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Introduction
Diffusion Generative models are a class of 
generative model which aim to learn the 
backward denoising process for a predetermined 
forward Markov-chain data noising process. The 
forward process is designed such that the limit 
distribution as the noising steps approach infinity 
is indistinguishable from an isotropic Gaussian 
(i.e. our data becomes random noise). A neural 
network then learns the parameters of series of 
Gaussian distributions, representing the 
backwards denoising steps given the noisy data.

Gaussian Process Guided Diffusion
We propose a Sparse Gaussian Process 
Variational autoencoder to generate the 
conditioning information for a video. Each latent 
noise sample is then guided by conditioning 
information for each frame of this video to 
produce a contiguous set of data-samples which 
could be drawn from the same video.

Why Diffusion?
Learning to generate samples from the data 
distribution given a generic noise distribution 
allows for diverse data generation. By drawing 
random noise, the learned backward process has 
the ability to generate a data point from the data 
distribution that the model had never seen in the 
first place.

Classifier-free Guided Diffusion
Sampling from an LDM involves generating a 
latent T steps along the forward process, and
performing T-1 reverse steps to recover a latent 
from the data distribution. This latent is then 
decoded into data-space. However, guided 
diffusion involves feeding conditioning 
information into the denoising process at each 
reverse step. This can be generated from a 
partner model such as a classifier, or indeed an 
unsupervised encoder.

Fixed forward process and the learned generative process. 
Image from CVPR 2022.

Model Architecture
Our model uses the popular U-Net neural 
network architecture, with a top layer encoder-
decoder pair to form a Latent Diffusion model 
(Rombach et al. 2022). We diffuse on latent 
representations of images, which are fed forward 
through multiple layers of residual connections 
and convolutions. We choose a small enough 
bottle-neck dimension such that we can 
incorporate condition information for guided 
sampling.

Latent diffusion model on medical imaging data. 
Image taken from TowardsDataScience.com

Latent trends for the first four dimensions of a 20 
dimension latent vector for frames of a video. A Gaussian 

Process is fit to the data.



Physically-Aware Autonomous Cyber Defence
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1. Introduction
Current state-of-the-art cyber defence strategies often 
deploy a network-centric approach, meaning they only 
consider service availability when making decisions in 
retaliation to a cyber attack.

As these approaches are only limited to information about 
the network it’s protecting, it doesn’t have the situational 
awareness to know how its actions affect us in the real-
world.

By giving a system real-world context, like information 
about an enemy interceptor’s location, we can better 
understand about what effect protecting the network will 
have on the real-world environment it sits in.

2. Project MIDGARD 3. Results

4. Future Work

Project MIDGARD allows for real-world reasoning by 
implementing both a network simulation and real-world simulation 
of an air defence system.

A Gaussian process approach is used to learn about what actions are 
best to take to mitigate the cyber attack given the state of both the 
real-world and network simulation it’s defending.

A Gaussian process is a probability distribution over possible 
functions that fit to a set of points. They provide a non-parametric 
way to infer a function from a set of points, capturing both the 
functions expected value and uncertainty at each point.

Random: untrained random 
agent

2b: trained on only network 
data

0b: trained on network and 
real-world data

Utilising both the network and real-world 
data allows for a significant performance 
improvement over just a network-centric 
approach. An even bigger improvement 
can be seen when considering the GPs 
uncertainty measurement.

§ Scale up to a higher fidelity network simulation.
§ Implement a Bayesian Reinforcement Learning approach to improve decision making.
§ Find the balance between a real-world approach and a network-centric approach.
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Abstract

Simulation

Future Work References

Problem: We need to be able to reason about what we might calculate
elsewhere within a network both in present and in the future, without
actually performing the calculation itself.

We consider a network of sensors connected to a central server. A
scheduler needs to decide how to distribute the processing of sensed
data to maintain various performance metric.

ILP
In conjunction with this model we have created a Python based simulation to 
test out different optimisation techniques / parameters. 
The simulation utilises four different decision functions, based on two 
optimisation variables, to decided whether a task should be computed locally at 
a sensor or at the central server. 
We chose the Python programming language to create the simulation as it offers 
comprehensive libraries for a simple simulation implementation as well as 
extensive libraries for the future extensions such as statistical emulation and 
reinforcement learning.

Future Work
Refining the Model
The model and simulation are now capable of recording and optimising on multiple different optimisation 
criteria including energy consumption and task priority. The goal now is to consolidate the different versions and 
capabilities of the model to fully investigate my research problem. 
Data Arrival
The first aspect we are considering is the data arrival times. The current model works with pre-determined 
arrival times, allowing us to account for factors such as sensor downtime. However, we want to be able to work 
with a stream of unknown incoming tasks, in a similar way to how an actual sensor network may perform. 
Energy Consumption 
Energy consumption currently plays a role in the model in dictating sensor uptime due to power usage and 
battery size. We are also investigating data transmission costs and different sensor types. 
Priority Tasks 
To further differentiate tasks, we have experimented with a task priority system. This allows us to give weight to 
urgent incoming tasks which may need to have a much shorter latency value. 
Heterogenous Sensor Behaviour 
The final expansion to the model we have discussed is the differentiating behaviours of sensors to incoming 
tasks.

1. P. Tagade and H. Choi, "An emulator-based 
rapid source localization approach in 
informative sensor planning," 2012 American 
Control Conference (ACC), 2012, pp. 691-696

2. Pfeiffer, András & Kádár, Botond & Monostori, 
Laszlo. (2003). Evaluating and improving 
production control systems by using 
emulation. 

3. J. Perazzone, M. Dwyer, K. Chan, C. Anderson 
and S. Brown, "Enabling Machine Learning on 
Resource-constrained Tactical Networks," 
MILCOM 2022 - 2022 IEEE Military 
Communications Conference (MILCOM), 
Rockville, MD, USA, 2022, pp. 932-937

Model 
In order to investigate my research problem I am constructing a model
and corresponding simulation to test different optimisation strategies
within different network settings.

The current model consists of a set of sensor nodes and a central
server. The sensor nodes randomly receive input which they must then
choose to either compute locally or send to the central server for
processing. The central server can compute the tasks with a higher
degree of accuracy however this must be balanced with the speed and
efficiency at which the tasks are completed. The overall goal of the
model is to maximise the accuracy of the computed information whilst
minimising the time taken to compute tasks.

To investigate the model further we have been working to phrase it as an 
integer linear programming (ILP) problem. This allows us to demonstrate how 
we are optimising for our given objective function based on the input data. A 
generalised form of our ILP is as follows: 



Deep Learning With Sequential Monte Carlo Samplers
Andrew Millard (a.mill212@liverpool.ac.uk), 
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GD Preconditioned SMC for Complex Probability Distributions
We propose an algorithm inspired by Pathfinder [1] which uses both gradient descent and SMC Samplers in conjunction with one
another in order to be able to more effectively sample from complex probability distributions. We demonstrate this ability on a nine
mode GMM model and a two-dimensional Rosenbrock PDF with the samples initialise by prior which is centred far from the target
mass. In an upcoming paper, we demonstrate the effectiveness of this preconditioning compared to vanilla SMC Samplers and
MCMC methods.

Proposing the parameters for a Bayesian Neural Network using SMC Samplers
We are currently using an SMC Sampler to propose the parameters for a Bayesian Neural Network. MCMC methods have been
shown to converge to the true parameters of the distributions they navigate [2], while Variational Inference (VI) [3] gives Gaussian
approximations in a quicker time than MCMC. We predict that SMC Samplers should be able to give better parameter estimates
than VI while also being faster than MCMC. We have already demonstrated our ability to compete with SGD methods on raw
accuracy and error rates on simple datasets and are now working on showing this ability on benchmark deep learning datasets such
as MNIST and CIFAR-10.

Combining SGD and SMC for Bayesian Neural Networks
This work follows on from the GD Preconditioned SMC Sampler. If we can use GD to find us a good initial starting point, we can
speed up the convergence of the sampler in high dimensional and complex distributions, such as those experienced when navigating
neural networks. So far, we have shown that using SMC Samplers, we can hold the accuracy that the SGD methods give us on
complex datasets such as MNIST. The next stage is to show that we can successfully combine the two approaches to be successful
on datasets and problems which require an uncertainty quantification.

Figure 1: Table of SGD SMC GMM Results

References
[1] - Zhang, L., Carpenter, B., Gelman, A., & Vehtari, A. (2022). Pathfinder: Parallel quasi-Newton variational inference. arXiv
preprint arXiv:2108.03782.
[2] – Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Wilson. What Are Bayesian Neural Network
Posteriors Really Like? In ICML, 2021.
[3] - Matthew D Hoffman, David M Blei, Chong Wang, and John Paisley. Stochastic variational inference. The Journal of Machine
Learning Research, 14(1):1303–1347, 2013.

Figure 3: Test Accuracy from BNN trained 
by SMC Sampler on MNIST dataset

Figure 2: Contour of the Target GMM 
Distribution

Figure 4: Estimated Contour from the samples 
generated in the SMC training process
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Abstract
As the number of satellites in space continues to increase, it becomes harder to keep track of them with limited ground-based sensing capability. This project aims to use
reinforcement learning to improve non-myopic (long-term) space situational awareness by efficient scheduling of sensors.

