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Abstract

The complete soft-enhanced and virtual-gluon contributions are derived for the quark coefficient
functions in semi-inclusivee+e− annihilation to the third order in massless perturbative QCD.
These terms enable us to extend the soft-gluon resummation for the fragmentation functions by
two orders to the next-to-next-to-next-to-leading logarithmic (N3LL) accuracy. The resummation
exponent is found to be the same as for the structure functions in inclusive deep-inelastic scattering.
This finding, together with known results on the higher-order quark form factor, facilitates the
determination of all soft and virtual contributions of the fourth-order difference of the coefficient
functions for these two processes. Unlike the previous (N2LL) order in the exponentiation, the
numerical effect of the N3LL contributions turns out to be negligible at LEP energies.



Semi-inclusivee+e− annihilation (SIA) via a virtual photon orZ-boson,e+e− → γ/Z→ h+X,
is a classic process probing Quantum Chromodynamics (QCD),the theory of the strong interaction.
A wealth of precise measurements have been performed, at various center-of-mass (CM) energies√

s, of the total fragmentation function

1
σtot

dσh

dx
= Fh(x,Q2) , (1)

whereh stands for a specific hadron species or the sum over all (charged) light hadrons, see Ref. [1]
for a general overview. In the CM frame the scaling variablex is the fraction of the beam energy
carried by the hadronh, andQ2 = s is the square of the four-momentumq of the intermediate
gauge boson. In perturbative QCD, the total (angle-integrated) fragmentation functionFh

I ≡ Fh,
as well as the transverse (FT), longitudinal (FL) and asymmetric (FA) fragmentation functions for
the double-differential cross sectiondσh/dxdcosθh [2], are given by

Fh
a (x,Q2) = ∑

f=q, q̄,g

Z 1

x

dz
z

Ca,f

(

z,αs(Q
2)

)

Dh
f

( x
z
,Q2

)

+ O

(

1
Q

)

. (2)

HereDh
f are the parton fragmentation functions, the final-state (timelike, Q2 = q2) analogue of

the initial-state (spacelike,Q2 = −q2) parton distribution functions in deep-inelastic scattering
(DIS). Without loss of information in the present context, the renormalization scale ofαs and the
factorization scale ofDh

f have been identified with the physical hard scaleQ2 in Eq. (2). The
coefficient functionsCa,f are defined via expansions in the strong couplingas ≡ αs/(4π).

Here we are interested in the dominant (anti-)quark contributions toFh
I , Fh

T andFh
A ,

Ca,q(x,αs) = σew(δ(1−x) + asc(1)
a,q(x) + a2

s c(2)
a,q(x) + a3

s c(3)
a,q(x) + . . .) . (3)

The electroweak prefactorsσew can be found in Ref. [2]. The first- and second-order coefficient
functions have been calculated long ago in Refs. [3] and [4],respectively. More recently the latter
results have been confirmed (and some typos corrected) in twoindependent ways in Refs. [5, 6].

The three-loop correctionsc(3)
a (x) have not been derived so far.

The coefficient functions in Eq. (3) include large-x (threshold) double-logarithmic enhance-
ments of the forman

s (1−x)−1 lnk(1−x) with k = 0, . . . ,2n−1. Such contributions, which spoil
the convergence of the perturbation series at sufficiently large values ofx, can be resummed by the
soft-gluon exponentiation [7,8]. For the process at hand this resummation has been worked out to
next-to-leading logarithmic (NLL) accuracy in Ref. [9]. The inclusion of this resummation has led
to improvements in a recent global fit of fragmentation functions [10]. Hence an extension of the
soft-gluon exponentiation fore+e− → γ/Z → h+X to a higher accuracy is not only of theoretical
but also of phenomenological interest.

In this letter we employ the analytic continuation approachof Ref. [5] to derive the soft and
virtual contributions to the third-order coefficient functions in Eq. (3). These results are then
used to extend the results of Ref. [9] to the next-to-next-to-next-to-leading logarithmic (N3LL)
accuracy reached before for inclusive deep-inelastic scattering [11] and the total cross sections for
lepton-pair and Higgs-boson production in proton–(anti-)proton collisions [12, 13]. A substantial
intermediate step towards the present extension has been taken before in Ref. [14].
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Up to small contributions from higher-order group invariants entering at the third and higher
orders, the soft plus virtual contributions are the same forthe DIS quark coefficient functions
for F1, F2 andF3 [15, 16]. The same holds for the corresponding (in this order) SIA coefficient
functions forFT , FI andFA. Hence we will drop the indexa from now on, and refer to the former

coefficient functions collectively asc(l)
S (x), and the latter asc(l)

T (x).

