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Abstract

The complete soft-enhanced and virtual-gluon contrilmstiare derived for the quark coefficient
functions in semi-inclusive™ e~ annihilation to the third order in massless perturbativeDQC

These terms enable us to extend the soft-gluon resummaiahé fragmentation functions by
two orders to the next-to-next-to-next-to-leading lotfariic (N3LL) accuracy. The resummation

exponent is found to be the same as for the structure furgstanclusive deep-inelastic scattering.
This finding, together with known results on the higher-orgeark form factor, facilitates the

determination of all soft and virtual contributions of tleufth-order difference of the coefficient
functions for these two processes. Unlike the previoudL(N order in the exponentiation, the

numerical effect of the RLL contributions turns out to be negligible at LEP energies.



Semi-inclusivee™ e~ annihilation (SIA) via a virtual photon &-bosongte™ — y/Z — h+X,
is a classic process probing Quantum Chromodynamics (QG@8&)heory of the strong interaction.
A wealth of precise measurements have been performed,iatusaenter-of-mass (CM) energies
/S, of the total fragmentation function

1 do"
Otot dx

= F"(x,Q?), (1)

whereh stands for a specific hadron species or the sum over all (etialight hadrons, see Ref. [1]
for a general overview. In the CM frame the scaling variabie the fraction of the beam energy
carried by the hadroh, andQ? = s is the square of the four-momentugnof the intermediate
gauge boson. In perturbative QCD, the total (angle-integ)adragmentation functioﬁlh =FN
as well as the transversEr(), longitudinal ) and asymmetricKa) fragmentation functions for
the double-differential cross sectiaw” /dxdcosy, [2], are given by

hiy 2 1dz 20\ nh( X A2 1
Q) = 3 | ey (zad@) of (%07 + o(c—g) | @
Here th are the parton fragmentation functions, the final-statadlike, Q% = g°) analogue of
the initial-state (spacelikeQ? = —g?) parton distribution functions in deep-inelastic scaiigr
(DIS). Without loss of information in the present contekie renormalization scale ofs and the
factorization scale onh have been identified with the physical hard sda@fein Eq. (2). The
coefficient function<, ; are defined via expansions in the strong coupdigige os/ (41).

Here we are interested in the dominant (anti-) quark coutiobs toF", F andFy,

Cagq(X.0s) = Oew(8(1—X) + asChg(x) + 82 Cq(x) + aSckq(X) + ...) - (3)
The electroweak prefactors, can be found in Ref. [2]. The first- and second-order coefiicie
functions have been calculated long ago in Refs. [3] and§pectively. More recently the latter
results have been confirmed (and some typos corrected) imtlependent ways in Refs. [5, 6].

The three-loop correctiortés) (x) have not been derived so far.

The coefficient functions in Eg. (3) include larggthreshold) double-logarithmic enhance-
ments of the forma? (1—x) *Ink(1—x) with k=0, ...,2n— 1. Such contributions, which spoil
the convergence of the perturbation series at sufficieattyd values ok, can be resummed by the
soft-gluon exponentiation [7, 8]. For the process at harsrdsummation has been worked out to
next-to-leading logarithmic (NLL) accuracy in Ref. [9]. @mclusion of this resummation has led
to improvements in a recent global fit of fragmentation fiores [10]. Hence an extension of the
soft-gluon exponentiation f& e~ — y/Z — h+X to a higher accuracy is not only of theoretical
but also of phenomenological interest.

In this letter we employ the analytic continuation approatiRef. [5] to derive the soft and
virtual contributions to the third-order coefficient fuiwets in Eq. (3). These results are then
used to extend the results of Ref. [9] to the next-to-nextert-to-leading logarithmic (RLL)
accuracy reached before for inclusive deep-inelasticeswad) [11] and the total cross sections for
lepton-pair and Higgs-boson production in proton—(aptéjon collisions [12, 13]. A substantial
intermediate step towards the present extension has demmhafore in Ref. [14].
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Up to small contributions from higher-order group invatgaantering at the third and higher
orders, the soft plus virtual contributions are the sametlier DIS quark coefficient functions
for F1, F2 andF3 [15, 16]. The same holds for the corresponding (in this Qr@&A coefficient
functions forFr, F andFa. Hence we will drop the indea from now on, and refer to the former

coefficient functions collectively aﬁ) (x), and the latter asg)(x).