Background
• The UK is interested in becoming more self-reliant in the space domain, including space situational

awareness (SSA) [1].
• Satellites have become essential for how we live our lives, used for banking, communication, GPS,

and in many more areas.
• Low Earth orbit space is becoming increasingly congested [2], increasing the need for reliable

tracking.
• The risk of collisions between satellites and producing debris becomes more likely, and needs to be

mitigated against.
• Reinforcement Learning (RL) offers an opportunity to model high-dimensional problems easily.

cv

Reinforcement Learning
• RL: Intelligent agents making decisions to maximise a cumulative reward

[3].
• We have implemented a range of RL algorithms on an environment of a

ground-based telescope observing satellites.
• The implementations include Double Deep Q-Networks (DDQN), Soft

Actor-Critic (SAC), and Proximal Policy Optimization (PPO).
• To cover a range of different scenarios, we have developed environments

with different use cases.
• Some environments are designed for an agent to choose satellites from a

given set, and others are designed for agents to find satellites in the field of
regard in a search scenario.

Fusion Paper

References
[1]: Ministry of Defence. National Security Strategy and Strategic Defence and Security Review. 2015. url: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/555607/ 2015_Strategic_Defence_and_ Security_Review.pdf
[2]: Carmen Pardini and Luciano Anselmo. “Evaluating the impact of space activities in low earth orbit”. In: Acta Astronautica Volume 184 (2021), pp. 11–22.
[3]: R.S. Sutton, A.G. Barto, “Reinforcement learning: An introduction”, Malaysia: MIT press, 2018
[4]: B. Oakes, D. Richards, J. Barr and J. Ralph, "Double Deep Q Networks for Sensor Management in Space Situational Awareness," 2022 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 2022, pp. 1-6

Future Work
• Producing meaningful, comparable results for different RL algorithms including SAC and PPO. 
• Working on real satellite data in the form of Two-Line Element (TLE) sets, which are used with the Simplified General Perturbation (SGP) propagator. This

model includes effects like solar radiation pressure, atmospheric drag, and more advanced gravity models.
• Developing environments to showcase significant non-myopic behaviour. 

• We use a Double Deep Q Network (DDQN) on
simulated satellites.

• Q-learning is a value iteration update on a Markov
decision process. Q-values determine the reward
gained by taking an action in a certain state.

• Compared to a random baseline policy, we see
drastically improved performance.

• We successfully track over half of the visible
satellites with an extended Kalman filter and
reduce uncertainties [4]

cv

RL Algorithms
• As well as the DDQN implementation in the fusion paper, we have begun generating

results for the SAC and PPO algorithms.
• For the continuous action space agents (like SAC), we apply them to the environments in

which a telescope much search the field of regard for satellites.
• For the discrete action space agents (like DDQN), we apply them to the environments in

which a telescope must decide which target is the best to look at from a selection of
possible targets.

• SAC has been successful in finding and measuring satellites, and reducing uncertainty
• PPO is beginning to find satellites (more results to follow)



Transfer Learning in Airborne Imagery
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Transfer Learning

In transfer learning we seek to use information from one or more 

source tasks, to improve performance or convergence speed in a 

target task [1]. This is typically achieved through fine tuning. 

Fine-tuning involves adjusting the weights of an already trained 

model on a new dataset, often resulting in more accurate 

predictions.

By utilising this information, we can potentially allow models to 

achieve good performance even in cases where we may have 

limited data and specialised tasks. This is an especially large 

problem in the domain of airborne imagery.

Much of our research so far has been focused on this problem in 

the context of hyperspectral airborne imagery. The rest of this 

poster outlines this.

Schematic diagram of proposed methodology

Results

Using our approach, we achieved enhanced performance on both 

evaluated datasets. Below are the results from the EuroSat 

dataset. The solid red line represents our proposed method, 

contrasted against various baselines.

(a) the first stage 

of our approach

(b) the second stage 

fusing the backbones 

from the first stage

Datasets

Methodology – Transfer learning in airborne hyperspectral 
imagery
Transfer learning has predominantly been explored in airborne 

hyperspectral imagery. We consider a scenario with access to 

pretrained sources for certain wavelengths like RGB but lack 

data for others, such as infrared. Our method involves a two-step 

approach:

Firstly, separate CNN models are trained on the RGB bands, 

initialized with ImageNet pretraining and fine-tuned, and 

another model on all bands without pretraining.

In the second phase, features from each model's final 

convolutional layer are merged. A new fully connected layer is 

introduced to integrate these features. All existing layers remain 

frozen, with only the newly introduced layer trained until 

convergence.

Future work

• Additional Datasets: While the SEN12MS dataset is another 

Sentinel-2 option, testing other airborne hyperspectral 

datasets would be valuable.

• Multi-stage Coordination: Implementing more than two 

stages in our approach could lead to a further optimized 

model.

• Adversarial Training: Recent advancements in adversarial 

training suggest its potential in transfer learning, especially 

for enhancing model generalization in complex settings.

References
[1] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey on transfer 
learning,” CoRR, vol. abs/1911.02685,2019. [Online]. Available: http://arxiv.org/abs/1911.02685
[2] G. Sumbul, M. Charfuelan, and V. Markl, “Bigearthnet: A large-scale benchmark archive for remote 
sensing image understanding,” in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing 
Symposium, 2019, pp. 5901–5904.
[3] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset and deep learning benchmark 
for land use and land cover classification,”IEEE Journal of Selected Topics in Applied Earth Observations and 
Remote Sensing, vol. 12, no. 7, pp. 2217–2226, 2019

(a) BigEarthNet

(b) EuroSAT

BigEarthNet [2] and EuroSAT 

[3] datasets, both sourced from 

the Sentinel-2 satellite. They are 

both hyperspectral datasets, 

with the RGB band versions 

shown to the left. The 

wavelengths include: RGB 

bands; bands capturing aerosols, 

water vapour, and cirrus 

detection; Near-Infrared  bands; 

and Short-Wave Infrared bands.

http://arxiv.org/abs/1911.02685
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Learning transparent models from Data-driven Algorithms
to Enhance Streaming Data Analysis

Introduction
This project is focussed on the real time state estimation of dynamical 

systems with the aid of machine learning algorithms. Model based 

algorithms such as the Kalman Filter use fully transparent statistical models 

to address the state estimation problem. These are limited in that they rely 

on the linearity and accurate prior knowledge of the underlying state space 

model, which is not always available in practise. Furthermore, manual 

tweaking of the model parameters is required. Neural network algorithms 

can be used to overcome this, as they exploit previous data to train 

algorithms in order to be able to process future data, meaning that they can 

successfully operate even when the underlying SS model is unknown or 

only partially known. As a result, it is clear that a method to fuse these two 

approaches to create a particle filter model which works in conjunction with 

the algorithms to train neural networks is desirable, thus enhancing the 

Bayesian filter in the context of learning transparent models, which can be 

applied to fast streaming data.

Results and Conclusion
The results show clearly that the Maximum likelihood estimation method 

outperformed the Kalman net method. Throughout every timestep, the RMSE 

of the Kalman filter estimate compared to the ground truth was consistently 

lower for the MLE method. Whilst both methods follow a similar trend of 

having a larger MSE at lower timesteps, the MSE of the MLE method 

remained consistently lower throughout. Furthermore, the computational time 

taken to determine the Kalman filter estimate for the MLE method was 

consistently more than 10 times faster that of the KalmanNet. This is due to 

the long duration required to train the neural networks required to learn the 

Kalman Gain. In future research, these methods will be compared in the case 

where the process model is non-linear, as this may highlight potential 

limitations in the MLE method, meaning that there may be some situations in 

which the KalmanNet may be the more suitable method.

Supervised learning in SS models
There are various ways to approach parameter estimation in Bayesian filtering, 

where the noise parameters are unknown. In the case of supervised learning, 

explored here, access to the ground truth and measurements is available. A 

comparison was run between a maximum likelihood method and a neural network 

based method of parameter estimation, in order to determine the efficiency of 

each method and directly compare their performances. The first method involved 

using maximum likelihood estimator (MLE) equations to determine values for the 

noise parameters Q and R, which represent the noise on the process model and 

measurement model respectively. The second method involved using a neural 

network (coined the KalmanNet) in order to learn a value for the Kalman gain, 

and then use this to determine the Kalman filter estimates. These methods were 

compared in terms of RMSE as a function of timestep, as well as comparing the 

computational time of each method to determine their efficiency. To 

successfully do this, a simulation of the ground truth was generated, and 

the  measurements were then simulated by adding random noise to this. Both 

models were trained on the same training data and tested on the same Monte 

Carlo test sequences.

Number of 
Steps

Noise parameter 
multiplier

MSE of MLE method MSE of KalmanNet
method

50 0.05 0.490 0.911

50 0.10 0.541 0.642

50 0.50 0.711 0.746

50 5.00 0.938 9.079

150 0.05 0.463 0.573



Data acquisition

Data from simulator trials is acquired via UoL Heliflight-R facility.

Test pilots are landing helicopter models of different handling quality levels in

the simulator environment. The pilot inputs and helicopter model responses

would be used to tune the digital test pilot model.

Using Machine Learning to train a Digital Test Pilot 

for missions in turbulent environments

Carole Liao (Carole.Liao@liverpool.ac.uk), Pr. Mark White (mdw@liverpool.ac.uk),

Dr. Jony Castagna (jony.castagna@stfc.ac.uk), Dr. Sylvain Manso (sylvain.manso@novasystems.com)

Problem
The safety limits of a helicopter operating to a ship depend on the aircraft’s

response to aerodynamic disturbances, the pilot’s capabilities to counteract

them, and the operating conditions.

They are traditionally defined on a ‘test and declare’ basis during at-sea flight

trials when pilots fly repeated launch and recovery missions to a ship in many

environmental conditions to provide as large as possible operational

clearance envelope.

