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Abstract

We compute the fermioniaf) contributions to the flavour non-singlet structure fuons in un-
polarized electromagnetic deep-inelastic scatterindpiadl brder of massless perturbative QCD.
Complete results are presented for the correspongjiparts of the three-loop anomalous dimen-
sion and the three-loop coefficient functions for the stritestfunctionsk andF.. Our results
agree with all partial and approximate results availablthanliterature. The present calculation
also facilitates a complete determination of the threshetdimmation parametes andDE"S of
which only the sum was known so far, thus completing the mfatton required for the next-to-
next-to-leading logarithmic resummation. We find tBat'S vanishes in thé4S scheme.
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1 Introduction

Structure functions in deep-inelastic scattering (DISjrfahe backbone of our knowledge of the
proton’s parton densities, which are indispensable fotyaea of hard scattering processes at
proton—(anti-)proton colliders like theEWATRON and the future LHC. Structure functions are
also among the quantities best suited for precisely measuhe strong coupling constaat.
Over the past twenty years DIS experiments have proceedadhigh (few-percent) accuracy
and a wide kinematic coverage [1]. More results, especatllyigh scale€?, can be expected
from the forthcoming high-luminosity phase of the electrproton collider HERA at DESY. On
the theoretical side, at least the next-to-next-to-legdirder (NNLO) corrections of perturbative
QCD need to be taken into account in order to make full useedgdlmeasurements and to make
guantitatively reliable predictions for hard processdsaatron colliders.

The calculation of NNLO processes in perturbative QCD idifam easy. For deep-inelastic
structure functions, in particular, the current situatisrthat, while the coefficient functions are
known to two loops [2, 3, 4, 5, 6], only six/seven integer Melhoments of the corresponding
three-loop anomalous dimensions have been computed famleipadron [7, 8, 9] and lepton—
photon DIS [10], together with the same moments of the thwep-coefficient functions. The
hadronic results have been employed, directly [11, 12, 4Bafd indirectly [15, 16] via-space
approximations constructed from them [17, 18, 19], to imprthe data analysis and some hadron-
collider predictions. However, the number of available neois is rather limited, and hence these
results cannot provide sufficient information at small eslof the Bjorken variable.

For the complete information one needs to obtain eithevelh®r odd (depending on the quan-
tity under consideration) Mellin moments, or do the complediculation in Bjorkencspace. We
have adopted the first approach. Following the formalisnebf[R0, 21, 7, 8] to obtain the lower
fixed moments, we have used recursive methods to extendltdateon to all values of the Mellin
momentN. This is by no means trivial, since before the start of thewdation the mathematics
of the answer was still poorly understood [22]. Hence it west fiecessary to develop the under-
standing of harmonic sums [23, 24, 25, 26] and harmonic pghtithms [27, 28, 29]. In addition
the Mellin transforms and the inverse Mellin transformgrirBjorkenx-space to Mellin space and
back had to be solved [29]. These conceptual problems hare desrcome and the method has
been shown to work in a complete re-calculation of the twaplooefficient functions [6].

The concept of working in Mellin space is not new. This methas already used in the early
QCD papers [30, 31, 32]. But even in the case of the two-loagmeadous dimensions it was still
possible to do the resulting sums in a rather direct manrg&rZ3]. This changed with the two-
loop evaluation oty /o7 in which Kazakov and Kotikov [34, 35] managed to obtain sorhéhe
integrals via recursion relations or first order differeegeations.

In this article, we present the fermionioy() corrections to the flavour non-singlet structure
functions in electromagnetic DIS at the three-loop levdiisTincludes the three-loop anomalous
dimensions which are needed for the completion of the NNLI©Gutation, as well as the three-



loop coefficient functions which are, at least at lasgeghe most important contribution to the
next-to-next-to-next-to-leading order INO) correction [36]. Of course, the;-part is not the
complete calculation. Yet we decided to present it alreamly, necause the complete calculation
(including the singlet part) will still take quite some (cpater)time. Thus, for the time being,
NNLO calculations of the Drell-Yan process [37, 38] (whigk eelevant for luminosity monitoring
at TEVATRON and LHC [39, 40, 41]) and of Higgs production [38, 42] have étyron parton
distributions evolved with the approximate splitting ftioas of ref. [19]. Our present calculation
provides a first check of the reliability of these approxiimas. More importantly, it turns out
that already this calculation is sufficient to provide thst leelevant missing information for the
extension of the soft-gluon (threshold) resummation fo® M3, 44, 45] to the next-to-next-to-
leading logarithmic accuracy [46]. In fact, our result foetresummation parameﬂéf'S IS most
intriguing and calls for further studies.

This article is organized as follows. In section 2 we outtimese parts of the calculation, which
differ from previous two-loop [6] and fixetl three-loop [7, 8, 9] analyses. The present calculation
does not yet involve the full complexity of the method, asrtiwst difficult diagram topologies do
not occur. Therefore we postpone a full account to a lateligatiobn. In section 3 we present our
explicit evenN Mellin-space results, except for the rather lengthy expoes for the three-loop
coefficient functions which are deferred to appendix A. Thaesponding three-loop quantities
in x-space can be found in section 4. Here, instead of writingndthe cumbersome exact ex-
pressions for the coefficient functions, we follow the pidwe applied in refs. [17, 18] to the
two-loop coefficient functions, and provide approximategpaetrizations which are compact and
sufficiently accurate for all numerical applications. Icten 5 we then discuss the implications
of our calculation on the soft-gluon resummation, beforesummarize our results in section 6.

2 Method

Because we are considering only the non-singlet structuretions in this paper, the method for
the calculation of their moments closely follows ref. [7]ete there is not much need to explain
the physics of the method here again. Thus we will discusgtbtel differences introduced by the
fact that we now compute all moments simultaneously as atifimof the moment numbeX.
SinceN is not a fixed constant, we cannot resort to the techniquesfof#], where the Mincer
program [47, 48] was used as the tool to solve the integnastead, we will have to introduce new
techniques. However, we can gixea positive integer value at any point of the derivations and
calculations, after which the Mincer program can be involeederify that the results are correct.
From a practical point of view this is the most powerful feataf the Mellin-space approach, as it
greatly simplifies the checking of all programs.

