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Abstract: Kernel estimation of copulas often requires adjustments near the borders of
[0, 1]2 due to both practical and asymptotic considerations. In this paper, we introduce a local-
polynomial estimator for copula density, designed to overcome boundary bias in the context of
censored Time-to-Events data, alongside estimators for Kendall’s tau and Spearman’s rho. To
explore the asymptotic properties of our estimators, we analyze the oscillatory behavior of a
bivariate cumulative distribution function (cdf) estimator under right-censored data conditions,
deriving its i.i.d. representation with an improved remainder term rate. Subsequently, we derive
an i.i.d. representation for a copula cdf estimator and establish a functional Central Limit
Theorem (CLT) for the copula density estimator. Additionally, we prove the weak convergence
of the Kendall’s tau and Spearman’s rho estimators. Our results show that the local-polynomial
estimator is stable and more efficient near the boundaries of [0, 1]2. We validate the finite sample
performance of the local-polynomial estimator through an extensive Monte Carlo simulation
exercise. Finally, we apply our estimators to two datasets. The first one involves insurance
company indemnity claims, where we examine the dependence between indemnity payments
(loss) and allocated loss adjustment expenses such as lawyers’ fees and claims investigation
costs. The second one analyzes the effect of the disregard rate on the duration of unemployment.
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1 Introduction

Copulas have become a cornerstone in econometric and statistical research for analyzing the de-

pendence structure among variables. Unlike classical measures that capture only certain aspects

of dependence, copulas offer a comprehensive view of the relationships between variables. They

can identify a wide range of dependencies, including local, global, and tail dependencies. There

has been a growing interest recently in modeling dependence using right-censored time-to-event

data. For instance, in insurance, (7) used parametric copulas to examine the dependence be-

tween right-censored losses and the allocated loss adjustment expense (ALAE) associated with

a single claim [see also (6), (11)]. In survival analysis, (21) developed semiparametric copulas

for censoring settings to study the dependence between various disease events in patients with

AIDS. Overall, copulas have been extensively studied using both parametric and semiparametric

approaches. However, selecting the appropriate copula model is inherently complex, and these

approaches are often susceptible to misspecification issues, which can lead to misleading empir-

ical results. To address these challenges, this paper aims to develop a non-parametric approach

for estimating copulas and other dependence measures. This approach is designed to be robust

against boundary bias when dealing with censored Time-to-Event data.

Nonparametric estimation approaches are favored for their flexibility and reliance on minimal

assumptions. A range of nonparametric methods for copula estimation have been investigated

in the literature. For instance, (2) proposed an approach employing Bernstein polynomials,

while (8) introduced a wavelet-based estimation technique. Additionally, (10) explored copulas

based on B-splines, and both (4) and (19) presented robust kernel methods. Particularly note-

worthy are the latter two works, which specifically address the issue of boundary bias in kernel

estimation of the copula cumulative distribution function. (27) recently proposed an improved

transformation-kernel estimator that employs a smooth tapering method to mitigate boundary

biases arising from unbounded copula densities. However, the performance of their approach

may depend significantly on the choice of transformation and remain vulnerable to boundary

issues, particularly if the transformation does not adequately account for the boundary behavior

of the data. Furthermore, as shown in this paper, transformation-kernel-based approaches result

in an estimator’s variance that diverges to infinity at the boundaries of [0, 1]2. Moreover, none

of the aforementioned approaches are applicable in the presence of censored data.
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Recently, several nonparametric methods have been proposed for estimating copulas under

right censoring. For example, (20) developed a kernel smoothing estimator for the conditional

copula that works with right-censored data. Additionally, (9), using an estimator of the joint

cumulative distribution function and a transformation of the initial variables, derived copula esti-

mators that are valid under various bivariate censoring frameworks. Unlike the local-polynomial

estimator proposed in this paper, which maintains finite variance when estimating bounded den-

sities, the variance of the transformation-based estimator diverges to infinity at the boundaries

of [0, 1]2, as indicated in the previous paragraph. For unbounded densities, the local-polynomial

estimator is relatively more efficient, as demonstrated in Remark 1 of Section 2.2. In many

cases, the dependence structure between variables is more pronounced in the tails of their joint

distribution. With its stable variance, the local-polynomial method offers a reliable and efficient

approach for measuring dependence.

In this paper, we explore multivariate dependence with censored Time-to-Events data us-

ing copulas, Kendall’s tau, and Spearman’s rho. Specifically, we introduce a local-polynomial

estimator for copulas to alleviate boundary bias within [0, 1]2. Additionally, we develop nonpara-

metric estimators for Kendall’s tau and Spearman’s rho. To analyze the asymptotic properties

of our estimators, we initially establish an i.i.d. representation for the estimator of the bivariate

cumulative distribution function F̂ as outlined in (23), achieving a remainder term of order

Oa.s.

(
n

−3
4 (log n)α1

)
, an improvement over the rate reported in (23). This enhanced rate is cru-

cial for examining the properties of our local-polynomial estimator. Subsequently, we establish

an i.i.d. representation for an estimator of the copula cdf. As a by-product, we derive results on

the oscillation behavior of the bivariate process F̂ . We then investigate the weak convergence of

the copula density estimator by deriving its triangular representation. Moreover, we determine

the asymptotic distributions of the Kendall and Spearman estimators. Finally, we derive both

local and global optimal bandwidth parameters necessary for the nonparametric estimation of

copulas.

Moreover, to assess the finite sample performance of the local-polynomial estimator, we

conduct a comprehensive Monte Carlo simulation study. This extensive exercise allows us to

evaluate the performance of our estimator, specifically using the integrated squared error, under

various scenarios. Following this validation, we demonstrate the practical utility of our estimators
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by applying them to two real-world datasets.

The first dataset focuses on indemnity claims from an insurance company, where we in-

vestigate the relationship between indemnity payments (losses) and the corresponding loss ad-

justment expenses. These expenses include legal fees, claims investigation costs, and other

associated expenditures. Understanding this relationship is crucial for insurance companies as

it can provide insights into cost management and risk assessment strategies.

The second dataset explores the impact of the disregard rate on the duration of unemploy-

ment. Here, we analyze how variations in the disregard rate—a measure of how certain benefits

are treated in the calculation of unemployment assistance—influence the length of time individ-

uals remain unemployed. This analysis sheds light on the effectiveness of unemployment policies

and their implications for labor market dynamics.

The rest of the manuscript is structured as follows. In §2.1, we introduce a new local-

polynomial estimator for the copula density of a random vector, where one of the variables is

right-censored. §2.2 explores the asymptotic theory related to the estimators of the bivariate

cdf, the copula function, and its density. In §3, we develop estimators for Kendall’s tau and

Spearman’s rho and analyze their weak convergence properties. §4.1 evaluates the finite sample

performance of our estimators through simulations, demonstrating that the proposed estima-

tors generally outperform the transformation estimator. Subsequently, in §4.2 and §4.3 we

apply our estimators to two empirical datasets: the first involves insurance company indemnity

claims, examining the dependence between indemnity payments and allocated loss adjustment

expenses; the second relates to unemployment, analyzing the impact of the disregard rate on

unemployment duration. §5 concludes and the appendix contains the proofs of the theoretical

results.

