. [2]. As the ln2N (or

D1) contribution toc(3)
2,ns involves a different linear combination,β0(B2 + 2DDIS

2 ), of the very

same coefficients,B2 andDDIS
2 can be disentangled using the three-loop coefficient function. The

analytic results for the two new+-distribution coefficients read

c(3)
2,ns

∣

∣

∣

D1nf

= CACFnf

[

−
15062

81
+

512
9

ζ2+16ζ3

]

+ C2
Fnf

[

83
9

+168ζ2+
112
3

ζ3

]

+ CFnf
2
[

940
81

−
32
9

ζ2

]

, (21)

c(3)
2,ns

∣

∣

∣

D0nf

= CACFnf

[

−
160906

729
−

9920
81

ζ2−
776
9

ζ3+
208
15

ζ2
2
]

+ C2
Fnf

[

−
2003
108

−
4226
27

ζ2−60ζ3+16ζ2
2
]

+ CFnf
2
[

−
8714
729

+
232
27

ζ2−
32
27

ζ3

]

(22)

(the coefficients ofD2,...,5 can be found in ref. [65]). In fact, due to the prefactorβ0, the complete

results forB2 andDDIS
2 can already be inferred from fermionic result (21), yielding

B2 = C2
F

[

−
3
2
−24ζ3 +12ζ2

]

+ CFCA

[

−
3155
54

+40ζ3 +
44
3

ζ2

]

+ CFnf

[

247
27

−
8
3

ζ2

]

, (23)

DDIS
2 = 0 . (24)

The vanishing ofDDIS
1 andDDIS

2 — in contrast to the Drell-Yan process, whereD2 is different
from zero [46] — calls for a deeper explanation, possibly offering an all-order generalization.

Finally we note that, once the non-fermionic contributionsto the 3-loop non-singlet splitting
functions and coefficient functions are completed, the NNL threshold resummation facilitates a
prediction of the first six towers of logarithms, i.e., the coefficients ofαn

s ln2n−i N, i = 0, . . . ,5, of
C2,ns at all ordersn > 3. We will return to this issue in a later publication.
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6 Summary

We have computed the fermionic (nf -enhanced) third-order contributions to the structure functions
F2 andFL in electromagnetic deep-inelastic scattering. The calculation has been carried out for all
even-integer Mellin momentsN, by solving the three-loop integrals by means of recursion relations
(difference equations) inN. This progress with respect to previous computations restricted to some
fixed momentsN is especially due to an improved understanding of the mathematics of harmonic
sums and difference equations, and the implementation of corresponding tools in the symbolic
manipulation program FORM which we employed to handle the huge intermediate expressions.
We are confident that our approach will enable us to compute all three-loop corrections in DIS.

We have thus been able to derive the complete expressions forthe correspondingnf -parts of

the NNLO anomalous dimensions and splitting functions and the N3LO coefficient functions for
F2 andFL. The results have been presented in both Mellin-N and Bjorken-x space, in the latter case
we have also provided easy-to-use accurate parametrizations. Our results agree with all partial and
approximate results available in the literature for these quantities, in particular we reproduce the
even-integer momentsN = 2, . . . ,12 computed before.

The present results for the three-loop splitting function represent a step towards completing
the ingredients required for NNLO calculations of hard-scattering processes involving initial-state
hadrons in perturbative QCD. The three-loop coefficient functions for the most important structure
functionF2 form the dominant part of the N3LO corrections at largex, thus facilitating extractions
of αs with a distinctly reduced theoretical uncertainty. Already thenf -part computed in this article

leads to a complete determination of the threshold-resummation parametersB2 andDDIS
2 — includ-

ing the non-fermionic contributions — of which only the sum was known so far, thus practically
completing the information required for the next-to-next-to-leading logarithmic resummation.
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A Appendix

All results for the non-singlet anomalous dimensions and coefficient functions presented in this
article can be obtained as a FORM file from the preprint serverhttp://arXiv.org by down-
loading the source file. Furthermore they are available fromthe authors upon request.
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The fermionic parts, i.e., all terms proportional toCACFnf , C2
Fnf andCFn2

f of the three-loop
coefficient function for the electromagnetic structure functionF2 are given by

c(3)
2,ns(N) = 16CACFnf

(

δ(N−2)
[5

3
ζ5−

119
300

ζ3

]

