Microbiology BSc (Hons)

Key information


  • Course length: 3 years
  • UCAS code: C500
  • Year of entry: 2021
  • Typical offer: A-level : ABB / IB : 33 / BTEC : D*DD in relevant diploma
life-sciences-4

Module details

Year One Compulsory Modules

  • Molecules and Cells (LIFE101)
    Level1
    Credit level15
    SemesterFirst Semester
    Exam:Coursework weighting80:20
    Aims

    After successful completion of this module, students will be able to:

    Recognise the basic of structure, composition and function of cells;

    Explain core concepts relating to the organisation and specialisation of eukaryotes, prokaryotes and viruses;

    Define the cellular components involved in the regulation of key functions such as the generation of energy, movement, cell growth and division and differentiation;

    Describe the latest techniques that are used in cell biology to determine cell structure and function;

    Develop in students the knowledge and understanding of the subject and the ability to apply, evaluate and interpret this knowledge to solve problems.

    Learning Outcomes

    (LO1) On successful completion of the module students will be able to:

    Describe how cells arose and their structural features;

    (LO2) Compare and contrast eukaryotic and prokaryotic cells;

    (LO3) Identify the different ways cells manipulate energy;

    (LO4) Define the molecular basis of the processes by which cells grow, replicate, communicate, interact with their environment, move and die;

    (LO5) Describe the functional importance of cell specialisation and cooperation in tissues.

    (S1) Skills in using technology - Information accessing

  • Evolution (LIFE103)
    Level1
    Credit level15
    SemesterFirst Semester
    Exam:Coursework weighting80:20
    Aims

    This module aims to:
    Describe fundamental genetic mechanisms that are essential for the function and evolution of life;

    Introduce students to fundamental evolutionary concepts and theories, showing how genetic mechanisms help determine the patterns of observed evolution;

    Apply evolutionary concepts to a broad selection of areas of Life Sciences;

    Develop in students the knowledge and understanding of the subject and the ability to apply, evaluate and interpret this knowledge to solve problems in biology.

    Learning Outcomes

    (LO1) Recall how cells evolved

    (LO2) Identify the causes of evolutionary change in populations

    (LO3) Recognize the consequences of evolutionary change for patterns of biological diversity within and amongst populations

    (LO4) Recall fundamental genetic mechanisms (heredity, mutation, meiosis, sex) and show how they influence evolutionary change in populations

    (LO5) Recognize the widespread applicability of evolutionary ideas across the Life Sciences

    (S1) Lifelong learning skills

  • Grand Challenges in Biology (LIFE105)
    Level1
    Credit level7.5
    SemesterFirst Semester
    Exam:Coursework weighting60:40
    Aims

    To encourage students to become aware of the themes that are driving biological research in Liverpool and globally;
    To engage students with their programme of study;
    To excite student interest in their subject and the way it relates to the challenges that face us all;
    To foster the development of study skills that will equip students to investigate research topics and communicate their findings and views on them.

    Learning Outcomes

    (LO1) To identify the grand challenges that face biological scientists

    (LO2) To put into context the advances that science makes possible and the ethical issues associated with meeting the Grand Challenges

    (LO3) To evaluate different approaches to the resolution of scientific questions

    (LO4) To conduct an independent piece of research and report their findings to their peers

    (S1) Communication, listening and questioning respecting others, contributing to discussions, communicating in a foreign language, influencing, presentations

    (S2) Global perspectives demonstrate international perspectives as professionals/citizens; locate, discuss, analyse, evaluate information from international sources; consider issues from a variety of cultural perspectives, consider ethical and social responsibility issues in international settings; value diversity of language and culture

    (S3) Information literacy online, finding, interpreting, evaluating, managing and sharing information

    (S4) Literacy application of literacy, ability to produce clear, structured written work and oral literacy - including listening and questioning

    (S5) Positive attitude/ self-confidence A 'can-do' approach, a readiness to take part and contribute; openness to new ideas and the drive to make these happen

    (S6) Team (group) working respecting others, co-operating, negotiating / persuading, awareness of interdependence with others

  • Experimental Skills in Current Biology (LIFE107)
    Level1
    Credit level15
    SemesterWhole Session
    Exam:Coursework weighting30:50
    Aims

    1.       Introducestudents to a range of practical skills and techniques that are of general usein subjects across the Life Sciences; 2.       Demonstratethe relevance of experimental skills across all biological disciplines andexplain the importance of observing good laboratory practice 3.       Trainstudents how to observe and record experiments, and how to present and analysedata  

    Learning Outcomes

    (LO1) Record procedures and protocols for experiments relating to current biology and generate, evaluate andinterpret qualitative and quantitative data

    (LO2) Identify, formulate andtest hypotheses in relation to laboratory- based experiments in current biology

    (LO3) Use laboratory equipment correctly and safely according to good laboratory practice and observing Health and Safety rules

    (LO4) Demonstrate a range of laboratory skills when undertaking experiments in current biology

    (S1) Organisational skills

    (S2) Communication skills

    (S3) Information technology (application of) adopting, adapting and using digital devices, applications and services

    (S4) Positive attitude/ self-confidence A 'can-do' approach, a readiness to take part and contribute; openness to new ideas and the drive to make these happen

    (S5) Numeracy (application of) manipulation of numbers, general mathematical awareness and its application in practical contexts (e.g. measuring, weighing, estimating and applying formulae)

    (S6) Problem solving/ critical thinking/ creativity analysing facts and situations and applying creative thinking to develop appropriate solutions.