2 Copula estimation under censored Time-to-Events

In this section, we will introduce the local-polynomial estimator for copulas under censored

Time-to-Events data. This estimator aims to alleviate boundary bias within the unit square

[0, 1]2. Following the introduction of the estimator, we will thoroughly examine its asymp-

totic properties, providing a detailed analysis of its behavior and performance in large samples.

This includes establishing an i.i.d. representation for the estimator of the bivariate cumulative
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distribution function and assessing the convergence rates and asymptotic distributions of the

local-polynomial estimator of the copulas.

2.1 A local-polynomial estimator

Consider the Time-to-Event variable Y > 0 and the covariate X with the joint distribution

F = FX,Y , where the marginal cdfs are F1 = FX and F2 = FY . Suppose Y is subject

to right-censoring by the random variable C, which has distribution G, and that we observe

Z = min(Y,C) and δ = I(Y ≤ C), the failure indicator. We assume that Y and C are

independent, that P [δ = 1|X, Y ] = P [δ = 1|Y ], and that X is an uncensored variable. The

observed i.i.d. data is of the form (Zi, δi, Xi), , i = 1, . . . , n.

Under the above setting, an estimator for the copula function C(u, v) = F
(
F−1
1 (u), F−1

2 (v)
)
,

for u, v ∈ [0, 1], is given by

Ĉ(u, v) =
1

n

n∑
i=1

δi

1− Ĝ(Z−
i )

I
(
F̂1(Xi) ≤ u, F̂2(Zi) ≤ v

)
, (1)

where F̂1 is the empirical counterpart of F1, and F̂2 and Ĝ are the respective Kaplan-Meier

estimators of F2 and G. For instance,

F̂2(x) = 1−
d∏

i=1
z(i)≤x

(
1−

∑n
j=1 I(zj = z(i))∑n
j=1 I(zj ≥ z(i))

)
,

where z(1), . . . , z(d) are the distinct ordered Time-to-Events from the uncensored z’s. Notice

that Ĉ(u, v) = F̂
(
F̂−1
1

(
u+
)−

, F̂−1
2

(
v+
)−)

, where F̂ is the bivariate estimator

F̂ (x, y) =
1

n

n∑
i=1

1

1− Ĝ(Z−
i )

I
(
Xi ≤ x, Zi ≤ y, δi = 1

)
, (2)

with F̂ (x−, y−) = lim(u,v)→(x,y)
u<x,v<y

F̂ (u, v) and F̂−1
k

(
u+
)
= limt→u

t>u
F̂−1
k (t) (k = 1, 2); see (23).

The estimator F̂ can be derived from the expression

FX,Y (x, y) =

∫
t≤x,s≤y

1

1−G(s−)
dFX,Z,δ(t, s, 1),

by replacing G by Ĝ and FX,Z,δ(t, s, 1) = P (X ≤ t, Z ≤ s, δ = 1) by its empirical counterpart.
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We next consider a local-polynomial approach to estimate the copula density C. This

approach overcomes boundary bias and has the feature of having a stable variance near 0 and

1. Let K denote a symmetric density function with support on the interval (−1, 1), and let

h = hn be a sequence of bandwidths that tends to zero as n approaches infinity. We define

three intervals as follows: A1 = [0, h], A2 = [h, 1− h], and A3 = [1− h, 1] and

Ku,h(t) = K(t)
a2(u, h)− a1(u, h)t

a0(u, h)a2(u, h)− a21(u, h)
I(u ∈ Ai), (i = 1, 2, 3), (3)

where

aℓ(u, h) =

∫ u/h

(u−1)/h

tℓK(t) dt, (ℓ = 0, 1, 2).

Notice that Ku,h = K when u ∈ [h, 1 − h],
∫ 1

−1
Ku,h(t), dt = 1, and

∫ 1

−1
t,Ku,h(t), dt = 0.

The function Ku,h represents a locally linear version of K, originally introduced by (12) in the

context of density estimation. Other variations of boundary polynomial kernels are discussed in

(18). In this paper, we use Ku,h for estimating the copula density C within its compact support

[0, 1]2. The local polynomial estimator of C is

Ĉ(u, v) =
1

nh2

n∑
i=1

δi

1− Ĝ(Z−
i )

Ku,h

(
u− F̂1(Xi)

h

)
Kv,h

(
v − F̂2(Zi)

h

)
, (4)

and in the interior set [h, 1− h]2 is simplified to

ĈI(u, v) =
1

nh2

n∑
i=1

δi

1− Ĝ(Zi)
K

(
u− F̂1(Xi)

h

)
K

(
v − F̂2(Zi)

h

)
.

The estimator Ĉ can be viewed as the convolution of Ku,h × Kv,h with Ĉ. The rationale for

using Ku,h instead of K is to mitigate boundary bias in the regions [0, h] and [1−h, 1], thereby

improving the rate of the estimator’ bias to O(h2) everywhere in [0, 1]2. In the context of

uncensored data, (4) addressed the necessity of adjusting the standard kernel estimator of the

copula function to overcome boundary bias in the intervals [0, h) and (1− h, 1]. For regression

function estimation, (18) explored various types of local polynomial kernels for estimating a

compactly supported function. Specifically, when K is the Epanechnikov kernel, the coefficients

a0, a1, and a2 in (3) take the following forms:
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a0(u, h) =

{
1

2
+

3u

4h
− u3

4h3

}
I[0,h](u) +

{
1

2
+

3(1− u)

4h
− (1− u)3

4h3

}
I[1−h,1](u),

a1(u, h) =

{
− 3

16
+

3u2

8h2
− 3u4

16h4

}
I[0,h](u) +

{
3

16
− 3(1− u)2

8h2
+

3(1− u)4

16h4

}
I[1−h,1](u),

a2(u, h) =

{
1

10
+

u3

4h3
− 3u5

20h5

}
I[0,h](u) +

{
1

10
+

(1− u)3

4h3
− 3(1− u)5

20h5

}
I[1−h,1](u).

Now, let L(z) = P [Z ≤ z] and ϱ = sup{z : L(z) < 1} < ∞. To avoid identifiability

problems in [ϱ,∞) due to right censoring, we define F̂2 and Ĝ on the interval [0, ϱ), and Ĉ and

Ĉ on [0, 1]×
[
0, F2(ϱ)

)
. Additionally, we assume that G(ϱ) < 1.

2.2 Asymptotic Theory

In this section, we investigate an i.i.d. representation for the local-polynomial estimator Ĉ (see

Theorem 3) and its weak convergence. To achieve this, we first analyze the oscillation behavior

of F̂ and derive a representation that features a faster remainder rate compared to similar

representations in the literature; see (23). Subsequently, we establish a representation for the

copula estimator Ĉ.
For a given distribution Q, let Q = 1−Q, and define L0(z) = P [Z ≤ z, δ = 0] and

χF
i (x, y) =

I(Xi ≤ x, Zi ≤ y, δi = 1)

G(Zi)
+

∫∫
u≤x
v≤y

[
I(Zi ≤ v, δi = 0)

L(Zi)
−
∫ v∧Zi

0

dL0(t)

L
2
(t)

− 1

]
dF (u, v).