In this limit the bare (unrenormalized and unfactorizedjt@aic DIS (spacelike) structure
functionF® is given by [17,18]

2 —le
F(ag,Q%) = 6(1—x)+lz<a§’>' (%) Fe) (4)
=1
with
Fstjl = 2R3(1-X)+51
F, = 2%+ (HR)9)8(1—X) +2F51+52
Fe; = (2%+2F%)8(1—X) + (2F2+ (1)) S1+2F182+ 53 - (5)

Here is the scale of dimensional regularization with= 4 — 2¢, anda® the bare strong cou-
pling. % represents theloop quark form factor [17-22]. Thedependence of the real-emission
functionsSk is given by theD-dimensional +-distributions

fle(x) = [(1—x) 2], = —k—le5<1—x>+; e g (6)

where we have introduced the abbreviatin= [(1—x) *Ink(1—x)], ..

The transition to the bare SIA (timelike) fragmentationcftionsFSb is performed as follows:
In Eqg. (5) the factors Z are replaced everywhere by 298 and all productsfk % by | £ AT,
WhereflT is the complex-loop timelike form factor which can be obtained from thegke 7
by Eqg. (3.3) of Ref. [17]. The analytic continuation of thalremission termgy is carried out as
discussed in Ref. [5]. In fact, these functions turn out téHeesame for the spacelike and timelike
cases (this holds only in the present largimit, not for the full real emission contributions).
Finally the standard renormalization and mass factooras performed to the third order for the
resulting timelike analogue of Eq. (5), yielding th& andd(1—x) terms ofc,gf) (x) in EqQ. (3).

For the convenience of the reader, we include also the bafgeits of the well-known first-
and second-ordevlS coefficient functions [3, 4]. As expected from the abovecdssion, these
and the third-order coefficient function share all npnterms with their spacelike counterparts,

hence we will present them via the corresponding differedggc, = c(T”) — C(S”). The results read
OrsCi(X) = 1202C¢3(1-X) , (7)

315C(X) = 48L,C? D, —36{,C? D,

466 76
+{(-108+24205)C2+ (5272422 ) CaCr — Gy [ L28(1-X) . (®)



S15C3(X) = 96L2CP D; — {216C3 +88C,C2 — 16C2n; } Lo D,

3332 536
— {(324+ 9672) CF — <T —192¢; )CACF t3 Cény } (2 Dy

10504
+{(306+ 2162, - 96¢5)CF — —5— 24802~ 48073) CrCE

+ (@—3212)0an}12 Dy

9
993 13457 220
+{ (7 +180¢; — 93645+ 7203 ) CF - (T - 161625

108 74728 528
+ = ZZ)CAC,: (7 — 19602 — 1056{3+ — Zz)

667 136 23504 16
*‘(‘5— ———12——8013>Can—‘<‘j§7— ——12 9613>CACan

(222 20)cen?} 2281 (9)
HereCa andCr are the standard group invariants, WiIh = 3 andCr = 4/3 in QCD, andn,
the number of light flavours(yx denotes Riemanné-function. The third-order SIA coefficient
functions can be obtained by adding the corresponding Dd8ltegiven in Eqgs. (4.14) — (4.19)
and Appendix B of Ref. [15], see also Eq. (3.8) of Ref. [16].eTinst half of Eq. (9) agrees with
the result of Ref. [14], thé(1—x) contribution in the second half has not been presentedédefor

Below we will need theN-independent par;sgg, = d1sC (N)|yo of the Mellin transforms
of Eq. (7) — (9) obtained via

1
N — / dx (xN1—1) a(x) (10)
0
together withd(1—x) — 1. These contributions are given by {s the Euler-Mascheroni constant)
;875001 = 12C¢, (11)
_ 466 76
03 815tz = CaCr( - —24L2) —C2 (108— 4802~ 36ve—24y2) — T Ceny ,  (12)
1 993
G rstos = Gy 4187920+ ot zz — 306ye + 288yel3 — 162y2
13457 5024
+ 963z + 728 + 24v¢ ) + CaC - 482+ (s
588 10504 1666
— {5+ —g— Ye— 160yel> — 480vels+ —— ve2 96ve2z2
88 74728
+3 ye> +C2C: <—27 — 1960, — 1056(3+ — Zz)
667 272 1672 268 16
2. (907 _ele, _ 2
—|—C|:nf< 3 44Z2 Z3 9 Ve+ 16Ve12 3 ye 3 y )
23504 16 1624 16
+CACan<—T——Zz+9613)+CF f< >7 —12> : (13)

