2022
Functions and specificity of bacterial carbohydrate sulfatases targeting host glycans. (Journal article)
Luis, A. S., Yates, E. A., & Cartmell, A. (2022). Functions and specificity of bacterial carbohydrate sulfatases targeting host glycans.. Essays in biochemistry, EBC20220120. doi:10.1042/ebc20220120DOI: 10.1042/ebc20220120
Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota (vol 18, pg 841, 2022) (Journal article)
Luis, A. S., Basle, A., Byrne, D. P., Wright, G. S. A., London, J. A., Jin, C., . . . Cartmell, A. (2022). Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota (vol 18, pg 841, 2022). NATURE CHEMICAL BIOLOGY, 18(9), 1032. doi:10.1038/s41589-022-01132-1DOI: 10.1038/s41589-022-01132-1
Luis, A. S., Basle, A., Byrne, D. P., Wright, G. S. A., London, J. A., Jin, C., . . . Cartmell, A. (2022). Sulfated glycan recognition by carbohydrate sulfatases of the human gut microbiota. NATURE CHEMICAL BIOLOGY, 18(8), 841-+. doi:10.1038/s41589-022-01039-xDOI: 10.1038/s41589-022-01039-x
London, J. A., Taylor, S. L., Barsukov, I., Cartmell, A., & Yates, E. A. (2022). Exploration of expanded carbohydrate chemical space to access biological activity using microwave-induced acid condensation of simple sugars. RSC ADVANCES, 12(18), 11075-11083. doi:10.1039/d2ra01463gDOI: 10.1039/d2ra01463g
2021
Luis, A. S., Jin, C., Pereira, G. V., Glowacki, R. W. P., Gugel, S. R., Singh, S., . . . Martens, E. C. (2021). A single sulfatase is required to access colonic mucin by a gut bacterium. NATURE, 598(7880), 332-+. doi:10.1038/s41586-021-03967-5DOI: 10.1038/s41586-021-03967-5
Byrne, D. P., London, J. A., Eyers, P. A., Yates, E. A., & Cartmell, A. (2021). Mobility shift-based electrophoresis coupled with fluorescent detection enables real-time enzyme analysis of carbohydrate sulfatase activity. BIOCHEMICAL JOURNAL, 478(4), 735-748. doi:10.1042/BCJ20200952DOI: 10.1042/BCJ20200952
Byrne, D. P., London, J. A., Eyers, P. A., Yates, E. A., & Cartmell, A. (2021). Mobility shift-based electrophoresis coupled with fluorescent detection enables real-time enzyme analysis of carbohydrate sulfatase activity (vol 478, pg 735, 2021). BIOCHEMICAL JOURNAL, 478(1), 2537-2538. doi:10.1042/BCJ20200952_CORDOI: 10.1042/BCJ20200952_COR
Gray, D. A., White, J. B. R., Oluwole, A. O., Rath, P., Glenwright, A. J., Mazur, A., . . . van den Berg, B. (2021). Insights into SusCD-mediated glycan import by a prominent gut symbiont. NATURE COMMUNICATIONS, 12(1). doi:10.1038/s41467-020-20285-yDOI: 10.1038/s41467-020-20285-y
2020
Byrne, D., London, J., Eyers, P., Yates, E., & Cartmell, A. (2020). Mobility shift-based electrophoresis coupled with fluorescent detection enables real-time enzyme analysis of carbohydrate sulfatase activity. doi:10.1101/2020.12.01.406876DOI: 10.1101/2020.12.01.406876
Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus (vol 11, 646, 2020) (Journal article)
Ndeh, D., Basle, A., Strahl, H., Yates, E. A., McClurgg, U. L., Henrissat, B., . . . Cartmell, A. (2020). Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus (vol 11, 646, 2020). NATURE COMMUNICATIONS, 11(1). doi:10.1038/s41467-020-18097-1DOI: 10.1038/s41467-020-18097-1