Due to the unpredictable nature of at-sea test conditions, determination of the

Ship Helicopter Operational Limits (SHOL) can result in the definition of an

incomplete and restricted operational envelope, achieved at very high

financial cost with significant risk to the crew.

Objectives
Modelling and simulation can reduce cost and risk involved in real-world

flight testing by examining a wide range of operational conditions.

The objective of this project is the development of a helicopter pilot model

to support SHOL determination process.

From an early stage, the pilot model could conduct multiple virtual deck

landings in a desktop simulation environment. The likely boundaries of a

helicopter safe operational envelope could then be established. They

would inform about the conditions where testing at sea should be

conducted towards the edge of the operational envelope, improving the

SHOL determination process efficiency and expanding operational

clearance.

Figure 1: Ship Helicopter Operational limits (SHOL) [1] 

References
[1] Memon W., Development of High Fidelity Modelling and Simulation for

the Helicopter Ship Dynamic Interface.

[2] Hess R., Simplified Approach for Modelling Pilot Pursuit Control

Behaviour in Multi-Loop Flight Control Tasks.

[3] Hodge S., Dynamic Interface Modelling and Simulation Fidelity Criteria

Figure 2: Helicopter pilot model

Method

The mathematical model of a human test pilot, the digital test pilot, is based

on the control theoretic approach by R. Hess. It provides a framework for pilot

modelling in pursuit tasks and is independent from the piloted vehicle

dynamics.

For a single axis task, the digital test pilot consists in the tuning of gains Kp

and Kr. The principle of this method can be extended to multi-axes tasks

coherent to the demanding environment of deck landing operations.

The digital test pilot model will be trained using machine learning with data

gathered during piloted simulator trials and real-world sea trials where

possible.

Figure 3 Helicopter pilot model cf. R. Hess [2]

Figure 4: Heliflight-R simulator [3]



Data Driven Intelligence for Countering Crime
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Background
The main challenge when it comes to classification problems,is to find solutions that are both accurate and scalable. Decision 
Forest (DF) employs a collection of embarrassingly parallel Decision Trees (DTs), and is one of the most commonly used
approaches when it comes to classification. Bayesian alternatives for DTs based on Markov Chain Monte Carlo (MCMC) 
methods have been shown to be more accurate but slower than DF. Also, the inherently sequential nature of MCMC makes it 
unsuitable to be performed in parallel unless the accuracy is sacrificed. This is particularly evident in Distributed Memory (DM) 
architectures, which normally provide access to large numbers of processsors. Sequential Monte Carlo (SMC) samplers are a 
parallel alternative to MCMC, which do not trade off accuracy for parallelism. However, the performance of SMC samplers in the 
context of DTs is underexplored, and the parallelization is tricky due to the challenges in parallelizing its bottleneck, 
redistribution, especially on variable-size data types such as DTs

Aims
• Construct the first SMC sampler for DTs

• Operate in a Distributed environment 
• Achieves asymptotically optimal O(logN ) time complexity

• Achieve same accuracy as MCMC DTs and greater accuracy compared to DF

Results

Future work
• Use a better proposal, such as HINTS to increase both accuracy and convergence time.
• Improve the prior which is going to improve the convergence time.
• Improve the backward kernel.
• Exploite alternative parallel computing solutions by mixing Distributed Memory programming models, such as MPI (which we 

have used here), with SMP models for CPUs or GPUs, such as CUDA or PyTorch
• Investigate better (either on shared or distributed memory) load-balancing strategies for redistribution, which is the run-time 

bottleneck in SMC.

mailto:SMaskell@liverpool.ac.uk


Myopic algorithms for Gaussian Bernoulli
Non-myopic algorithms for Gaussian Bernoulli
Limitations of information theoretic approaches 
Myopic algorithms for Gaussian Multi-Bernoulli
Non-myopic algorithms for Gaussian Multi-Bernoulli

The aim of the research project will be met by considering:

Sensor management algorithms typically use Bayesian information
theoretic approaches to evaluate the value of different sensor
combinations and platform actions. 

As we plan further into the future, the problem begins to suffer from
combinatorial explosion.

Optimising over multiple time-steps (non-myopic) allows for higher
long-term gain and enables mitigation of real-world challenges, such
as obstacles to gathering information.

Myopic
Non-myopic

1. Selection

ak

a k+1

ak

a k+1

2. Expansion

3. Simulation

ak

a k+1

a k+n

Calculate GOSPA cost

 Using rollout policy

4. Backpropagation
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a k+1 Update

Update

Update

1. INTRODUCTION

2. OBJECTIVES

George Jones, Supervised by Ángel Garcia-Fernandez, Prudence Wong & Scott Page
EPSRC Centre for Doctoral Training in Distributed Algorithms, University of Liverpool, Liverpool, UK

3. CURRENT SCENARIO

NON-MYOPIC APPROACHES TO SENSING
AND SURVEYING

Scenario - only one object alive at any given time.

The ground-truth is a randomly generated path, born at the origin based
on a transition matrix (F) & some process noise (Q). 

Measurements are subject to localisation and cardinality errors. Meaning
there are detections and clutter.

Obstacles in the surveillance region block sensor movement but not
measurements or target movement.

Non-myopic approach driven by the GOSPA metric, benchmarked against
three myopic algorithms (NS, GD & KL).

6. FUTURE WORK

4. MONTE CARLO TREE SEARCH
MCTS has four stages, as outlined below. It is a selective search algorithm
that incrementally builds a search tree and decides where to explore next

based on what it believes to be the most promising avenues.

 The tree is continually grown until some predefined terminating condition
is reached (such as number of iterations). Once this has been reached,

the tree returns the best child of the root node, having considered a larger
amount of actions within the planning horizon.

5. INFORMATION THEORETIC LIMITING CASE
If the actions that we select as a sensor manager, have an impact on the
dynamics (either of the target or the measurements) then maximising the
information theoretic divergence between two densities does not give
desirable results.

The higher the values along the main diagonal of the Q and R matrices, the
higher the value of the MSE, interestingly, also the higher the values of the
KLD between the previous posterior and current posterior.

A similar pattern also shows in the Renyi Divergence of the same two
densities and also when the two densities are the updated and predicted.

Future work is to extend this line of non-myopic planning to multiple targets using a PMB filter.

Scan for m
ore!
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Algorithms and Mechanisms in 

Distributed Settings

Adversarial Equilibrium (AE): Contention Resolution (CR) – Combinatorial Group Testing (CGT)
Model: 𝑛 stations, 𝑘 < 𝑛 of them are selected to be active and have to transmit a packet in shared channel. Communication 

happens in synchronous rounds. After the end of each round, the stations receive feedback from the channel.

Problem 1: Design distributed contention resolution protocols in which every station transmits with low latency. 

Problem 2: Design such protocols that are robust under the selfish behaviour of stations.

Adversarial Equilibrium:  An algorithm (𝑠1, 𝑠2, . . . , 𝑠𝑛) for 𝑛 players is called an (𝑛, 𝑘)-Adversarial Equilibrium, (𝑛, 𝑘)-AE, iff

for any player 𝑖 ∈ [𝑛], any unilateral deviation from strategy 𝑠𝑖 to some other strategy 𝑠𝑖
′ results in either:

• no configurations 𝐾 of 𝑘 players where strategy 𝑠𝑖′ improves the latency of station 𝑖 OR

• if there exists a configuration 𝐾 for which the strategy 𝑠𝑖′ improves the latency of station 𝑖, then there must exist a configuration 

𝐾′ for which the strategy 𝑠𝑖′ worsens the latency of station 𝑖. 

Results: 

• Non-adaptive protocols that achieve AE with low latency for 𝑘 = 2,3 [1]

• Adaptive protocols that achieve AE with approximately optimal latency [2]

Future Work
• Study Contention Resolution by considering a less risk-averse 

behaviour of stations, such as a Bayesian model, where the 

type of each station follows a prior distribution.

• Improve the MEV Redistribution mechanism, by considering a 

more expressive target value.

• Analyse theoretically and empirically the incentive 

compatibility of such redistribution mechanisms.

Maximal Extractable Value (MEV): Dynamics of Redistribution and Ordering Policies

MEV: Any type of excess profit that a miner/validator can extract by adding, censoring and reordering users’ transactions [3].

Two different approaches:

• Embrace MEV, but reduce its negative externalities

• Try to mitigate MEV by designing granular protocols (add

communication and computational complexity overhead)

Our Results:
• Study the evolution of a dynamic mechanism that redistributes 

part of the MEV extracted back to the users, with the goal of stabilizing 

at target value

• 𝜆𝑡+1 = 𝜆𝑡 + 𝜂𝜆𝑡 1 − 𝜆𝑡 𝑈 ⋅ ത𝐹 𝜆𝑡 − 𝑇 ⋅ 𝑀 ⋅ 𝐺(𝜆𝑡)
• 𝜆𝑡: part of MEV that goes to the miners

• 𝐹, 𝐺: tolerance distributions of users and miners resp. on MEV

• 𝜂: adjustment quotient

• 𝑇: target ratio between users and miners

References
[1] Georgios Chionas, Bogdan S. Chlebus, Dariusz R. Kowalski, and Piotr Krysta. 

Adversarial contention resolution games. In Proceedings of the Thirty-Second 

International Joint Conference on Artificial Intelligence, IJCAI-23

[2] Georgios Chionas, Dariusz R. Kowalski, and Piotr Krysta. Combinatorial group testing 

with selfish agents. In Advances in Neural Information Processing Systems, volume 37. 