Similar to the fixedN computations of refs. [8, 9], the diagrams are generateahzatically
with a special version of the diagram generator QGRAF [49}. &l the symbolic manipulations
of the formulae we use the latest version of the program FOBRMN! [The calculation is performed



in dimensional regularization [51, 52, 53, 54] wiih= 4 — 2¢. Hence the unrenormalized Mellin-
space results will be functions @f N, and the value<s s of the Riemann(-function. The
renormalization is carried out in thS-scheme [55, 56] as described in ref. [7].

We distinguish three categories of diagrams: completerdimag, composite building blocks
and basic building blocks. A complete diagram is a Feynmagrdim with all its structure like
traces and dotproducts in the numerator. Such a diagram eaalytb a large number of more
fundamental integrals that cannot be reduced by considesabf momentum conservation only.
For the understanding of composite and basic building [dpoke has to realize that in the frame-
work of the operator-product expansion we eventually havialiteN derivatives with respect to
the parton momenturR after whichP is put equal to zero. This projects out thieth Mellin
moment [57] and it effectively amputates the legs of thegrarteaving us with propagator-type
diagrams. Therefore, we define the topology of a diagram epitbpagator topology when the
P-momentum legs have been amputated. The three-loop prigpdagpologies of the BE (Benz)
type and of the O4 type are shown in fig. 1. For the notation e te refs. [47, 48]. The external
lines in the propagator topology are referred t@jas

Figure 1. The topologies BE (left) and O4 (right) of propagéype diagrams, with the line num-
bering as employed in figs. 2 and 3 below. The external linay the momentun®.

When the numbers of the position of the incoming and outgoiegnenta have been attached
we are referring to subtopologies. For instance; 8B a subtopology of type BE in which the
momentumP comes in in line 1 and leaves in line 3, assuming the numbefitige BE topology
as in fig. 1. We define basic building blocks (BBB) as integmalshich both the incoming and the
outgoingP-momentum are attached to the same line as, e.g., $a.BEcomposite building blocks
(CBB), on the other hand, the incoming and the outgdtrgomentum are attached to different
lines, as in the case of BEmentioned above. Of course we could have introduced namedl fo
these three-loop four-point functions, but since evehguhé P-momentum legs get amputated the
above notation seems the clearest scheme. In this way, mlysaosmall step to an easy pictorial
representation of the integrals as used in ref. [6].

For the calculation of thes-parts of the non-singlet structure functiogsandF_, one does
not need to consider all three-loop topologies. In fact,ahly genuine three-loop subtopologies
one has to solve are of the BE-type and of the O4-type, withdovoplete diagrams of either type
entering the calculation. These diagrams are displayedsn2iand 3.
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Figure 2: The diagrams of topology BE which contribute to fémenionic part of the non-singlet
structure function$, andF_. The subtopologies are BE (left) and BE3 (right).

Figure 3: The diagrams of topology O4, which contribute & fidfrmionic part of the non-singlet
structure function$, andF_. These diagrams are examples of the subtopologies @4d O4s.

The main problem we are faced with as compared to the comeapgptwo-loop calculation [6]
is that the necessary reduction equations become much raorglicated. In addition the set of
equations that was available at that moment was not maxandlthe structure of the more com-
plicated topologies needs the maximal set of reductionteanga This involves some equations
in which the vanishing oP - P is an issue that should be considered with care, a point titidiev
explained in full detail in a later publication in which weueeto deal with all topologies.

For this calculation we first studied the basic building BladHere it is easy to expand the sin-
gle propagator that contains the momentRno sufficient powers P for the N-th moment. This
number of powers can be less thdras there may be some powershoin the numerator already.
It should be noted that if we have a powerPdfQ in the numerator we are effectively computing
the momentN—1 of the integral. At this point we write down all equationséd on integration
by parts, all scaling relations and all form-factor equagithat can be constructed. Next follows
a potentially difficult process in which we have to combines relations to construct equations
that can systematically bring the powers of the denomisatothe integral down, either reducing
them to zero or leaving them at a fixed unique value. When dadieéminated a simpler topology
is reached and we can refer to the reduction equations fotdpalogy. This will eventually lead
to a topology that is simple enough so that we can calculatentegral.

A problem arises when a reduction equation cannot take tivempoof a denominator beyond
one, because it is of the typd(n+ 1) — I(n). Also when the power of a propagator is not
an integer, one can only try to reduce this power to a fixedevétm which the line does not



vanish. In these cases we leave the power either at one as iktd value (usually % €) and we
continue with the next propagator. Eventually we will hantegrals in which only the line with
the power that involvedl will not have a standard value. Thewill occur both in the power of
the denominatop- p and in the numerator2 p whenp is the momentum associated to this line.
By this time our remaining equations which have also beestéckto bring the powers of their
progagators to standard values may have become rathehyerit we still need them to bring
the difference of the powers in the numerator and the derataninio a fixed value, which can be
either 0, 1 or 2, something we have to leave open for reasgplaiegd below. Now there are
several possibilities: If there is only one integral leftloé type to be solved, the equation directly
determines the solution. This is however rarely the casaallisthere are several terms left, each
with a different power of P - Q, leaving us with an equation of the type

ao(N)I(N) +a1(N)I(N—1) +...+an(N) | (N—m) = G(N) (1)

in which the functionG refers to a potentially horrendous combination of integafl simpler
topologies. Eq. (1) defines a recursion relation or diffeesaquation of ordem. For the present
calculation we did not have to go beyond order 2. It should tkeadh that recently difference
equations have been encountered by Laporta in refs. [58, 59]

These difference equations can be solved by making the zatisat the solution will be a
combination of harmonic sums. If the proper combination been selected, the coefficients of
the harmonic sums can be obtained by substituting the wlatisn into the equation and solving
the resulting, potentially large set of linear equationsefe can be several thousand equations in
such a system. Of course one has to have a solution for théidar@(N) in eq. (1) first, and
m—1 boundary values are required. Because these boundamsvale basically fixed integét-
moments, they can be obtained using the Mincer program. €hkd for knowing the functio®
puts a rigid hierarchy in the order in which we have to treatttpologies.

