Distributed Algorithms Student Presentations

CDT Showcase 2023 The Spine

Gaussian Processes

Engineering and Physical Sciences Research Council

Uncertainty Quantification for Generative Modelling

Faster Uncertainty Quantification of Hydrocodes

 CO_2 concentration with time

0.20

After $t = 10 \mu s$

0.20

Initial concentration of ethanol (Mass fraction)

Sarah M. Askevold

Al for Fast Discovery of Novel Materials for Healthcare

Towards Data Driven Aerodynamic Models

Image credit: ARA (top left), DLR (right).

Mehdi Anhichem

Advanced Bayesian Algorithms

Engineering and Physical Sciences Research Council

Bayesian Block Sparse Spectral Unmixing

Spectral Unmixing

Oisín Boyle

Capturing Uncertainty through Neural Networks

State: $x_t = f(x_{t-1}) + w_t$ $w_t \sim N(0, Q)$ Observation: $y_t = h(x_t) + u_t$ $u_t \sim N(0, R)$

Panagiotis Pentaliotis

Algorithms and Mechanisms on Distributed Settings

Blockchain

- Users
- Miners (Validators)

Mechanism Design (a.k.a. inverse Game Theory)

- Selfish agents
- Design rules that lead to desired outcomes

Examples: efficient allocation of blockspace, honest participation of protocol participants, etc

Georgios Chionas

Sequential Monte Carlo Trees

Method	Students
SMC	71.48%
Single-Chain MCMC	71.64%
Multi-Chain MCMC	54.62%
Decision Forest	66.86%

Bayesian Learning for Sparse High-Dimensional Data

Using Sequential Monte Carlo samplers to estimate parameters in Bayesian Neural Networks to calculate uncertainty in classifications

QINETIQ

Daniel J. Sumler

Developing Efficient Numerical Algorithms Using Fast Bayesian Random Forests

Euclidean Distance from the Target Mean of an 11-D Gaussian using 256 particles, 500 iterations and 1024 data points

Developing Novel Bayesian Track Before Detect Approaches for Maritime Big Data Challenges

Problem:

• Targets like USV, UUV, and divers use surface clutter to evade radar detection.

Project goal:

- Develop methods to separate targets from within surface cutter.
- Detect smaller signatures than existing trackers.
- Investigate various filters and develop algorithms to improve tracking performance.

Combining GD and SMC for Complex Distributions <u>Multimodal</u> <u>Bad Prior</u>

Andy Millard

Learning transparent models from DD algorithms for streaming data analysis

Bettina Hanlon

Engineering and Physical Sciences Research Council

Maximising Detection Using High-Performance Processing of Multi-Sensor Data

Ray Traced Acoustic Propagation Modelling

This work utilises ray tracing techniques to simulate sound propagation in complex underwater environments, enabling the accurate prediction of acoustic signal paths.

Conventional Beamforming

Conventional array beamforming techniques are then employed to process the received signals and extract directional information for target localisation.

Particle Filtering for Bearing-Only Measurements

A particle filter tracking algorithm is implemented to estimate the trajectory of underwater objects based on bearing-only measurements.

THALES

Joshua J. Wakefield

Machine Learning for Data Driven Sound Propagation Modelling

Finley Boulton

Machine Learning Inference of the Ocean **Environment from Acoustic Data**

- The ocean acoustic environment is complex.
- Getting an accurate reading on the position of an object and determining if it is of interest is difficult
- Machine learning methods can be utilised to build a library of acoustic profiles

Image references: "J. M. Hoven and H. Dong, "Understanding Ocean Acoustics by Eigenray Analysis," Journal of Marine Science and Engineering, vol. 7, no. 4, Apr. 2019.", "M. A. Ainslie, in Principles of Sonar Performance Modelling, Springer, p. 56"

Finn Henman

ε

Digital test pilot model

Carole Liao

Data Models for Large Aircraft Aerodynamics using Next Generation Computational Fluid Dynamics

Airbus, 2017 - https://www.airbus.com/en/asset-preview/88111

Supervisors: Dr Sebastian Timme, Dr Jony Castanga (STFC Hartree), Dr John Pattinson (Airbus)

Machine Learning of Behavioural Models for Improved Sensor Fusion

- Combining data from multiple sources to aid quick decision-making.
- Existing behavioural models are simplistic
- Methods need to be flexible to cover:
 - Wide range of target behaviours
 - Target-generated phenomena
- Extreme Machine Learning (XML)

Christian Pollitt

Dr. Murat Uney, Dr. Mario Gianni, Dr. David Greig

Parallel Processing For Novel Navigation

Dead reckoning is significantly impacted by the accumulation of small errors.

Particle filters can be used to estimate and correct for these errors delaying the inevitable drift associated with dead reckoning.

Currently: Producing a simulation to be used for testing sensor fusion methods and possible sensors. Literature review.

Daniel Chadwick

Prof. Jason F. Ralph, Dr Kirsty McKay, Grant McClean

Machine Learning for Bio-Inspired Navigation

Teodor-Avram Ciochirca

Prof. Jason F. Ralph, Dr. Ian Sandall, Dr. Grant McClean

Improving Passive SONAR Detection & Tracking Using Machine Learning

Tracking in passive SONAR is difficult due to various noise sources, non linear target movement and false alarms.

Aim of the project is to utilise advanced machine learning algorithms like Bayesian and graph neural networks.

Detections are converted into a graph, and graph neural networks are employed for edge classification, identifying detections from the same target. This approach offers a data-driven methodology.