In this limit the bare (unrenormalized and unfactorized) partonic DIS (spacelike) structure
functionFb

S is given by [17,18]

F b
S (α b

s ,Q2) = δ(1−x) + ∑
l=1

(α b
s )l

(

Q2

µ2

)−lε

F b
S,l (4)

with

F b
S,1 = 2F1δ(1−x)+S1

F b
S,2 = (2F2+(F1)

2)δ(1−x)+2F1S1+S2

F b
S,3 = (2F3+2F1F2)δ(1−x)+(2F2+(F1)

2)S1+2F1S2+S3 . (5)

Hereµ is the scale of dimensional regularization withD = 4− 2ε, andab
s the bare strong cou-

pling. Fl represents thel -loop quark form factor [17–22]. Thex-dependence of the real-emission
functionsSk is given by theD-dimensional +-distributions

fkε(x) = [(1−x)−1−kε ]+ = − 1
kε

δ(1−x)+ ∑
i=0

(−kε)i

i !
Di (6)

where we have introduced the abbreviationDk = [(1−x)−1 lnk(1−x)]+.

The transition to the bare SIA (timelike) fragmentation functionsF b
S is performed as follows:

In Eq. (5) the factors 2Fl are replaced everywhere by 2ReF T
l and all productsFkFl by |F T

k F
T
l |,

whereF T
l is the complexl -loop timelike form factor which can be obtained from the spacelikeFl

by Eq. (3.3) of Ref. [17]. The analytic continuation of the real-emission termsSk is carried out as
discussed in Ref. [5]. In fact, these functions turn out to bethe same for the spacelike and timelike
cases (this holds only in the present large-x limit, not for the full real emission contributions).
Finally the standard renormalization and mass factorization is performed to the third order for the

resulting timelike analogue of Eq. (5), yielding theDk andδ(1−x) terms ofc(3)
a (x) in Eq. (3).

For the convenience of the reader, we include also the large-x limits of the well-known first-
and second-orderMS coefficient functions [3, 4]. As expected from the above discussion, these
and the third-order coefficient function share all non-ζ2 terms with their spacelike counterparts,

hence we will present them via the corresponding differencesδTScn = c(n)
T −c(n)

S . The results read

δTSc1(x) = 12ζ2CF δ(1−x) , (7)

δTSc2(x) = 48ζ2C2
F D1−36ζ2C2

F D0

+
{

(−108+24ζ2)C2
F +

( 466
3

−24ζ2

)

CACF − 76
3

CFnf

}

ζ2 δ(1−x) , (8)
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δTSc3(x) = 96ζ2C3
F D3−{216C3

F +88CAC2
F −16C2

Fnf }ζ2 D2

−
{

(324+96ζ2)C3
F −

( 3332
3

−192ζ2

)

CAC2
F +

536
3

C2
Fnf

}

ζ2 D1

+
{

(306+216ζ2−96ζ3)C3
F −

( 10504
9

−248ζ2−480ζ3

)

CAC2
F

+
( 1672

9
−32ζ2

)

C2
Fnf

}

ζ2 D0

+
{( 993

2
+180ζ2−936ζ3+72ζ 2

2

)

C3
F −

( 13457
6

+
220
3

ζ2−1616ζ3

+
108
5

ζ 2
2

)

CAC2
F +

( 74728
27

−196ζ2−1056ζ3+
528
5

ζ 2
2

)

C2
ACF

+
( 667

3
+

136
3

ζ2−80ζ3

)

C2
Fnf −

( 23504
27

+
16
3

ζ2−96ζ3

)

CACFnf

+
( 1624

27
+

16
3

ζ2

)

CFn2
f

}

ζ2δ(1−x) . (9)

HereCA andCF are the standard group invariants, withCA = 3 andCF = 4/3 in QCD, andnf
the number of light flavours.ζk denotes Riemann’sζ-function. The third-order SIA coefficient
functions can be obtained by adding the corresponding DIS results given in Eqs. (4.14) – (4.19)
and Appendix B of Ref. [15], see also Eq. (3.8) of Ref. [16]. The first half of Eq. (9) agrees with
the result of Ref. [14], theδ(1−x) contribution in the second half has not been presented before.