The corresponding DIS coefficients can be found in Egs. 4(@)8) of Ref. [11].
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For processes such as DIS and SIA, the dominant lgf¢grgeN contributions to theviS
coefficient function€N can be resummed by a single exponential in Mellin space [7]

CM(Q%) = 9o(Q%)-explGN(Q?)] + O(N"*In"N) . (14)

The prefactorg, collects, order by order in the strong coupling constagtall N-independent
contributions. The expone@N contains terms of the form N to all orders inos. Besides the
physical hard scal®? (= g2 in DIS/SIA, with q the four-momentum of the exchanged gauge
boson), both functions depend on the renormalization ggaead the mass-factorization scale

The exponential in Eq. (14) is build up from universal ragiatfactors for each initial- and
final-state partomp, A, andJp, together with a process-dependent contribufith The resumma-
tion exponents for DIS and SIA [9] take the very similar form

GNs = InAgq+InJg+ InALY
GYa = InAg+InJy+ InAL, . (15)

The radiation factors are given by integrals over functiohthe running coupling. Specifically,
the effects of collinear soft-gluon radiation off an init&tate or ‘observed’ final-state quark are
/(1 2)2Q? dq2

collected by
INAg( /dz 1=z P

Collinear emissions from an ‘unobserved’ final-state queakl to the so-called jet function,

A(0s(a°)) - (16)

InJy(Q?) = /dz -

(1-2)Q?
[ [ 9T s + Blas(1-202) | . (a7)
(1-22Q2 q

Finally the process-dependent contributions from langgl@soft gluons are resummed by

InAM(Q?) — / a2 L bag(1-220%) . (18)

The functiongy, in Eq. (14) andA, B andD in Egs. (16) — (18) are given by the expansions

=|;HZ—]|STE|;H%, (19)

wherelp = 0 with gy, = 1 for F = g, andlp = 1 else.

The known expansion coefficients of the cusp anomalous dimerfthe coefficients of), =
1/(1-x) in theMS quark-quark splitting functions) read [23, 24]

Ar = 4Ce

MR NN

Az = 16CF[C§<22;‘;5—6—712 —113+1—1122)+Can(—2—i+213)
+CAnf< %2 EZz——Zs)ﬂLan(—%ﬂ- (20)

4



The first three coefficients of the jet function (17) are gibgr{7, 11, 25]

B, — —3Cq, 21)
B, — cé[-%+12z2—2413} +CFCA[ %?5 ﬁ12+4013}
By = C2[ 2 187, ~68Ls — 20023+ 320als + 24005

+CCR[ 46+ 2870 2205~ 21203 ~ 16005 - 1205

e[ 2 T, B 2223 - T Pt 2322

1 cln [ 220502, + S 2g] 4 cen[ - S Qzaz— >2e]

R s L (23)

Together with Egs. (11) — (13), all functions tdtin Egs. (16) — (18) are known to ordeg.
Consequently the first three coefficientdoi” can by determined by comparing thgexpansion
of EQ. (14) with the fixed-order results (7) — (9). This progezlyields

D" =0 (24)

fork=1,2 3, henceﬁ‘sr‘ltA = 1 to at least NLL accuracy.D; = 0 was, of course, included in the
NLL resummation of Ref. [9]. HoweveB, was unknown at that time, and orBs + D, could be
extracted from the two-loop results of Refs. [4] alone.

As expected from the identity of the DIS and SIA soft-emiadanctionsSi in Eq. (5), there
is a strong similarity between the respective coefficiemctions also in the framework of the
soft-gluon exponentiation — recall that

DP'S =0, ANl =1 (25)

was proven to all orders ias in Refs. [26,27]. We expect that such a proof can also be eeriv
for SIA. For the time being assuming the all-order validity=). (24), the difference between the
SIA (timelike, T) and DIS (spacelike, S) lardé<coefficient functions exponentiates as

3rsCN(Q%) = Brso(Q?) -exp[GN(Q%)] + O(N~In"N) (26)
where, after performing the integrations in Egs. (16) — (18 functionGN takes the form
GM(Q%) = INN-gy(A) + Go(A) + asgs(A) +aigs(A)... (27)

with A = BoasInN. The first three expansion coefficients &fsg, for i = s = Q have been
given above in Egs. (11) — (13). We will address the fourttheoicoefficient below.