Curran Associates, Inc., 2023

[3] P. Daian, S. Goldfeder, T. Kell, Yunqi Li, X. Zhao, I. Bentov, L. Breidenbach, and A. 

Juels. Flash boys 2.0: Frontrunning in decentralized exchanges,miner extractable value, 

and consensus instability. In 2020 IEEE Symposium on Security and Privacy (SP), 2020



Developing Efficient Numerical Algorithms 
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Motivation
• Random Trees are inefficient and slow methods of classifying data 

that mostly rely on frequentist approaches that don’t provide 

informed results with uncertainties.

• However, with Trees, the decision made at each node can be seen, 

unlike black-box algorithms such as Neural Networks.

• Unlike Trees, Random Forests are preferred as they can handle 

missingness, namely Missing completely at random (MCAR), 

Missing at random (MAR), and Missing not at random (MNAR). 

• Such methods would be useful in areas where missingness is common 

such as opinion polls, surveys and databases [1,2,3].

Proposal
• Use Bayesian approaches in the form of Sequential Monte Carlo 

(SMC) Algorithms to propose Random Forests [4].

• Look at novel proposals for SMC samplers such as Hierarchical 

Importance with Nested Training Samples (HINTS) [5].
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Sequential Monte Carlo (SMC)

An example of SMC with a prior 𝒩 15,3 target of 𝒩(0,1).

• By having proposal 𝑞 − , backwards proposal 𝐿 − ,target 𝜋(−) and 

prior 𝑝0(−) distributions, alongside a prior on the distribution being 

estimated, SMC is used to estimate the parameters of a target.

• Take a vector x(0) of n ∈ 1,2, … , 𝑁 particles such that x𝑛
(0)

∼ 𝑝0 − .

• For each iteration i ∈ 1,2, …𝑀 we calculate the new proposal for each 

particle xi+1 ∼ 𝑞(𝑥𝑖) and the normalised weights 𝑤𝑛
(𝑖)

for each particle.

• If the effective sample size 𝑁𝑒𝑓𝑓 =
1

σ𝑛=1
𝑁 𝑤𝑛

2 is below 
𝑁

2
we resample 

and re-set the weights to 
1

𝑁
, then continue as normal.

Hierarchical Importance with

Nested Training Samples (HINTS)

An example of the HINTS tree structure with depth 3 and branch factor 2.

HINTS is an advanced form of Markov Chain Monte Carlo (MCMC) 

that takes advantage of additive likelihood structures and datasets, 

denoted in the diagram above by 𝓓 and breaking it into subsets using a 

tree as shown and doing Metropolis-Hastings (M-H) steps on proposals 

using these subsets, going across the entire tree until it does a final M-H 

step on the entire set 𝓓. This gives faster convergence to the target than 

standard MCMC, especially for higher dimensional data [5].

Novel Idea: SMC-HINTS

Preliminary results of SMC-HINTS compared to a random walk proposal.

By using a proposal 𝑞 − as an iteration of HINTS in the SMC 

algorithm, we see a faster convergence to the target compared to a 

standard Random Walk proposal. So far it has worked on parameter 

estimation problems given a dataset, as shown above with a 11-D 

Gaussian Distribution with 1024 samples from the distribution.

Moving Forward
• Use SMC-HINTS in discrete space problems where it can be used in 

place of Hamiltonian Monte Carlo (HMC) proposals. 

• Apply SMC-HINTS to Trees and then Forests where it can take 

advantage of the additive structure of the likelihood function.
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Computational Methods for Real-Time Subsampled 

Scanning (Transmission) Electron Microscopy

➢ Context and Motivation

Despite their broad applicability to Electron Microscopy (EM) data, dictionary based 

inpainting algorithms have previously remained impractical for real-time usage with an 

Electron Microscope, as the reconstruction time for a single "frame" is orders of magnitude 

longer than the data acquisition time.
 

➢ Contribution

Development of efficient computational methods for 𝑁-dimensional batch signal generation 

(unwrapping) and recombination (wrapping), dictionary learning and sparse-coding for 

rapidly inpainting image data of arbitrary dimensions using a consumer GPU.

➢ The Algorithm

Beta-Process Factor Analysis (BPFA) is a hierarchical Bayesian model that uses the two-

parameter beta process to define a sparse prior on an infinite dictionary space. Given a 

subsampled measurement 𝑌, we first unwrap it into 𝑁𝑝 overlapping patches {𝑦𝑖∈  ℝ𝐵2
}

𝑖=1

𝑁𝑝
. We 

assume that each patch is sparse in some shared dictionary (𝑥𝑖 ≈ 𝐷𝛼𝑖), where 𝐷 ∈  ℝ𝐵2 × 𝐾 

denotes a dictionary with 𝐾 atoms and 𝛼𝑖 ∈  ℝ𝐾 is a sparse vector of weights or coefficients.

➢ SenseAI: Real-Time Inpainting

SenseAI is a GPU-parallelised C++ library capable 

of efficient frame-by-frame reconstructions of a 

time-variable input feed, enabling the real-time 

subsampled operation and adjustment of an electron 

microscope. Over the last few years, iterative 

improvements to the method, such as the 

implementation of efficient N-dimensional wrapping 

and unwrapping of signals, algorithm parallelisation, 

and the use of a GPU has reduced standard 

megapixel reconstruction times from half an hour to 

just a few seconds (as shown in Figure 1).

Figure 1: Time-to-solution (2 epochs) for reconstructing images of increasing 

size. Each were performed on the same PC with an Intel Xeon E5-2678v3 (12 

cores, 2.50 GHz) and an NVIDIA RTX 3060.

➢ Multi-Instance Reconstructions

In a significant departure from previous methods, SenseAI introduces a 

method of multiple independent instances of the BPFA algorithm 

operating simultaneously on the same reconstruction of a time-variable 

input feed using a shared transient dictionary (each instance results in an 

f d independent estimate of 𝛼 for each batch but updates and 

performs sparse-coding using the shared dictionary parameters 

𝐾,𝐵,𝜋, 𝛾𝜖, 𝛾𝑑, 𝛾𝑤). 

Figure 2: Flow-chart describing a multi-instance reconstruction of 

a time-variable subsampled input Y.

➢ Software Capabilities

✓ N-Dimensional BPFA

✓ Arbitrary Patch Selection

✓ Time-Variable Input Feeds

✓ Live Dictionary Transfer

✓ STEM Hardware Support

➢ EM Applications

✓ STEM Simulations

✓ 2D STEM (BF/DF)

✓ 3D SEM (Cryo-FIB)

✓ 3D IPF Maps (EBSD)

▪ 4D STEM (Ptychography)



Dynamic Semantic-based Graph Convolution Network 
for Skeleton-based Human Action Recognition

Jianyang Xie (Jianyang.Xie@liverpool.ac.uk), Yalin Zheng, Nguyen  Anh, Xiaoyun Yang

Background
l Spatial-Temporal GCNs have been the most popular for human action recognition since they can capture inherent interaction between body joints through node aggregation scheme.

l Previous works ignored the semantics of the skeleton. They simply assumed all joints/edges as the same type, making them insufficient to capture the semantic properties of actions.

Contribution
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lEncoding the dynamical semantic information of joints and edges in GCNs aggregation process implicitly.

lGenerated a dynamic semantic-based graph neural network, and extensive experiments highlight that the proposed outperforms SOTA methods notably on published dataset

Introduction Results

Figure2. illustration of node and edge type-aware adaptive graph generation. (a) the previous adaptive graph
generation. (b) node type-aware adaptive generation. (c) represent the edge type-aware adaptive graph generation.

Conclusion

Figure1. illustration of ST-GCNs for skeleton-based human action recognition
Figure1 shows the basic framework of ST-GCN, where body joint and body link are considered as node and edge, and
the skeleton graph generated based on body natural link, finally, ST-GCNs were applied for classification. However, the
fixed graph limited the representation of GCN and is inefficient in capturing the changeable human movement. Thus,
the dynamic graph generation methods were proposed as Figure2 (a). Comparing with the previous work, our method
aim to encode the semantic information of node into the graph, as shown in Figure2 (b) and (c).

Method

Figure3. The framework of the proposed DS-GCN. The spatial graph convolution structure was decomposed into three
branches, the node-type aware branch, the edge-type aware branch, and the general branch. In each branch, the
corresponding semantic self-adaptive graph were applied to represent the skeleton.

Figure4. Illustration of the joint correlation calculation. (a) represents the standard non-local mechanism, for each
transform function φ(·) and ξ(·), the node features are updated by sharing the same parameters. (b) represents the
node type-aware correction. In each transform function, the convolution kernels are divided into several parts, each
of which corresponds to a specific node type, and then the node characteristics in different types were updated by
their individual parameters set. The coloured circles denote different node types and the coloured squares denote
different convolution kernels. (c) illustrates the edge type-aware correlation. For each type of edge, specific
convolution kernels were designed and utilized for updating the edge feature. The coloured circles denote node
types; mix-coloured squares denote corresponding edges with node pairs.