Below we will need theN-independent partsδTSg0k ≡ δTSck(N)|N0 of the Mellin transforms
of Eq. (7) – (9) obtained via

aN =

Z 1

0
dx

(

xN−1−1
)

a(x)+ (10)

together withδ(1−x) → 1. These contributions are given by (γe is the Euler-Mascheroni constant)

ζ−1
2 δTSg01 = 12CF , (11)

ζ−1
2 δTSg02 = CACF

( 466
3

−24ζ2

)

−C2
F

(

108−48ζ2−36γe−24γ2
e

)

− 76
3

CFnf , (12)

ζ−1
2 δTSg03 = C3

F

( 993
2

+18ζ2−792ζ3 +
768
5

ζ 2
2 −306γe+288γeζ3−162γ2

e

+96γ2
eζ2 +72γ3

e +24γ4
e

)

+CAC2
F

(

− 13457
6

+482ζ2 +
5024

3
ζ3

− 588
5

ζ 2
2 +

10504
9

γe−160γeζ2−480γeζ3+
1666

3
γ2
e −96γ2

eζ2

+
88
3

γ3
e

)

+C2
ACF

( 74728
27

−196ζ2−1056ζ3+
528
5

ζ 2
2

)

+C2
Fnf

( 667
3

−44ζ2−
272
3

ζ3−
1672

9
γe+16γeζ2−

268
3

γ2
e −

16
3

γ3
e

)

+CACFnf

(

− 23504
27

− 16
3

ζ2 +96ζ3

)

+CFn2
f

( 1624
27

+
16
3

ζ2

)

. (13)

The corresponding DIS coefficients can be found in Eqs. (4.6)– (4.8) of Ref. [11].
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For processes such as DIS and SIA, the dominant large-x/ large-N contributions to theMS
coefficient functionsCN can be resummed by a single exponential in Mellin space [7]

CN(Q2) = g0(Q
2) ·exp[GN(Q2)] + O(N−1 lnnN) . (14)

The prefactorg0 collects, order by order in the strong coupling constantαs, all N-independent
contributions. The exponentGN contains terms of the form lnk N to all orders inαs. Besides the
physical hard scaleQ2 (= ∓q2 in DIS/SIA, with q the four-momentum of the exchanged gauge
boson), both functions depend on the renormalization scaleµr and the mass-factorization scaleµf .

The exponential in Eq. (14) is build up from universal radiative factors for each initial- and
final-state partonp, ∆p andJp, together with a process-dependent contribution∆int. The resumma-
tion exponents for DIS and SIA [9] take the very similar form

GN
DIS = ln∆q + lnJq + ln∆ int

DIS ,

GN
SIA = ln∆q + lnJq + ln∆ int

SIA . (15)

The radiation factors are given by integrals over functionsof the running coupling. Specifically,
the effects of collinear soft-gluon radiation off an initial-state or ‘observed’ final-state quark are
collected by

ln∆q(Q
2, µ2

f ) =
Z 1

0
dz

zN−1−1
1−z

Z (1−z)2Q2

µ2
f

dq2

q2 A(αs(q
2)) . (16)

Collinear emissions from an ‘unobserved’ final-state quarklead to the so-called jet function,

lnJq(Q
2) =

Z 1

0
dz

zN−1−1
1−z

[

Z (1−z)Q2

(1−z)2Q2

dq2

q2 A(αs(q
2))+B(αs([1−z]Q2))

]

. (17)

Finally the process-dependent contributions from large-angle soft gluons are resummed by

ln∆int(Q2) =

Z 1

0
dz

zN−1−1
1−z

D(αs([1−z]2Q2)) . (18)

The functionsg0 in Eq. (14) andA, B andD in Eqs. (16) – (18) are given by the expansions

F(αs) = ∑
l=l0

Fl
α l

s

4π
≡ ∑

l=l0

Fl al
s , (19)

wherel0 = 0 with g00 = 1 for F = g0, andl0 = 1 else.

