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Uncertainty Quantification for Generative Modelling
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Concentration (Mass fraction)

Faster Uncertainty Quantification of
Hydrocodes 03 concentration with time
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Al for Fast Discovery of Novel Materials
for Healthcare
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Towards Data Driven Aerodynamic Models

Experimental wind tunne
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Bayesian Block Sparse Spectral Unmixing

Plasma Spectral Data Spectral Unmixing
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Capturing Uncertainty through Neural Networks

State: Tt = f(.’}f}t_l) +wp  we ~ N(O? Q) -— g
Observation: Ut — h(It) + Ut Ut ~ N(O, R) «. T T _,__.
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Algorithms and Mechanisms on
Distributed Settings

Blockchain Mechanism Design (a.k.a. inverse Game

Users Theory)

Miners (Validators) Selfish agents

Design rules that lead to desired

outcomes
O R . efficient allocation of
@o@ blockspace, honest participation of
e protocol participants, etc

GAS PRICE
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Sequential Monte Carlo Trees

Students: run-times vs P
for fixed problem size Ny = 10240

= SMC 71.48%
=y
ﬂE_J Single-Chain MCMC 71.64%
5 y Multi-Chain MCMC 54.62%
= Decision Forest 66.86%
== Multi-Chain MCMC
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Bayesian Learning for Sparse High-
Dimensional Data

Using Sequential Monte OO
Carlo samplers to A
estimate parameters /.i‘\‘:fi.
iIn Bayesian A2
Neurgl Networks to .4*'0(. ':"“". @
calculate uncertainty w\‘\;
in classifications / “
Input Hidden layer  Output lay w,,nwhd tribut

&Y |V ERPOGL Daniel J. Sumler QlNET'Q



Developing Efficient Numerical Algorithms Using Fast
Bayesian Random Forests

Euclidean Distance from the Target Mean of an 11-D Gaussian using 256 particles, 500 iterations and 1024 data points

SMC-HINTS (depth 10,
—— branching 2,
asymptotic Ikernel)

10
—— SMC-RW

level 3

level 2

Euclidean Distance

0 e ——— R — —— Hierarchical Importance with Nested Training Samples
0 100 200 toration 300 400 500 (H|NTS) Example
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Developing Novel Bayesian Track Before Detect
Approaches for Maritime Big Data Challenges

Problem:
* Targets like USV, UUV, and divers use surface clutter to evade radar detection.

Project goal:

* Develop methods to separate targets from within surface cutter.
* Detect smaller signatures than existing trackers.

* Investigate various filters and develop algorithms to improve tracking performance.
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Combining GD and SMC for Complex Distributions
Multimodal Bad Prior

Contour Plot of Rosenbrock Distribution
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Learning transparent models from C
for streaming data analysis

Kalman filter demo
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Fig. 3. Kalman gain neural network block diagram.
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Maximising Detection Using High-Performance
Processing of Multi-Sensor Data

Beamformed Signal
PF State Estimation v
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Ray Traced Acoustic Propagation Modelling

This work utilises ray tracing techniques to
simulate sound propagation in complex
underwater  environments, enabling the
accurate prediction of acoustic signal paths.
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Conventional array beamforming techniques
are then employed to process the received
Bearing vs Frequency Bearing vs Time | Frequency: 97 Hz signals and extract directional information for
target localisation.
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Machine Learning for Data Driven Sound
Propagatlon Modelllng
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Machine Learning Infere

nce of the Ocean

Environment from Acoustic Data

* The ocean acoustic environment
IS complex.
* (Getting an accurate reading on
the position of an object and
determining if it is of interest is
difficult o
* Machine learning methods can
be utilised to build a library of 8 200

acoustic profiles
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Image references: “J. M. Hoven and H. Dong, “Understanding Ocean Acoustics by Eigenray Analysis,” Journal of Marine Science and Engineering, vol. 7, no. 4, Apr. 2019.”, “M. A. Ainslie, in Principles of Sonar Performance Modelling, Springer, p. 56”
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Digital test pilot model

Disturbances

Operating conditions
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Data Models for Large Aircraft Aerodynamics
using Next Generation Computational Fluid
Dynamics

AIRBUS



Machine Learning of Behavioural Models
for Improved Sensor Fusion

- Combining data from multiple
sources to aid quick decision-making.

- Existing behavioural models are
simplistic
« Methods need to be flexible to cover:

Wide range of target behaviours
Target-generated phenomena

- Extreme Machine Learning (XML)
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Parallel Processing For Novel Navigation

Dead reckoning is significantly impacted by the accumulation of
small errors.

p
Particle filters can be used to estimate and correct for these errors
delaying the inevitable drift associated with dead reckoning.
A
/ |

Currently: Producing a simulation to be used for testing sensor
fusion methods and possible sensors. Literature review.

AV~ Raytheon
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Machine Learning for Bio-Inspired Navigation
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Improving Passive SONAR Detection &

Tracking Using Machine Learning

Tracking in passive SONAR is —
difficult due to various noise =~ @ ———

sources, non linear target

movement and false alarms. \

= |
==

Detections are converted
into a graph, and graph
neural networks are
employed for edge
classification, identifying
detections from the same
target. This approach
offers a data-driven
methodology.

