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Abstract

We have investigated the next-to-next-to-leading ordedl(¥) corrections to inclusive hadron
production ine"e~ annihilation and the related parton fragmentation distidms, the ‘time-like’
counterparts of the ‘space-like’ deep-inelastic struefumnctions and parton densities. We have
re-derived the corresponding second-order coefficienttions in massless perturbative QCD,
which so far had been calculated only by one group. Moreoeepresent, for the first time, the
third-order splitting functions governing the NNLO evadrt of flavour non-singlet fragmentation
distributions. These results have been obtained by twopegent methods relating time-like
guantities to calculations performed in deep-inelasidtecing. We briefly illustrate the numerical
size of the NNLO corrections, and make a prediction for thiedince of the yet unknown time-
like and space-like splitting functions at the fourth orgethe strong coupling constant.



In this letter we address the evolution of the parton fragaiém distributionsD" and the
corresponding fragmentation functioﬁa’% in e"e annihilation,ete” — y,Z — h+ X where

1 d% 3 ho 3 . 3
= =31 '+ sifoR"+ = F. 1
o dxdcos 5 +cos6) T+ SITOR]+ 7 cosB Fy (1)
Hereb represents the angle (in the center-of-mass frame) betitheencoming electron beam and
the hadrorh observed with four-momenturp, and the scaling variable reags- 2pg/Q? where
qwith g% = Q? > 0 is the momentum of the virtual gauge boson. The transv@nséangitudinal
(L) and asymmetricA) fragmentation functions in Eq. (1) have been measuredcesfyeat LEP,
see Ref. [1] for a general overview. Disregarding corrextisuppressed by inverse powers3f
these observables are related to the universal fragmenistributionsD" by
ldz X
Fh(x, Q%) = —“cyt (z05(Q%) D=, Q?) . 2
009 = 3] car(zas@) "5 2)
The coefficient functions, s in Eq. (2) have been calculated by Rijken and van Neerven fa.Re
[2—-4] up to the next-to-next-to-leading order (NNLO) for.Hd), i.e., the second order in the
strong couplingas = a5(Q?)/(4m). Below we will present the results of a re-calculation ofste
functions by two approaches differing from that employe&efs. [2—4].

Besides the second-order coefficient functions, a compN&eO description also requires
the third-order contributions to the splitting functiorso(far calculated only up to the second
order [5-7]) governing the scale dependence (evolutioth@parton fragmentation distributions.
In a notation covering both the (time-likgg 0 = 1) fragmentation distributions and the (space-
like g, Q° = —g?, 0 = —1) parton distributions, the flavour non-singlet evolutemuations read

d ns VAN 1dZ ns 2 ns X 2
dino? fo (x,Q%) = /X 7'30 (zas(Q)) fg <27Q) (€))
with
PR (x0s(Q?) = asPO™S(x) + a2P5""™(x) + &3Py ™ (x) + ... . (a)

The superscript ‘ns’ in Egs. (3) and (4) stands for any of tllewing three types of combinations
of (parton or fragmentation) quark distributions,

5 = g+G — (ta), ' =3 ,(a—0), 5)

wheren; denotes the number of active (effectively massless) fla/ods detailed below, we have
obtained the so far unknown time-like NNLO splitting furnmisPc(,Z:)fS(x) in Eq. (4).

As already indicated in Eq. (4), the space-like and time-fibn-singlet splitting functions are
identical at the leading order (LO) [8], a fact known as th&@v-Lipatov relation. This rela-
tion does not hold beyond LO in the ustMB scheme adopted also in this letter. However, the
space-like and time-like cases are related by an analytitragation inx, as shown in detailed dia-
grammatic analyses [5,9] at ordzf, see also Refs. [10, 11]. Moreover, another approach mglati
the non-singlet splitting functions has been proposed iin [R2]. Hence it should be possible to
derive time-like quantities from the space-like resultswpated to ordea? in Refs. [13-15].