Solving the difference equations is rather slow work. Hemeecompute their solutions only
once and tabulate the results. We usually do this for sevahaés of the difference of the powers
of the numerator and the denominator as mentioned abovéa edrtfe reason behind this is that
the equations we use for either raising or lowering thisdé@hce may contain a so-called spurious
pole ine when we try to bring this value to one. The concept of spurpmlss is rather important.
The rule of the triangle [60, 61], for instance, can involviaetor proportional to 1 when an
integral is being reduced. Close inspection reveals thawiowers of the loop momentum are
present in the numerator, it is possible that more than orgucdh poles is generated before a
denominator is removed. The resolved triangle [62] showsydver, that it is possible to sum
all contributions of such a reduction and that eventualgréhcan be no more than one pole per
eliminated line. This means that the extra poles shouldeddretween the many generated terms.
But when we work only a to given cutoff in powers®fboth for reasons of economy and because
we cannot evaluate some integrals easily beyond certaiensawe) these temporary poles could
spoil the final result in the same way as such things can happamerical calculations at fixed
precision. We call them spurious poles, because in priadipty can be avoided. One of the
greatest difficulties in deriving reduction equations idrtdeed avoid such spurious poles. For
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some integrals, no spurious-pole free formula could beddonthe last reduction when bringing
the difference of the power of the denominator and the nutoeegther from 2 to 1 or from 0 to 1.
This problem has been circumvented by solving the resutlifgrence equations for the three
cases 0, 1 and 2 separately.

Since the evaluation of all the basic building block intégithat can occur requires very much
computer time, we decided to tabulate all these integralhcomplicated topologies. This saves
much computer time, because each integral is typically ns&aly times. Also the more compli-
cated topologies use many integrals of a less complicaieel tyence their evaluation becomes
much faster once the latter integrals have been tabulated.

The next step is the evaluation of the composite buildinghkdoHere again we first construct
all possible equations. It turns out to be most economicdedehe propagators with the momen-
tum P unexpanded. The fact that eventually an expansidd powers ofP will take place then
requires some special calculational rules. If for instaaegezquation is multiplied by - Q, we
have to replacé&l by N—1 at the same time. Such rules can be major sources of errerseHt is
very fortunate that at any moment we can decidethhas a fixed value like four or five and then
evaluate the integrals in the equation with the Mincer paiogto see whether it is still correct.

The equations are used to set up a reduction scheme thatler¢onthe one for the BBB's. If a
line is eliminated we obtain either a simpler topology or aBBtherwise we reduce the power of
a denominator to a standard value and continue with the mextln numerous cases a reduction
can only be done by means of a difference equation (1). listadfirst order difference equation it
can be solved directly, introducing one sum. Such sums amebehign type and can be evaluated
afterwards. If the difference equation is of a higher ordehave to consider all more fundamental
integrals first before we can solve the equation. The fumdduction scheme becomes then rather
complicated, but not impossible. On the average each salotgy can require several weeks of
work before it has been completely solved by these methods.

Analogous to the BBB case discussed above, we have tabuletadore complicated CBB
integrals entering the calculation. It is not only a mattecamputer time that renders this neces-
sary. Also the size of the intermediate expressions becanmegst relevant factor: if one is not
careful, even a hard disk of 100 GBytes can become res#ictiv practice, already expressions
significantly larger than 10 GBytes took too long for evalotwithout further optimization. A
careful hierarchy of tabulation managed to avoid theselpros.

Having programs for all basic and composite building blooksders the remainder of the
calculation rather straightforward. The major differengcé¢he fixed-moment calculations is now
that we obtain much longer results due to the presence ofataaneteN in the answer. We have
checked the correctness of each individual diagram forrakvalues ofN, by comparing with the
results of a Mincer calculation. In addition we have comgahee complete renormalized results
with the results in the literature for the available valuéslo



3 Resultsin Méllin space

Here we present thE-space coefficient functions and the anomalous dimensipris the third
order in the renormalized couplirg. All results are given in th#1S-scheme with the renormal-
ization scales identified with the physical hard sd@le Thus the perturbative expansion of the
non-singlet coefficient functions and anomalous dimersscam be written as

Cims0sN) = 5 (52)" el @
Yns(Os,N) = i(%{)“lyg('\l) (3)

withi=2,L in eq. (2). There is no need to consider different choiceb®ttales, as they do not
require functions beyond those introduced in egs. (2) ahdR@&call that forF, the (n+1)-loop
anomalous dimensions and thoop coefficient functions together form thé'NO approximation
of (renormalization-group improved) perturbative QCD.

There are, actually, three different non-singlet combamat of coefficient functions and split-
ting functions. These combinations all coincide at omlgrbut they all differ beyond the second
order. Only the so-called ‘+’-combinations (involving ssiever quarks and antiquarks) are probed
in electromagnetic DIS, hence only these quantities areeaddd in the present article. Conse-
quently our results below apply directly only to all evereiger values o from which, however,
the results for arbitrarid can be uniquely inferred by analytic continuation.