+
142883
7776

−
1051
72

ζ3+
3
4

ζ4 +
83
54

S4−2S1,4

−
4
9

S−4,1+
191
81

S−3−
16
3

S−3,−2+
20
27

S−3,1−
4
9

S−3,1,1−
29
18

S−2−
14
3

S−2ζ3−
16
3

S−2,−3

+
13
3

S−2,−2+
8
3

S−2,−2,1+
23
9

S−5+
199819
8100

S1−
101
18

S1,2+
181
108

S3,1−
83
54

S−4+
4132
135

S1,−2

+
8
3

S1,−2,−2+
56
9

S1,−2,1+
21463
1080

S1,1−
10
3

S1,1ζ3−4S1,1,−3 +
58
9

S1,1,1−
23
18

S1,2,1+10S1,−4

+
8
3

S1,1,1,−2+
1
3

S1,1,1,2−4S2,−2,1−
1
3

S1,1,2,1−
8
3

S1,2,−2+S1,2,2 +
35
9

S1,3+
5
3

S1,3,1−
1
12

S2,2

−
36719
16200

S2+
32
3

S2ζ3 +10S2,−3−
218
9

S2,−2+
23
18

S1,1,2−
263
60

S2,1−
8
3

S2,1,−2−25S1ζ3

−
2
3

S2,3−
4537
1620

S3 +
28
3

S3,−2−
208
9

S1,−3−
112
9

N−S1,1,−2 +N+

[4
9

S3,1,1−
5
3

S2,1,1+
4
9

S4,1

−
23
9

S5

]

+(N−3 −N−2)
[2

5
S1ζ3 +

2
5

S1,−3−
119
450

S1,−2−
2
15

S1,−2,1−
2
3

S1,1ζ3−
2
15

S1,1,−2

+
1
3

S1,1,3−
1
3

S1,3,1+
4
15

S2,−2

]

+(N−2 −N−)
[2

5
S3−

179
450

S1+
2
3

S1ζ3+
1
5

S1,1−
59
450

S2

+
1
5

S2,1−
1
3

S1,3+
2
15

S1,−2+
1
3

S3,1

]

+(N−−1)
[

4S1,−4+2S1,−2,−2 +
2
3

S1,2,2

]

+(1−N+)
[11057

324
S1−

21
2

S1ζ3+
4
9

S1,−3−
7
3

S1,−2−
14
3

S1,−2,−2−
8
3

S1,−2,1+
3559
216

S1,1

−8S1,1ζ3−8S1,1,−3+
176
9

S1,1,−2+
217
36

S1,1,1+
16
3

S1,1,1,−2+
2
3

S1,1,1,2−
7
36

S1,1,2

−
2
3

S1,1,2,1+
2
3

S1,1,3−
55
9

S1,2−
16
3

S1,2,−2+
7
36

S1,2,1−
4
3

S1,2,2+
38
9

S1,3+
8
3

S1,3,1

−4S1,4−
231037
5400

S2+3S2ζ3−6S2,−3 +
118
9

S2,−2+
20
3

S2,−2,1−
793
90

S2,1−
16
3

S2,1,−2

+
1
6

S2,1,2−
4
9

S2,2−
1
6

S2,2,1−2S2,3 +
49717
1620

S3−
22
3

S3,−2−
47
54

S3,1−
1
6

S3,2−
166
27

S4

+
5
6

S4,1

]

+(N+−N+2)
[

10S1ζ3−
219
50

S1 +
6
5

S1,−2+4S1,−2,1+
24
5

S1,1+4S1,1ζ3

−4S1,1,−2−2S1,1,3+3S1,2−3S1,3+2S1,3,1−
21
50

S2−4S2ζ3+4S2,−2−
24
5

S2,1 +2S2,3

−
3
5

S3−S3,1−2S4,1

]