The known expansion coefficients of the cusp anomalous dimension (the coefficients ofD0 ≡
1/(1−x)+ in theMS quark-quark splitting functions) read [23,24]

A1 = 4CF

A2 = 8CF

[( 67
18

− ζ2

)

CA−
5
9

nf

]

A3 = 16CF

[

C2
A

( 245
24

− 67
9

ζ2 +
11
6

ζ3 +
11
5

ζ 2
2

)

+ CFnf

(

− 55
24

+2ζ3

)

+ CAnf

(

− 209
108

+
10
9

ζ2−
7
3

ζ3

)

+ n2
f

(

− 1
27

)]

. (20)
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The first three coefficients of the jet function (17) are givenby [7,11,25]

B1 = −3CF , (21)

B2 = C2
F

[

− 3
2

+12ζ2−24ζ3

]

+CFCA

[

− 3155
54

+
44
3

ζ2 +40ζ3

]

+CFnf

[ 247
27

− 8
3

ζ2

]

, (22)

B3 = C3
F

[

− 29
2

−18ζ2−68ζ3−
288
5

ζ 2
2 +32ζ2ζ3 +240ζ5

]

+CAC2
F

[

−46+287ζ2−
712
3

ζ3−
272
5

ζ 2
2 −16ζ2ζ3−120ζ5

]

+C2
ACF

[

− 599375
729

+
32126

81
ζ2+

21032
27

ζ3−
652
15

ζ 2
2 −

176
3

ζ2ζ3−232ζ5

]

+C2
Fnf

[ 5501
54

−50ζ2 +
32
9

ζ3

]

+CFn2
f

[

− 8714
729

+
232
27

ζ2−
32
27

ζ3

]

+CACFnf

[ 160906
729

− 9920
81

ζ2−
776
9

ζ3+
208
15

ζ 2
2

]

. (23)

Together with Eqs. (11) – (13), all functions butD in Eqs. (16) – (18) are known to orderα 3
s .

Consequently the first three coefficients ofDSIA can by determined by comparing theαs-expansion
of Eq. (14) with the fixed-order results (7) – (9). This procedure yields

DSIA
k = 0 (24)

for k = 1, 2, 3, hence∆ int
SIA = 1 to at least N3LL accuracy.D1 = 0 was, of course, included in the

NLL resummation of Ref. [9]. However,B2 was unknown at that time, and onlyB2+D2 could be
extracted from the two-loop results of Refs. [4] alone.

As expected from the identity of the DIS and SIA soft-emission functionsSk in Eq. (5), there
is a strong similarity between the respective coefficient functions also in the framework of the
soft-gluon exponentiation – recall that

DDIS
k = 0 , ∆ int

DIS = 1 (25)

was proven to all orders inαs in Refs. [26, 27]. We expect that such a proof can also be derived
for SIA. For the time being assuming the all-order validity of Eq. (24), the difference between the
SIA (timelike, T) and DIS (spacelike, S) large-N coefficient functions exponentiates as

δTSCN(Q2) = δTSg0(Q
2) ·exp[GN(Q2)] + O(N−1 lnnN) (26)

where, after performing the integrations in Eqs. (16) – (18), the functionGN takes the form

GN(Q2) = lnN ·g1(λ) + g2(λ) + asg3(λ) + a2
s g4(λ) . . . (27)

with λ = β0as lnN. The first three expansion coefficients ofδTSg0 for µr = µf = Q have been
given above in Eqs. (11) – (13). We will address the fourth-order coefficient below.
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The functionsg1 to g4 have been derived in Refs. [7, 11, 28, 29]. For completeness we include
these functions, also here restricting ourselves to choiceµr = µf = Q of the scales:

gDIS
1 (λ) = A1(1− ln(1−λ)+λ−1 ln(1−λ)) , (28)

gDIS
2 (λ) = (A1β1−A2)(λ + ln(1−λ))+

1
2

A1β1 ln2(1−λ)

− (A1γe−B1) ln(1−λ) , (29)

gDIS
3 (λ) =

1
2
(A1β2−A1β2

1+A2β1−A3)
(

1+λ− 1
1−λ

)

+A1β2
1

( ln(1−λ)