Our N-space results are expressed in terms of harmonic Sytis). In the following all
harmonic sums are understood to have the arguiene., we employ the short-hand notation
Sw = Sw(N). In addition we use operatofé. andN.; which shift the argumen of a given
function by+1 or a larger integer,

Nef(N) = F(N£1), Ny f(N) = F(NLi). (4)

We normalize the trivial leading-order (LO) coefficient @dion and recover, of course, the
well-known result for the LO anomalous dimension [30, 31]

Cons(N) = 1, (5)

ns

Ve (N) = Cr(2(N_+N,)S—3) . (6)

In our notation, the next-to-leading order (NLO) non-setgtoefficient function foF, [56] and
the corresponding anomalous dimension [33, 23] read

Co(N) = Cr(7N4S1 4251 — 9+ (N_ +N..)[2511 — 35, — 25)), 7)
17 28 151 11
V%)(N) = 4CaCr <2N+S3 “oa” 2S 3— ?S'H_ (N_+Nyg) ESL—FZSL,—Z — ESQ}>
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1A (ot aS— (N N[ 5S35 ) +4Ge2(4S s 125425

N[ S+ 255 — (N +N.) S 448, 2+ 2512+ 291+ ). 8)

At next-to-next-to-leading order (NNLO, LO), we have re-calculated the coefficient function

c(ﬂs of refs. [2, 6], and we have computed all fermionic contrits to the splitting functiovﬁzs),

then} terms being a new result of this article. The fermionic NNL@rections — the complete

expression for th&l-space coefficient function can be found in ref. [6] — are gilg

122 7 89 5

275 8|~ (N D158 -8 — (N 4N [
13 1 2 1 1 457 247 19

+ 1—851,1+ §51,1,1 - ész,l - :—,)51,2} - (—351,1+ [V 1—0851+ €N+Sz> ; 9

ns

Cirs(N) = 4Ceng ((1-Ny) |

3 5 10 10 4 2 25 257
ViR (N) = 16CCrny (30— 5 + 5 S a5 S+ 2812~ 584+ 25— T8+ 8

4 9 3
2 2 2 1237

—35-31- Ny [52,1 —3%81- §54] +(1-Ny) [i—gss - 52} —(N-+Ny) [51714' >16 2

11 317 16 2 1 1 1 1 1
+ ESB — @SZ + 351,—2 — 551,—2,1 — 551,—3 — 551,3 — 552,1 - 552,72 +S1(3+ 558,1] )

17 13 2 2 11 1 23 3
2 ™ - — _— — 2 A~ A
4

59 4 20 20 8 8 4 25 4

- §5—3,1 - 3—652+ §&4— 35—3+ 351 - ésl,—Z - 551,1 - :—,)51,2+ N [353 - §S3,1
325 2
—S.l._ _

1 67 4 4
—g&] +(1—N+)[3—682——Sz,1+553} +(N—+N+)[SLZ3— 144 3
2

32
3 S, -3+ 351,—2

4 4 16 4 11 2 10 1 8
- §51,72,1 + ésl,l + 351,2 - 551,3 + 1—852 — 552,72 + 35271 + 554 — 55272 — 583} ) . (10)
The corresponding formulae for the longitudinal coeffitiemctionC_ s are deferred to the
appendix, together with the rather lengtiiyspace results for the fermionic parts of the third-order

coefficient function$f?r35, i = 2,L, which partly also represent new results of this article (tﬁ

term forF, has already been presented in ref. [63]). Notice qﬁg can be considered a NNLO

quantity, sinceC,_ vanishes at ordex?. On the other hand(f’r)1S represents, at least at lartye the
dominant part of the RLO corrections td~, [36].

As briefly mentioned at the end of section 2, we have subjeatedesults to a number of
checks. First of all, we have calculated some lower even mésne an arbitrary covariant gauge
with the Mincer program [47, 48], keeping the gauge paramgia the gluon propagator. All

dependence of does cancel in the final results. Secondly ltiﬁecontribution toyﬁzs) is known

from the work of Gracey [64] and we agree with his result. Femmore the coefficients of fiN,
k=3,...5, of c(zggs(N) agree with the prediction of the soft-gluon resummatior].[6®nally, we
have checked the result of each individual diagram for sgweteger values olN by comparing
with the results of a Mincer calculation. Thus, as the stestgheck, our results reproduce the

fixed even moment = 2,...,14 computed in refs. [7, 8, 9].
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4 Third-order resultsin x-space

The x-space coefficient functions and the splitting functions @ptained from the results of the
previous section by an inverse Mellin transformation, ehicaps the harmonic sums of moment
space [23, 24, 25, 26] to harmonic polylogarithms-space [27, 28, 29]. This transformation can
be performed by a completely algebraic procedure [29, Gdbas the fact that the harmonic sums
also occur as coefficients of the Taylor expansion of harmpalylogarithms.

Here we confine ourselves to the third-order results; forti@loop non-singlet splitting
functions and coefficient functions the reader is refercecefs. [67, 2, 6]. For brevity the exact
results are written down only for the splitting function,neentionally related to the anomalous
dimension (3) by

1
VR N) = = [ o TR0 (11)

The fermionic part oPr(,g) involves only simpler harmonic polylogarithms which canex@ressed
in terms of the usual (poly-)logarithms. Tkespace analogue of eq. (10), graphically displayed in
fig. 4, can thus be written as

P£§><x>=16cAanf(pqq<x>[ o 2o~ 2o 1oIn() + (9% — 7N’ In(1-¥

——Inz(x)—EIn (x )—%M(X)Liz(X)-f-%Lig(X)} + Pgg(—X )[%Zg——(z—éln(l+x)1
1
)

+6|n(x)zz—%)|n(x)|n(1+x) %m (x)—%lnz(x)ln(1+x
_%Lig(—x)—%Lig(X)—i—gH17071(X)] —|—(1—|—X)[ Z2—|— 1 ( )_}Liz(x)——Liz(—X)
1

—gm( X)IN(1+x) + 214| 2 )]+(1—x)[312—25—i7+| (1—x)—1§7ln( )—2—14|n2(x)}

+0(1—x) [g—ﬁﬂlz —122+ 2_5z3D+16Can <pqq(x) [5—54In( >_5_14+3i6| z(xﬂ
+(1- X)[13+1I n(x)] - 3(1-x {H——Zﬁ L2a] ) + 160k (paa) [gZS—i—Z