Using the above notations, the following result establishes the i.i.d. representation of the

estimator of the cumulative distribution function [see the proof of Proposition 1 in the appendix].

Proposition 1 Suppose that G is a Lipshitz function on [0, ϱ], and let A = R × [0, ϱ). The

bivariate cdf estimator F̂ (x, y) admits for (x, y) ∈ A the representation

F̂ (x, y)− F (x, y) =
1

n

n∑
i=1

χF
i (x, y) + rn(x, y), (5)

where supA |rn(x, y)| = O
(
n−3/4(log n)α1

)
a.s., with α1 ≥ 1.

The rate of rn in (5) is crucial for studying the asymptotic distribution of the local-polynomial

estimator of the copula density. For instance, in the representation provided by (23), the
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remainder term is of order oa.s.(n
−1/2). The covariance function of the stochastic process

χF
1 (x, y) is

ΣF(x, y, x0, y0) =

∫
u≤x∧x0
v≤y∧y0

dF (u, v)

G(v)
+

∫
v≤y
v0≤y0

σG(v, v0)
dF (x, v)

G(v)

dF (x0, v0)

G(v0)

− 2

∫
u≤x,v≤y

u0≤x0,v0≤y0

{∫ v∧v0

0

dL0(t)

L
2
(t)

}
dF (u, v)dF (u0, v0)− F (x, y)F (x0, y0),

where σG(t, s) is the covariance function of the limiting process of Ĝ. We now have the following

result on the oscillation behavior of F̂ [see the proof of Theorem 1 in the appendix].

Theorem 1 (Oscillation behavior of F̂ )

Let {an} be a sequence of positive values such that an = O
(
n−1/2(log n)α2

)
(α2 ≥ 1/2). Then

with probability 1,

sup
(x,y)∈A

sup
|x−x0|≤an
|y−y0|≤an

∣∣∣[F̂ (x, y)− F (x, y)
]
−
[
F̂ (x0, y0)− F (x0, y0)

]∣∣∣ = O
(
n−3/4(log n)α3

)
,

where α3 ≥ 1.

To establish an i.i.d. representation for Ĉ, we start by deriving a robust approximation for the

copula estimator Ĉ0(u, v) = F̂
(
F̂1−1(u), F̂−1

2 (v)
)
. The oscillation result mentioned earlier

will help us in developing this representation, as detailed in the upcoming Theorem 2 [see the

proof of Theorem 2 in the appendix]. The following assumptions are required for our subsequent

analysis:

B1: (i) The first partial derivatives of C are bounded.

(ii) There exist a, b ∈ (0, 1) such that Fk (k = 1, 2) is twice differentiable in [F−1
k (a)−

ϵ, F−1
k (b) + ϵ] for some ϵ > 0.

(iii) F
(1)
k is bounded away from zero and F

(2)
k is bounded in absolute value (k = 1, 2).

(iv) The second partial derivatives of F are bounded.

Assumptions B1(ii)-B1(iii) are necessary to employ the i.i.d. representations of F−1
1 and F−1

2 ;

see (14). Assumptions B1(i)-B1(iv) are required to derive the representation of Ĉ0 using the

Taylor expansion of F . Let L1(z) = P [Z ≤ z, δ = 1], ηi(u) = u− I
(
Xi ≤ F−1

1 (u)
)
, and
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ξi(v) = (1− v)

[
I(Zi ≤ F−1

2 (v), δi = 1)

L(Zi)
−
∫ F−1

2 (v)∧Zi

0

dL1(t)

L
2
(t)

]
.

Theorem 2

Let B = (0, 1) ×
(
0, F2(τ)

)
, (u∗, v∗) =

(
F−1

1 (u), F−1

2 (v)
)
and suppose Assumption B1 holds.

The copula estimator Ĉ0(u, v) admits for (u, v) ∈ B the representation

Ĉ0(u, v)− C(u, v) =
1

n

n∑
i=1

{
χF
i (u∗, v∗) + ηi(u)∂1C(u, v) + ξi(v)∂2C(u, v)

}
+ r1n(u, v), (6)

where supB |r1n(u, v)| = O
(
n−3/4(log n)α

∗)
a.s., with α∗ ≥ 1, and ∂1C and ∂2C denote the

partial derivatives with respect to the first and second arguments of C, respectively.

The i.i.d. representation of Ĉ0 is derived from three key sources: the representations of F̂ , the

empirical quantile estimator F̂1−1, and the Kaplan-Meier quantile estimator F̂−1
2 . Building on

Theorem 2, we can similarly derive a representation for Ĉ, given by:

Ĉ(u, v)− C(u, v) =
1

n

n∑
i=1

{
χF
i

(
u−∗ , v

−
∗
)
+ ηi

(
u+
)
∂1C(u, v)− ξi

(
v+
)
∂2C(u, v)

}
+ r2n(u, v), (7)

where supB |r2n(u, v)| = Oa.s.

(
n−3/4(log n)α

∗)
, with α∗ ≥ 1. Next, in Theorem 3 [see the proof

of Theorem 3 in the appendix], we establish a triangular representation for Ĉ, which leads to

a bivariate normal asymptotic distribution for this estimator. To achieve this, we require the

following additional assumptions:

K1: (i)
∫ u

h
u−1
h

K2
u,h(t) dt < ∞, (u = x, y).

(ii)
∫ u

h
u−1
h

t2 |Ku,h(t)| dt < ∞, (u = x, y).

Theorem 3

Suppose Assumptions B1 and K1 hold, the second partial derivatives of C are bounded, and let

χC
i (u, v) = χF

i

(
F−1

1 (u)−, F−1

2 (v)−
)
+ ηi

(
u+
)
∂1C(u, v)− ξi

(
v+
)
∂2C(u, v).

The copula density estimator Ĉ(x, y) admits for (x, y) ∈ B the representation

Ĉ(u, v)− C(u, v) =
1

nh2

n∑
i=1

∫
[−1,1]2

{
χC
i (u− th, v − sh)− χC

i (u− th, 1)I(v − sh ≤ 1)

− χC
i (1, v − sh)I(u− th ≤ 1)

}
dKu,h(t) dKv,h(s) + rCn(u, v), (8)

with supB |rCn(u, v)| = Oa.s.

(
n−3/4h−2(log n)α

∗
+ h2

)
.
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From the above theorem, we obtain the following Corollary.