Figure5. Analysis of the classification distribution for each backbone. (a-c) represent the
classification result distribution for all samples in NTU60 Xsub. (d-f) represent the classification
result distribution for all samples in NTU120 Xset. The max probability of each sample was
utilized as the final result. In (a) and (d), the samples with max probability ranging from 0 to 1
were analysed. In (b-c) and (e-f), the samples with a max probability lower than 0.5 were analysed.
In (e) and (f), w means that backbone with semantic modules, and w/o means that backbone
without semantic modules. The area for each violin map indicates the number of samples.
Observing in (a) and (d), we can observe that the distribution generated by the proposed DS-
STGCN is more compact, also in (b) and (e), it can be found that the numbers of samples with
max probability lower than 0.5 are significantly reduced when comparing with STGCN
and AAGCN. When looking at (e) and (f), we can see that for each backbone, the area for a model
with semantic encoding is decreased significantly when compared with the model without
semantic encoding, implying the proposed semantic modules can make the classification more
accurate.

Table 6: Classification accuracy comparison against state-of-the-art methods. 

l This work proposed to implicitly encode the joints and edge types for skeleton-based human 

action recognition. Extensive experiments show that the semantic modules are generalizable 

and can be exploited in various backbones for boosting recognition accuracy

l The proposed DS-GCN surpasses the SOTAs on two challenging benchmarks, confirming its 

superior capability and effectiveness.
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Background & Aim

Innovation in healthcare and personal care both depend on the creation of novel materials for public hygiene and infection treatment. In 

the molecule synthesis process, a chemist would prefer to know the characteristics of the molecules before deciding which ones to 

synthesise. 

As machine learning has achieved great success in various areas, it can and has already been applied to chemistry. In this project, we 

target Gaussian Process models (Kernel design) for molecule property prediction for the discovery of novel materials.  

Ongoing Work

The molecular graph is a popular representation of molecules, which can

contain all the information within a molecule.

We are now designing a new metric to measure the difference between

graphs with different sizes.
In each example, the mismatch

between graph X and graph Y is:

a) Three properly assigned nodes

and no edge mismatch;

b) Three properly assigned nodes

and one missed edge;

c) Two properly assigned nodes,

one missed node and two half-

edge mismatch penalties;

d) Two properly assigned nodes

and two unassigned nodes (δ

≫ c), three half-edge mismatch

penalties.Fig 1. Example to illustrate the node and edge mismatch costs for

the same ground truth graph X, and different estimated graphs Y (∆

≪ c).

Our new graph GOSPA metric is composed of 4 separate types of errors,

localisation error, false/miss node error, edge mismatch error and three

hyperparameters. We can change the parameters to control the

characteristics of the metric.

(a) Random node noise

(d) Random node deletion

(b) Random edge addition

(c) Random edge deletion

Fig. 2: Plots of average graph GOSPA metric (proposed), generalised chemical distance (GCD), graph edit distance (GED) and maximum

common subgraph (MCS) distance comparing the ground truth graph of 10 nodes with (a) graphs with random Gaussian noise with increasing

noise variance in node attributes; (b) graphs with random edge addition in adjacency matrix and Gaussian noise with σ2 = 0.1 in node attributes;

(c) graphs with random edge removal in adjacency matrix and Gaussian noise with σ2 = 0.1 in node attributes; (d) graphs with different sizes and

Gaussian noise with σ2 = 0.1 in node attributes.

(a) COX-2

(b) BZR

(c) DHFR

Fig. 3. Plots of three molecular graph samples from the following

collections: (a) cyclooxygenase-2 (COX-2) inhibitors; (b) benzodiazepine

receptor (BZR) ligands; (c) dihydrofolate reductase (DHFR) inhibitors

Experimental Results

We tested our metric and other existing graph distances (GCD, GED,

MCS) over a molecule dataset, which contains 5 collections in total.

Fig. 4. Illustration of the distance matrices computed using (a) graph

GOSPA, (b) GED, (c) GED and (d) GCD for molecules from three

different collections.

(a) Graph GOSPA

(d) MCS distance(c) GED

(b) GCD

Conclusion
This project is to discover novel materials for healthcare with the aid of

machine learning tools.

Currently, we are trying to propose a graph GOSPA metric which can

measure the discrepancy of graphs with different sizes. Unlike existing

popular graph distances, it satisfies the metric properties (identity,

symmetry, triangle inequality) for graphs with attributes and different

sizes.

Table 1. Average distance between molecule COX-2,1-1 and 100 molecules from each family.

Table 2. Decomposition of the average graph GOSPA error between molecule COX-2,1-1 and 100

molecules from each family.
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Background & Aim

Intelligence analysis is currently conducted by distributed 
teams of expert human agents who use their domain 
knowledge, combined with a variety of structured analytical 
techniques, to generate and evaluate sets of conflicting 
hypotheses to inform potential high-stake decision making. 
Analysis can be tedious but it requires the full attention of 
human agents as the context can be such that what would 
otherwise be a minor detail has a significant impact on the 
likelihood of a hypothesis, and so on the downstream 
decision making. This project aims to enhance the speed and 
scale of intelligence analyses through the development of 
decision-support tools which combine explainable artificial 
intelligence algorithms with human expertise, in the form of 
human-machine teams, to aid intelligence analysts in 
evaluating complex and competing hypotheses. The tools 
created will combine techniques found within the Natural 
Language Processing, Computational Argumentation, 
Probability and Information Theory literature and should 
enable analysts to focus their attention where it's needed 
most by assisting them throughout the analytical pipeline. 

Analysis of Competing Hypotheses

Argument Data

The Diagnostic Argument Identifier

An Abstract Example

References

Normandy Calais
PORT - +

STRONGPOINT + -
SHORTEST - +
EXPANSION + -
VSITES - +
FUSAG + +

FUSAGLOC - +
PATTON - +
21AG + +

21AGLOC + -
SPIES - +
SIGINT - +
RECON - +
AIRPLAN - +

Table 1: An ACH diagnositicty matrix for Operation Fortitude.

Heuer’s Analysis of Competing Hypotheses (ACH) is a 
structured analytical technique where an analyst identifies a 
set of hypotheses, systematically evaluates evidence that is 
consistent (+) or inconsistent (-) with each hypothesis, and 
rejects hypotheses that contain too much inconsistent 
information [1]. The steps in the ACH are as follows:

1. Identify all possible hypotheses;
2. List all the significant information;
3. Create a diagnosticity matrix and use this to analyse the 

available information;
4. Refine the matrix;
5. Draw tentative conclusions about the relative likelihoods 

of the hypotheses;
6. Analyse the sensitivity of the tentatively-held 

conclusions.
7. Report the conclusions;
8. Identify indicators or milestones for future observation. 

This research project has studied an example from World
War 2, called Operation Fortitude. Dstl conducted the ACH
on this example, instantiating a diagnosticity matrix, which
this research has then taken and mapped to an
argumentation framework (AF).

The reasoning about the hypotheses in the ACH example was captured using
Walton’s argumentation schemes, specifically the Argument from Cause to
Effect [2].

The stereotypical patterns of reasoning about the evidence in the example
was also captured using Walton’s argumentation schemes [2].

Heuer refers to the sensitivity analysis conducted in step 6 of the ACH as a 
crucial task because it allows an analyst to understand how dependent the 
likelihoods of their hypotheses are on the items of evidence within their 
analysis. To do this, analysts sequentially remove each item of evidence 
from the ACH matrix and re-evaluate it to discover whether their initial,  
tentatively-held conclusions change. 

The fundamental concept underpinning the Diagnostic Argument Identifier 
(DAI) is the notion of sensitivity analysis. The DAI combines Dung’s abstract 
AFs from the computational argumentation literature [3], and Shannon’s 
mutual information (I) between two random variables from the probability 
theory and information theory literature [4], to conduct sensitivity analysis, 
in accordance with step 6 of Heuer’s ACH. The DAI sequentially removes 
arguments from AFs and statistically quantifies the change in the evaluation 
after an argument’s removal. Automating this reasoning task should benefit 
intelligence analysts by providing them with an algorithm which quantifies 
the change that removing an item of evidence has on the likelihood of all 
the hypotheses included in the analysis. 

Imagine we have an initial AF 𝒢 with:

• Arguments: {𝑝, 𝑞, 𝑟, 𝑠}
• Relations: { 𝑞, 𝑝 , 𝑟, 𝑞 , 𝑟, 𝑠 , 𝑠, 𝑞 , (𝑠, 𝑟)}

We evaluate the AF 𝒢 using preferred semantics to find a set
of labellings, ℒ.

ℒ Argument Labels
p q r s

L1 IN OUT IN OUT
L2 IN OUT OUT IN

Let’s now calculate the mutual information between the labels 
of each argument and the rest of the arguments within 𝒢.

Mutual Information (bits)

𝐼(𝑝, 𝑟𝑒𝑠𝑡 𝒢 ) 0
𝐼(𝑞, 𝑟𝑒𝑠𝑡 𝒢 ) 0
𝐼(𝑟, 𝑟𝑒𝑠𝑡 𝒢 ) 1
𝐼(𝑠, 𝑟𝑒𝑠𝑡 𝒢 ) 1

Now let’s remove the argument 𝑟 from the initial AF 𝒢 to create 
the sensitive AF 𝒢!  with:

• Arguments: {𝑝, 𝑞, 𝑠}
• Relations: { 𝑞, 𝑝 , 𝑠, 𝑞 }

The sensitive AF 𝒢! is then evaluated using the same semantics
as above to discover the set of sensitive labellings.

ℒ Argument Labels
p q s

L1 IN OUT IN

Mutual Information (bits)

𝐼(𝑝, 𝑟𝑒𝑠𝑡 𝒢! ) 0
𝐼(𝑞, 𝑟𝑒𝑠𝑡 𝒢! ) 0
𝐼(𝑠, 𝑟𝑒𝑠𝑡 𝒢! ) 0

We can now calculate mutual information between each 
argument in the sensitive AF 𝒢! and the rest of the network.