+(N+2 −N+3)
[

3S2,2−3S1,1,2−
72
5

S1ζ3+
18
5

S1,−3−
159
50

S1,−2

−
6
5

S1,−2,1−6S1,1ζ3−
6
5

S1,1,−2+3S1,1,3 +3S1,2,1+6S2ζ3−3S1,3,1+
6
5

S2,−2 +3S4,1

−3S2,3−
159
50

S3−
21
5

S3,1+
18
5

S4

]

+(N− +N+)
[1711

108
S1ζ3−

5608067
291600

S1−
1
2

S1ζ4

−
79
9

S1,−4+4S1,1,−2+
392
27

S1,−3+
2
9

S1,−3,1−
6613
405

S1,−2−
104
27

S1,−2,1+
4
9

S1,−2,1,1
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+
8
3

S1,1ζ3−
25511
1620

S1,1+
52
9

S1,1,−3−
184
27

S1,1,1−
32
9

S1,1,1,−2−
11
9

S1,1,1,1−
17
18

S1,1,1,2

+
1
36

S1,1,2+
4
9

S1,1,2,1+
13
18

S1,1,3+
661
108

S1,2+
34
9

S1,2,−2+
29
12

S1,2,1+
1
2

S1,2,1,1−4S1,3+S4,1

−
8
3

S1,3,1+
17
9

S1,4+
44537
2700

S2−
23
3

S2ζ3−
79
9

S2,−3+
377
27

S2,−2+
20
9

S2,−2,1+
5731
540

S2,1

+
34
9

S2,1,−2+
59
18

S2,1,1+
5
9

S2,1,2−
53
18

S2,2−
5
9

S2,2,1+
13
18

S2,3−
4511
405

S3−
67
9

S3,−2−
83
18

S3,1

−
5
6

S3,1,1+
1
2

S3,2+
253
54

S4

])

+16CFnf
2
( 1

18
S1,1,1−

9517
7776

−
1
18

ζ3−
757
648

S1−
29
108

S1,1

−
1
18

S1,2−
43
324

S2−
1
6

S2,1+
19
54

S3+(1−N+)
[13

18
S2,1−

19
18

S3+
265
108

S2+
7
18

S1,2−
7
18

S1,1,1

−
133
108

S1,1−
1421
648

S1

]

+(N− +N+)
[5585

5832
S1+

1
27

S1ζ3+
161
324

S1,1+
13
54

S1,1,1+
1
9

S1,1,1,1

−
1
9

S1,1,2−
13
54

S1,2−
1
9

S1,2,1+
1
9

S1,3−
301
324

S2−
29
54

S2,1−
2
9

S2,1,1 +
2
9

S2,2 +
62
81

S3+
1
3

S3,1

−
23
54

S4

])

+16CF
2nf

(119
150

ζ3δ(N−2)−
341
576

+
139
6

ζ3−
3
4

ζ4−
46
9

S−5 +
8
9

S−4,1−
382
81

S−3

+
83
27

S−4+
32
3

S−3,−2−
40
27

S−3,1+
8
9

S−3,1,1+
29
9

S−2+
28
3

S−2ζ3−
16
3

S−2,−2,1+
66367
129600

S1

+
32
3

S−2,−3−
26
3

S−2,−2+
301
6

S1ζ3−4S1,−4 +
416
9

S1,−3−
8264
135

S1,−2+
8
3

S1,−2,−2

−
112
9

S1,−2,1 +
83
144

S1,1 +
20
3

S1,1ζ3+8S1,1,−3−
224
9

S1,1,−2−
557
72

S1,1,1−
16
3

S1,1,1,−2

−
2
3

S1,1,1,2−
31
18

S1,1,2+
2171
216

S1,2+
16
3

S1,2,−2+
7
3

S1,2,1+
2
3

S1,2,2−
235
36

S1,3+4S1,4

−
10
3

S1,3,1−
140237
16200

S2−22S2ζ3−20S2,−3+
436
9

S2,−2+8S2,−2,1+
7133
1080

S2,1+
16
3

S2,1,−2

+
50
9

S2,1,1−4S2,2+
7
3

S2,3−
7627
3240

S3+N+

[

S2,1,1,1−S2,1,2+
2
3

S1,1,2,1−S2,2,1−
56
3

S3,−2

−
329
27

S3,1−
29
9

S3,1,1 +
7
3

S3,2+
401
54

S4 +
53
18

S4,1 +
1
18

S5

]