1−λ
+

1
2

ln2(1−λ)

1−λ

)

+
(

A1β2−A1β2
1

)

ln(1−λ)

+(A1β1γe+A2β1−B1β1)
(

1− 1
1−λ

− ln(1−λ)

1−λ

)

−
(

A1β2 +
1
2

A1(γ2
e + ζ2)+A2γe−B1γe−B2

)(

1− 1
1−λ

)

, (30)

and

gDIS
4 (λ) = −1

6
A1β3

1
ln3(1−λ)

(1−λ)2 +
1
2
(A1β2

1γe+A2β2
1−B1β2

1)
ln2(1−λ)

(1−λ)2 +
1
2
(A1β3

1−A1β1β2

−A1β1(γ2
e + ζ2)+A2β2

1−2A2β1γe−A3β1+2B1β1γe+2B2β1)
ln(1−λ)

(1−λ)2

− (A1β3
1−A1β1β2)

ln(1−λ)

1−λ
+

(1
2

A1β3
1−A1β1β2+

1
2

A1β3

)

ln(1−λ)+(A1β3
1

−A1β1β2−A1β2
1γe+A1β2γe−A2β2

1+A2β2+B1β2
1−B1β2)

(1
2
− 1

1−λ

+
1
2

1
(1−λ)2

)

+
1
2

(1
3

A1β3
1−

1
6

A1β1β2−
1
6

A1β3−
1
3

A1(3γeζ2 +γ3
e +2ζ3)

+A2β1γe−A2(γ2
e + ζ2)−

5
6

A2β2
1+

1
3

A2β2+
5
6

A3β1−A3γe−
1
3

A4−B2β1

+B1(γ2
e + ζ2)+2B2γe+B3

)(

1− 1
(1−λ)2

)

+
1
3

(

A1β3
1−2A1β1β2+A1β3

+A2β2−A2β2
1+A3β1−A4

)

λ . (31)

Factors ofβ0 = 11/3CA − 2/3nf have been suppressed in Eqs. (28) – (31) for brevity. The

dependence onβ0 is recovered byAk → Ak/βk
0, Bk → Bk/βk

0, βk → βk/βk+1
0 and multiplication of

g3 andg4 by β0 andβ2
0 , respectively. Note that Eq. (31) includes all known coefficient of the beta

function of QCD, see Ref. [30] and references therein.

All parameters entering Eqs. (28) – (31) are known except forthe four-loop cusp anomalous
dimensionA4. The small (see below) impact of this quantity – which first occurs in theα5

s ln3N
contribution toδTSCN – can be included by a Padé estimate as in Ref. [11], backed up by a
recent calculation of one Mellin moment of the fourth-orderquark-quark splitting function [31],
cf. also Ref. [32]. E.g., fornf = 5 one may useA4 ≈ 1550 (recall our small expansion parameter
as = αs/(4π)) and assign a conservative uncertainly of 50% to this value.
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Due to the vanishing ofδTSg00 the two highest logarithms,α l
s ln2l N andα l

s ln2l−1N, are the
same for the SIA and DIS structure functions to all orders inαs. The expansion of Eq. (26)
with Eqs. (11) – (13) provides the six highest logarithms, cf. Ref. [11], of the coefficient-function
differenceδTSCN, α l

s ln2l−aN with a= 2, . . . , 7, at all orders from the fourth. In particular, all lnN
enhanced terms are thus fixed at orderα 4

s . After transformation tox-space these contributions read

δTSc4(x) = 96ζ2C4
F D5−{360C4

F +
880
3

CAC3
F − 160

3
C3

Fnf}ζ2 D4

−
{

(432+576ζ2)C4
F − (3552−576ζ2 )CAC3

F +576C3
Fnf −

1936
9

C2
AC2

F

+
704
9

CAC2
Fnf −

64
9

C2
Fn2

f

}

ζ2 D3 +
{

(1674+2160ζ2+192ζ3)C4
F

−
( 25238

3
−2800ζ2−2880ζ3

)

CAC3
F +

( 4100
3

−352ζ2

)

C3
Fnf

−
( 9616

3
−528ζ2

)

C2
AC2

F +
( 3248

3
−96ζ2

)