Finally, if we wanted to understand the change in mutual 
information for, say, the argument 𝑠 before and after the
removal of the argument 𝑟, then we would compute the
difference as follows:

𝒟 𝑟	 𝒢, 𝒢!) = 	𝐼 𝑠, 𝑟𝑒𝑠𝑡 𝒢 − 𝐼 𝑠, 𝑟𝑒𝑠𝑡 𝒢!
      = 1	𝑏𝑖𝑡

Figure 1: The Normandy and Calais hypotheses for the Operation Fortitude example.

Figure 2: An example of the reasoning involved in the evidence, specifically 
the reasoning about an Allied invasion of a major port.

Figure 3: The initial AF 𝒢.

Table 2: Preferred labellings of 𝒢.

Table 3: Mutual information between each argument and the 
rest of the initial AF 𝒢.

Figure 4: The sensitive AF 𝒢!.

Table 4: Preferred labellings of	𝒢!.

Table 5: Mutual information between each argument and 
the rest of the initial AF 𝒢!.
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3. Dung, P. M. (1995). On the acceptability of arguments and its fundamental 

role in nonmonotonic reasoning, logic programming and n-person games.
4. Shannon, C. E. (1948). A Mathematical Theory of Communication.
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This work utilises ray tracing techniques to simulate sound propagation in complex underwater environments, enabling the accurate prediction of 
acoustic signal paths. Conventional array beamforming techniques are then employed to process the received signals and extract directional information 

for target localisation. A particle filter tracking algorithm is implemented to estimate the trajectory of underwater objects based on bearing-only 
measurements.

Ray Traced Acoustic 
Propagation Modelling

In underwater acoustic modelling, ray tracing
is a fundamental technique used to simulate
the transmission of sound waves through the
ocean. Ray-based methods solve the equations
governing propagation of sound waves by
tracing the paths of individual sound rays,
considering interactions with the seafloor and
sea-surface.
The speed and direction of the rays are

determined based on the local properties of the
medium, such as sound speed (c) and density
(ρ). These interactions are modelled using
principles from geometrical and physical
optics, incorporating mathematical expressions
for the laws of reflection, refraction, and
diffraction. This is achieved through the use of
3D vectorised Snell’s Law where the speed of
sound at either side of the boundary is
calculated by an appropriate equation for deep
or shallow water, e.g. the Munk or Mackensie
equations.

Conventional Beamforming

Conventional beamforming is a signal
processing technique employed to enhance
desired acoustic signals from a specific
direction while minimizing noise and
interference originating from other directions.
By employing time delays and weightings of
signals received by an array of hydrophones,
conventional beamforming creates a spatial
filter that focuses on a particular direction,
effectively improving the signal-to-noise ratio.

The power spectral density (PSD) for a
specific steering direction can be derived by
computing the squared magnitude of the
complex signal's Fourier transform,
represented as:

𝑃𝑆𝐷 = |𝐹(𝑥)|!.
The steering direction at which the PSD is
maximum serves as the estimated direction of
arrival and the measurement to be used in the
update procedure of the particle filter.

Particle Filtering for Bearing-Only 
Measurements

A particle filter is a sequential Monte Carlo
method used for state estimation in dynamic
systems. By employing a set of weighted
particles to represent possible target positions,
the filter can effectively track the target's
movement over time.
Predict: The particles are propagated using

the system's dynamic model to predict their
positions at the next time step.

𝑥"# = 𝐹𝑥"$%# + 𝑣"$%, 𝑖 = 1,… ,𝑁&
Update: The weights of the particles are

updated based on the likelihood of the
measurements given the predicted positions.
𝑤"# = 𝑒

%
!' (!"#

$ , *! ⋅ 𝑤"$%# , 𝑖 = 1,… ,𝑁&
Resample: To prevent the degeneracy of

the particle set, resampling is often performed.
Particles with high weights are duplicated
while particle with low weights are removed
to ensure the particle set maintains diversity
and represents the true posterior distribution.

Fig. 1. Underwater acoustic propagation from source to 
sensor array, characterized by the Mackensie equation's 

sound speed profile.

Fig. 2. Polar plot depicting bearings and directional 
power of a received signal at 

SNR of -15dB.

Fig. 3. Bearing-time record of estimated and true 
bearings over time

Track-before-detect techniques will be explored to improve the detection and tracking of low signal-to-noise ratio (SNR) targets. Additionally, the Probabilistic Multi-
Bernoulli Mixture (PMBM) filter will be integrated to handle multiple target tracking scenarios, providing a robust solution for tracking multiple underwater objects
simultaneously. Furthermore, the incorporation of Minimum Variance Distortionless Response (MVDR) adaptive beamforming will be investigated to enhance the spatial
resolution and reduce the effects of ambient noise, thereby improving the accuracy and reliability of the target localisation process. These advancements are expected to
significantly enhance the performance and versatility of the system, making it more adept at addressing complex underwater tracking and localization challenges.

Future Work



Towards Data Driven Aerodynamic Models
Mehdi Anhichem (m.anhichem@liverpool.ac.uk),
Dr. Sebastian Timme (Sebastian.Timme@liverpool.ac.uk),
Dr. Jony Castagna (jony.castagna@stfc.ac.uk),
Dr. Andrew Peace (apeace@ara.co.uk),
Moira Maina

Background & Aims

Bayesian surrogate models

Current & Future Work Conclusion

References
[1] Hensman et al. (2013), https://arxiv.org/abs/1309.6835
[2] Feldstein et al. (2020), https://doi.org/10.2514/1.J058388
[3] Anhichem el al. (2022) https://doi.org/10.2514/6.2022-3526

Non-hierarchical data fusion

Fig 4: Combination of Gaussian processes 
with augmented variance. [2]

A Bayesian surrogate model is a probabilistic approximation of a 
complex real-world system or function that provides predictions and 
quantifies uncertainty. Here, two different models (Bayesian neural 
network and Gaussian processes) are compared on an aerodynamic 
test case.

Ø Bayesian surrogate modelling: Explore additional options for 
such models (based on both BNN and GP) and apply them to 
higher dimensional, practical aerospace problems with more 
complex geometry.

Ø Multifidelity data fusion: Continue the development of a
detailed definition of the fidelity function such as considering
variations in the reliability of an information source under
different flow conditions. Compare approach to hierarchical
data fusion approach from the literature.

This project analyses Bayesian surrogate models and a multifidelity data
fusion framework applied to rich data describing large aircraft wing
pressure distributions obtained from experimental and computational
methods [3]. While non-Bayesian surrogate modelling has been widely 
employed in aerodynamics, this work presents a step change by adopting 
Bayesian surrogates, introducing a probabilistic framework that 
guarantees accuracy and captures uncertainties, enabling robust decision-
making in the field of aerodynamic design and optimisation.

Fig 1: Schematic representation of the multifidelity data fusion.

The study of aerodynamics is crucial for estimating aircraft
performance characteristics during the various design phases.
Aerodynamic analysis and design rely heavily on three main sources
of information; flight testing, wind tunnel testing and computational
fluid dynamics (CFD). In wind tunnel experiments, a scaled model is
manufactured to collect data about the air flow around the model
through measurements. Wind tunnel testing can be expensive and is
subject to multiple sources of uncertainty. Aerodynamic data can also
be computed with deterministic numerical simulations such as using
an incarnation of the Navier–Stokes equations. With the ever-
increasing computing power, such numerical simulations have
become a must in aerodynamics. However, when dealing with
complex configurations and phenomena, particularly near the edge of
the flight envelope, numerical simulations tend to lack the required
accuracy and come with a significant cost burden.
Research hypothesis: leverage information from different
aerodynamic data sources while controlling the definition and
propagation of uncertainty towards the decision-making level.

The required amount of
data to study the surface
flow on a wing implies the
use of a ‘big data’
extension of Gaussian
process regression based
on stochastic variational
inference [1].

Incorporation of expert
opinion into fidelity
function.

The library adopted in the
implementation of the
data fusion framework is
GPflow, a Python module
based on TensorFlow.

Multifidelity methodology: Non-hierarchical multifidelity approach
based on a combination of Gaussian process surrogate models.

Fig 2: Bayesian neural network with Monte Carlo dropout architecture example.

Fig 3: A comparison between the predictions made by BNN and SVGP 
models on points of the test set.



Bayesian Block Sparse Spectral Unmixing
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Xinping Yi: Xinping.Yi@Liverpool.ac.uk      Joseph Brindley: Joseph.Brindley@Gencoa.com 

Background Theory
Spectral Unmixing [1] is the process of decomposing a spectrum to find the abundancies of each endmember. A 

standard way of doing this is to use a Linear Model.

As each of our endmembers is either an ionisation of an element or a series of a molecule, we want to use a block 

model:

We also assume that the majority of endmembers are not present, thus we consider a block sparse model.

A statistical inference method for solving such problems is the Block Sparse Bayesian Learning (BSBL) framework. Two 

algorithms of interest include BSBL-Bound Optimisation (BSBL-BO) [2] which maximises the posterior, and BSBL-Fast 

Marginalisation (BSBL-FM) [3] which maximises the marginal distribution of    . 

We look to exploit certain structures in our problem to improve accuracy and performance of the spectral unmixing. Figure 1: Top 5 endmembers contributions 

from spectral unmixing of air

Graph Partitioned BSBLNon-Negative BSBL
We want to apply these statistical 

inference based spectral unmixing 

algorithms to real time data streams. 

