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Abstract

We employ relations between spacelike and timelike deelastic processes in perturbative QCD
to calculate the next-to-next-to-leading order (NNLO) trrutions to the timelike quark-quark
and gluon-gluon splitting functions for the evolution ofibaur-singlet fragmentation distributions.
We Dbriefly address the end-point behaviour and the numesizalof these third-order corrections,
and write down the second moments of all four timelike spittfunctions. In the same manner
we re-derive the NNLO result for the Higgs-boson decay natie lhadrons in the limit of a heavy
top quark and five massless flavours, and confirm the recéir®Nomputation of this quantity.



In this letter we present new results on the scale dependewvaleition) of the parton fragmentation
distributions th(x, Q?). Herex denotes the fraction of the momentum of the final-state parto
f carried by the outgoing hadrdm and Q? is a timelike hard scale, such as the squared four-
momentum of the gauge bosonéne — y, Z — h+ X. This scale dependence is given by

d h 2 tdz ¢ 20\ ph (X A2
dino? Di'(x,Q%) = /X - Pii (zas(Q%)) Dj <E’Q ) (1)
where the summation ovgr= g, g, g is understood. The timelike splitting functioﬁzﬁT admit
an expansion in powers of the strong coupling

0T nT 2T
Pl (x,05(Q%) = aSPj(i Tx) + agpj(i Tx) + agpj(i T+ .. 2)
where we normalize the expansion parameteaisas as(Q?)/(4m). The leading-order (LO) terms
in Eq. (2) are identical to the spacelike case of the ingtake parton distributions, a fact often
referred to as the Gribov-Lipatov relation [1]. Also the téxleading order (NLO) contributions
T

Pi (x) have been known for more than 25 years. These quantitieglated to their spacelike

counterparts by a suitable analytic continuation [2—4&, &lso Ref. [5].

In a previous publication [6] we have calculated the nextéat-to-leading order (NNLO)
splitting functionsPr(,?T(x) for the non-singlet combinations of quark fragmentaticstrithutions.
This calculation was based on an analytic continuation efctbrresponding unrenormalized par-
tonic structure function in deep-inelastic scatteringSP[l7], performed after subtracting contri-
butions due to the quark form factor [8] and backed up by asratlation between the spacelike
and timelike cases conjectured in Ref. [9]. We now addres$lairour-singlet timelike evolution

T pT n
d < DS) qu qu < DS) . !
T = ® with  Dg = ) (Dg +Dg) - (3)
dinQ? \ Dy ( Py Py Dy r;
Here ® abbreviates the Mellin convolution written out in Eq. (1pdan; stands for the number
of effectively massless quark flavours. Specifically, wespgtthe approach of Ref. [6] to derive
the NNLO diagonal entrie@éé)T(x) and PéS)T(x) in Eq. (3). The relation of this calculation to
Higgs-boson decay will be addressed below.

For brevity focusing on the gluonic case, our calculati@rtstform the unrenormalized struc-
ture functionF(pbgJ for DIS by the exchange of a scalarcoupling (like the Higgs-boson in the

heavy-top limit) directly only to gluons vi@Gﬁ‘vGé‘V, whereG§, denotes the gluon field strength
tensor. This quantity has been computed to three loops todétermination of the spacelike
NNLO quark-gluon and gluon-gluon splitting functions infREL.0]. In dimensional regulariza-
tion with D = 4 — 2¢ its perturbative expansion in terms of the bare reducedloayp® can be
written as . o e
Frg@ @) = 8(1—x) + ¥ (ad)" (Q—) Foy. - (@)
$.g\%s> 4 12 @9

The n-th order termsF(:én) are then iteratively decomposed into contributions agiginom the
analogous expansion coefficiets., of the @gg form factor [11] and remaining ‘real’ partg,,,
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FPY — 245(1— %)+ Ry

®9
Pl = 258(1-X) + (F1)28(1—X) + 21Ky + Ko
Foy, = 2738(1—X)+251528(1-X) + (2F2+ ($1)*) Ra + 2F1Ro + K3 . (5)

Note that the function®>2 do not only collect tree-level amplitudes but also comboret of
real-emission and virtual corrections. As in Ref. [6], tingl lead to a problem in the third-
order analytic continuation. F(E{J(S)T, however, this problem can be fixed afterwards in complete
analogy to the previous non-singlet quark case (see belbug,we can ignore it for the moment.