William Shaw

ULTRA MARITIME

Image Processing

Engineering and Physical Sciences Research Council

Video-based Human Action Recognition Via Deep Learning Algorithm

Main Supervisor: Yalin Zheng, Second Supervisor: Anh Nguyen, Industry Supervisor: Xiaoyun Yang (Remark AI)

Jianyang Xie

Skeleton-based method

Encoding type of joints and edges in graph

REMARK

Constructing a Digital Twin for a selfcorrecting Scanning Transmission Electron Microscope using Machine Learning Approaches

Problem: Optimising data acquisition from an electron microscope

Solution: Using Machine learning to perfect alignment and real time corrections during experiments

Advisors: Yaochun Shen, Mario Gianni & Nigel Browning

Richard Jinschek

Transfer learning in airborne imagery

BigEarthNet

EuroSat

Transfer learning: $\min_{\theta} \mathbb{E}_{p(\mathbf{x})} \left[\ell \left(g \left(\mathbf{x}; \theta \mid \mathcal{T}_1^S, \mathcal{T}_2^S, \ldots \right) \right) \right]$ Supervised fine-tuning: $\min_{\theta} \frac{1}{N} \sum_{i=1}^N \ell \left(g(\mathbf{x}_i; \theta_{\mathrm{PT}}), \mathbf{y}_i \right)$ $(\theta_{\mathrm{PT}} \text{ are parameters "pretrained" on a source dataset <math>D_s = \{ \{ \mathbf{x}_j, \mathbf{y}_j \} \}$

Modified fine-tuning approach results on EuroSAT dataset:

Benjamin Rise

Using Artificial Intelligence to Help Predict Treatment Response in Patients

Problem: Designing personalized treatment plans for lymphoma patients.

Solution: Leveraging multi-modal data including PET, CT, health record and deep learning to develop and evaluate AI for accurate prediction of treatment outcomes.

Survival prediction

Health record (Age, Sex...) Treatment plans

ZHANG Ruojun

Data Science and AI for Smart Sustainable Plastic Packaging

Manufacturing companies make flexible films from polyethylene. The goal is to make these more sustainable by including more recycled materials. Gels form in the films which represent areas of contamination and structural weakness. We use state-of-art computer vision techniques to classify film images. We then attempt to understand the gel distribution for different industrial recipes to optimise packaging performance.

William Jeffcott

Applications of Infinite Dimensional Compressive Sensing in STEM using Machine Learning to Enhance Results

Demonstration of an Al-driven workflow for autonomous high-resolution scanning microscopy - Saugat Kandel. et, al

High Speed and Sensitive X-ray Analysis System with Automated Aberration Correction Scanning Transmission Electron Microscope - Hiromi Inada, Et . al

Data acquisition optimisation with large dwell time-based reconstruction through FAST (A). Example of a resulting noisy image from a traditional STEM sampling methods into a cleaned image with well-defined atoms (B).

Alex Williams

Dr. Konstantinos Tsakalidis, Prof. Yaochun Shen, Prof. Nigel Browning

Computational Methods for Real-Time Subsampled Scanning (Transmission) Electron Microscopy

Perform a subsampled scan

measuring only a subset of the available pixels in a fraction of the time

Reconstruct the image

determining values for the missing pixels via dictionary learning and sparse-coding algorithms

Recover a fully-sampled image

with minimal *damage* to the sample

Computational Methods for Real-Time Subsampled Scanning (Transmission) Electron Microscopy

Jack Wells

87

Computational Methods for Real-Time Subsampled Scanning (Transmission) Electron Microscopy

Jack Wells

Decision Making

Engineering and Physical Sciences Research Council

Distributed Hypothesis Generation and Evaluation

- This project aims to develop **explainable decision**support tools for intelligence analysts.
- This project combines structured analytical techniques used within intelligence settings, computational argumentation, probability and information theory to develop such tools.
- The **Diagnostic Argument Identifier (DAI)** can **identify the most critical** items of **evidence** which could change an analyst's conclusions dramatically, if removed.
- The DAI draws upon the notion of sensitivity analysis, used in the Analysis of Competing Hypotheses, along with the mutual information (I) between sets of semantically evaluated arguments.

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} P(x,y) \log \left[\frac{P(x,y)}{P(x)P(y)} \right]$$

Jordan Robinson

Developing AI Methods for Animal Health and Welfare Monitoring

Supervised by Dr PJ Noble, Dr Anh Nguyen and Dr Kirsten McMillan

Adam Williams

Reinforcement Learning for Continuous Processes

Goal: Learn a meta-policy from offline data under task uncertainty using contextual information Predict Posterior distribution over actions given a query state and a context

Oliver Dippel

Developing Reinforcement Learning and Artificial Intelligence Tools to Support Clinical Care Including Care for Women with Perimenopausal and Menopausal Symptoms

Supervised by Dr Bei Peng, Dr Anna Fowler, Dr Dan Reisel (Newson Health)

Wenping (Vicky) Jiang

Reinforcement Learning for Attack Intention Inference

Supervised by Dr Dominik Wojtczak, Prof Sven Schewe and Paul Waller

Object:

- To figure out the intentions of an attacker based on its behaviors **Methodology:**
 - Utilizing cutting-edge reinforcement learning techniques
 - Comprehensive training and performance evaluation

Possible outputs:

- Enhancing our cybersecurity defenses
- Invaluable insights into the real motivation of attackers

Thanks for Dr Chris Hicks and Dr Stephen Pasteris from Alan Turing

Institute providing future cooperation on the project

Figure 1. Overview of the project

Wanrong Yang

Cyber Defence with Real-World Impact Awareness

Adam Neal

Algorithms and Decision-Making Processes in Distributed Attacker-Defender Games

Goal:

- Build an abstract representation of aerial combat involving two opposing sides.
- Develop Theoretical Computer Science techniques to overcome computational constraints coming from real life problems.

Tim Prokopenko

Scheduling of Distributed information processing

Alex Bird

Scheduling Surveillance of Space Objects

Benedict Oakes