54 9 144 27
EIn(x)jL}In(x)szL%Oln(x)ln(l—x)jtzrln (x)+§|n2(x)ln(1—x)+§In(x)Li2(x)
5

24 3

= 20500 — 25 10%00] + Pag( X[ 520~ Lo + 2L+ 0%~ SI(L — SInP(x)

1 4 1, 20, . 2. . 2, .
§In (x)+§ln (x)ln(1+x)+§L|2(—x)+§L|3(—x)+§L|3(x)
67

5
— TH 10a(0)] + (120 [ 1209 — 22n(x) + 2 In(YIN(L+X) + 25 1030 + 2Liz(¥)

+gLi2(—x)] +(1—x) [éln( X) =g —3n (1—x)+§ln(x)|n(1—x)—élnz(x)

—98(1-x) [%—1—212——12 1_7Z3}> ;

In(x)In(14x) —

(12)



where we have introduced

Paq(X) = 2(1=x) " —1-X (13)
and all divergences for — 1 are understood in the sense+edistributions. In eq. (12) we have
left one particular harmonic polylogarithm, kg 1(X), unsubstituted. This function is given by

H—l,O,l(X) = 0 —ZLiz(Z) = Liz(X)|n(1+X)+%Sl,2(X2) —81,2(—X)—S_L’2(X) , (14)

where the representation by the Nielsen funcpn has been derived in ref. [66]. H o 1(X) can
also be expressed in terms of trilogarithms, albeit withemmmmplicated arguments [6].

100 H 1) PPx) 1 of (1-x) Fl(,? (x)

-120

-140

--- N=2.12

0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 4: Thenf1 andnf2 partst)l(x) and Pf)z(x) of the three-loop non-singlet splitting function

(12), multiplied by(1—Xx) for display purposes. Also shown in the left part (dashede)is the
uncertainty band derived in ref. [19] from the lowest sixmweteger moments [7, 8, 9].

The x-space coefficient functions involve harmonic polylogams of weight four, which in
general cannot be expressed in terms of standard polytbgeriand Nielsen functions anymore.
Instead of writing down the cumbersome exact expressioagrefer to present sufficiently accu-
rate, compact parametrizations in terms of théistributions and end-point logarithms

@kzllnkl(lf;x)] ., Li=In(1-x), Lg=Inx. (15)
+

It is convenient to apply this procedure (which has been eysal in ref. [17] for the two-loop
coefficient functions) also to thlaef1 part of the splitting function (12). Inserting the numetica
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value of the QCD colour factors, this function can be apprated by

PP (x) =~ n(—183187Dp—1739278(1—X) —5120/81L — 197.0+ 381 1x+ 72.94X2
+44.79%% — 1.497xL3 — 56.66LoL; — 15261 — 2608/81L5 — 64/27L3)
+ n?(—Do—(51/16+3L3—5%) (1 —x) +x(1—x) Lo (3/2Lo+5)+1
+(1—x)(6+11/2Lo+3/4L3)) 64/81. (16)

Corresponding parametrizations for the three-loop caefftdunctions read

ConsX) = Ny (640/81D, —6592/81Ds +220573D; + 294906 D1 — 729,359 Dy
+25725975(1 — x) — 640/81L1 4+ 167.2L3 — 315317 4 47421,
+ 7621+ 7020x+ 989.4X% + Lol (3266+ 65.93Lg+ 1923L1)
+2601Lo+ 186515 +12224/243L3 + 728/243L%)
+ nf(64/81D3—464/81D, + 7.67505D; + 1.00830D — 10326553(1 — X)
—64/81L3 4 15.46LF —51.71L; 4 59.00x 4 70.66X* + LoL; (—80.05
—10.49Lg+41.67L1) — 8.050Lg — 1984/243L3 — 368/243L3) (17)

oﬁ
Lw
—~

X
N—

[

n; (1024/81L3 — 112412 +3403L; +409—210x — 7626 x> — 1792/81xL3
+LoL1(9692+3048Lg—2882L1) +2008Lo+64/3L5+0.0465(1—x))
+ n?(3xL2+4(6—25x)L1 — 19+ (317/6 — 12¢5) x— 6x LoL1 + 6xLi2(x)

+9xL3— (6—50x)Lo) 64/81. (18)
The nf2 parts ofPr(,? and cﬁs the 4--distribution contributions (up to a numerical truncatioin
the coefficients involvind)i), and the rational coefficients of the (sub-)leading regafad-point
terms are exact in egs. (16) — (18). The remaining coeffisirave been determined by fits to the
exact results, for which we have used the Fortran package.d68]. The above parametrizations

deviate from the exact expressions by one part in thousatessy an accuracy which should be
amply sufficient for foreseeable numerical applications.

5 Implicationsfor thethreshold resummation

The largeN/largex behaviour of the three-loop splitting functions and coedfit functions is of
special interest in connection with the soft-gluon (thmddhexponentiation [43, 44, 45] at next-to-
next-leading logarithmic (NNL) accuracy. Here the coeffitifunction forF, ,; can, up to terms
which vanish folN — o, be written as /

Cons(0s,N) = (14 asgg; +a2gop+ - ..) exp[Lg;(ask) +gy(asl) +asgg(ask) +...]  (19)

with as = as/(4m) andL = InN. The functionsg, depend on (universal) coefficierws | and
Bi<|—1 and process-dependent paramem?gl_l as described in ref. [46], where also the explicit

11



expressions for the functiortg , 5 can be found. Hence the NNL functiay involves the new
coefficientsAs, B, andD2'S. These coefficients can be fixed by expanding eq. (19) in powfer
0s and comparing to the result of the full fixed-order calcualas.