+(N−3 −N−2)
[119

225
S1,−2

−
4
5

S1ζ3 +
4
15

S1,−2,1−
4
5

S1,−3+
4
15

S1,1,−2−
8
15

S2,−2

]

+(N−2 −N−)
[179

225
S1−

4
15

S1,−2

+
4
15

S1,1+
59
225

S2 +
4
15

S2,1−
4
5

S3

]

+
15439
1440

(N−−1)S1,1+(N+−N+2)
[219

25
S1−

12
5

S1,−2

+4S1ζ3−8S1,−2,1−
13
5

S1,1+8S1,1,−2+2S1,1,2−5S1,2−2S1,2,1−
154
25

S2+
36
5

S3+10S3,1

+
13
5

S2,1−2S2,2−8S2,−2

]

+(N+2 −N+3)
[

5S1,1,2−
12
5

S2,−2−5S2,2+
37
5

S3,1+
159
25

S1,−2

+
159
25

S3−5S1,2,1+
12
5

S1,1,−2+
12
5

S1,−2,1+
114
5

S1ζ3−
36
5

S1,−3−
36
5

S4

]

+(1−N+)
[

4S4

−
10337
576

S1−8S1,−4−
8
9

S1,−3 +
14
3

S1,−2+
16
3

S1,−2,−2+
16
3

S1,−2,1+
40
3

S1,1ζ3 +16S1,1,−3

−
76157
4320

S1,1−
128
9

S1,1,−2+
179
72

S1,1,1−
32
3

S1,1,1,−2+
14
3

S1,1,1,1−
4
3

S1,1,1,2 +
565897
16200

S2
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+2S1,1,2,1−
295
72

S1,2+
32
3

S1,2,−2−
17
3

S1,2,1+
4
3

S1,2,2−
115
36

S1,3+8S1,4−
29
6

S1,1,2−
2
3

S2ζ3

−
20
3

S1,3,1+12S2,−3−
236
9

S2,−2−
40
3

S2,−2,1−
4663
1080

S2,1 +
32
3

S2,1,−2−
37
3

S2,1,1−
22817
810

S3

+
32
3

S2,2+
5
3

S2,3−4S3,−2+
65
18

S3,1+
85
6

S1ζ3

]

+(N− +N+)
[86

9
S1,−4−

91
36

S5−4S3,1,1

−
8
9

S1,−2,1,1+
13226
405

S1,−2−
104
9

S1,1,−3 +
152
9

S1,1,−2−
784
27

S1,−3−4S1,−2,−2 +
41929
129600

S1

−
244
9

S1ζ3+
1
2

S1ζ4+
208
27

S1,−2,1−
4
9

S1,−3,1−
13
3

S1,1ζ3−
7
8

S1,1,1+
64
9

S1,1,1,−2−
35
6

S1,1,1,1

−
10
3

S1,1,1,1,1+
44
9

S1,1,1,2+
25
3

S1,1,2+3S1,1,2,1−
91
18

S1,1,3 +
577
648

S1,2+
40
3

S2ζ3+
107
18

S1,2,1

+
34
9

S1,2,1,1−
79151
64800

S2−
68
9

S1,2,−2−
239
54

S2,2−
49
9

S1,2,2−
275
108

S1,3+
73
18

S2,1,1,1−
31
6

S2,1,2

+
158
9

S2,−3−
754
27

S2,−2−
40
9

S2,−2,1 +
133
36

S4,1−
403
810

S2,1−
68
9

S2,1,−2+
79
18

S2,1,1−
67
18

S2,2,1

+
17
18

S1,4+
5
72

S4−
5
18

S1,3,1+
25
9

S2,3+
7871
3240

S3+
134
9

S3,−2−
241
72

S3,1+
38
9

S3,2

])

. (A.1)

For the sake of completeness, we include the result for the complete first and second-order longi-

tudinal coefficient functionsc(1)
L,ns andc(2)