CAC2
Fnf −

256
3

C2
Fn2

f

}

ζ2 D2

+
{(

1122+936ζ2−4320ζ3−
1248

5
ζ 2

2

)

C4
F −

( 22916
3

+
23120

3
ζ2

−3584ζ3−
4368

5
ζ 2

2

)

CAC3
F +

( 488
3

+
4592

3
ζ2 +64ζ3

)

C3
Fnf

+
( 224230

9
− 17176

3
ζ2−7392ζ3+

5184
5

ζ 2
2

)

C2
AC2

F

−
( 69728

9
− 3056

3
ζ2−576ζ3

)

CAC2
Fnf +

( 4888
9

− 64
3

ζ2

)

C2
Fn2

f

}

ζ2 D1

−
{( 3003

2
+3312ζ2−3288ζ3+792ζ 2

2 +192ζ2ζ3−5184ζ5

)

C4
F

−
( 24507

2
+

78428
9

ζ2−8816ζ3−1452ζ 2
2 −1728ζ2ζ3

−1440ζ5

)

CAC3
F +

( 6620501
243

− 243752
27

ζ2−
168560

9
ζ3+

5952
5

ζ 2
2

+1664ζ2ζ3 +2784ζ5

)

C2
AC2

F +
( 3551

9
+

13568
9

ζ2+
688
3

ζ3

)

C3
Fnf

−
( 1983208

243
− 66392

27
ζ2−2336ζ3+

1152
5

ζ 2
2

)

CAC2
Fnf

+
( 135020

243
− 464

3
ζ2+

128
9

ζ3

)

C2
Fn2

f

}

ζ2 D0 + . . . . (32)

The first four terms correspond to a NNLO + NLL accuracy as firstobtained for DIS in Ref. [33].
For the present case these terms have been presented, in a different notation, already in Ref. [14].
The coefficients ofD1 andD0 (recall the definition below Eq. (6)) are new results of the present
study. The latter coefficient depends on our assumption thatEq. (24) extends tok = 4.

The fourth-order result (32) can be verified, and extended tothe δ(1−x) contribution, in the
following manner. Eq. (5) is extended to the fourth order,
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F b
S,4 = (2F4+2F1F3+(F2)

2)δ(1−x)+(2F3+2F1F2)S1

+(2F2+(F1)
2)S2+2F1S3+S4 , (33)

and is subtracted from its timelike counterpart obtained asdiscussed above. Assuming that alsoS4

is identical in the two cases, the only unknown inδTSF b
4 to orderε0 is the four-loop anomalous

dimensionA4. All other unknown quantities, such as theε1 andε2 contributions to the spacelike
three-loop form factor [18, 21, 22] (also the latter new result is not needed in the present context),
drop out in this difference. Also the four-loop form factor is known from its exponentiation [34] to
a sufficient accuracy inε [18]. The soft and virtual contributions toδTSc4 are then extracted from
the fourth-order mass factorization formula (here given interms of the bare coupling)

δTSF b
4 = δTSc4 +

1
3

[β2−P2]δTSa1 +
[ 4

3
β0β1−

7
6

P1β0−
2
3

P0β1+
1
2

P0P1

]

δTSb1

+
[

β3
0 −

11
6

P0β2
0 +P2

0 β0−
1
6

P3
0

]

δTSd1 +
[

β1−
1
2

P1

]

δTSa2

+
[

3β2
0 −

5
2

P0β0+
1
2

P2
0

]

δTSb2 + [3β0−P0]δTSa3 + ε-terms. (34)

For brevity we have suppressed theε−3 . . . ε−1 terms which form a consistency check but do
not provide new information. The functionsan, bn and dn are theε1, ε2 and ε3 contributions,
respectively, to theD-dimensional coefficient functions at orderα n

s , cf. Ref. [16], andPn denotes
the NnLO quark-quark splitting functions. Inx-space obviously all products of these functions in
Eq. (34) have to be read as Mellin-convolutions.