    (S7) Self-management readiness to accept responsibility (i.e. leadership), flexibility, resilience, self-starting, initiative, integrity, willingness to take risks, appropriate assertiveness, time management, readiness to improve own performance based on feedback/reflective learning

    (S8) Team (group) working respecting others, co-operating, negotiating / persuading, awareness of interdependence with others

  • Microbiology (LIFE110)
    Level1
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting80:20
    Aims

    This module aims to:

    Describe how microbes play crucial roles in maintaining the natural environment;

    Explain the role of microbes in disease processes and how the immune system protects against infections;

    Highlight the roles of microbes in biotechnological processes;

    Develop knowledge and understanding in microbiology, and ability to apply, evaluate and interpret this knowledge to solve problems in Microbiology.

    Learning Outcomes

    (LO1) On successful completion of this module, the students will be able to:

    Identify appropriate techniques for assessing microbial diversity with particular reference to bacteria and fungi;

    (LO2) Describe the structure and significance of microbial communities involving these species

    (LO3) Explain the physiological properties and adaptations that enable microbes to colonise diverse environments

    (LO4) Define the roles of microbes as commensals and pathogens and mechanisms by which they interact with the host;

    (LO5) Describe the roles that microbes play in nutrient and biomass recycling;

    (S1) Lifelong learning skills

  • Quantitative Skills for the Life Sciences (LIFE113)
    Level1
    Credit level7.5
    SemesterFirst Semester
    Exam:Coursework weighting100:0
    Aims

    This module aims to:

    1. Develop in students the essential quantitative and digital skills that they will require to be competent Life Scientists.

    2. Develop critical thinking and problem solving skills.

    3. Introduce students to the use of basic digital tools for handling data and visualising data.

    4. Introduce students to computer programming (fundamental component of digital technology) that will enable them to perform robust statistical analysis of biological datasets.

    Learning Outcomes

    (L4-0) Solve numerical problems in a biological context.

    (L4-1) Use digital tools for data processing and visualisation.

    (L4-2) Understand how to construct and test experimental hypotheses.

    (L4-4) Use a programming language for analysis and visualisation of large data sets and the application of statistics.

  • Biochemical Methods (LIFE122)
    Level1
    Credit level7.5
    SemesterSecond Semester
    Exam:Coursework weighting100:0
    Aims

    This module aims to:

    Introduce students to a range of practical skills, analytical techniques and their associated calculations that are applicable to many fields of modern biology;

    Explain to students the importance of working safely in the laboratory in accord with Health and Safety protocols and good working practices;

    Train students how to observe and record experiments, and how to present and analyse data;

    Develop experimental skills that will be used in subsequent practicals and project work;

    Demonstrate the relevance of experimental skills across all biological disciplines and the essential relationship between quantitative skills and key skills;

    Develop knowledge and understanding in biochemistry, biotechnology and biomedicine, and ability to apply, evaluate and interpret this knowledge to solve problems.

    Learning Outcomes

    (LO1) This practical, lab-based module will enable students to:

    record, evaluate and interpret qualitative and quantitative experimental data, and record procedures and protocols;

    (LO2) Use a knowledge of the principles behind several practical laboratory techniques to perform underpinning calculations, plan and execute a series of experiments

    (LO3) use laboratory equipment correctly and safely to generate data;

    (LO4) identify, formulate and test hypotheses in relation to laboratory based experimental design;

    (S1) critical and creative thinking

    (S2) Problem solving

    (S3) engage in team-working

    (S4) manage time effectively

  • Communication and Study Skills for the Life Sciences (LIFE130)
    Level1
    Credit level7.5
    SemesterWhole Session
    Exam:Coursework weighting0:100
    Aims

    to provide students with study and communication skills for higher education in the Life Sciences;

    to develop students’ ability to reflect on their progress and use feedback to identify opportunities for personal development;

    to develop students’ appreciation of the application of these skills to future employment.

    Learning Outcomes

    (LRE1) Structure and communicate ideas effectively, both orally and in writing

    (LRE2) Discuss and appropriately use relevant literature

    (S1) Evaluate and evidence own performance using reflective practice

    (S2) Manage time, and work to deadlines

    (S3) Find relevant and appropriate information and use IT effectively

Year One Optional Modules

  • Biochemistry and Biomedical Sciences (LIFE102)
    Level1
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting80:20
    Aims

    After successful completion of this module, students will be able to:

    Describe the major dietary components for humans and other organisms, and the processes that result in their digestion and absorption;

    Explain the mechanisms and processes that regulate carbohydrate, fat and protein metabolism;

    Define how imbalances in nutrition can lead to lifestyle diseases and how genetic or infectious diseases can result in impaired ability to generate energy;

    Develop knowledge and understanding in biochemistry and biomedicine, and ability to apply, evaluate and interpret this knowledge to solve problems.