The analytic continuation of the form factor to the timeelikase is known. The-dependent
functions®, are continued fromx to 1/x [2-5], taking into account the (complex) continuation of
o’ (see Eq. (4.1) of Ref. [8]) and the additional prefactbr’ originating from the phase space of
the detected parton in the timelike case [12]. We have pasdrthis continuation using routines
for the harmonic polylogarithms (HPLs) [13] implementeddoRM [14]. The only subtle point
in the analytic continuations is the treatment of logarithaingularities forx — 1 starting with

IN(1—x) — In(1—X) —Inx+iTt.

After these analytic continuations the one-parton inglifiagmentation function ip-decay is
re-assembled order by order analogous to Eq. (5), keepegeti parts of the continuegy, only.
Then the renormalization of the opera@@\,Gé‘V and the strong coupling constant is performed.
Finally the timelike splitting functions (and coefficienirfctions) can extracted iteratively from the
mass factorization relations

S R R C AR ©
= ()} g (R e ol R
+e{a§,7g I) (1.)T} 4o (7)
T = - (PR + SRR+ 265
b ooz {2PLOPT L RUTRO 1 230 PR 4281 PLG + 3P (PO + Body ) LT}
g{zpég) +3Pg g T +6PP ey T — 3P (R +Body ) g |
o 5P A R (BB @

Here all products ok-dependent (generalized) functions are to be read as Mmlhwmolutions or
as products in MellifN space, employing routines for harmonic sums and their ga/étellin
transform back to-space [14, 15]. Obviously the determination IQ%)T from Eq. (8) requires
the ‘off-diagonal’ two-loop coefficient functioqﬁ%T. This quantity,a(gi?lT and the corresponding
first-order functions (for all these our normalization dif from the standard convention by a
factor of two) can be calculated via a direct analytic caumdition ofFQE’él’z). We have checked this
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fact by comparing the corresponding gluonic results forgheton-exchange case to an explicit
two-loop calculation to ordeg [16]. At the third order inas, however, this direct continuation
fails to correctly reproduce the? contributions already at order3, thus we cannot derive the
off-diagonal timelike NNLO splitting functions in this siple manner.

We are now ready to present our results for the diagonal itnelplitting functions. For
completeness we start at NLO where we, of course, reprotieaesults of Ref. [3]. Adopting the
notations of Ref. [13] for the HPLs, the timelike — spacelikiferences can be written as

5P () = PR -PSx) =
8Cen (—20/9x’1—3—x+ 56/9%% — (34 7x+8/3x%) Ho +2(1+ ) Ho7o> )
1 HT 1S
3P (%) = Pig (0 —Pig (%) =
8CA (pgg(x) [11/3 Ho—4(Hoo+H10+ Hz)] +[6(1—x) —22/3(x t—x*)] Ho
—8(1+x) Ho,o) — 16/3CAN; Pgg(X) Ho + 8Cen; (20/9x*1+3+x—56/9x2
A4 6x4+4/3(x L +3®) Ho + 2(1+X) Ho,o) (10)
where we have used the abbreviation
Pgg(X) = 1/(1—X) +1/x—2+x— X

Note that the non-HPL terms in Eqgs. (9) and (10) are identipaio an overall sign, cf. Ref. [9].
The functionSD'[,TsjS denote the ‘pure singlet’ contributions from which the duguark entries in,
e.g., Eq. (3) are obtained by adding the corresponding maies quantities.