In the MS scheme adopted in this article, the paramétgis simply the coefficient of IN in

y(nzs)(N) or, equivalently, of 1(1—Xx), in Pﬁzs) (x). Its fermionic part is thus known from eq. (12),

836 160 112 110 16
— CaC - - Cen; |- == 1+32 Cen | —2=| . (20
Asnf ACEN¢ { 27‘+ 9 (2 3 14'+ an{ 3 + 14-+ FN¢ { 27} (20)

The numerical value can be read off from eq. (16). Like forwiele of Pﬁ,zs) (x), as shown in

fig. 4, this result is consistent with, but supersedes thenagt derived in ref. [19] from the first
six even-integer moments. Parallel to our wégf, has also been calculated in ref. [69].

The combinatiorB; + D2'S has been determined in ref. [46] by comparing the expansion o

eg. (19) to the IN term of the two-loop coefficient functiong%S of ref. [2]. As the IfN (or

Dy) contribution tocl). involves a different linear combinatiofo(Bz + 2DP'S), of the very

same coefficientd, and D'2DIS can be disentangled using the three-loop coefficient fanctThe
analytic results for the two new-distribution coefficients read

@ B 15062 512, 2 [83 112
Cons oy CACan[ 8L +—9 (2+16¢3| + Cén; 5 + 68Zz+—3 (3
940 32

+&Wﬂ§I—§I4a (21)

3 160906 9920 776 208 2003

Cons g, — CACHY {_ 729 81 2 9 BT 15 122} + GEn {_ﬁ

0''f
4226 2 > | 8714 232 32

——57—Z2—-6013*-16Z2} +'Can{—"7§§“¥7§712—-§?Z% (22)

(the coefficients ofD, 5 can be found in ref. [65]). In fact, due to the prefadgr the complete
results forB, and D2DIS can already be inferred from fermionic result (21), yietin

3 3155 44
B, = C#|—>—24l3+120| + CrCa |~ = +4003+ — L2
2 54 3
247 8
+ Ck N; [? - é ZZ:| ) (23)
DS — 0. @4

The vanishing oDP'S andDD'S — in contrast to the Drell-Yan process, wheg is different
from zero [46] — calls for a deeper explanation, possiblgoffg an all-order generalization.

Finally we note that, once the non-fermionic contributibmshe 3-loop non-singlet splitting
functions and coefficient functions are completed, the NNieshold resummation facilitates a
prediction of the first six towers of logarithms, i.e., theetfwients ofO(QInzr“i N,i=0,...,5, of
Consat all ordersn > 3. We will return to this issue in a later publication.
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6 Summary

We have computed the fermionig; (enhanced) third-order contributions to the structurefioms
F andF_ in electromagnetic deep-inelastic scattering. The cat@n has been carried out for all
even-integer Mellin moments, by solving the three-loop integrals by means of recursatetions
(difference equations) iN. This progress with respect to previous computationsicéstito some
fixed momentdN is especially due to an improved understanding of the madiiesof harmonic
sums and difference equations, and the implementation mésgonding tools in the symbolic
manipulation program FORM which we employed to handle thgehutermediate expressions.
We are confident that our approach will enable us to computkrak-loop corrections in DIS.

We have thus been able to derive the complete expressiotisf@orresponding;-parts of
the NNLO anomalous dimensions and splitting functions &edNPLO coefficient functions for
F> andF_. The results have been presented in both Mélliand Bjorkenx space, in the latter case
we have also provided easy-to-use accurate parametngat@ur results agree with all partial and
approximate results available in the literature for thesangjties, in particular we reproduce the
even-integer moments = 2,...,12 computed before.

The present results for the three-loop splitting functiepresent a step towards completing
the ingredients required for NNLO calculations of hardtsrang processes involving initial-state
hadrons in perturbative QCD. The three-loop coefficiencfioms for the most important structure
functionF» form the dominant part of theNLO corrections at large, thus facilitating extractions
of as with a distinctly reduced theoretical uncertainty. Alrgaken,-part computed in this article
leads to a complete determination of the threshold-resuromparameterB, andD2'S — includ-
ing the non-fermionic contributions — of which only the surasriknown so far, thus practically
completing the information required for the next-to-neodleading logarithmic resummation.
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A Appendix

All results for the non-singlet anomalous dimensions areffadent functions presented in this
article can be obtained as a FORM file from the preprint semvep: //arXiv.org by down-
loading the source file. Furthermore they are available fileerauthors upon request.
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The fermionic parts, i.e., all terms proportional@aCrn;, C2n; andCgn? of the three-loop
coefficient function for the electromagnetic structurediion F, are given by

(3) B B ? _119 142883 105 3 _3 B
C0N) = 16CHCe (B(N-2) 25— 55 °0s] + Torome T2 Ts + 2lat oS~ 251s
4 191 16 20 4 29 14 16
L S il Sa1- 28311 2SS ,l3— S
941+813332+27319311 18232Z3323
13 8 23 199819 101 83 4132
+3S—2 2+35—2 -21+ 95 5+ 810081 Slz+ﬁ3s3l_a ESL -2
1212 ot S 21t St Sila 4Si st Si1t - SoSian+ 108,
33-2-2F 21+ 108021 103 1,-3 11 21 —4
8 1
+—511172+—51112—452721——51121——51272+5122+—513+—5131——52,2
36719 218 263
—— S+ —5213+1052 3——52 2+ —5112——521——521 —2—255(3
16200
4537 112
—:—35273—@)53+—5372 51 3_TN Sp1,2+Ny %,1,1—§Sz,1,1+§54,1
23 119 2 2
—355 +(N_3—N )[ S+ - 31 —3— 4—5051 2— —51721——51113——51172
1 179
+§Sl,1,3—§sl,3,1+1—552,—2}+(N—2_ )[ SB—H)S.L 5113 1—@32
1 1 2 1
+552,1——513+—5172+—531]+(Nf—1)[45174+2517272+—5122}
11057 3559
HLN)[ls - Disitst o8 5 1S 20— 55 2 208 21+msll
176 217