1



We start the analytic continuation from the unrenormalig@@ttl unfactorized) partonic trans-
verse structure functioﬁlb in deep-inelastic scatteringi;q — X (and correspondingly fdf_ and
Fs — Fa), calculated in dimensional regularization with= 4 — 2¢ and the scal@ [13-15],

. o\ —l€
F2(ag, Q) = 8(1—x) + Y (&)’ (%) F (6)
=1
The bare and renormalized coupliag andas are related by (recatls = as/(4m))
o _ . Boo, (B§ B1)._s
as = as sas+(2 28)a5+... (7)

with Bp =11/3C, —2/3n; etc. The expansion coefficients in Eq. (6) are then decontpiose
form-factor () and real-emissionX|, defined analogous to Eqg. (6)) contributions [16]

FP, = 2A8(1-X)+%:
FY% = 258(1—X) + (F1)°8(1—X) +2F1R1 + Rz
ng = 2738(1—X)+ 21 F28(1—X) + (2F2+ (F1)°) R1+ 21 R2 + Rs . (8)

The analytic continuation of the form factor to the timeelikase is known. The-dependent
functions®, are continued from to 1/x [5,9], taking into account the (complex) continuatiorgdf
(see Eq. (4.1) of Ref. [16]) and the additional prefacfor® originating from the phase space of
the detected parton in the time-like case [3]. Practicaliy tontinuation has been performed using
routines for harmonic polylogarithms [17, 18] implementedcoRM [19]. The only subtle point
in the analytic continuations is the treatment of logarithsingularities forx — 1, cf. Ref. [9],
starting with

IN(1—x) — In(1—X) —Inx+iTt. 9)

Finally the bare transverse fragmentation functh‘his re-assembled analogous to Eq. (8),
keeping the real parts of the continu®g only, and the time-like non-singlet splitting functions
and coefficient functions can be read off iteratively from tion-singlet mass factorization formula

Fro = —¢ PO 4 Y 1 eal 4 e2bl) 4 e3df +

Fro = 2—12 PO (PO 4 By) _2_13 [P§12>1+2P( R ] P a(T>+e[ al? P(O)b(Tl)] +..

Fra = —6—13 PO(PO 4 Bo) (P +2Bo) + i [P< ) (3P©) 4 2B) + PO 3PtV (10)
+3Boct” +2B1)| - 61 s )1+3 Ui+ PO(6c? - 3pOalY — 3peal™) | +

where the expansion coeﬁicierﬁ§| now refer to an expansion in the renormalized coupling at the

scaleQ? = g?. The products of the-dependent (generalized) functions in Eq. (10) are to be rea
as Mellin convolutions or, more conveniently, as product®ellin-N space, employing routines
for harmonic sums and their inverse Mellin transform back-space [18-20].
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Unlike the diagrammatic treatment of Refs. [5, 9] — which mainbe emulated at orderS
using the only available space-like calculation based eroftical theorem [13—-15] — the above
procedure is not entirely rigorous, as Eq. (8) does not sgmtea full decomposition according to
the number of emitted partons. This would be required, fetance, in a subtraction formalism
for exclusive observables at NNLO [21] and beyond. In Eq.tl{@) real functionsR,>» do not
only collect, e.g.n-gluon tree-level amplitudes, but also combinations off eeassion and virtual
corrections. Especially, starting at oraet, the decomposition Eq. (8) includes overlapping diver-
gences from triple unresolved configurations when two glagibecome soft and one is collinear.
Thus one has to be prepared for some problem in the abé],'rfe)rp(ece related ta® contributions
originating from phase space integrations over unresakegins.