The difference between the timelike NNLO pure-singlettsiply function and its spacelike
counterpart of Ref. [10] reads

2 2)T 2)S
6P|c£s)(x) = rgs) (x) — pgs) (X) =

+ 8CACENy <269/6x’1 +14+113/2x— 346/3%* + {2 (172+ 167x+8%%) /3
~Z3(12x 1~ 13+ 65x— 28x%) — 2(1+X) [16z22+4H_1,0,0+9H3,o+4H3,1
+1002H, — 12H;00 — 2H1,0— 6Ha2 — Ha| +8/3(< 1 +32) [4H_1,00+ {2Ho|
—2(1-x) [8 (H-30+H_200) +50H1 —9{Ho+25/12H; 0 —6H100—H110
—3Hy2+ H2,1} +8/3(x 1 —x?) [6 H1,00+H110+3H12—5(H1—Hz0— H2,1]
+2/3(4x 1427 63x+28x*)H_20—2/3(20x 1 — 27+ 9x+56x*)H_1
+(89/9x 1 4 554 1021/6x+2297/18x% — 463 — 22x{3) Ho — (8/9x 1
+293/6+370/3x+538/9%% + 2Z2(1 — 7x)) Hoo — 32xHo 000 + (5—16/3x 1
+85x)Ho 00 — 1/6(115x 1 +362— 292x — 185x%) Hy — (6x 1 4 48+ 59x
+22x%) Hy — 2(5+ X — 8/3X%) Ha o+ 4(2/3x L+ x4 2x2) H3>
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+8C2ny ( —217/18—55/3x"14+122/9x+101/6 X2 4 {3 (16X L + 36+ 24x)
— 25 (127+188x+128%2) /3+ 2(1+X) [16&5 +17Z3Ho + 8% xHo — 7{zHo0
+10Z2Hz +9Ha0— 12Hp00 — 2Ha10— 6Ha 2+ 9Hg o+ 4Hz1 — H4]
+2(1-x) [512H1 +2Hp0+139/12H10—6H100—H110—3H12+ H2,1]
+8/3(x 1 ~x?) [52aH1+5/3H0~ 6H100—~ H110~ 3HL2+ 2Hz0+ Haa)
— (5274 2473x+ 811x% 4 7203) /18 Ho + (624 81/2x+ 208/9%%) Ho 0
+ (6+18x—8x?) Ho 00+ (385/18x 1 +190/3— 143/3x — 667/18x%) H;
+(28/9x 1+ 714 46x+248/9x%)Hy — 4/3(4x 1 —6— 3x+ 8x2)H3)

+8Cen? <2/9(23X— 2x 1 —20—x%) +2(1+x) [{3— {oHo— H1+Ho0+Hs
~Hooo| — (1= X)(H1— H10) +4/3(x 1 ~X) Hy o+ 2/9(3+ 18x+ 10x) Ho
— (74+x—4x2) /3 Hoo— (20x 1 —56x2) /9 Hy + (3+ 7x+8/3x2) (L2 — Hg)) .

The corresponding result for the gluon-gluon splittingdtions is given by
3Pi (x) = Pag (0 —Pyg °(x) =

+16C3( Pgg(x) | (1025/54— 11/3%, — 243) Ho — 49/3Hoo — 33Ho00+ 16Ho000
—(268/9—8(2) (H1,0+ H2) —44/3(H100+H20+Hs) +12Hy 000 +4H200
+4H0+12 H4} + Pyg(—X) [16 H_g0— 16{2H_p— 16H 5 _10—22/3H_20
+28H_200+8H_22—16H_1_20—32H_1 _100—16{2H_10—44/3H_10p0
+36H_1000+8H_120+16H 13+ (143 —11/3{2)Ho+ 16{2Ho 0+ 11Hg 0
—16H000— 4Hgo— 12 H4] (14X) [ —24H 50— 48H 100+ 14/3Hz0
+28/3Hg + (1-X) |32(H 30+ H_200) — (881/36— 243) Ho— 27(H10+ Hy) |
—44/3(x 1 +x°) [2 H_20+4H_100—H20—2 HS] +(x1—x?) [226]/54 Ho
+134/9(Hy o+ Hz)}  (44x71 4 86+ 14x+ 132x2) /3LoHo + (536x 1 + 425
+515x 4 752x% + 2882) /9 Ho 0 + (88X — 10+ 8x+ 44x%) Ho 0.0 + 64X HO,O,O,O)