—851(3— 85,1, 3+—511 2+—5111+ 5111 2+ 5 51112——5112

—551,121+—5113——512——512_2+—5121——5122+—513+—5131
231037 118 793

—4S) 4 — 540032 3$(3—6S, 3+—Sz 2+ Sz 21——521——521 2
1 4 49717 1 166
+682’172_§SZ’2_682’2’1_2823 Mss——ss 2——531——532——54

5 219
+631,1} + (Nt —Ny») [105113 — —51 +-= Sl,—2+451,—2,1+ gsl,1+451,113

21 24
—451, 2-2513+352—-353+2531— %Sz —45(3+4S, o — —Sz 1+2S3
3 72 159
—553 -S1— 231,1] +(N42—Ny3) [352,2 —3S110— 35113 _Sl 3— —Sl )
6 6
——51721—651 13— —51172+351,1,3+351,2,1+65213—35131+ —5272+3311
159 1711 5608067

3% oS et &}+<N,+N+)[ﬁslzs 29160031 2Site
1 104
——51 —4+4S11, 2+—51 3+ = 51 31——66 351 2—i51 21+ = 51 211

405
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8 25511

52
+§Sl,1Z3 - Msl,l + 351717—3 T 57
661

1 4 13 34 29 1
Si12+ 551,1,2,1 + ES_L,l,S +—=Si2+ 351,2,—2 + 1—251,2,1 + 551,2,1,1 —4S 3+ 1

36 108
44537 23 79 377 20 5731
—S(3— 352,—3 + WSL—Z + 3527—271 + %5271
4511

8 17
331t gt o5 3
34 59 5 53 5 13 67 83
+§Sz,1,—2 + 1—852,1,1 + 552,1,2 — Esz,z — 552,2,1 + 1_852’3 — ESg — 353’_2 — 5353’1
253 9517 1 57 é

5 1 o1 7
_653,1,1+ ESB,Z‘T‘ a&}) + 16Ce g <1_85'L’1’1 STl EZS— @351 ~ 108
43

1 1 19 13 19 265 7 7
—1—851,2 - 32432 - 652,1 + asﬁ (1-Ny) [1_852,1 - 1—853+ —S+ 1—851,2 - 1—851,1,1

108
133 1421 5585 161

1 13 1
—1—0851,1 — @51] +(N-+Ny) [@51 + 2—75113 + @51,1 + 5151,1,1 + 551,1,171
1 301

T T T Y
—g—z&D + 16C¢°ny <%135(N—2) - %#L 1—2913 — 214 — 4363—5+ 234,1 - ?;%2&3
+2—354 + 33253,2 - ;1—(;53,1 + 253,171 + %952 + 2385213 - 13652,2,1 + %051
+%2&2,—3 — 2—:_,:C’Ss—z,—z + %&13 —45, 4+ %351,—3 — %51,—2 + 251,—2,—2

—%1251,2,1 + ﬁ51,1 + 23051,113 +8S1,3— %2481’1’2 - 57iz7

144
2171

2 31 16 7 2 235
—551,1,1,2 - 1—851,1,2 + 2—1651,2 + 351,2,—2 + 551,2,1 + 551,2,2 - %51,3 +4S; 4

140237 436 7133 16

1620052 —225(3—- 20, _3+ 752,72 +8% 21+ W)Sz,l + 352,1,72
7627

50 7 2 56
+§Sz,1,1 -4, + 552,3 — a3+t Ny {52,1,1,1 S22+ 551,1,2,1 —-S21— 333,—2

3240
329 7 401 119
27

53 1
3S2t gyt gSt Ess} +(N_3—N_2) [5551,72
4 4 4 4 8 179 4
2 S 91— =S 3+ =51 29— —% o +(Ns—N_)|Zg — g
55113+ 1551, 21 551, 3+ 1551,1, 2 1552, 2] +(N_» ) [22551 1551, 2
59 4 15439 219
205 ESB} +—1440(N—_1)Sl,1+(N+_N+2) [E
13 154 36
+45(3 -85, 21— 351,1 +8S51,24+2512—-55,—-2521— 2—552 + 353 +10S31
13 12 37 159
+§Sz,1 25— 852,72] +(N42 —Ny3) [551,1,2 - 352,72 —55,+ 333,1 + 2—531,72
159 12 12 114
+ESB —55 21+ 351,1,72 + 351,7271 +

5
10337 8 14 16 16 40
~e7g L8 -4-gSst St g S22t S S 21+ 58110+ 16511, -3

576
179 565897

76157 128
2320 01T g 12T 75 162002

184 32 11 17
S111— 351,1,1,72 - 351,1,1,1 - 1—851,1,1,2

Si1

16
S111— 351,1,1,72

10
—351,3,1 -
29
1 - 353,1,1 +
12
S - gsl,—z

4 4
+1—55.L,1"r‘ SZ+1—582,1_

36 36
Si13— 351,73 — 354] +(1-Ny) [454

32 14 4
Si11— 351,1,1,72 + 351,1,1,1 - 551,1,1,2 +
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295 32 17 4 115 29 2
+2S1121— ﬁsl,z + 351,2,72 - 351,2,1 + 551,2,2 - 5=S913+854— 351,1,2 - §5213

36
236 40 4663 32 37 22817
752,72 - 352,7271 - msz,l + 352,1,72 - 352,1,1 - WSB’
86

32 5 65 85 91
+5 S22t 2 S3 =4S 2t St o Sila| + (N +NL) [ TS a— 2S5 - 4%

8 13226 104 152 784 41929
—551,—2,1,1 + W&,—z - ?51,1,—3 + ?51,1,—2 - E&,—s —4S 2 2+ S

129600
244 1 208 4 13 7 64 35
—75113 + 55114+ 751,72,1 - §51,73,1 - 351,113 - 551,1,1 + 351,1,1,72 — 351,1,1,1