The determination ofδTSc4 from Eqs. (33) and (34) reproduces the result in Eq. (32) — hence
DSIA

k = DDIS
k (= 0) in Eq. (18) corresponds toδTSSk = 0 in Eqs. (5), (33) and their higher-order

generalizations — and includes the final large-x coefficient,

ζ−1
2 δTSc4

∣

∣

∣

δ(1−x)
=

(

− 7255
2

−3779ζ2−3816ζ3−
13896

5
ζ 2

2 +4080ζ2ζ3 +14880ζ5

+
31856
105

ζ 3
2 −1216ζ 2

3

)

C4
F +

( 191411
12

+
153802

9
ζ2−42808ζ3

+
62452

9
ζ 2

2 +
8128

3
ζ2ζ3−

67328
3

ζ5−
102472

105
ζ 3

2 +4064ζ 2
3

)

C3
FCA

+
(

− 14817221
324

− 63347
3

ζ2 +
1856680

27
ζ3 +

5306
45

ζ 2
2 −2032ζ2ζ3

+6256ζ5+
2584
21

ζ 3
2 −992ζ 2

3

)

C2
FC2

A +
( 13294462

243
+

206162
27

ζ2

− 416032
9

ζ3−1100ζ 2
2 +1936ζ2ζ3 +8976ζ5

)

CFC3
A

+
( 409

6
− 23350

9
ζ2 +6840ζ3−

55592
45

ζ 2
2 −

2272
3

ζ2ζ3+
6272

3
ζ5

)

C3
Fnf

+
( 706405

81
+

187834
27

ζ2−
416384

27
ζ3+

6932
45

ζ 2
2 +320ζ2ζ3
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−1408ζ5

)

C2
FCAnf −

(2109553
81

+
106168

27
ζ2−

127000
9

ζ3+352ζ2ζ3

− 1088
5

ζ 2
2 +1632ζ5

)

CFC2
Anf −

(3233
81

+
14824

27
ζ2−

20656
27

ζ3

+
2464
45

ζ 2
2

)

C2
Fn2

f +
( 305917

81
+

17504
27

ζ2−
8336

9
ζ3−

16
5

ζ 2
2

)

CFCAn2
f

−
(39352

243
+

304
9

ζ2 +
64
9

ζ3

)

CFn3
f +

(

768+1920ζ2+896ζ3

− 384
5

ζ 2
2 −5120ζ5

)

f l11CF
dabcdabc

nc
+ 3A4 . (35)

See Ref. [15] for thef l11 diagram class leading to the term withdabcdabc/nc = 5/18nf in QCD.
The numerical effect of this contribution is very small and will be disregarded in the following.

The Mellin transform of these equations provides theα 4
s prefactorδTSg04 in Eq. (26), and

hence (up to the residual uncertainty due toA4) the seventh tower of large-x logarithms from order
α 5

s for this difference. Fornf = 5 quark flavours, the numerical expansion ofδTSg0 is given by

δTSg0(αs) ≃ 2.094αs
(

1+1.463αs+2.749α 2
s +{6.659+0.094A4/1000}α 3

s + . . .
)

. (36)

Thus the two new terms form a correction of almost 5% atαs = 0.12, with a negligible uncertainty
from the missing exact value ofA4, and the fourth-order contribution is less than half of the previ-
ous term forαs < 0.2. It is well-known that the coefficients in Eq. (36) are due toζ2-terms (i.e.,
powers ofπ2) from the analytic continuation of the form factor which aresubject to a separate
exponentiation (see, e.g., Refs. [34]). The correspondingresults for the SIA and DIS cases read

gT,0(αs) = 1 + 1.045αs + 2.266α 2
s + 4.703α 3

s + . . . ,

gS,0(αs) = 1 − 1.050αs − 0.797α 2
s − 1.056α 3

s + . . . . (37)

The pattern of the corrections in Eq. (37) and the size of theα 4
s -term in Eq. (36) strongly suggests

that the fourth-order contribution togT,0 amounts to less than 0.5% forαs = 0.12.

The coefficients of the known lnk N terms are given in Table 1 to the tenth order inαs, using
the notationcka for the coefficient ofak

s ln2k−a+1 N in CN
SIA. Hence, as in Ref. [11] for the DIS

case, the coefficients of the leading (next-to-leading etc)logarithms are denoted byck1 (ck2 etc).
The qualitative pattern of these coefficients is similar to the DIS case (where all numbersck,a>2
are smaller). The higher-order coefficients rise very rapidly, by about an order of magnitude or
more, witha until a = k−θk4 without showing the larger-a turnover of the DIS coefficients, cf.
Table 1 of Ref. [11]. Indeed, the coefficient for the two casesare very similar fora ≪ k, but the
SIA coefficient are more than double their DIS counterparts at a > k where the numbers are large.