Aim of the project is to utilise
advanced machine learning
algorithms like Bayesian and
graph neural networks.
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Video-based Human Action Recognition Via Deep Learning Algorithm

Main Supervisor: Yalin Zheng, Second Supervisor: Anh Nguyen, Industry Supervisor: Xiaoyun Yang (Remark Al)

Skeleton-based method Encoding type of joints and edges in graph
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Constructing a Digital Twin for a self-
correcting Scanning Transmission Electron

Microscope using Machine Learning

Approaches @

Problem: Optimising data

acquisition from an electron s Configuratiqa
microscope l
Solution: Using Machine learning ' )

to perfect alignment and real time

corrections during experiments i)

Advisors: Yaochun Shen, Mario @
Gianni & Nigel Browning Dalz

&Y | VERPOOL Richard Jinschek




Transfer learning in airborne imagery
BigEarthN
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Modified fine-tuning approach results on EuroSAT dataset:
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Using Artificial Intelligence to Help
Predict Treatment Response in Patients

Problem: Designing personalized treatment plans for lymphoma patients.

Solution: Leveraging multi-modal data including PET, CT, health record and deep
learning to develop and evaluate Al for accurate prediction of treatment outcomes.

Deep learning ; g | \x‘mkx\
| > : "l =
Health record (Age, Sex...) Survival prediction
Treatment plans
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Data Science and Al for Smart Sustainable Plastic Packaging

The distribution of gel spot areas for films 51/56/57/58/59/510/511/512/513/514/515
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Manufacturing companies make flexible Gels form in the films which represent We then attempt to understand the
films from polyethylene. The goal is to areas of contamination and structural gel distribution for different industrial
make these more sustainable by weakness. We use state-of-art computer recipes to optimise packaging
including more recycled materials. vision techniques to classify film images. performance.
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Applications of Infinite Dimensional Compressive
Sensing in STEM using Machine Learning to Enhance
Results
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Demonstration of an Al-driven workflow for autonomous high-resolution scanning microscopy - High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron
Saugat Kandel. et, al Microscope - Hiromi Inada, Et . al

Data acquisition optimisation with large dwell time-based reconstruction through FAST (A). Example of a resulting noisy
image from a traditional STEM sampling methods into a cleaned image with well-defined atoms (B).
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Computational Methods for Real-Time Subsampled
Scanning (Transmission) Electron Microscopy

» Perform a subsampled scan

measuring only a subset of the available pixels in a
fraction of the time

» Reconstruct the image
determining values for the missing pixels via dictionary
learning and sparse-coding algorithms

> Recover a fully-sampled image
with minimal damage to the sample
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Computational Methods for Real-Time Subsampled
Scanning (Transmission) Electron Microscopy

Cryo-FIB [p. Nicholls et al. ICASSP 2023]
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Computational Methods for Real-Time Subsampled
Scanning (Transmission) Electron Microscopy

Time-to-solution for Square Images of Increasing Size

SenseAl Python
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éﬁ 10 Numpy & Numba
= o (September 2020)
~ .
g 39s
._8 1 Bl e <« SenseAl CPU
[ J
% p Parallel C++/OpenMP
2 0.1 T ? (February 2022)
477 . 7 \
Q °
& ¢
"E-I( 0.01
Parallel CUDA/C++
e Python + Numba e C++ (CPU) e CUDA (GPU) (February 2023)
0.001
0 128 256 384 512 640 768 896 1024 1152
|NxIN| Square Image Size
L4 UNIVERSITY OF . & =
~ Jack Wells Siasanthen)
) LIVERPOOL e 2




Decision Making
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Distributed Hypothesis Generation and Evaluation

« This project aims to develop explainable decision-
support tools for intelligence analysts.

« This project combines structured analytical
techniques used within intelligence
settings, computational argumentation, probability
and information theory to develop such tools.

« The Diagnostic Argument Identifier (DAI) can identify
the most critical items of evidence which could change
an analyst's conclusions dramatically, if removed.

« The DAI draws upon the notion of sensitivity analysis,
used in the Analysis of Competing Hypotheses, along
with the mutual information (l) between sets of
semantically evaluated arguments.

IR T e e P{:IH'H}
I(X;Y) =) > P(z,y)log [P{.r)f’(y)]

reX yeY
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Create videos with https://clipchamp.com/en/video-editor - free online video editor, video compressor, video converter.




Developing Al Methods for Animal Health
and Welfare Monitoring

Supervised by Dr PJ Noble, Dr Anh Nguyen and Dr Kirsten McMillan
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Reinforcement Learning for Continuous
Processes

Goal: Learn a meta-policy from offline data Predict Posterior distribution over
under task uncertainty using contextual actions given a query state and a

information context

Model training

Evaluation
Mn oDl Sl G 1o Tl sl G ; ‘ .t
- : ' i
e PB(alsquerya C) Pg( . | . ,C)
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Transformer
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Developing Reinforcement Learning and Atrtificial Intelligence Tools to Support
Clinical Care Including Care for Women with Perimenopausal and Menopausal Symptoms

Supervised by Dr Bei Peng, Dr Anna Fowler, Dr Dan Reisel (Newson Health)

PROBLEMS METHODS

Developme
nt of Deep
Learning

Methods ce Human
via Deep
Reinforcemen
t Learnind
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Reinforcement Learning for Attack
Intention Inference

Supervised by Dr Dominik Wojtczak, Prof Sven Schewe and Paul Waller
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Cyber Defence with Real-World Impact
Awareness
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Algorithms and Decision-Making Processes
in Distributed Attacker-Defender Games

Goal:

Build an abstract
representation of aerial
combat involving two
opposing sides.

Develop Theoretical
Computer Science ,
techniques to overcome ; Theorem
computational
constraints coming from
real life problems.
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Scheduling of Distributed information
processing

Jobs Missed with max sensor energy: 20
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Scheduling Surveillance of Space
Objects
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