+16C7n; (Pag(X) | — (158/27— 2/32) Ho— 4/9Hoo+ 6 Hog0+ 40/9(H10+ Ha)
+8/3(H1,00+ Hz0+ Ha) | +2/3pgg(—X)[2H 20+ 4H 100+ L2Ho— 3Hooo]

2 (1+X) [ZzHo —Hpo—2 Hg] —(1—x) [173/9 Ho+2(H10+ Hz)] +(x1-x3)

3
1913/54 Ho -+ 26/9 (.0 Ha) | +4/9(35x 1+ 21+ 48x) Hoo + 4(1+ 4x) Hooo)

16
+ = Can?(Pgg() [10Ho+12Hg0] +12(1+X) Hoo+ (13(x 1~ x2) — 9+ 9x) Ho)
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+ 8CACeNy ( — 2pgg(X) Ho — 269/6x 1 — 14— 113/2x+ 346/3%% — {5 (172+ 167x
+8x%)/3+3(12x 1 — 134 65x— 28x) + 2(1+X) [16122+2H_2,0 —4H_100
+17¢3Ho+4/3{2Ho — 3oHo 0+ 10{oH2 — 12Hp 00— 2Hz 10— 6H2 2 +4Hz 1
+9Hg0— H4] 1+8/3(x 14 x) 4H,17070+ZZH0] ~2(1-x) [8(H,370+ H_20,0)
+18H_5,0+ 9ZHo + 6ZgHg + 4oHo 0 — 145/12 HLO} n [g(xl —?) +2(1—x)]
[3H 20— 11/3H10+5¢oH1 —6H1.00— H1,10— 3H12 -+ Haa] + (40X 1 54
+18x+112x%) /3H_10— (59x 1 4 454 1081/6x+ 157/2x%) Ho — (464x 1
+329/2 — 146x—66x%) /9Hoo — (80/3x 1 — 17+ 15%) Ho,0.0 — 32XH0,0,0,0
+(115x 1 +362—292x — 185x%) /6 Hy — 1/9 (34x 1 — 546— 417x — 286x%) H
+(8x 14+ 10— 14x— 24x2) /3 Hp 0 — 8/3(x 1+ 5+ 13/2x+ 3x) H3>

+8C2ny <217/18+ 55/3x 1 —122/9x—101/6x? — {3 (16X 1 + 36+ 24x) + /3

(127+188x+128x%) — 2(1+X) [16&22 +{oHo 0+ 10{oH2 +17¢3Ho — 12H 00

8
—2H210—6H22+9H30+4H31 — H4} - [é(x x4+ 2(1—x)} [SZzHl
4 3Hyo— 6H100— 3Hi2— Hito+ Hz,l] 4 (4x1 4 283/6+ 239/2x + 739/18X2

— 8, —20{ox — 16/3{2x%) Ho — (18+97/2x+4 16x?) Ho o — (6 — 6x+8x*) Ho 0.0

— (385x 1+ 1140 858x— 667x?) /18 H; +53/6 (1 — x)Hy o — (20/3x 1 445

+ 72X+ 24x%)Hp — (32/3x 1+ 14+ 6x)Ha o — (16/3x 1 — 8 — 12x) H3>
+8/9C,:nf2<4x_1+40—46x+ 2x% — 9 (3+ 7x+8/3x%) — 6(1+X) [313+z2H0

+3Hoo0— Hao— 5H3] —(92/3x "1 — 6+ 48x— 32/3x%) Ho — (16x 1 + 83

+101x+28x%) Ho o + (20X 1 427+ 9x — 56x?) Hy + (4x 1 +3—-3x—4x%)Hyp

+(16x 1+ 39+ 51x + 8x3) Hz) . (12)

Egs. (11) and (12) represent the main new results of therledinalogous to the non-singlet result
of Ref. [6], the coefficient oCﬁ Pgg(X)Ho,0¢2 in Eq. (12) differs from the result of the analytic
continuation as specified above. We have determined theataroefficient via the momentum
sum rule fom; = 0. The complet€?, CAan andCAnf2 parts of Eq. (12) have been independently
derived by applying the approach of Ref. [9] to the (non-Ehlike) nonC. contributions taPyg.