Corollary 1

Suppose Assumptions B1 and K1 hold, and nh6, (log n)4α
∗
/nh4 → 0 as n → ∞ and h →

0. Then, for (u, v) ∈ B, n1/2h
[
Ĉ(u, v)− C(u, v)

]
converges in distribution to a zero-mean

bivariate normal distribution N
(
0, σ2

C(u, v)
)
, with the variance

σ2

C(u, v) =
C(u, v)

1−G
[
F−1
2 (v)

] {∫ 1

−1

K2(t) dt

}2

.

The proof of Corollary 1 follows from the triangular representation (8) by using the Lindeberg-

Feller CLT theorem. Furthermore, the variance of Ĉ satisfy

V ar
[
Ĉ(u, v)

]
=

1

nh2
× C(u, v)

1−G
[
F−1
2 (v)

] ∫ u
h

u−1
h

K2
u,h(t) dt×

∫ v
h

v−1
h

K2
v,h(s) ds+ o

(
1

nh2

)
(9)

and, in the interior region [h, 1− h], is simplified to

V arI
[
Ĉ(u, v)

]
=

1

nh2
× C(u, v)

1−G
[
F−1
2 (v)

] {∫ 1

−1

K2(t) dt

}2

+ o

(
1

nh2

)
.

Remark 1

In the class of bounded copula densities, the variance of the local-polynomial estimator described

in (9) remains stable along the boundary of B. However, the situation differs significantly for

the transformation estimator:

ĈT (u, v) =
n−1h−2

ϕ
[
Φ−1(u)

]
ϕ
[
Φ−1(v)

] n∑
i=1

δi

Ĝ(Zi)
K∗

(
Φ−1(u)− Φ−1

(
F̂1(Xi)

)
h

)
K∗

(
Φ−1(v)− Φ−1

(
F̂2(Zi)

)
h

)
,

where Φ : R 7→ [0, 1] denotes the transformation distribution, ϕ its density, and K∗ : R 7→ R+ a

kernel function. The derivation of the asymptotic variance of ĈT leads to the following expression

V ar
[
ĈT (u, v)

]
=

1

nh2
× 1

ϕ
[
Φ−1(u)

]
ϕ
[
Φ−1(v)

] × C(u, v)

G
[
F−1
2 (v)

] {∫
R
K2

∗(t) dt

}2

+ o

(
1

nh2

)
.

For bounded C, the variance V ar
[
ĈT(u, v)

]
diverges near u = 0, 1 or/and v = 0. This contrasts

sharply with the behavior of the local-polynomial estimator in (9) and Corollary 1, where the

variance remains finite at the boundaries of B. In cases where C exhibits an unbounded density at

u = 0, 1 or/and v = 0, ϱ, the ratio var
[
ĈT

]
/var

[
Ĉ
]
≃ κh(u, v)/

(
ϕ
[
Φ−1(u)

]
, ϕ
[
Φ−1(v)

])
→ ∞
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as u → 0, 1 or v → 0, where κh is a bounded function. This observation underscores the stability

and efficiency of the local-polynomial estimator Ĉ at the boundary of B. Accurate boundary

estimation is crucial in real-world data contexts, particularly where dependencies intensify in the

tails of the joint distribution. This is especially evident in financial markets, where stock returns

show increased dependency during periods of market distress, marked by significant negative

returns.

Remark 2

The application of a boundary kernel function establishes a revised balance between bias and

variance at each (u, v) ∈ B. In this case, a viable option for determining the smoothing

parameter involves selecting a local bandwidth h = hn(u, v) based on the asymptotic mean

square error of Ĉ;

MSE(Ĉ) =
1

nh2
σ2

h(u, v) + h4 β2

h(u, v) + o

(
1

nh2
+ h4

)
,

where σ2
h/(nh

2) and h2βh are the asymptotic variance and bias of Ĉ, respectively, with

σ2

h(u, v) =
C(u, v)

1−G
[
F−1
2 (v)

] ∫ u
h

u−1
h

K2
u,h(t) dt×

∫ v
h

v−1
h

K2
v,h(t) dt,

βh(u, v) =
1

2

{
∂2C(u, v)

∂u2

∫ u
h

u−1
h

t2Ku,h(t) dt+
∂2C(u, v)

∂v2

∫ v
h

v−1
h

t2Kv,h(t) dt

}
.

Thus, the optimal local bandwidth is defined as

ĥ1(u, v) = argmin
h

{
σ2

h(u, v)/(nh
2) + h4 β2

h(u, v)
}
,

and, in the interior region [h, 1− h], it can be simplified to achieve

ĥ1(u, v) =

{
σ2

C(u, v)

β2
C(u, v)

} 1
6

n− 1
6 ,

where σ2
C is defined in Corollary 1 and

βC(u, v) =
1

2

[
∂2C(u, v)

∂u2
+

∂2C(u, v)

∂v2

] ∫ 1

−1

t2K(t) dt.

Several plug-in methods from the literature are available for determining ĥ1(u, v). One approach

involves using a parametric model for the copula function C as a benchmark. The Frank copula

11



serves as a suitable choice for this reference copula. We can estimate σ2
h and βh using either

a likelihood or moment approach to estimate the parameter(s) of the parametric copula. This

estimation process involves substituting F2 and G (in σ2
h and/or σ2

C) with their estimators F̂2

and Ĝ.

Another approach involves selecting a global bandwidth h that minimizes the integrated

squared error ISE(h) =
∫
B

[
Ĉ(u, v;h)− C((u, v)

]2
du dv. This is equivalent to choosing h that

minimizes

ISE∗(h) =

∫
B
Ĉ(u, v;h)2 du dv − 2

∫
B
Ĉ(u, v;h) dC(u, v).

The unknown copula function C in the second term on the right-hand side of the latter equality

can be replaced by its estimator Ĉ. The data-driven bandwidth is then

ĥ2 = argmin
h

{∫
B
Ĉ−i(u, v;h)

2 dudv − 2

n

n∑
i=1

δi

1− Ĝ(Zi)
Ĉ−i

(
F̂1(Xi), F̂2(Zi);h

)}
, (10)

where Ĉ−i is the leave-one-out estimate of C, defined as

Ĉ−i(u, v;h) =
1

nh2

n∑
ℓ=1
ℓ̸=i

δℓ

1− Ĝ(Zℓ)
Ku,h

(
u− F̂1(Xℓ)

h

)
Kv,h

(
v − F̂2(Zℓ)

h

)
.

3 Estimation of Kendall’s tau and Spearman’s rho

Next, we introduce nonparametric estimators for two measures of association, Kendall’s tau

and Spearman’s rho, specifically adapted for right-censored time-to-event data. We begin with

Kendall’s tau, which quantifies the strength and direction of the ordinal association between

two variables by using the concepts of concordance and discordance. In essence, it measures

the difference between the probabilities of concordance and discordance between two random

variables X and Y , and is defined as follows:

τX,Y = P
[
(X −X0)(Y − Y0) > 0

]
− P

[
(X −X0)(Y − Y0) < 0

]
,

where (X0, Y0) and (X, Y ) are i.i.d. random vectors. (26) discussed the limitations of estimating

Kendall’s tau under right-censoring. (26) discussed the limitations of estimating Kendall’s tau

under right-censoring. In response, hereafter we propose an estimator that adapts to right-

censoring.