10 44 25 91 577 40 107
—351,1,1,1,1 + 351,1,1,2 + 351,1,2 +3S1121— 1—851,1,3 +——=S12+ 35213 + 1—851,2,1

648
34 79151 239

68 49 275 73 31
+§Sl,2,1,1 - msz - 351,2,—2 - asz,z - 351,2,2 — =513+ 1—852,1,1,1 - 652’1’2
133 403

108
158 754 40 68 79 67
+?Sz,73 - fsz,fz - 352,72,1 + %54,1 — 1 352,1,72 + 1—852,1,1 - 1—852,2,1
7871 134 241

810
17 5 5 25 38
—I—ESLA + 7—231 — ESL,S,l + 352,3 + %53 + 753,—2 - ﬁs&,l + 353,2] ) . (A1)
For the sake of completeness, we include the result for thept=ie first and second-order longi-

tudinal coefficient functions(f}]s andc(f?,S known from refs. [56, 70, 2, 6]

20
—351,3,1 +12S5 _3—

oe(N) = ~4Ce(1-N,)S; | (A2)
(2) 12 12 12

G9(N) = 4CaCr (£ 2aBN-2)+ TNy = Ni2)[S1— ol + T (Ns2 —N3a)[S1 2+ S
98 8 8 8

_1_551+ 532 + E(Nfs —N_2)S, 2+8(N_—-1)§ >+ E(Nfz —N)[S+S)

23 287 176
+(1-N) 12503 481 2~ T'S11- 81124513~ TSI +4SL o+ S 2% — 4

+(N=+Ny) [411—251 - gsz]) +4Cgny <(1— N+) [%Sll - g52+ 23551 - é(N - 1)51)

24 22 4 16 16
+4CF2< - 3135(N—2) + St S g(N—s —N_2)S,2— g(N—z —N_)[S+ ]
24 24
+(N- ~1)[2811 - 168, 2] = T (N4 = N.2)[S1~ &) = T (No2 — Nya)[S1 2+ Sy
33
+(1-N4)| 55148513~ 245103~ 8513 +851 2+ 7511+ 165112~ 45111 +4512
54 11 2
—gsz+652,1+453} —(N_+N,) {gsH 552]) . (A.3)
The contributions to the 3-loop longitudinal coefficienhétion corresponding to eq. (A.1) read
3 20 149 16 4 4
c(N) = 16CACEN; (B(N-2)[ 526 — = G| + (N =N 2)[ 2% 2~ 35131+ 313
8 8 8 8 298 8 4
—551,113 - 1—551,1,72 - 1—551,72,1 + 631,73 - 2—2531,72 + 63113] +(N_2—N_) §51,1(3
418 8 8 4 4 4 178 4 4
—2—2551 + §S3+ 1—551,—2 + ésl,—z,l - ésl,l,—z—i— gsl,l - 2—2552+ §S3,1+4SLZS+ 652,1
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2 4 2 16 13033 518 2
~3Sam 38 38| + (N~ 1| TS 2 35789~ Zp 82 g%

8 254 2 76 8 8 8
—;_3,517*271 " 45 Si1- 1_559’+ 85,3+ 2_552 - §Sl,1772] + (N4 —N42) [551,72,1 - §SZZ3

7 8 4 4 16 8 4 16
_EBSZ — 551,1,—2 —2513+ 551,3,1 — 551,1,3 +2S5 2+ 351,1 + 551,113+ 551,_2 — 352,1
20 73 2 2 4 4 8 4
Sl 08— 58— % - m S+ 2S5+ oS a| + (Neo—N13) =S 542
+ 310~ S - £ g s St 3 %at 5% 2] + (Ni2—Nig) |29 2+ 2%

4 14 53 12 48 12
—551,—2,1 —2S3— 353,1 — 2—553 + gShL 251 — 35113 + 351,—3 +2S513—45113

4 53 125599 40
—651,1,—2 — 2—551,—2 +25121—2531+49(3— 251,1,2] +(1-Ny) [751 — 35113

4050
413 8 4469 88
4—551,72 — §51,72,72 + 2—7051,1 —85,1(3—85,1, 3+ 331,1,72

40 16 2 2 2 2 40 16
+351,1,1 + 351,1,1,—2 + 551,1,1,2 + 551,1,2 - 551,1,2,1 + 551,1,3 - 351,2 - 351,2,—2

10 2 2 2 8 20953 4 2
—354 - 551,2,1 - 551,2,2 + 553,1 + 551,3,1 —A4S54— ——S+85(3+ 552,73 - 552,72

675
238 824 38 2
3 ES3+ 351,3“1— §S41]>
19 2 2 2 317 25 2

+16Cen?((N-—1) [2—781 + 55— 552} F(1-Ny) [gsl,z ~ TS 57 St gSL

50 4 2 > (298 16 16
o2t g1 §S3]) +16Cr“ny (7—5135(’\1—2) +(N_3—N_2) [1—551,1,—2 g3

596 356

16 32 16 16 16
+1—55_L,—2,1 + issl,—z - 1—552,—2 - 35_&3} +(N_2—N_) [1—582’1 — €S3_|_ 2_2552

68
45, 4—g5S-3t

8 16
+§Sz,_2,1— S1— 352,1,—2—252,3+

FooS— oSl 1S oS 21t oS 2 1eS 2| H (N~ D)[Frass 1682
—165, 3+ %:651,2 + 13651,2,1 + 2—251,1 + 13651,1,2 - 251,1,1 + 251,2 + %Sz + %)Ss
2 ot o] (N Noo) [0S DS TS+ DS - %0+ S5l
—1—;52,—2 - gsl.z,l + 1?651,1,—2 + gsl,l.z - gsl,—Z - 1—;551,—2,1 - i_gsﬂ_,l + %53 + %6332,1
+(N42—Ni3) [%65113 + 12—05651,2 + 251,271 - 2—5451,3 + 1—??51,1,2 + 251,1,2 - %)51,2,1
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Recall that in all our formulae the expansion parameter imatized as in eq. (2). The operators
N andN; have been defined in eq. (4).
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