These data streams update approximately 

every second. Both BSBL-FM and 

(especially) BSBL-BO are slower than 

desired for this practical application. We 

therefore need to speed them up (whilst 

minimising accuracy loss).

In many Spectral Unmixing applications, 

the matrix D is sparse. Thus BSBL-BO and 

BSBL-FM are performing a lot of 

multiplications by zero. We wish to exploit 

this sparsity to speed up the algorithm. 

We therefore propose the Graph 

Partitioned-BSBL algorithm (GP-BSBL).

We use the method illustrated in Figure 5. 

This allows us to distribute the problem 

into w independent sub-problems. This 

guarantees speed up as the problem is 

solved in greater-than-linear time with 

respect to the size of the measurement.

In general, the abundancies of the endmembers are non-negative.  For 

instance, we cannot have a negative volume of a certain gas. However, BSBL-

BO and BSBL-FM return answers that are in the full real space. In industrial 

problems, the dictionary matrix is not a perfect representation of the spectral 

pattern of endmembers. This can lead to negative overfitting.

The algorithm GP-BSBL-BO performs as fast 

as BSBL-FM with 4 or more partitions with 

M = 3000. Currently, this method is being 

applied to BSBL-FM, as this algorithm also

has a greater than linear runtime with 

respect to the measurement vector size.

Conclusions & References
Here we present two methods for improving runtime and accuracy of Spectral 

Unmixing using a BSBL Framework. The first contribution, NNBSBL, prevents 

negative overfitting, whilst the second, GP-BSBL, reduces convergence time of 

the algorithm and allows for distributed implementation. The two algorithms 

can easily work together, though this has not been implemented yet.

1. Keshava, N. and Mustard, J.F., 2002. Spectral unmixing. IEEE signal processing magazine, 19(1), pp.44-57.
2. Zhang, Z. and Rao, B.D., 2013. Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE 
Transactions on Signal Processing, 61(8), pp.2009-2015.
3. Liu, B., Zhang, Z., Fan, H. and Fu, Q., 2012. Fast marginalized block sparse bayesian learning algorithm. arXiv preprint arXiv:1211.4909.
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Figure 2: Left: Plasma Optical Emission Spectra of air. Right: Plot of the top 8 endmembers of air.

There are algorithms that solve for 

non-negative x, such as Non-

Negative Least Squares and NN-

Block Orthogonal Matching Pursuit. 

However, these algorithms have 

certain drawbacks such as not 

considering a block structure or 

requiring a number of non-zero 

blocks being specified. We therefore 

adapt the BSBL framework to solve 

for non-negative x.

We propose using Rectified 

Multivariate Gaussian Priors 

and Posteriors. The maximum 

likelihood and covariance of 

the posterior are calculated 

using the moment generating 

function. Our method gives 

more accurate results to 

BSBL-BO and BSBL-FM due 

to not overfitting the data. An 

example result is shown in 

figure 4.  
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Figure 4: Contributions of the top 5 

Endmembers of Air from NNBSBL. 

Figure 3: Gaussian distribution and rectified 

Gaussian Distribution with zero mean and 

unit covariance

Figure 7: Mean Error of the GP-BSBL-BO 

algorithm. 

Figure 6: Time taken for BSBL-BO, BSBL-

FM and GP-BSBL to converge.

Spectral Cluster

Obtain W clusters of        and  

Solve

Figure 5: GP-BSBL pseudocode.



Deep Reinforcement Learning for Continuous

Control of Material Thickness
Presenting Author, Oliver Dippel

CDT, University of Liverpool

1) Introduction

Aim: continuously control the optimal input pa-

rameters to achieve a desired prespecified ma-

terial thickness.

Parameters determining the material thickness of

certain industrial processes are often still adjusted

by human experts.

Unconsidered factors cause material thickness to

vary, even when all controllable parameters are

held constant.

Different requirements of the customers result in

various material thicknesses.

(4) Algorithm

(2) Surrogate Model

Use real-world-data to

train a surrogate model

(MLP/ RF) to provide s′

rt =
|MTprevious−MTtarget|−|MTcurrent−MTtarget|

MTtarget

At the end of each episode an additional reward of

+1 is added if the MT is within the interval.

Tolerance interval for target thickness is

[MTtarget − 0.2mm,MTtarget].

(3) Model

st = (FHj
t,FH

j+1
t , ...,FHJ

t,MT
current
t ) ∈ S

Discrete

DQN

at = {α1
t , α2

t , ..., αJ+J
t }

In each timestep, change

one parameter by ζ

Continuous

PPO & DDPG

at = {α1
t , α2

t , ..., αJ
t}

In each timestep, change

all parameters

Note

ζ is a hyperparameter introduced in the discrete

setting, determining the increase/decrease of the

respective parameter.

(5) Validation

Model validation

1. Established an RL environment by training a

surrogate model on real-world data to predict the

material thickness given the input parameters.

2. Train an agent by interacting with the surrogate

model.

3. Compare the model surrogate combinations based

on the achieved cumulative reward.

Surrogate model validation

1. Generate expert trajectories from a PPO agent

acting in the mountain car environment

2. Train a surrogate model based on expert

trajectories.

3. Train a second PPO agent by interacting with the

surrogate model.

4. Compare both PPO performance either trained in

the real environment and the other train by

interacting with the surrogate model.

(6) Results

Model validation Surrogate validation

NSG CDT Showcase oliver.dippel@liverpool.ac.uk
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Auto-differentiable Ensemble Kalman 

Filters

Kalman filters assimilate data through 

Bayesian statistics and iterated 

observations. The AD-EnKF variant can 

capture non-linear relationships through 

Monte-Carlo simulations and optimise its 

prior from the data to produce estimations.

Add partner logo

Data Driven Intelligence For Countering Crime

Panagiotis Pentaliotis (p.pentaliotis@liverpool.ac.uk)

Prof Simon Maskell

Prof Paul Spirakis

Auto-differentiable Ensemble Kalman Filters 

and Long-Short Term Memory

AD-EnKFs utilise LSTMs to propagate the 

Monte Carlo simulations through time and 

train the Neural Network model to assimilate 

the data better. Eliminating human bias given 

by the prior

Random Projection

Random Projection is a dimensionality reduction 

technique. That more efficiently approximates a 

matrix than a diagonal. Especially when we 

require information from the off-diagonals. For a 

example a covariance's correlations.

          Full rank covariance

Random Projection Sampling

If we reverse the RP's intended application, we 

can project a smaller full-rank covariance to a larger 

dimensional space. Any stochastic algorithm that 

requires sampling from a Normal distribution can 

use RPS to sample from a full-rank 

covariance distribution.

   Lower dimensional full rank covariance

mailto:p.pentaliotis@liverpool.ac.uk


Faster Uncertainty Quantification of Hydrocodes

Sarah M. Askevold (S.M.Askevold@liverpool.ac.uk), 

Background
EDEN was developed by Fluid Gravity Engineering Ltd (FGE). It models 
impact scenarios with multiple materials and different phases, while also 
considering afterburn, as many explosives are rich in fuel and would 
potentially undergo secondary combustion. The hydrocode uses a 
stoichiometric afterburn combustion model, which is a type of model 
based on conservation of mass (so the reaction equations are balanced). 
Afterburning is significant, as it affects the temperature within the 
instigating fireball, which in turn affects the rate of change/ reactions in 
the scenario [3].

Ongoing work

Future Work
Apply a Gaussian Process to generated 
data to identify relationships 
between initial conditions and output.

Expand paramaters studied to include 
variations of initial pressure, as well as 
different time steps.

Introduce mixing from the hydrocode 
to the data, and identify how that 
affects the chemistry modelling.

Conclusion
This project will assess the sensitivity of the hydrocode 
model to input parameters and test if it is a good model 
for reality.

We will attempt to increase the speed of the code, 
without too much degradation in accuracy, so that it can 
be used in a more time-sensitive context.

Initial attempts at fitting a Gaussian process proved 
difficult due to the broad parameter space, but further 
exploration of the data could suggest a reduced training 
set on a more manageable sub-space.

References
[1]: David J Benson. “Computational methods in Lagrangian and 
Eulerian hydrocodes”. en. In: Comput. Methods Appl. Mech. Eng. 
99.2-3 (Sept. 1992), pp. 235–394.

[2]: Robert B Gramacy and Herbert K H Lee. “Bayesian treed 
Gaussian process models with an application to computer 
modeling”. In: J. Am. Stat. Assoc. 103.483 (Sept. 2008), pp. 1119–
1130.

[3]: Alec M Milne, Scott B Cargill, and Aaron W Longbottom, 
“Modelling of complex blast”. In: International Journal of 
Protective Structures 7.3 (Aug. 2016), pp. 325–339. DOI: 
10.1177/2041419616661431.

[4]: Carsten Olm et al. “Development of an ethanol combustion 
mechanism based on a hierarchical optimization approach”. en. 
In: Int. J. Chem. Kinet. 48.8 (Aug. 2016), pp. 423–441.

Motivation and Summary
To develop a single, integrated approach to analysing and speeding up 
a hydrocode that models blasts [1] and gain an understanding of the 
combined physics and chemistry processes involved, with a view to 
performing uncertainty quantification.
Emulate a chemical reaction model using a Gaussian Process [2] or 
similar methods.
Integrate new chemistry model with the EDEN hydrocode to increase 
simulation speed.
Test accuracy and parameter sensitivity of hydrocode in simulation of 
complex blasts.