Ndeh, D., Baslé, A., Strahl, H., Yates, E. A., McClurgg, U. L., Henrissat, B., . . . Cartmell, A. (2020). Metabolism of multiple glycosaminoglycans by Bacteroides thetaiotaomicron is orchestrated by a versatile core genetic locus. Nature Communications, 11. doi:10.1038/s41467-020-14509-4DOI: 10.1038/s41467-020-14509-4
2019
Labourel, A., Basle, A., Munoz-Munoz, J., Ndeh, D., Booth, S., Nepogodiev, S. A., . . . Cartmell, A. (2019). Structural and functional analyses of glycoside hydrolase 138 enzymes targeting chain A galacturonic acid in the complex pectin rhamnogalacturonan II. JOURNAL OF BIOLOGICAL CHEMISTRY, 294(19), 7711-7721. doi:10.1074/jbc.RA118.006626DOI: 10.1074/jbc.RA118.006626
2018
Ndeh, D., Munoz, J. M., Cartmell, A., Bulmer, D., Wills, C., Henrissat, B., & Gray, J. (2018). The human gut microbe Bacteroides thetaiotaomicron encodes the founding member of a novel glycosaminoglycan-degrading polysaccharide lyase family PL29. JOURNAL OF BIOLOGICAL CHEMISTRY, 293(46), 17906-17916. doi:10.1074/jbc.RA118.004510DOI: 10.1074/jbc.RA118.004510
Cartmell, A., Munoz-Munoz, J., Briggs, J. A., Ndeh, D. A., Lowe, E. C., Basle, A., . . . Gilbert, H. (2018). A surface endogalactanase in Bacteroides thetaiotaomicron confers keystone status for arabinogalactan degradation. Nature Microbiology, 3(11), 1314-1326. doi:10.1038/s41564-018-0258-8DOI: 10.1038/s41564-018-0258-8
Urresti, S., Cartmell, A., Liu, F., Walton, P. H., & Davies, G. J. (2018). Structural studies of the unusual metal-ion site of the GH124 endoglucanase from Ruminiclostridium thermocellum. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 74, 496-505. doi:10.1107/S2053230X18006842DOI: 10.1107/S2053230X18006842
Luis, A. S., Briggs, J., Zhang, X., Farnell, B., Ndeh, D., Labourel, A., . . . Gilbert, H. J. (2018). Dietary pectic glycans are degraded by coordinated enzyme pathways in human colonic Bacteroides. Nature Microbiology, 3(2), 210-219. doi:10.1038/s41564-017-0079-1DOI: 10.1038/s41564-017-0079-1
2017
Munoz-Munoz, J., Cartmell, A., Terrapon, N., Basle, A., Henrissat, B., & Gilbert, H. J. (2017). An evolutionarily distinct family of polysaccharide lyases removes rhamnose capping of complex arabinogalactan proteins. Journal of Biological Chemistry, 292(32), 13271-13283. doi:10.1074/jbc.M117.794578DOI: 10.1074/jbc.M117.794578
Cartmell, A., Lowe, E. C., Basle, A., Firbank, S. J., Ndeh, D. A., Murray, H., . . . Bolam, D. N. (2017). How members of the human gut microbiota overcome the sulfation problem posed by glycosaminoglycans. Proceedings of the National Academy of Sciences of the United States of America, 114(27), 7037-7042. doi:10.1073/pnas.1704367114DOI: 10.1073/pnas.1704367114
Munoz-Munoz, J., Cartmell, A., Terrapon, N., Henrissat, B., & Gilbert, H. J. (2017). Unusual active site location and catalytic apparatus in a glycoside hydrolase family. Proceedings of the National Academy of Sciences of the United States of America, 114(19), 4936-4941. doi:10.1073/pnas.1701130114DOI: 10.1073/pnas.1701130114
Ndeh, D., Rogowski, A., Cartmell, A., Luis, A. S., Basle, A., Gray, J., . . . Gilbert, H. J. (2017). Complex pectin metabolism by gut bacteria reveals novel catalytic functions. NATURE, 544(7648), 65-70. doi:10.1038/nature21725DOI: 10.1038/nature21725
2015