12



Since the tail region information of the survival function of Y might not be identifiable in

[ϱ,∞) due to censoring, we estimate a truncated version of Kendall’s tau:

τX,Y = 4

∫
B
C(u, v) dC(u, v)− 1,

defined on the set B = [0, 1]×
[
0, F2(ϱ)

)
. Using the above expression, we define an estimator

of τX,Y for right-censored data as follows:

τ̂X,Y = 4
n∑

i=1

n∑
j=1

δi δj

n2
[
1− Ĝ(Zi)

][
1− Ĝ(Zj)

] I(Xj ≤ Xi, Zj ≤ Zi

)
− 1. (11)

The weight δiδj/
[
n2
[
1 − Ĝ(Zi)

][
1 − Ĝ(Zj)

]
accounts for the data censoring, replacing the

uniform weight 1/n used in the empirical version of τ̂X,Y for uncensored data. The following

Theorem provides the asymptotic distribution of the Kendall’s tau estimator [see the proof of

Theorem 4 in the appendix].

Theorem 4 Suppose that the conditions in Theorems 1 hold. We have
√
n
[
τ̂X,Y − τX,Y

]
converges weakly to the normal variable Zτ , given by

Zτ = 4

{∫
B

C(u, v) dCL(u, v) +

∫
B

CL(u, v) dC(u, v)
}
,

where CL is the limiting process of
√
n
[
Ĉ(u, v)− C(u, v)

]
.

We now proceed to the nonparametric estimation of Spearman’s rho, an alternative measure

of association between random variables. Spearman’s rho evaluates the strength of monotonic

relationships between two variables and is defined as follows:

ρX,Y = 3
{
P
[
(X −X0)(Y − Y1) > 0

]
− P

[
(X −X0)(Y − Y1) < 0

]}
,

where (X0, Y0), (X1, Y1) and (X, Y ) are i.i.d. random vectors. This measure can be re-written

as

ρX,Y = 12

∫
B
uv dC(u, v)− 3.

Similar to Kendall’s tau, to avoid identifiability issues in [ϱ,∞) caused by right censoring, we

define ρX,Y on B. Using the above expression, we define an estimator of ρX,Y for right-censored

data as follows:

ρ̂X,Y = 12
n∑

i=1

δi

n
[
1− Ĝ(Zi)

] F̂1(Xi) F̂2(Zi)− 3. (12)

13



The limit distribution of ρ̂X,Y is established in the following theorem [see the proof of Theorem

5 in the appendix].

Theorem 5 Under the assumptions of Theorems 1,
√
n
[
ρ̂X,Y − ρX,Y

]
converges in distribution

to the Gaussian variable

Zρ = 12

∫
B

u v dCL(u, v).

4 Simulation and data analysis

In this section, we provide a comprehensive examination of our theoretical results through simu-

lation studies and data analysis. The first subsection focuses on simulations, where we evaluate

the performance of our proposed local polynomial estimators for copula density under various

Data Generating Processes (DGPs) that reflect practical scenarios. This analysis offers valuable

insights into the bias and efficiency of the estimators, as measured by the integrated squared er-

ror. In the second subsection, we apply these estimators to real-world data, conducting rigorous

analyses to validate our theoretical findings and extract meaningful economic conclusions.

4.1 Simulation study

We perform a simulation study to assess the finite-sample performance of our estimator, Ĉ

in (4), in comparison to the transformation estimator, ĈT , as described in Remark 1. The

performance is evaluated using the integrated squared error (ISE) for both estimators:

ISE(Ĉ) =

∫
B∗

[
Ĉ(u, v)− C(u, v)

]2
du dv,

where B∗ = [0.005, 0.995]× [0.005, ϱ).

For our simulation settings, we consider five copula models: Frank, Gumbel, Clayton,

Joe, and Gaussian. We evaluate and compare the performance of the local-polynomial and

transformation-kernel-based estimators by computing their integrated squared error, ISE(Ĉ),

across various scenarios. Specifically, we examine three levels of dependence (τ = 0.25, , 0.5, , 0.75),

two censoring levels (20%, 40%), and three sample sizes (n = 100, 200, 400). The kernel func-

tion used is K(x) = 0.75(1− x2), I[−1,1](x), and the bandwidth hn is selected to minimize the

integrated squared error.
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Table 1. Integrated Squared Error (ISE) under various copula models with Kendall’

tau τ = 0.25, based on the average of 1000 simulations of ISE (×10−2).

n = 100 n = 200 n = 400

Copula censoring Ĉ ĈT Ĉ ĈT Ĉ ĈT

Frank 20% 10.83 30.47 5.28 16.74 2.63 8.82

40% 21.88 41.95 11.02 25.93 5.29 14.36

Clayton 20% 13.57 31.04 8.48 17.57 5.73 9.02

40% 24.52 42.45 13.62 25.10 8.17 13.90

Gaussian 20% 11.57 31.87 5.94 17.90 3.04 9.03

40% 23.02 43.19 11.88 26.80 5.86 14.76

Gumbel 20% 14.07 34.00 7.86 19.30 4.91 10.20

40% 27.61 47.19 14.29 29.86 8.18 17.27

Joe 20% 16.91 36.46 10.94 20.70 7.58 10.93

40% 31.66 51.85 17.46 33.67 11.15 20.06

Tables 1, 2, and 3 present the average integrated squared error (ISE) for both local-

polynomial and transformation-kernel-based estimators, based on 1000 replications. The results

demonstrate that our estimator, Ĉ, generally outperforms the transformation-kernel-based es-

timator ĈT across most copula models. An exception occurs with the Clayton model, where

ĈT performs well for τ = 0.5 and τ = 0.75; however, our estimator still shows superior perfor-

mance for τ = 0.25. Furthermore, for both estimators, find that the average ISE decreases as

the sample size increases and the level of censoring decreases.

4.2 Indemnity payments and allocated loss adjustment expenses

We illustrate the methodology described in Sections 2 and 3 by analyzing a dataset of censored

insurance indemnity claims. The dataset consists of n = 1500 liability claims selected based on

late settlement lags from an insurance company. Each claim includes the indemnity payment

(the loss) Y , the failure indicator δ (with δ = 1 if Y is observed and δ = 0 if censored), and

the allocated loss adjustment expense (ALAE) X. In this context, the loss variable Y is subject

to random right-censoring, while the ALAE variable X is uncensored. Specifically, each claim

also contains information on the policy limit, which represents the maximum allowable claim

amount. The policy limit induces censoring, as losses cannot exceed this specified maximum.
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Table 2. Integrated Squared Error (ISE) under various copula models with Kendall’

tau τ = 0.5, based on the average of 1000 simulations of ISE (×10−2).