Supervised by: Suzie Abbs (scabbs@dstl.gov.uk), Veronica Bowman, (vbowman@dstl.gov.uk), 

Leszek Gasieniec (L.A.Gasieniec@liverpool.ac.uk), Brianna Heazlewood 

(B.R.Heazlewood@liverpool.ac.uk), Ubaid Qadri (ubaid.qadri@stfc.ac.uk), 

We are currently working on modelling Ethanol (C2H5OH) reactions [4] in the 
python package Cantera, to identify relationships between initial conditions and 
output. These relationships could be used to emulate said package, and replace 
its function in the running of the hydrocode. 

We have generated and studied tables of species 
concentration with time, given initial concentration of ethanol 
= [0.01, 0.22] + air, and temperature = [1000 K, 2500 K]. The 
above mesh plots shows concentrations of CO2 after times [1, 
4] x 5 x 10-6 s. Other time steps where also studied (but are out 
of the scope of this poster).

Above: Product distribution after 10µs, based on 100 runs with varying 
initial conditions, grouped by initial concentration of ethanol.
Below: Concentration of CO2, C2H5OH and CO with time, based on an inital 
temperature of 1000 K and 22% initial concentration of ethanol.

CO2 COC2H5OH
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Tim Prokopenko, supervised by Igor Potapov, Jason Ralph, Gareth Rees

Algorithms and Decision-Making Processes 

in Distributed Attacker-Defender Games

Our objectives are:

1. To map missions from the air combat domain into abstract computational games

2. To develop algorithms that can represent complex air-combat situations

3. To develop TCS techniques to overcome computational constraints

State-of-the-Art (zero vs full visibility)
We are interested in the interconnection between two parameters 

the cop number and the time of catching a robber in case of full or 

partial invisibility[1].  There are several effective solutions exist in 

case of full visibility[2]. Strategies for invisible robbers have been 

studied in very simple environments like trees and partial 

invisibility in more complex environments requires new solutions.

COPS and ROBBERS game:
Two teams are involved in the game. A team of cops and a team of one or 

more robbers. At the initial stage, cops are placed in an arena (e.g. in the 

vertices of the graph G) and robbers are placed in places (vertices) which are 

free of cops. Then the game is played alternately starting with the cop team. 

Each of the cops and the robber moves at a fixed distance in continuous space 

or along the edges of graph G. The cops win the game if for a finite number 

of steps one of the team can occupy the same vertex as the robber.

Introduction: The project is motivated by beyond-visual-range air combat scenarios and 

maps them into simpler/abstracted ‘canonical’ reachability problems in the language of 

multiplayer computational games in discrete and continuous space.

We consider several variants of Cops and Robbers Games for developing TCS techniques 

and solving strategic optimisation and combinatorial problems in different discrete arenas 

and geometric environments. The solution to these problems in a complex, uncertain and 

dynamic situation in real-time is a challenging computational task and may require 

developing approximation algorithms, applying machine learning techniques and 

distributed/decentralised high-performance computing methods.

Invisibility of Cops and Robbers
can change the complexity of the game 

and strategies[1]. At the initial stage we 

consider  several  solutions with full 

visibility and study how missing visibility 

can affect the solution of the problem.

1. Dereniowski, Dariusz, et al. "Zero-visibility cops and robber and the pathwidth of a graph." Journal of 
Combinatorial Optimization 29 (2015): 541-564.
2. Bhadauria, Deepak, et al. "Capturing an evader in polygonal environments with obstacles: The full 
visibility case." The International Journal of Robotics Research 31.10 (2012): 1176-1189.
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Data Science and Artificial Intelligence for smart 
sustainable plastic packaging

William Jeffcott, Supervised by Prof. Vitaliy Kurlin (UoL), Dr. Tom McDonald (UoL), Dr. Sam Chong (UoL)

EPSRC Centre for Doctoral Training in Distributed Algorithms, University of Liverpool, Liverpool, UK

Background & Aims

Gel Identification and Classification

Future Work Conclusion

References

The project has started by looking at flexible packaging. Flexible packaging is
made by building up layers of polyolefin films which are created by extrusion
blow moulding. At the bottom a polyethylene (PE) layer is in contact with the
product. There are two more PE layers above, followed by an adhesive layer
and a print layer (see image below).

[1] ‘Gels in polyethylene films’ information sheet - ExxonMobil

Incorporation of 100% recycled plastic (PCR) is a challenge, because it can’t be
in contact with the product for safety reasons. We are therefore restricted to a
maximum PCR content of ~80% (print layer + middle layers). At present most
flexibles are ~30% PCR, so there is large room for improvement.

So why can’t we go 80% PCR straight away? In general, PCR products contain
contaminants from waste streams, become degraded by oxidation due to
thermal processing and have a wide range of molecular weights present.

Gel Distributions

We can get high quality images of the film using a simple transmission scanner.
This allows us to identify thousands of gels for a given sample within minutes
(traditional microscopy techniques are much slower), which leads to more
concrete statistical conclusions.

➢ Work on specific spot type identification: Imaging allows us to
classify the shape and distribution of the gels, but at present it
does not allow us to understand the precise chemical cause of
gels. By using a chemical technique like Raman microscopy, we
can build a machine learning model to link visual information
to chemical information.

➢ Test the mechanical properties of the films: A key part of this
project is to understand the link between the presence of gel
spots and the degradation in packaging performance. To do
this we need to test the mechanical properties in a robust way.

This project will explore whether we can the accurately quantify the link between
the inclusion of recycled materials and the resulting gel spot distributions. We will
then attempt to link this gel spot distribution to both the performance properties of
the film, and the structural properties of the original plastic pellet.

A good outcome would be to have the ability to decide whether a recycled plastic
specimen will be appropriate in advance of making packaging from it, thus saving
time/money. This will also reduce plastic waste in the environment, because
choosing the ideal recycled pellets will allow us to maximise PCR inclusion in the
product.

These factors can significantly lower the performance of the film for a given
application and are normally indicated by the presence of gel spots.

Many of these gel spots relate to specific contaminants. For example, fibre gels
commonly indicate the presence of polypropylene (PP) or nylon contaminants. When
stretched, the film is more likely to tear at these specific points.

Overarching aims of the project:
• Characterise the type, size, shape and spatial distribution of gel spots for a range

of different PE films with different PCR content/PCR feedstocks.
• Predictively link the gel distributions to performance properties of the films

(sealability, likelihood to tear etc).
• Use the original PCR pellets to see whether the distribution of gel spots could be

predicted from indirect structural information (e.g FTIR/DSC/XRD).

Fig 1: An example
of a typical flexible
pouch made by
industrial partner
Unilever.

Fig 2: Examples of
some of the typical
types of gel spots
seen in PE films
made from recycled
plastics [1].

Fig 3: A small section of flexible polyethylene film imaged using a high resolution
film scanner, the more prominent gels are circled in red (right image).

We identify the boundaries of the gels on a
given film automatically using specifically
adapted image thresholding techniques from
computer vision. This allows us to see key
statistics such as gel frequency, size and area
of film occupied.

By utilising features of the
identified gel spots such
as length to width ratio,
colour differences, centre
of mass position etc. we
can classify the gels into
one of three types which
are guided by industry:
black point gels,
transparent point gels
and fibre gels.

Fig 4 (above): A histogram showing the distribution of gel spot areas
for different flexible films.
Fig 5 (left): Some examples of the different gel classifications.

A batch of films with varying PCR content from different feedstocks has been
provided by Unilever. The task is to accurately identify the size, location and type
of gels on a given film in a time efficient manner.

These gel types indirectly
indicate the chemical
contaminants present in
the film, allowing
manufacturers to liaise
with recycling companies
to have them removed
from their waste stream.



Improving Passive SONAR Detection & 
Tracking using Machine Learning

William Shaw (W.Shaw@liverpool.ac.uk), Dr Murat Uney (M.Uney@liverpool.ac.uk),
Dr Daniel Colquitt (mf0u60af@liverpool.ac.uk), Dr Cerys Jones (Cerys.Jones@ultra-
css.com)

Introduction

In passive SONAR, tracking quiet transient targets 
becomes challenging due to non-linear target 
movements, fluctuating noise levels, and false 
alarms, especially amidst cluttered environments 
with multiple overlapping contacts. This PhD project 
harnesses the capabilities of advanced machine 
learning – including Bayesian and graph neural 
networks (GNN) – aiming to enhance detection and 
tracking algorithms in this demanding scenario.

Framing Tracking as a Graphical Problem

Detections are transformed into nodes and connected 
to adjacent detections to create a graph. A GNN then 
analyses this graph to discern the spatial and 
temporal patterns of the detections.

Leveraging Uncertainty for Improved Detections GNN Classification Performance

The GNN excels with simulated detection data, 
though the dataset is imbalanced. Its performance 
declines when targets near the sensor exhibit high 
bearing rate tracks. Future efforts focus on iterative 
GNN enhancements and track formation.

Passive SONAR Data Graph Detection to Detection Data Association

A GNN classifies edges between detections using 
higher-dimensional embeddings to differentiate 
between false alarms, non-same target, and same-
target associations. However, it faces challenges with 
high bearing rate targets.

Waterfall plot of a 
passive SONAR 
simulation, 
highlighting targets 
with varying 
acoustic energy 
emissions and 
dynamics, the 
simulation also 
includes energy 
from the ownship.

(a)

(b)

Nodes contain 
information such as 
bearing and time from 
the detections, while the 
edges represent the 
differences in that 
information.

For (a) time-based 
detections and (b) 
sample-based 
detections, the 
model utilises 
probability and 
confidence from 
bearing/time bins 
to pinpoint areas 
with a high 
likelihood of target 
presence.
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