Hernandez-Gomez, M. C., Rydahl, M. G., Rogowski, A., Morland, C., Cartmell, A., Crouch, L., . . . Knox, J. P. (2015). Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module. FEBS LETTERS, 589(18), 2297-2303. doi:10.1016/j.febslet.2015.07.009DOI: 10.1016/j.febslet.2015.07.009
Evidence for a Boat Conformation at the Transition State of GH76 alpha-1,6-Mannanases-Key Enzymes in Bacterial and Fungal Mannoprotein Metabolism (Journal article)
Thompson, A. J., Speciale, G., Iglesias-Fernandez, J., Hakki, Z., Belz, T., Cartmell, A., . . . Davies, G. J. (2015). Evidence for a Boat Conformation at the Transition State of GH76 alpha-1,6-Mannanases-Key Enzymes in Bacterial and Fungal Mannoprotein Metabolism. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 54(18), 5378-5382. doi:10.1002/anie.201410502DOI: 10.1002/anie.201410502
Cuskin, F., Lowe, E. C., Temple, M. J., Zhu, Y., Cameron, E. A., Pudlo, N. A., . . . Gilbert, H. J. (2015). Human gut Bacteroidetes can utilize yeast mannan through a selfish mechanism. NATURE, 517(7533), 165-U86. doi:10.1038/nature13995DOI: 10.1038/nature13995
2011
Cartmell, A., McKee, L. S., Pena, M. J., Larsbrink, J., Brumer, H., Kaneko, S., . . . Marles-Wright, J. (2011). The Structure and Function of an Arabinan-specific alpha-1,2-Arabinofuranosidase Identified from Screening the Activities of Bacterial GH43 Glycoside Hydrolases. JOURNAL OF BIOLOGICAL CHEMISTRY, 286(17), 15483-15495. doi:10.1074/jbc.M110.215962DOI: 10.1074/jbc.M110.215962
Bras, J. L. A., Cartmell, A., Carvalho, A. L. M., Verze, G., Bayer, E. A., Vazana, Y., . . . Gilbert, H. J. (2011). Structural insights into a unique cellulase fold and mechanism of cellulose hydrolysis. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 108(13), 5237-5242. doi:10.1073/pnas.1015006108DOI: 10.1073/pnas.1015006108
2009
Analysis of the Structural and Functional Diversity of Plant Cell Wall Specific Family 6 Carbohydrate Binding Modules (Journal article)
Abbott, D. W., Ficko-Blean, E., van Bueren, A. L., Rogowski, A., Cartmell, A., Coutinho, P. M., . . . Boraston, A. B. (2009). Analysis of the Structural and Functional Diversity of Plant Cell Wall Specific Family 6 Carbohydrate Binding Modules. BIOCHEMISTRY, 48(43), 10395-10404. doi:10.1021/bi9013424DOI: 10.1021/bi9013424
Montanier, C., Money, V. A., Pires, V. M. R., Flint, J. E., Pinheiro, B. A., Goyal, A., . . . Gilbert, H. J. (2009). The Active Site of a Carbohydrate Esterase Displays Divergent Catalytic and Noncatalytic Binding Functions. PLOS BIOLOGY, 7(3), 687-697. doi:10.1371/journal.pbio.1000071DOI: 10.1371/journal.pbio.1000071
2008
Cartmell, A., Topakas, E., Ducros, V. M. -A., Suits, M. D. L., Davies, G. J., & Gilbert, H. J. (2008). The Cellvibrio japonicus Mannanase CjMan26C Displays a Unique exo-Mode of Action That Is Conferred by Subtle Changes to the Distal Region of the Active Site. JOURNAL OF BIOLOGICAL CHEMISTRY, 283(49), 34403-34413. doi:10.1074/jbc.M804053200DOI: 10.1074/jbc.M804053200
Probing the beta-1,3 : 1,4 glucanase, CtLic26A, with a thio-oligosaccharide and enzyme variants (Journal article)
Money, V. A., Cartmell, A., Guerreiro, C. I. P. D., Ducros, V. M. -A., Fontes, C. M. G. A., Gilbertb, H. J., & Davies, G. J. (2008). Probing the beta-1,3 : 1,4 glucanase, CtLic26A, with a thio-oligosaccharide and enzyme variants. ORGANIC & BIOMOLECULAR CHEMISTRY, 6(5), 851-853. doi:10.1039/b719288fDOI: 10.1039/b719288f