At the second order, however, the above procedure workegibrfat least for the terms in the
g-expansion written down in the second line of Eq. (10), teduding the previously unknown

e-coeﬁicient%&z) (x),a=T, L, A, which we will not write out here for brevity. We have verified
this by comparing to a direct calculation, to be presentsdvehere, ofefe” — y,Z — h+ X

to this accuracy ire using the approach of Ref. [22]. Especially, we also rewdethe O(a2)

coefficient functionscgz) (x) which so far were only calculated in Refs. [2-4]. The diffezes

between the time-like non-singlet coefficient functionsiaj. (1) and the corresponding (by the
structure of the respective hadronic tensors) quantiieleep-inelastic scattering read

2 2
C-E—,I)’IS(X) - Ci,r)w(X) =

+C2 (72— 802+ 176/3Ho— 48Ho0+ 8Hz — 72Hy 0+ (1+X) [— 493/6 + 1203
+1075 — 155/6 Ho + 16Hol2 — 6Ho.0 + 12Ho,00 — 20Hs — 10H; — 4Hp0 — 29H;
+42H o — 12H1,1] + Pgg(¥) [ 843 106/325 + 389/6 Hy — 44HoL»
+196/3 Hoo — 24Ho.00+ 36Hs + 62Hp — 20Hp0 + 48Hp.1 — 40H1Zo +134/3 Hy o
+32Hy00+56H 2+ 40H1,1,o] 4 5(1—x) [608/312 . 24122] )

+Cr (Ca—2CH) ( —76/3xHo+ (1+X) [— 215/6 + 49/6 Ho — 9H1] + Pgg(¥) [1213
—44/3(5 + 445/6 Hy — 20Hol2 +44/3 Ho o+ 24Hy 0.0+ 4Hz +22H, — 4Hp o
—16H Tz +22/3H10+8Hyz— 8H1,1,0} + Pag(—X) [32H,17070 +8HoZz+ 16H_20
_ 24H07070} +8(1-x) [466/312 - 24122] )

+Ceny (4/3 xHo + (1+X) [19/3+ 1/3Ho+ 2H1] + Pgq(¥) [8/312 —35/3Ho
—8/3Hgo—4Hp — 4/3 HLO} +8(1-x) [_ 76/3@} ) , (11)

cA¥)lee — GpsMlep =
+C2 (583/9 — 860/9%— (14/3+ 152/3x)Ho — (12+ 16x)Ho 0 + (74/3 — 112/3X)Hy
— 161+ X)H1.0+ 8(1— 20H11 +4(1+6X) [ Ho | )

+Cr (Cy—2CF) (2317/45+ 8/5x ! —3752/45x + 32/5x* + 32x{3 + (404 8/5x %)H_1
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—1/5(98/3+8x 1+ 728/3x — 32&)Ho + 16Ho 10+ 32(x — 1/5x3) [Zz +H 10— Ho’o]
— 8(1+ 2X) [H,]_Zz + 2H,17,170 — H,]_,o,o} + (1 — 2X) [46/3 Hy — 8H1(> + 8H17070} )
+Cey (- 74/9+112/9x+4/3 (1 + 4x)Ho — 4/3 (1 — 2x)H1> , (12)

2 2 2 2
CiheX) — CPasX) = Che(X) — c0(X)

+CF2<(1— X) [— 1675 + 46Ho + 20Hg o+ 16H2+24H1,o]) +Ceny <—4(1—X)H0)
+Cr (Ca—2C¢) (Pag(—X)| — 64H-100 — 16HoZz — 32H 20+ 48Ho00)
+54{1—X)Ho+32(1+x)H070) . (13)

Here our notation for the harmonic polylogarithids, . m,(x), m; = 0,£1 follows Ref. [17].
Furthermore we have employed the short-hand notation

Ho,....0,41,0,....,041,..(X) = Himi1),+mn+1),.. (X, (14)
m n
suppressed the argument of the polylogarithms, and usédribgon pqq(X) = 2(1—x)"t-1-x.
The divergences for — 1 in EqQ. (11) are to be read as plus-distributions.

Egs. (11) - (13) agree with the results in Refs. [3,4] up tora(f@esumably typographical) er-
rors in those articles. Specifically, fo(fz)(z) the term—BCF2 (1+2) In?zin Eq. (A.6) of Ref. [3] has
to be replaced by-3CZ (1+2) In®z, and the contribution 24C2 —C,Cr /2) Inz/(52%) in Eq. (A.8)
by 24(C2 —C,Cr/2) Inz/(52). The argument 08; » should read-z instead of 1-z in the first
term of Eq. (A.15) forc(l_z)(z). Finally, in Eq. (17) of Ref. [4] forc(Az)(z) the term 242 Inz/(52%)
has to be replaced by 2 Inz/(5z). We have also re-calculated the second-order gluon and
pure-singlet coefficient functions faf andc,, finding complete agreement with Ref. [4].