Furthermore an inspection of the above results revealstbad Pg(é) + 6P|§§) does not receive any
non-HPL contributions. Since the determination of these fiwctions uses largely independent
information, we view this fact as another non-trivial ch@tlour calculations.

As predicted in Ref. [9], the large-behaviour ofP@,(é)T is identical to that of its spacelike

counterpart (see Eq. (4.16) of Ref. [10]) up to the sign ofghkleading Gl — x) contribution.



The pure-singlet splitting functions are suppressed bygawers of (1 —x) for x — 1. We now
turn to the smalk limits. Up to terms suppressed by powersdhe NLO quantities read

T 80
xPig (0 = - o G
2
xPig' (x) = —16CZL3 — g 11C2+2n; (Co —2C¢) | Lo — % N (Ca—2Ce)  (13)
with Lo = Inx. The log-enhanced contributions of our new diagonal NNL{@tsg functions are
32 8
XPig (0 = — 5 CaCrmy (2L3+L3) + - (155+ 7202) CaCeni Lo + O(1) , (14)
PG T (x) = 6—34 C3Ld + %2 (33C3 + 6C2n; — 10C,Ceny) L3
+g [(389— 14425)C2 + 136C2n; — 232C,Cen¢ + 4nZ(Cp— ZCF)} L3
+ 237 [(4076— 9907, — 97223) C3 + (739 362,) CAny

— (1819 1447,) CoCey + 108C2n; + 46n2(Cp— 2CF)] Lo+ O(1) . (15)

Thus, in contrast to the corresponding spacelike quastitlee NNLO timelike singlet splitting
functions receive double-logarithmic contributions witkry large coefficients, with the leading
term of Eq. (15) agreeing with Refs. [17, 18]. Consequend1§hb<P|[§52)T and ng(é)T — despite a
large cancellation between the leading- and subleadingyiligns for the latter quantity — show
a huge enhancement alreadyxat 10~° as illustrated in Fig. 1. For this and the next figure the
harmonic polylogarithms have been evaluated using teTRAN package of Ref. [19].

Returning to the region of medium and large valuex0Fig. 2 shows the LO, NLO and
NNLO approximations to the diagonal entries in Eq. (3) at @escelevant to gauge-boson and,
maybe, Higgs decay. Also here the higher-order correcoasarger than for the spacelike case,
in particular for the gluon-gluon splitting. Neverthelgkse perturbative expansion appears well-
behaved at least for = 0.1. As usual, the region of safe applicability of the NNLO appmation
for Eqg. (1) will be wider as an effect of the Mellin convolutio

As mentioned above, we are presently not in a position toveldhe {,-terms of the off-
diagonal quantitieE’é?T(x) andPg(g)T (x) (with the exception of some -enhanced contributions).
However, their norto second moments provide another check, via the momentum slemorf
our new results (11) and (12). Furthermore, using thesdtsemod the momentum sum rule, the
missing off-diagonal terms can be reconstructell at 2. Hence we can write down the complete
NNLO expressions for the second moments of all four spgitsplitting functions,

54556 7264
Pq(g)T(N:2> = _PQ(S)T(NZZ) = -C? (m—7Z2—320Z3+256122)
6608 2432 2464 128 20920 64
—CECA( 543 9 {2+ 9 (3— 3 Zzz) - CFCAZ\ (TB—F?@)
55 296 512 2281 32 64
— CeCany (a‘FEZZ—?@) _CFan (H_EZZ_F?ZS) ) (16)
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8 T ||||‘.| T T T TTTTT T T T TTTTT 80 T T TTTTT "l T T TTTTT T T T TTTTT
6 |- 2)i i 60 B 2)i i
[ L x(@-) P2 T x(1-x) P2(x) ]
a4l 40 |-
2 __ 20 __ .....
ol 0 '_— ________________
N, =5 1 1 [J1/2000
_2 1 1 |||||| 1 1 1 |||||| 1 1 11 1111 _20 1 1 |||||| 1 1 1 |||||| 1 1 11 1111
10 107 1 10 107 1
X X

Figure 1. The third-order timelike quark-quark and gludueg splitting functions for five
flavours, multiplied by (1 —x) and divided by 2006 (4m)3 for display purposes. Also shown are
the respective leading smadleontributions and the corresponding spacelike splittumggfions.