n = 100 n = 200 n = 400

Copula censoring Ĉ ĈT Ĉ ĈT Ĉ ĈT

Frank 20% 10.4 31.1 5.83 17.81 3.45 9.76

40% 22.6 44.4 11.29 27.48 6.18 15.83

Clayton 20% 52.0 40.8 42.10 26.51 34.50 19.30

40% 64.2 52.5 51.20 35.10 41.96 25.28

Gaussian 20% 13.7 33.7 8.33 19.17 5.83 10.33

40% 24.8 48.2 14.53 30.15 8.97 17.72

Gumbel 20% 24.5 43.1 18.63 25.15 14.30 14.74

40% 39.2 62.3 27.01 42.24 18.90 25.70

Joe 20% 50.3 60.6 40.06 42.10 27.13 32.58

40% 68.1 89.9 52.27 63.21 40.35 48.23

Table 3. Integrated Squared Error (ISE) under various copula models with Kendall’

tau τ = 0.75, based on the average of 1000 simulations of ISE.

n = 100 n = 200 n = 400

Copula censoring Ĉ ĈT Ĉ ĈT Ĉ ĈT

Frank 20% 0.28 0.48 0.18 0.35 0.11 0.25

40% 0.46 0.66 0.29 0.47 0.19 0.35

Clayton 20% 3.71 2.90 3.34 1.82 2.93 1.51

40% 4.07 3.13 3.65 2.21 3.23 1.87

Gaussian 20% 0.50 0.56 0.35 0.38 0.24 0.29

40% 0.74 0.80 0.48 0.56 0.34 0.41

Gumbel 20% 1.12 1.22 0.91 0.95 0.65 0.78

40% 1.45 1.63 1.15 1.28 0.94 0.97

Joe 20% 3.00 3.13 2.69 2.55 2.34 1.94

40% 3.46 3.83 3.04 3.27 2.60 2.74

For claims where the policy limit was not available, we assumed there was no policy limit.

The presence of censoring complicates the estimation of the dependence structure and joint

distribution of losses and expenses; see (28) and (29). The latter paper focused on modeling

the relationship between indemnity payments and ALAE using parametric copulas, highlighting

the sensitivity of reinsurance premium calculations to copula model misspecification.

In this section, our primary objective is to apply our local polynomial estimator for cop-
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Table 4. Kendall and Spearman estimates for Loss & ALAE insurance data,

with corresponding Bootstrap 95% confidence interval (CI).

Variables τ̂X,Y CI of τ ρ̂X,Y CI of ρ

ALAE & Loss 0.333 [0.297, 0.364] 0.512 [0.444, 0.560]

ula density to nonparametrically estimate and examine the dependence between losses and

expenses. This approach aims to address challenges posed by censoring and potential model

misspecification.

Using the theoretical results in section 3, Table 4 presents the estimated values of Kendall’s

tau and Spearman’s rho, along with their corresponding 95% confidence intervals. These inter-

vals are constructed using the bootstrap methods discussed in (5; 20; 27), among others. From

the original sample, we draw simple random vectors
{
(Yi, δi, Xi), i = 1, . . . , n

}
with replace-

ment. We perform B = 1000 bootstrap replications, and for each bth bootstrap sample, we

compute the estimators of Kendall’s tau τ̂ (b) and Spearman’s rho ρ̂(b), for b = 1, . . . , B. The

95% bootstrap confidence intervals for τ and ρ are then constructed using the 2.5th and 97.5th

percentiles of the bootstrap estimates τ̂ (b) and ρ̂(b), respectively.

The results in Table 4 clearly indicate a positive and a statistically significant relationship

between the censored Loss variable and ALAE. Furthermore, Figure 1(a) displays the nonpara-

metric estimate of the copula density, revealing prominent peaks near the points (1, 1) and (0, 0)

that correspond to the tails of the joint distribution of losses and ALAE. This suggests that large

losses are significantly associated with high values of ALAE, while smaller losses are associated

to lower ALAE values. Figure 1(b) shows the copula density based on the parametric Gumbel

model, with an estimated parameter value of θ̂ = 1.45, as used by (29). Notably, both the para-

metric Gumbel model and our nonparametric estimator from (4) exhibit similar patterns in the

copula density, with peaks at (1, 1) and (0, 0). This is not surprising as (29) used the procedure

developed by (30) to identify the appropriate copula model for the variables losses and ALAE.

For our nonparametric estimation, we used the kernel function K(x) = 0.75(1− x2), I[−1,1](x),

and the bandwidth h was selected using the formula in (10) as detailed in Remark 2.
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Figure 1: (a) Local-polynomial estimate of copula density (blue) and plane z = 1 (grey), and (b)

Gumbel parametric model (t̂heta = 1.45) of copula density, for Loss and ALAE.

4.3 Disregard rate on the duration of unemployment

In this second empirical application, we investigate the dependence structure between unem-

ployment duration and the disregard rate using employment-censored data, as discussed in (31).

The dataset comprises unemployment durations for n = 3241 individuals, of whom 1986 found

employment, while 1255 were right-censored during the follow-up period. In this analysis, un-

employment duration Y represents the time elapsed between an individual’s last and new job,

with the censoring indicator δ defined as 1 if the individual found a job and 0 if they remained

unemployed. The disregard rate is denoted by X. In a previous study using the same dataset,

(31) employed a structural parametric econometric model to analyze how unemployment insur-

ance (UI) policies influence workers’ decisions to accept part-time work or remain unemployed

while searching for full-time positions. Their findings suggest that more generous UI benefits are

associated with longer durations of unemployment. Additionally, their research indicates that

UI rules allowing for partial benefit collection while working part-time can incentivize part-time

employment. The primary objective of this empirical study is to apply our local polynomial

estimator for copula density to reassess the relationship between the disregard rate and the

duration of unemployment in a model-free framework.

The results are provided in Figure 2 and Table 5. Figure 2 illustrates the local-polynomial

estimate of the copula density for unemployment duration and disregard rate, along with the
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Figure 2: Local-polynomial estimate of copula density (blue) and plane z = 1 (grey) for unemployment

duration and disregard rate.

Table 5. Kendall and Spearman estimates for Unemployement data,

with corresponding Bootstrap 95% confidence interval (CI).

Variables τ̂X,Y CI of τ ρ̂X,Y CI of ρ

Disreg-Rate & Unemp-Dur 0.0172 [-0.0811,0.1250] -0.0303 [-0.3357,0.3038]

plane z = 1 shown in grey color. The copula density curve appears nearly flat at the level of the

z = 1 plane, indicating weak relationship between unemployment duration and disregard rate.

This result is confirmed by Table 5 that shows the estimated values of Kendall’s and Spearman’s

rank correlation coefficients between the two variables of interest, along with their respective

95% confidence intervals. This suggests that the disregard rate has little to no significant impact

on an individual’s likelihood of searching for a new job after losing one.