Consequently the higher-order soft plus virtual contributions are qualitatively similar, but larger
in the timelike case. The numerical size of its resummed coefficient function (14) is illustrated in
Fig. 1 for a value ofαs corresponding to LEP1,s = M2

Z . Obviously the size of the coefficient
function, as well as the relative impact of the new N2LL and N3LL corrections, increases towards
lower CM energies. Nevertheless one can conclude from Fig. 1that the accuracy now reached for
the dominant large-x/ large-N contributions should be sufficient for the foreseeable future.
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k ck1 ck2 ck3 ck4 ck5 ck6 ck7/10

1 2.66667 7.0785 — — — — —

2 3.55556 25.6908 105.621 104.34 — — —

3 3.16049 43.3408 309.335 1016.50 2306.0 2090 —

4 2.10700 46.6020 514.068 3125.96 11774.1 23741 4664

5 1.12373 36.4525 577.143 5393.82 32365.2 110255 29009

6 0.49944 22.3131 481.110 6314.54 55037.7 293931 119399

7 0.19026 11.1933 315.972 5515.83 65426.2 506294 294105

8 0.06342 4.7503 170.251 3808.07 58765.0 618949 487117

9 0.01879 1.7455 77.500 2160.26 41980.1 574684 589591

10 0.00501 0.5652 30.470 1035.7 24725.4 425171 551698

Table 1: Numerical values of the five-flavour coefficientscka of the ak
s ln2k−a+1 N contributions

to the coefficient functionCN
SIA. The first six columns are exact up to the numerical truncation,

and the same forFI , FT andFA. The seventh column neglects the tiny (and non-universal)f l11

contributions, and uses the estimateA4 = 1550 for the four-loop cusp anomalous dimension.

1

1.5

2

2.5

0 10 20 30 40
N

gT,0 exp GN

LL

NLL

N2LL

N3LL

αS = 0.12,  nf = 5

x

( gT,0 e
G ⊗  f ) / f

LL

NLL

N2LL

N3LL

xf = (1−x)2
1

1.5

2

2.5

3

3.5

0.5 0.6 0.7 0.8 0.9 1

Figure 1: Left: the LL, NLL, N2LL and N3LL results for the threshold resummation (14) of the SIA
coefficient functions (3) inN-space. Terms to orderα n

s are included ingT,0 for the NnLL curves.
Right: the convolutions of these results with a schematic large-x shape for the quark fragmentation
functions, using the standard ‘minimal prescription’ contour [8] for the Mellin inversion.
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To summarize, we have first employed the close relation between the perturbative corrections
to the structure functions in deep-inelastic scattering (DIS) and the fragmentation functions in
semi-inclusivee+e− annihilation (SIA), see also Refs. [35], to derive the complete soft and virtual
corrections to the third-order quark coefficient functionsfor the latter observables.

This result then made it possible to extend the soft-gluon exponentiation in SIA from the next-
to-leading logarithmic (NLL) contributions [9] by two orders to N3LL accuracy (we confirm the
intermediate results in Ref. [14]). It turns out that the resummation exponents are the same, pre-
sumably to all orders, for the DIS and SIA coefficient functions. Hence the threshold enhancement
is structurally identical in the two cases, and the same thusholds for the class of large-x 1/Q2

power corrections associated with the renormalon ambiguity of its perturbation series [27,36].

The N3LL exponentiation fixes the seven highest large-x logarithms at the fourth and all higher
orders inαs. The especially simple connection between the soft and virtual contributions to the DIS
and SIA coefficient functions also facilitates a full N3LL resummation of the SIA−DIS difference,
including the next-to-next-to-next-to-leading orderα 4

s δ(1−x) contribution to this difference.

Since the prefactor of the resummation exponential is larger in SIA than in DIS, the soft-gluon
enhancement is numerically larger in the former case. However, while the N2LL contributions are
still significant at LEP energies, the N3LL corrections are practically negligible, indicating that a
sufficient perturbative accuracy in the large-x limit has been reached with the present results.
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