0.06IIIIIIIIIIIIIIIO.14IIIIIIIIIIIIIIII
005 x(1-X) Py, (X) 5 : X(1-X) Ry (x) |
- aq e g9
L ] 012
0.04 [ ]
0.03 1 o
0.02 - 1 0.08
0.01 | .
I ] 0.06 |-
0 ’ — 1
:f ag=0.12, N=5 ] !
_0.01_|||||||||||||||||||_0.04.l||||||||||||||||||
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
X X

Figure 2: The perturbative expansion of the timelike qugukrk and gluon-gluon splitting func-
tions, again multiplied bx (1 — x), at a typical value of the strong coupling constant.
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2T 2T
Pg(g) (N=2) = —Pogg) (N=2) =

6232 2132 128 160
o2 B B 2
CAnf(243 57 ¢2— 5 {3+ 3 Zz)

2 160 64 2681 760 56
+CAnf2( _EZZ+SZ3) _CACan (—_EZ2+§ZS)

27 243
10570 352, 32 41 128
2 TYMTY S YVe Y- . A
Cini (ag — o7 2 g %) — Gen ( 9 27 Zz) ' (17

After inserting the numerical values of the QCD colour fastand the Riemané-function, these
results yield, for five light flavours, the benign perturlatexpansion

Pj(N=2,n=5) ~ 8as/(9m) (1 — 0.687as+ 0.4470% + ...)
Pig(N=2,n=5) =~ 5as/(6m) (1 - 1.049s + 116302 + ...) . (18)

We finally turn to the timelike gluon coefficient functions lys. (6) — (8) and their quark
analogueszggT(x). In the limit of a heavy top quark and negligible masses obdtier flavours,
the coefficient functions for the standard-model Higgsemnadgiffer from those of this scalgronly

by a perturbative prefactor known to®NO [20]. Thus the latter quantities are directly relevant to

one-particle inclusive Higgs decay, and the second-momanbination
(Coq+Cag)(N=2) = 1+ascy’ +alcy +alcy + ...,

directly enters the Higgs decay rate in the above limit. Fer éxpansion coefficienrév”) our
analytic continuations lead to

(1) 73 14

Co o = 3Ca—3 M, (19)
2 37631 242 6665 88
C(E)) = CA2 (?—712—11013) — Cang <7 —§ZZ+4Z3)
131 508 8
— CF N; (? — 24(3) + nf2 (f — § 12) y (20)
3 3 15420961_ 178156 3080 > (413308 5_6
% = M) +Ca ( 729 g7 g G O g Tl
2670508 9772 80 23221
- sz\nf ( 243 - 9 Z3+ 3 Z5) - C,:CAnf (T - 136413 - 160Z5)

221
+ C2ny <— — 3205+ 19213) + Cen? (440 —24023) — nf <

: 57016 64 ) (21)

729 2793

with a functionf ({2) which we cannot derive at this point. Eq. (19) reproduceslakm@wn NLO
result of Refs. [21, 22]. Our coefficient (20) represent a plately independent re-derivation of
the NNLO expression first obtained in Ref. [23] (see also R&f]). Finally the third-order result
(21) provides, despite the missigg-contributions, a highly non-trivial confirmation of thecent
N3LO calculation of Ref. [25] to which the reader is referredddurther discussion.
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To summarize, we have used relations between spacelikaraglike quantities to compute
some important higher-order QCD corrections for timelikegesses. We expect that further
progress can be achieved along these lines. However thisegylire improvements on the present
decompositions into purely real and real-virtual termsalifare beyond the scope of this letter.

FoRrRM and FORTRAN files of our results can be obtained frarht p: // ar Xi v. or g by down-
loading the source of this article. Furthermore they ardava from the authors upon request.
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