5



The functionsy, to g, have been derived in Refs. [7,11, 28, 29]. For completenesseude
these functions, also here restricting ourselves to chgieep; = Q of the scales:

g2\ = Af(1—-In(A=N)+Atin(A-N)), (28)

G50\ = (AtB1—Ao)(A+In(1-A)) + SALByIn’(1-A)

— (A1Ye—B1)In(1-A) (29)
93 °(A) = %(AlﬁZ — A1+ AgB1 — Ag) <1+7\ - ﬁ)
In(1—A) 1In%(1—A
aggg(MEN | AR (- a) Ina )
+ (A1P1Ye+AoP1 —BiP1) <1 1 i N In(ll_—)\)\)>
— <A1[32 + %Al(yg +€2) +A2Ye— BrYe— Bz) <1 - rl)\) ; (30)
and
DIS _ 1 sin(1-n) 1 2 2 2 In(1-)) 1 3
ds-(A) = _éAlﬁlw + §(A131Ve+A2[31 - BlBl)W + E(Alﬁl —AqPiP2
— A1B(YZ +L2) + AoBT — 2A0B1Ye — AsBr + 2B1B1ye + 2B2P1) I(nl(l_—)\;\z)
— (AdB: — AiB12) In(ll_—)\)\) + (%Alﬁf — A1B1B2 + %AlﬁS) In(1—2) + (AB]
— A1B1B2 — A1PéYe + A1BaVe — AoBT -+ AoB2 + BB — B1fz) <% - ﬁ
1 1 1/1 1 1 1
+ EW) +5 <§A1[3§ — gP1P1Pz — g APs — S A1 (3yel2 +Y8 +203)
APy Ao(V2 +22) — Ao+ Ao+ DAL~ Ak~ A~ B
+B1(Ve+{2) + 2Boye + Bs) (1 - (1_71)\)2> + % <A1[3? —2AaP1PB2+ A3
+ Ao — Ao+ A1~ As A (31)

Factors offfp = 11/3Ca — 2/3n; have been suppressed in Egs. (28) — (31) for brevity. The
dependence oy is recovered by — Ay /B, Bk — By/BE, Bk — Bk/Bg* and multiplication of

g3 andga by Bo anng, respectively. Note that Eq. (31) includes all known coedfit of the beta
function of QCD, see Ref. [30] and references therein.

All parameters entering Egs. (28) — (31) are known exceptHerfour-loop cusp anomalous
dimensionA,. The small (see below) impact of this quantity — which firsturs in thea2In3N
contribution toBTSCN — can be included by a Padé estimate as in Ref. [11], backed/up b
recent calculation of one Mellin moment of the fourth-ordeark-quark splitting function [31],
cf. also Ref. [32]. E.g., fon; = 5 one may uséy ~ 1550 (recall our small expansion parameter
as = Os/(41m)) and assign a conservative uncertainly of 50% to this value.
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Due to the vanishing oB150q, the two highest logarithmsy.In? N andakIn? 1N, are the
same for the SIA and DIS structure functions to all orderstin The expansion of Eq. (26)
with Egs. (11) — (13) provides the six highest logarithmsRsf. [11], of the coefficient-function
differenced;sCN, akin? 2N witha=2, ..., 7, at all orders from the fourth. In particular, allNh
enhanced terms are thus fixed at ordgr After transformation t-space these contributions read

880 160

SrsCa(X) = 96L2CF Ds— {360CE + — 3 CaCP - 3 ——Cen} (2 D,
. ; . 1936
_ {(432+ 5762) Cff — (3552 57602 ) CaCE + 576CEn; — —~CAC?
704 64 .
+ 5 CaClng — . Cn Hheoms + {(1674+2160+1925)CF
25238 4100
. ( = — 28002, - 2880z3) CACE+ <T . 35212) Cén,
9616 3248 256,
— (5252802 ) CRCE + (25 - 968, | CuClny — - CEN?} 2 1,
1248 22916 23120
{(1122+ 9367, — 432003 — —ZZ)CF ( s Ty G
4368 488 4592
358405 — 28 Z2>CACF ( 5t Gt 6413)CF n
224230 17176 5184
(=5 G2~ 7392+ 2 (3 ) CACE
69728 3056 4888 64
- (5= —12—57613)CACan + (T G CAnf oy
3003
- { <_2 +33120, — 32883+ 79203 +192z2z3—5184z5)cF
24507 78428
_ ( . (> — 881603 — 145205 — 172853
6620501 243752, 168560, 5952
1440Z5)CACF + ( — 7 G gt g {3
3551 13568, 688
+16641213+278415>CA2CF2+ ( g T g Gt ZS)Canf
1983208 66392 1152
—( 543 {2 —2336({3+ — Zz)CACF f
135020 464 128
( o — Lo+ zg)anf}zz Do + ... . (32)

The first four terms correspond to a NNLO + NLL accuracy as @lgtined for DIS in Ref. [33].
For the present case these terms have been presented, fierandihotation, already in Ref. [14].
The coefficients ofD; and D, (recall the definition below Eg. (6)) are new results of thesgnt
study. The latter coefficient depends on our assumptior&af24) extends tk = 4.