5 Conclusion

In this paper, we have developed a local-polynomial estimator for copula density, specifically

designed to address boundary bias issues in the context of censored Time-to-Events data. Our

approach also includes robust estimators for Kendall’s tau and Spearman’s rho. Through a
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rigorous analysis of the asymptotic properties of these estimators, we derived an i.i.d. represen-

tation with an improved remainder term rate for a bivariate cdf estimator under right-censored

data conditions. This served as a foundation for further deriving an i.i.d. representation for a

copula cdf estimator and establishing a functional Central Limit Theorem (CLT) for the copula

density estimator. Additionally, the weak convergence of the Kendall’s tau and Spearman’s

rho estimators has been proven. Moreover, we derive both local and global optimal bandwidth

parameters necessary for the nonparametric estimation of copulas.

Our findings indicate that the local-polynomial estimator exhibits stability and greater effi-

ciency near the boundaries of [0, 1]2, addressing a crucial challenge in kernel estimation of cop-

ulas. The practical implications of our work were validated through an extensive Monte Carlo

simulation exercise, which showcased the finite sample performance of the local-polynomial

estimator.

To illustrate the practical usefulness of our estimators, we applied them to two real-world

datasets. The first dataset, from the insurance industry, allowed us to explore the dependence

between indemnity payments and allocated loss adjustment expenses. The second dataset

examined the impact of the disregard rate on the duration of unemployment. These applications

underscore the broad applicability of our estimators across different datasets.

In conclusion, our research makes a significant contribution to the literature on dependence

estimation by offering a more efficient and reliable approach for copula density estimation in the

presence of boundary bias and censored data. The local-polynomial estimator of copula, along

with the nonparametric estimators for Kendall’s tau and Spearman’s rho, presents a valuable

tool for both theoretical analysis and practical applications.
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A Appendix: Proofs of main results

Proof of Proposition 1.

Let H(u, v, 0) = P [X ≤ u, Z ≤ v, Y − C ≤ 0] = FX,Z,δ(u, v, 1) and Ĥ the empirical

counterpart of H. First, Notice that

F̂ (x, y) =

∫∫
u≤x,v≤y

1

Ĝ(v)
dĤ(u, v, 0),

and the difference F̂ (x, y)− F (x, y) can be written as

F̂ (x, y)− F (x, y) =

∫
v≤y

[
Ĝ

−1

(v)−G
−1
(v)
]
d
[
Ĥ(x, v, 0)−H(x, v, 0)

]
− F (x, y)

+

∫
v≤y

G
−1
(v) dĤ(x, v, 0) +

∫
v≤y

[
Ĝ

−1

(v)−G
−1
(v)
]
dH(x, v, 0).

Using the uniform convergence result of the Kaplan-Meier estimator Ĝ, this difference is equal

to

F̂ (x, y)− F (x, y) =

∫
v≤y

Ĝ(v)−G(v)

G
2
(v)

d
[
Ĥ(x, v, 0)−H(x, v, 0)

]
− F (x, y) (13)

+

∫
v≤y

G
−1
(v) dĤ(x, v, 0) +

∫
v≤y

Ĝ(v)−G(v)

G
2
(v)

dH(x, v, 0) + r1,n(x, y),

where supx,y |r1,n(x, y)| = Oa.s. (n
−1 log log n). Let

In(x, y) =

∫
v≤y

Ĝ(v)−G(v)

G
2
(v)

d
[
Ĥ(x, v, 0)−H(x, v, 0)

]
.

In the following, we show that the rate of supx,y |In(x, y)| is of order Oa.s.

(
n−3/4(log n)α1

)
(α1 ≥ 1). We have

|I(x, y)| ≤ ∥Ĝ−G∥.∥G−2∥.
∫ v=y

v=0

∣∣∣d[Ĥ(x, v, 0)−H(x, v, 0)
]∣∣∣ . (14)

Divide [0, y] intom sub-intervals [0, y1], [y1, y2], . . . , [ym−1, ym] of equal length ℓ = a0n
−1/2(log n)q

(q ≥ 1/2 and a0 > 0 is some constant), so m is of order O
(
n1/2(log n)−q

)
. Then,

|I(x, y)| ≤ ∥Ĝ−G∥
∥G2∥

.

m−1∑
i=0

∫ v=yi+1

v=yi

∣∣∣d[Ĥ(x, v, 0)−H(x, v, 0)
]∣∣∣

≤ ∥Ĝ−G∥
∥G2∥

.
m−1∑
i=0

sup
u,v∈[yi,yi+1]

∣∣∣[Ĥ(x, v, 0)−H(x, v, 0)
]
−
[
Ĥ(x, v, 0)−H(x, u, 0)

]∣∣∣ . (15)
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The sup-norm term, inside the summation, on the R.H.S. of (A) is of orderOa.s.

(
n−3/4(log n)

1+q
2

)
,

as n → ∞, by the oscillation result in (22) (see theorem 2.3). Since ∥Ĝ − G∥ and m are of

order Oa.s.

(
n−1/2

(
log log n

)1/2)
and O

(
n−1/2(log n)−q

)
, respectively, the term on the R.H.S.

of (A) is of order Oa.s.

(
n−3/4(log n)α1

)
(α1 ≥ 1). Hence,

sup
x,y

|In(x, y)| = Oa.s.

(
n−3/4(log n)α1

)
,

and therefore,

F̂ (x, y)−F (x, y) =

∫
v≤y

[
Ĝ(v)−G(v)

] dH(x, v, 0)

G
2
(v)

+

∫
v≤y

G
−1
(v) dĤ(x, v, 0)−F (x, y)+r2,n(x, y),

(16)

where supx,y |r2,n(x, y)| = Oa.s.

(
n−3/4(log n)α1

)
. By using the i.i.d. representation of Ĝ(v)−

G(v) in (13), we complete the proof.

Proof of Theorem 1.

Denote F̂(x, y) = F̂ (x, y)− F (x, y), Ĝ(y) = Ĝ(y)−G(y) and Ĥ(x, y) = Ĥ(x, y)−H(x, y),

where H(x, y) = H(x, y, 0) is defined in Lemma 1’ proof and Ĥ is its empirical counterpart.

Let x0 and y0 be two positive values such that |x− x0|, |y − y0| ≤ an, and denote x = (x, x0)

and y = (y, y0). We have

F̂(x, y)− F̂(x0, y0) =
∫ y0

0

[
Ĝ

−1
(v)−G

−1
(v)
]
d
[
H(x, v)−H(x0, v)

]
+

∫ y

y0

[
Ĝ

−1
(v)−G

−1
(v)
]
dH(x, v)

+

∫ y0

0
Ĝ

−1
(v) d

[
Ĥ(x, v)− Ĥ(x0, v)

]
+

∫ y

y0

Ĝ
−1

(v) dĤ(x, v)

=

∫ y0

0

Ĝ(v)

G
2
(v)

d
[
H(x, v)−H(x0, v)

]
+

∫ y

y0

Ĝ(v)

G
2
(v)

dH(x, v)

+

∫ y0

0
Ĝ

−1
(v) d

[
Ĥ(x, v)− Ĥ(x0, v)

]
+

∫ y

y0

Ĝ
−1

(v) dĤ(x, v) + r′n(x, y), (17)

where ∥r′n∥ = Oa.s. (n
−1 log log n), by using the uniform convergence of Ĝ. Let I1n(x, y),

I2n(x, y) and I3n(x, y) be, respectively, the sum of the first two terms, the third term and the

fourth term in (17). We want to find the rates of the sup-norm of Ikn(x, y), for k = 1, 2, 3.