L,ns known from refs. [56, 70, 2, 6]

c(1)
L,ns(N) = −4CF(1−N+)S1 , (A.2)

c(2)
L,ns(N) = 4CACF

(12
5

ζ3δ(N−2)+
12
5

(N+−N+2)[S1−S2]+
12
5

(N+2 −N+3)[S1,−2+S3]

−
98
15

S1+
8
5

S2 +
8
5
(N−3 −N−2)S1,−2+8(N−−1)S1,−2+

8
5
(N−2 −N−)[S1+S2]

+(1−N+)
[

12S1ζ3−4S1,−2−
23
3

S1,1−8S1,1,−2−4S1,3−
287
18

S1+4S1,−3 +
176
15

S2−4S3

]

+(N− +N+)
[49

15
S1−

4
5

S2

])

+4CFnf

(

(1−N+)
[2

3
S1,1−

4
3

S2+
25
9

S1

]

−
2
3
(N−−1)S1

)

+4CF
2
(

−
24
5

ζ3δ(N−2)+
22
5

S1 +
4
5

S2−
16
5

(N−3 −N−2)S1,−2−
16
5

(N−2 −N−)[S1+S2]

+(N−−1)[2S1,1−16S1,−2]−
24
5

(N+−N+2)[S1−S2]−
24
5

(N+2 −N+3)[S1,−2+S3]

+(1−N+)
[33

2
S1+8S1,3−24S1ζ3−8S1,−3+8S1,−2+7S1,1 +16S1,1,−2−4S1,1,1+4S1,2

−
54
5

S2+6S2,1 +4S3

]

− (N− +N+)
[11

5
S1 +

2
5

S2

])

. (A.3)

The contributions to the 3-loop longitudinal coefficient function corresponding to eq. (A.1) read

c(3)
L,ns(N) = 16CACFnf

(

δ(N−2)
[20

3
ζ5−

149
75

ζ3

]

+(N−3 −N−2)
[16

15
S2,−2−

4
3

S1,3,1+
4
3

S1,1,3

−
8
3

S1,1ζ3−
8
15

S1,1,−2−
8
15

S1,−2,1 +
8
5

S1,−3−
298
225

S1,−2+
8
5

S1ζ3

]

+(N−2 −N−)
[4

3
S1,1ζ3

−
418
225

S1+
8
5

S3+
8
15

S1,−2 +
4
3

S1,−2,1−
4
3

S1,1,−2+
4
5

S1,1−
178
225

S2+
4
3

S3,1+4S1ζ3+
4
5

S2,1
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−
2
3

S1,1,3−
4
3

S1,3+
2
3

S1,3,1

]

+(N−−1)
[16

3
S2,−2−

13033
1350

S1+8S1ζ3−
518
45

S1,−2−
2
5

S2,1

−
8
3

S1,−2,1−
254
45

S1,1−
2
15

S3+8S1,−3+
76
25

S2−
8
3

S1,1,−2

]

+(N+−N+2)
[8

3
S1,−2,1−

8
3

S2ζ3

−
7
25

S2−
8
3

S1,1,−2−2S1,3+
4
3

S1,3,1−
4
3

S1,1,3 +2S1,2+
16
5

S1,1+
8
3

S1,1ζ3 +
4
5

S1,−2−
16
5

S2,1

+
20
3

S1ζ3−
73
25

S1−
2
5

S3−
2
3

S3,1−
4
3

S4,1+
4
3

S2,3+
8
3

S2,−2

]

+(N+2 −N+3)
[4

5
S2,−2+2S2,2

−
4
5

S1,−2,1−2S2,3−
14
5

S3,1−
53
25

S3+
12
5

S4+2S4,1−
48
5

S1ζ3+
12
5

S1,−3+2S1,1,3−4S1,1ζ3

−
4
5

S1,1,−2−
53
25

S1,−2+2S1,2,1−2S1,3,1 +4S2ζ3−2S1,1,2

]