We now turn to the corresponding NNLO (third-order) sphityifunctionsPc(,zz){1S in Eq. (4).
Using the same notation as above these functions are given by

SP@*(x) = P () -P2(x) =

+16C2 (pqq(x) [311/24 Ho+4/3Hol2 — 169/9 Ho o+ 8Ho 0{2 — 22Hg 0,0
— 268/9Hy0-+ 8H1,002 — 44/3 Hi 00 — 268/9 Hy + BHal, — 44/3 Hp o — 44/3 H|
+(1+X) | ~4Ho oz +25/2Ho00+ Hao+ 2Hg| — (1~ X)|325/18 Ho+50/3 g
+50/3Hy| -+ (3~ 5x)Holz — (173/18— 691/18x)Hoo

+16C2 (Ca — 2C¢ ) (Pag(X) | 151/24 Ho+ HoZa + 13/6 Holz — 169/18 Hoo+ 8Hoolz
—13/2Hog0,0—8Ho,000—134/9Hy1 0+ 4H1 00> —22/3H1 00— 6H1000—134/9Hy
+4Hpls — 22/3Hp.0— 2Hp.00 — 22/3Hg — 2Hg 0 — BHa | + Pag(—X) | ~8H 30
+8H 202 +8H_2 10+3H -20—-14H 200—4H 22+8H_1 20+16H 1100
+8H_10{2+6H 100—18H 1000 —4H 120—8H_13—7Ho{3+3/2Hol2
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—8Ho,0{2 —9/2Ho,0,0+8Ho0,00+2H30+ 6H4] —(1+x) [4H_2,o + 8H_1,o,o]
F(1-X) [4H,3,o +4H_500—88/9 Ho+ 3Hol3 — 28/3 Hy o — 28/3 Hz} — AxHol»
— (50/9 — 184/9 X) H070 — 4XH070Z2 —+ (11/2 —+ 35/2 X) HO,O,O —+ 8XH0707070>

+16C2n, (pqq(x) [ —11/12 Hy— 2/3Hol2 + 11/9 Hoo + 2Ho0,0 + 20/9 Hy 0
+4/3Hy00+20/9Hz + 4/3Ha0-+4/3Hs| — (14 X) Hooo+ (1-X) | 13/9Ho
+4/3H10+4/3 Hz] + (8/9—28/9x)H070) , (15)

and
3PP (x) —3P@*(x) =
+16C2 (Ca— 2C¢ ) (Pag(—X) | 16H-30— 16H20z ~ 16H 210~ 6H-20+ 28H 200
+8H_2,—16H 1 20—32H 1 _100—16H 102 —12H_100+36H_1000+8H_120
+16H_1 3+ 14Hy{3 — 3Hol2 + 16Hy 0{2 + 9Hop 0,0 — 16Hp 0,00 — 4H30 — 12"'4}
(14x) [SH,ZO +16H_10,0+8Holz — 4Hp 0 — 8H3] —(1-x) [SH,&O +8H_20,0+10Ho
+6Hols + 4Ho.0l2 — 8Ho,00,0 + 8HL0 + 8H2] — (10— 6x)Hoo — (12+ 24x) Ho,o,o> (16)

for both§ = — and§ = v. Eq. (15) is, in fact, not quite the result of the analytiottouation as
described above, which returns a different coefficienttiertermC2 paq(x) Hoo 2 in the first line.