First, we have

|I1n(x, y)| ≤ ∥G−2∥.∥Ĝ−G∥.
(∫ y0

0

∣∣∣∣∂H∂v (x, v)− ∂H

∂v
(x0, v)

∣∣∣∣ dv + |H(x, y)−H(x, y0)|
)
,
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and by using Taylor expansion of first order for |x− x0|, |y− y0| ≤ an, under bounded first and

second partial derivatives of H, and the uniform convergence of Ĝ,

sup
|x−x0|≤an
|y−y0|≤an

|I1n(x, y)| = Oa.s.

(
ann

−1/2
(
log log n

)1/2)
.

For the rates of I2n(x, y) and I3n(x, y), notice that by using partial integration

|I2n(x, y)| ≤ ∥Ĝ
−1

∥.∥Ĝ
−1

− 1∥. sup
|x−x0|≤an

v≤y0

∣∣∣Ĥ(x, v)− Ĥ(x0, v)
∣∣∣ ,

and I3n(x, y) can be written as

I3n(x, y) =
[
Ĥ(x, y)− Ĥ(x0, y0)

]
Ĝ

−1

(y) +
[
Ĥ(x0, y0)− Ĥ(x, y0)

]
Ĝ

−1

(y0)

+

∫ y

y0

[
Ĥ(x0, y0)− Ĥ(x, v)

]
dĜ

−1

(v).

Hence, by using theorem 2.3 in (22)

sup
|x−x0|≤an
|y−y0|≤an

|Ikn(x, y)| = Oa.s.

(
n−3/4

(
log n

)1/2(
log log n

)1/4)
,

for k = 2, 3, and the result follows.

Proof of Theorem 2.

Using the oscillation result in Proposition 1 and Taylor expansion, the representation of Ĉ0(u, v)

follows from the i.i.d. representations of F̂ (x, y), in Proposition 1, and that of F̂−1
1 (x) and

F̂−1
2 (x) in (1) and (14), respectively.

Proof of Theorem 3.

The proof is given for representation (8) when u, v ∈ A3 = [1− h, 1]. The proof is similar for

the other cases of u and v. Given Ku,h is continuously differentiable, by partial integration

Ĉ(u, v) =h−2

{∫ 1

v−h

∫ 1

u−h

K
(1)
u,h

(
u− t

h

)
K

(1)
v,h

(
v − s

h

)
dt

h

ds

h

−
∫ 1

v−h

∫ 1

u−h

Ĉ(1, s)K(1)
u,h

(
u− t

h

)
K

(1)
v,h

(
v − s

h

)
dt

h

ds

h

−
∫ 1

v−h

∫ 1

u−h

Ĉ(t, 1)K(1)
u,h

(
u− t

h

)
K

(1)
v,h

(
v − s

h

)
dt

h

ds

h

+

∫ 1

v−h

∫ 1

u−h

Ĉ(t, s)K(1)
u,h

(
u− t

h

)
K

(1)
v,h

(
v − s

h

)
dt

h

ds

h

}
,
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and by using the substitutions t∗ = (u− t)/h and s∗ = (v − s)/h,

Ĉ(u, v) =h−2

∫∫
[−1,1]2

[
Ĉ(u− th, v − sh)− Ĉ(u− th, 1)I(v − sh ≤ 1)− Ĉ(1, v − sh)I(u− th ≤ 1)

+ I(u− th ≤ 1, v − sh ≤ 1)
]
dKu,h(t)dKv,h(s).

The difference Ĉ− C can be written as

Ĉ(u, v)− C(u, v) =h−2

∫∫
[−1,1]2

{[
Ĉ(u− th, v − sh)− C(u− th, v − sh)

]
−
[
Ĉ(u− th, 1)− C(u− th, 1)

]
I(v − sh ≤ 1)

−
[
Ĉ(1, v − sh)− C(1, v − sh)

]
I(u− th ≤ 1)

}
dKu,h(t)dKv,h(s)

+

∫∫
[−1,1]2

[
C(u− th, v − sh)− C(u, v)

]
Ku,h(t)Kv,h(s) dt ds.

By employing the i.i.d. representation of Ĉ in (7) and Taylor expansion of second order, the

result follows by using the fact that
∫ 1

−1
uKu,h(t) dt =

∫ 1

−1
sKv,h(s) ds = 0.

Proof of Theorem 4.

1. First, notice that the estimator F̂ depends on the pair (F̂X,Z,δ, Ĝ) through the map

(f, g) 7→
∫
[0,x]×[0,y]

1

1− g
df.

Using similar arguments to that of (25) (Lemma 1) and (24) (Lemma 3.9.17), the composition

map is Hadamard differentiable on a domain of the type {(f, g) :
∫
|df | ≤ M, g ≥ ϵ}, for

M, ϵ > 0, at every point (f, g) such that 1/g is of bounded variation. Now, using the empirical

central limit theorem and the fact that
√
n
[
Ĝ − G

]
converges to a tight univariate gaussian

process G, the process
√
n
(
F̂X,Z,δ − FX,Z,δ, Ĝ − G

]
converges to a tight zero-mean gaussian

process
(
FX,Z,δ,G

)
. Hence, by the delta method, the process

√
n
[
F̂ − F

]
converges to the

tight process ∫
[0,x]×[0,y]

1

G
dFX,Z,δ −

∫
[0,x]×[0,y]

G
G

2 dFX,Z,δ.

By Lemma 3.9.28 in (24), the map φ defined by φ(F )(u, v) = C(u, v) is Hadamard differentiable

at F tangentially to the set of continuous functions on R2
. Therefore, using similar arguments

to that of (24) (example 3.9.29),
√
n
[
Ĉ− C

]
converges in distribution to a tight process CL.
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2. Now, note that by lemma 1 in (25) the map ϕ1 : C → 4
∫
B
C dC − 1 is Hadamard-

differentiable at C tangentially to the set of continuous functions on B, with derivative

ϕ′
1,C(ξ) = 4

{∫
C dξ +

∫
ξ dC

}
.

Thus, by the functional delta method

√
n
[
τ̂X,Y − τX,Y

]
= 4

√
n
[
ϕ1(Ĉ)− ϕ1(C)

] d−→ ϕ′
1,C(CL).

Proof of Theorem 5.

Analogously to the proof of lemma 1 in (25), the map ϕ2 : C → 12
∫
B
u v dC− 3 is Hadamard-

differentiable at C tangentially to the set of continuous functions on B, with derivative

ϕ′
2,C(ξ) = 12

∫
u v dξ.

Thus, by the functional delta method

√
n
[
ρ̂X,Y − ρX,Y

]
= 12

√
n
[
ϕ2(Ĉ)− ϕ2(C)

] d−→ ϕ′
2,C(CL).
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