The fourth-order result (32) can be verified, and extendetie®(1—x) contribution, in the
following manner. Eq. (5) is extended to the fourth order,
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FO = (2Fa+2RT3+(F2)%) 8(1—xX) + (2F+2F1.5) S1
+(2F2+ (F1)%) S2+ 2183+ 4 (33)

and is subtracted from its timelike counterpart obtainedissussed above. Assuming that akko

is identical in the two cases, the only unknowndips F to ordere? is the four-loop anomalous
dimensionA4. All other unknown quantities, such as tileande? contributions to the spacelike
three-loop form factor [18, 21, 22] (also the latter new tesunot needed in the present context),
drop out in this difference. Also the four-loop form facteikinown from its exponentiation [34] to
a sufficient accuracy in[18]. The soft and virtual contributions ¢, are then extracted from
the fourth-order mass factorization formula (here givetenms of the bare coupling)

1 4 7 2 1
SrsFy = O7sCy+ 3 [B2— Py drsay + [— PoB1— g PiBo— 5 PoP1+ 5 Popl} Orsby

11 1
+ [Bg— 5 PoBS + P§Bo — ] Orsdy + [Bl Pl] Ors@y
5 1
+ | 3853 PoBo+ 5 P3| 875, + [3B0— P rsas + e-terms. (34)

For brevity we have suppressed the’ ...~ terms which form a consistency check but do
not provide new information. The functioras, b, andd, are thee!, €2 and € contributions,
respectively, to th®-dimensional coefficient functions at ordef, cf. Ref. [16], andP, denotes
the N'LO quark-quark splitting functions. Ir-space obviously all products of these functions in
EqQ. (34) have to be read as Mellin-convolutions.

The determination ad,5c, from Egs. (33) and (34) reproduces the result in Eq. (32) —e&en
DP'A = DP'S (= 0) in Eq. (18) corresponds ¢Sk = 0 in Egs. (5), (33) and their higher-order
generallzat|ons — and includes the final lasgesefficient,

7255 13896, ,

G Brscal,, = (-~ 377381603

{5+ 40800503 + 148805

31856, 5 2\ ~4 191411 153802
+T.512 _121&3)CF + < 12 (> —428083

62452 8128 67328 102472
3+ Cala— —5— s — —jor— (3 +406403 ) CEC,

14817221 63347 1856680 5306
+ (- T et o G+ g 43— 2032ty

13294462 206162
+625615+—12 99203 )C2CE + ( s o G2
416032

73— 110022 + 19362525 + 897615) C-C3

409 23350 55592 2272 6272
(G — =5 Ca+68400s — =03 — “ " Lala+ =05 ) Cony

706405 187834 416384 6932
(o + 57 Ce— —or— Lot~y L3 +3200as




2109553 106168 127000
a1 + 57 (2— 9 {3+ 3520503

- 14O8Z5> C2C,n; — (

_ %88 (3 +1632s ) CrCAn — (35’3 + 1‘;872412 - 202675613
+ %Z%)anfz + ( 30§fl7+ 1725704 2— 8353613 - %GZzz)CFCAan
_ (%fﬂ %‘Zz + 6_94 25)Cen? + (768+ 192025+ 896Ls
- ? ;- 5120Z5) fl11Cr dab:‘:abc +3A. (35)

See Ref. [15] for thef 111 diagram class leading to the term W'[l[é\k":dabc/nC = 5/18n; in QCD.
The numerical effect of this contribution is very small andl ine disregarded in the following.