+(1−N+)
[125599

4050
S1−

40
3

S1ζ3

+4S1,−4−
68
9

S1,−3+
413
45

S1,−2−
8
3

S1,−2,−2+
4469
270

S1,1−8S1,1ζ3−8S1,1,−3+
88
9

S1,1,−2

+
40
9

S1,1,1 +
16
3

S1,1,1,−2 +
2
3

S1,1,1,2+
2
3

S1,1,2−
2
3

S1,1,2,1 +
2
3

S1,1,3−
40
9

S1,2−
16
3

S1,2,−2

−
10
3

S4−
2
3

S1,2,1−
2
3

S1,2,2+
2
3

S3,1+
8
3

S1,3,1−4S1,4−
20953
675

S2+8S2ζ3+
4
3

S2,−3−
2
3

S2,−2

+
8
3

S2,−2,1−
238
45

S2,1−
16
3

S2,1,−2−2S2,3+
824
45

S3+
38
9

S1,3+
2
3

S4,1

])

+16CFnf
2
(

(N−−1)
[19

27
S1+

2
9

S1,1−
2
9

S2

]

+(1−N+)
[2

9
S1,2−

317
162

S1−
25
27

S1,1−
2
9

S1,1,1

+
50
27

S2 +
4
9

S2,1−
2
3

S3

])

+16CF
2nf

(298
75

ζ3δ(N−2)+(N−3 −N−2)
[16

15
S1,1,−2−

16
5

S1,−3

+
16
15

S1,−2,1 +
596
225

S1,−2−
32
15

S2,−2−
16
5

S1ζ3

]

+(N−2 −N−)
[16

15
S2,1−

16
5

S3+
356
225

S2

+
836
225

S1−
8
3

S1ζ3+
16
15

S1,1−
8
3

S1,−2,1 +
8
3

S1,1,−2−
16
15

S1,−2

]

+(N−−1)
[2141

1350
S1−16S1ζ3

−16S1,−3 +
1036
45

S1,−2+
16
3

S1,−2,1 +
73
45

S1,1 +
16
3

S1,1,−2−
5
3

S1,1,1+
5
3

S1,2+
232
225

S2+
1
10

S3

−
32
3

S2,−2 +
14
5

S2,1

]

+(N+−N+2)
[146

25
S1−

10
3

S1,2−
308
75

S2+
20
3

S3,1−
4
3

S2,2 +
8
3

S1ζ3

−
16
3

S2,−2−
4
3

S1,2,1+
16
3

S1,1,−2+
4
3

S1,1,2−
8
5

S1,−2−
16
3

S1,−2,1−
26
15

S1,1 +
24
5

S3 +
26
15

S2,1

]

+(N+2 −N+3)
[76

5
S1ζ3 +

106
25

S1,−2 +
8
5

S1,−2,1−
24
5

S1,−3+
10
3

S1,1,2+
8
5

S1,1,−2−
10
3

S1,2,1

−
8
5

S2,−2+
74
15

S3,1−
24
5

S4+
106
25

S3−
10
3

S2,2

]

+(1−N+)
[74

3
S1ζ3−

173653
10800

S1−8S1,−4

+
136
9

S1,−3−
826
45

S1,−2+
16
3

S1,−2,−2−
1609
135

S1,1+
40
3

S1,1ζ3 +16S1,1,−3−
176
9

S1,1,−2

+
7
18

S1,1,1−
32
3

S1,1,1,−2 +
8
3

S1,1,1,1−
4
3

S1,1,1,2+8S1,4−4S1,1,2+
4
3

S1,1,2,1−
23
18

S1,2+
17
6

S4

+
32
3

S1,2,−2−2S1,2,1+
4
3

S1,2,2−
49
9

S1,3−
20
3

S1,3,1+
30737
1350

S2−
40
3

S2ζ3−
8
3

S2,−3 +
4
3

S2,−2

−
16
3

S2,−2,1−
17
10

S2,1+
32
3

S2,1,−2−
13
3

S2,1,1+
13
3

S2,2+
8
3

S2,3−
913
45

S3+
13
3

S3,1

])

. (A.4)
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Recall that in all our formulae the expansion parameter is normalized as in eq. (2). The operators
N± andN±i have been defined in eq. (4).
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