We have corrected this term by imposing the correct (vanghiirst moment oPc(,ZZ)I. As itis
conceivable that the present form of the analytic contioudeads to other problems not affecting
the first moment — recall the discussion in the paragraphvwglg. (10) — we obviously need a
second, independent confirmation of our new results (15 &6)d

For this purpose we adopt the approach of Dokshitzer, Maiochand Salam [12] (see also
Appendix B1 of Ref. [23]), where Eq. (3) is rewrittentas

d 5 ldz 5 X 52
dnge 8@ = [ TR (2as@) 15°(5.29) (17)
and the modified splitting functior3’® are postulated to be identical for the time-like and space-
like cases. Working out the perturbative expansion of thegirand along the lines of Ref. [12] one
arrives at a successful ‘postdiction’ for the NLO differerR{”"*(x) — P{""$(x) of Refs. [5, 7]

(see Eq. (4) of Ref. [12]) and the new NNLO predictidn=£ +, —, v, recall Eg. (5))
5P@E(x) = 2{ [Inx-lS(l)E] 2P0 4+ [Inx-P(O)} ®I5(1)5} (18)
with @ denoting the Mellin convolution (cf. Egs. (2) and (3)) and

2PME(x) = PIVF () + PV (%) (19)

(6} 0=

Ref. [12] also includes a shift in the argumentgfin Eq. (17) which is irrelevant for our purpose of relating th
time-like and space-like results. Note also that the noteidr theas expansion in Ref. [12] differs from Eq. (4).
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The evaluation of Eg. (18), again performing the convohsiwia a transformation to Mellift
space, yields exactly Egs. (15) and (16), thus providindp lbé desired confirmation of these
results and further evidence supporting the ansatz (17).

Consequently, it is possible to make even a prediction ferfolurth-order (NLO) difference
5P 3)% of the (both unknown) time-like and space-like non-singf#itting functions on this basis.
Using the notation of Eq. (18) together witf¥? = A® A etc, this prediction reads

SPEE(x) = 2{[Inx- P& oPO 4 [Inx-PO]@P@% 4 [Inx. PD?E] ®I5(1)E}
— 2P0 g [Inx-PO1#2_4[P@122g% [Inx- PO ] @ [In?x- PO
—-2/3[PO)*3 g [In3x.PO)] . (20)

For brevity we refrain from writing out the resulting exptiexpressions which are, of course,
much more lengthy than Eq. (15). We expect that a first checEmf(20), or rather its first
line (which dominates the largebehaviour, cf. Ref. [12]), will be obtained via next-to-tiag
order calculations in the largg- expansion, generalizing the leadingtesult of Ref. [24]. The
corresponding contribution to Eq. (20) is identical forthllee non-singlet cases and reads

6P(3),nS(X) _ chi)ins(x)_P(S),ns(x) _

| n? = o=—1

16/81CEnf ( Pqq(X) [ — (159/4 — 12002 + 36(3)Ho + (23+ 72(2)Ho,0 — 279 0,0
—216Hy0,0,0— 76(H1,0+H2) —240(H100+Hz0+H3z) — 108H1000+H200
+Hzo0+Hs) |+ (1—x) [ — (260—7202)Ho — 276(H1 0+ H2) —144(H1 00+ H20
+Ha)] + (1+X) 108Hy000 — (466 398)Ho0 — (90— 4509Hao0) - (21)

The alC? nf”‘2 contributions dominatingP ("1:S in the largen; limit are given to all higher

ordersn by a straightforward generalization of Eq. (18) and the fingt of Eq. (20).

Returning to the NNLO coefficient-function and splittingatction differences (11) — (16), we
note that these functions include harmonic polylogaritupgo the same weights as the corre-
sponding space-like results [13—15,18], with the intengstxception that weight-4 functions enter
Eq. (15) only for the SU{;) group-factor combinatio@a — 2C¢ suppressed ag fi¢ in the limit of
a large number of colours,. Except for the longitudinal coefficient functi@n ns, the differences
between the time-like and space-like quantities are pararaky suppressed in the largelimit,
since the logarithmically enhanced soft-emission couatrdns to%; in Eq. (8) are, as they have to
be, invariant under the analytic continuation. Specificahe (identical) leading large-contribu-
tions for o%s— cfr),s and c,(fz,s— cé?%s contain plus-distributions only up {¢1 — x) ~In(1—x)]
(all proportional tor?-terms arising from the analytic continuation of the forratéa), and those
for the splitting-function differences read,