The Mellin transform of these equations provides ufeprefactoréTng in Eq. (26), and
hence (up to the residual uncertainty duépthe seventh tower of largetogarithms from order
a2 for this difference. Fon; =5 quark flavours, the numerical expansiordef g, is given by

d1s0o(as) =~ 2.0940s(1+ 1.4630s+ 2.74902 + {6.659+ 0.094A4/1000} 03 +...) . (36)

Thus the two new terms form a correction of almost 5% 4t 0.12, with a negligible uncertainty
from the missing exact value @{, and the fourth-order contribution is less than half of thevp
ous term forag < 0.2. It is well-known that the coefficients in Eq. (36) are du€ seterms (i.e.,
powers ofr?) from the analytic continuation of the form factor which aebject to a separate
exponentiation (see, e.g., Refs. [34]). The corresponetaglts for the SIA and DIS cases read

Oro(ds) = 1+ 1.0450s+ 2.266aZ + 4.7030 + ... |
gso(@s) = 1— 105005 — 0.797a2 — 1.056a3 + ... . (37)

The pattern of the corrections in Eq. (37) and the size otithéerm in Eq. (36) strongly suggests
that the fourth-order contribution - , amounts to less than 0.5% fag = 0.12.

The coefficients of the known fN terms are given in Table 1 to the tenth ordenig using
the notationc, , for the coefficient ofakIn?-3*1N in CN,. Hence, as in Ref. [11] for the DIS
case, the coefficients of the leading (next-to-leading learithms are denoted ly, (¢, etc).
The qualitative pattern of these coefficients is similarite DIS case (where all numbar,:g;a>2
are smaller). The higher-order coefficients rise very rigpioly about an order of magnitude or
more, witha until a = k — 8,4 without showing the largea-turnover of the DIS coefficients, cf.
Table 1 of Ref. [11]. Indeed, the coefficient for the two casesvery similar fora < k, but the
SIA coefficient are more than double their DIS counterpargs>ak where the numbers are large.

Consequently the higher-order soft plus virtual contiitmg are qualitatively similar, but larger
in the timelike case. The numerical size of its resummedfiooerit function (14) is illustrated in
Fig. 1 for a value ofus corresponding to LEP1s= MZ. Obviously the size of the coefficient
function, as well as the relative impact of the nedLN and NSLL corrections, increases towards
lower CM energies. Nevertheless one can conclude from Rigatlthe accuracy now reached for
the dominant large largeN contributions should be sufficient for the foreseeableritu
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32365.2
55037.7
65426.2
58765.0
41980.1
24725.4

4664
29009
119399
294105
487117
589591
551698

Table 1. Numerical values of the five-flavour coefficieqfs of the akin?*~3"1N contributions
to the coefficient functiol€ll,. The first six columns are exact up to the numerical trunoatio
and the same fofy, Fr andFa. The seventh column neglects the tiny (and non-univeridaj)
contributions, and uses the estimate= 1550 for the four-loop cusp anomalous dimension.
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Figure 1: Left: the LL, NLL, NLL and N3LL results for the threshold resummation (14) of the SIA
coefficient functions (3) iltN-space. Terms to orderg are included irg; o forthe N'LL curves.
Right: the convolutions of these results with a schematgela shape for the guark fragmentation
functions, using the standard ‘minimal prescription’ @ant[8] for the Mellin inversion.
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To summarize, we have first employed the close relation egtwiee perturbative corrections
to the structure functions in deep-inelastic scatteringSjland the fragmentation functions in
semi-inclusiveet e~ annihilation (SIA), see also Refs. [35], to derive the costpbkoft and virtual
corrections to the third-order quark coefficient functiémsthe latter observables.

This result then made it possible to extend the soft-glugnoegntiation in SIA from the next-
to-leading logarithmic (NLL) contributions [9] by two ordeto NBLL accuracy (we confirm the
intermediate results in Ref. [14]). It turns out that theurasnation exponents are the same, pre-
sumably to all orders, for the DIS and SIA coefficient funnBoHence the threshold enhancement
is structurally identical in the two cases, and the same hulds for the class of large-1/Q?
power corrections associated with the renormalon ambyigiiits perturbation series [27, 36].

The N3LL exponentiation fixes the seven highest largegarithms at the fourth and all higher
orders inos. The especially simple connection between the soft andalidontributions to the DIS
and SIA coefficient functions also facilitates a fulN_ resummation of the SIA- DIS difference,
including the next-to-next-to-next-to-leading oraetd(1—x) contribution to this difference.

Since the prefactor of the resummation exponential is farg8IA than in DIS, the soft-gluon
enhancement is numerically larger in the former case. Hewshile the NLL contributions are
still significant at LEP energies, the3NL corrections are practically negligible, indicating ttsa
sufficient perturbative accuracy in the langémit has been reached with the present results.
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