5P@ns(x 1) = —aAPA? In(1-x) + 0(1) , (22)

as predicted in Ref. [12], whew” are the coefficients oAl [1— X7 in Eq. (4), cf. Ref. [13].
The leading smalkterms, on the other hand, differ between the space-likeiarellike cases.
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The numerical impact of the second-order contribution$iéotime-like coefficient functions
cgz) (x),a=T, L, A has been discussed in some detail already in Refs. [2—4¢ We confine our-
selves to the transverse fragmentation funcignthe largest contribution to the right-hand-side
of Eq. (1), see Ref. [1]. In Fig. 1 we compare the correspandion-singlet coefficient function
Cr ns 1O its counterpart, . in deep-inelastic scattering. In order to facilitate a cliomparison,
the same schematic shape has been used for the non-siagteeintation distributions and parton
distributions. As obvious from the figure, the higher-orderrections forc; are in general con-
siderably larger than those foy. Nevertheless the second-order term changes the NLO sesult
under the conditions of Fig. 1, by 5% or less fram: 0.55 down to very small values af

The pattern is quite different for the non-singlet spligtifunctions illustrated, in a similar
manner but at a lower scale, in Fig. 2. Naspace, for example, the ratd"s/(Py* _; —R§)
quickly decreases with increasiig at NNLO from about 1/2 aN = 2 to about 1/6 aN = 8.
Consequently the total time-like splitting functioR$®, is only mildly enhanced, e.g., by 8% and
2% for these two values dfl andas = 0.2, with respect to their space-like counterp®fs
discussed in detail in Ref. [13]. As shown in the right parEa@f. 2, the smallk scaling violations
of the non-singlet fragmentation distributions are weakan those of the parton distributions.
For the chosen input distribution this reduction increasea perturbatively stable manner, from
about 10% ak = 102 to about 30% ax = 104,

To summarize, we have re-derived tia2) coefficient functions [2—4] for the inclusive
production of single hadrons ie"e~ annihilation [1] and obtained, for the first time, the cor-
responding third-order splitting functions for the flavawon-singlet fragmentation distributions.
Our derivation of the latter quantities rests on relatiogsveen the time-like and space-like cases,
see especially Refs. [5,7,9,12], and the third-order ¢almn of deep-inelastic scattering of
Ref. [13-15]. We expect that a further study of these retatid®acked up by fixed Mellitd cal-
culations along the lines of Ref. [22], will facilitate antersion of our derivation to the NNLO
flavour-singlet splitting functions and, at least fr, the O(a2) coefficient functions.

Once this step has been taken, the way is open for full NNLQyaes, e.g., along the lines
of Ref. [25], of high-precision data oa"e” — h+ X from LEP and a future International Lin-
ear Collider. Due to the universality of the splitting fuiocts, our results also represents a first
step towards NNLO analyses of high- hadron production ip and pp collisions, where very
large NLO corrections strongly suggest sizeable highdeiwocontributions, see Refs. [26—28] and
[29-31], respectively. Another application concerns lhguark spectrum in top decays (see
Ref. [32]) where, after the calculations of Refs. [33, 34k third-order time-like splitting func-
tions will facilitate a complete NNLO treatment in the frawagk of perturbative fragmentation.

FORM and FORTRAN files of our results can be obtained fromt p: // ar Xi v. org by down-
loading the source of this article. Furthermore they ardava from the authors upon request.

Acknowledgments. We are grateful to L. Dixon, P. Uwer and W. Vogelsang for ukdfscus-
sions. Our numerical results have been computed usingare®AN package of Ref. [35]. A.M.
acknowledges support by the Alexander von Humboldt FoumdaiThe work of S.M. has been
supported in part by the Helmholtz Gemeinschaft under echvH-NG-105.
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