    Learning Outcomes

    (LO1) On successful completion of this module, the students should be able to:

    Describe the important groups of diseases affecting humans and other organisms;

    (S1) Lifelong learning skills

  • Introduction to Animal Infectious Diseases, Epidemiology and Public Health (LIFE126)
    Level1
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting80:20
    Aims

    To develop students' knowledge in the major veterinary animal infectious diseases specifically bacterial, viral and parasitic diseases;
    To introduce students to the basic measures of diseases including epidemiological principles, the control, spread and treatment of diseases;
    To introduce students to b asic concepts in food security, safety, impact on the environment and veterinary public health.

    Learning Outcomes

    (LO1) Describe a variety of veterinary animal infectious diseases including bacterial, viral and parasitic diseases

    (LO2) Explain the basic measures of disease including the control and transmission of specific diseases

    (LO3) Explain basic epidemiological concepts and their application

    (LO4) Discuss the basic concepts of Veterinary public health including food safety, specific zoonoses, their biology and control.

    (S1) Teamwork

    (S2) Communication skills

  • Introduction to Genetics and Development (LIFE128)
    Level1
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting80:20
    Aims

    1) To develop students’ knowledge of the genetic basis of heredity and the application of modern genetic techniques across biology and medicine.

    2) To develop knowledge and understanding of the major events that comprise embryogenesis and of the genetic and cell-biological mechanisms that underpin developmental events.

    3) To enable students to appreciate the ethical issues surrounding modern genetic technology.

    Learning Outcomes

    (LO1) Recognise how germ cell development, meiosis and molecular mechanisms lead to variation in offspring and be able to interpret patterns of inheritance.

    (LO2) Choose and know how to apply relevant molecular technologies to study genes, and at an introductory level to create genetically modified organisms and treat genetic disease.

    (LO3) Identify the fundamental mechanisms that regulate development and the events that lead to germ layer formation and organogenesis.

    (LO4) Identify the experimental models and methods used to investigate the mechanisms that regulate development.

    (LO5) Identify the general properties of stem cells, their role in development and their therapeutic potential.

    (LO6) Discuss the ethical issues associated with developments in genetics, development and stem cell therapies.

    (S1) Effective Group working

    (S2) Structure and communicate ideas effectively

    (S3) Access and evaluate information

    (S4) Evaluate own performance and working standards and those of others

Year Two Compulsory Modules

  • Advanced Microbiological Techniques (LIFE228)
    Level2
    Credit level7.5
    SemesterSecond Semester
    Exam:Coursework weighting0:100
    Aims

    To provide students with a practical experience in a number of techniques used in microbiology;

    To develop research skills in microbiology by illustrating key concepts in microbiology;

    To develop knowledge and understanding in microbiology, and ability to apply, evaluate, and interpret this knowledge to solve microbiological problems.

    Learning Outcomes

    (LO1) On successful completion of this module students will be able to:Apply a range of techniques for the identification of microorganisms;

    (LO2) Assay cell components of biotechnology interest;

    (LO3) Produce and modify media for production and maintenance of microorganisms;

    (LO4) Work in a group to present data to an educated audience;

    (LO5) Demonstrate problem-solving skills in practical microbiology.

    (S1) Students will also develop independent learning, team-working and self-evaluation skills.

  • Biotechnology (LIFE210)
    Level2
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting80:20
    Aims

    Introduce students to the ways in which biology is utilised for commercial purposes;

    Develop knowledge and understanding of the production of antibiotics, biomass, single cell protein, biopolymers and vaccines;

    Develop knowledge and understanding in biotechnology, and the ability to apply, evaluate and interpret this knowledge to solve problems in biotechnology.

    Learning Outcomes

    (LO1) Identify the stages required for commercial production of microbial products;

    (LO2) Discuss the problems inherent in isolation, strain improvement and growth of microorganisms on a large scale;

    (LO3) Explain specific commercial processes via studies of such processes as antibiotic production, large-scale manufacture of enzymes and brewing;

    (LO4) Discuss how understanding of protein structure can lead to the generation of therapeutic   compounds;

    (LO5) Interpret how proteins and antibodies may be engineered and produced on an industrial scale for commercial applications;

    (LO6) Discuss how useful activities of enzymes may be manipulated and exploited;

    (S1) Problem solving/ critical thinking/ creativity analysing facts and situations and applying creative thinking to develop appropriate solutions.

    (S2) Information literacy online, finding, interpreting, evaluating, managing and sharing information

  • Essential Skills for the Life Sciences 2 (LIFE223)
    Level2
    Credit level15
    SemesterWhole Session
    Exam:Coursework weighting30:70
    Aims

    Enhance the development of the essential life science skills that students will require to improve their study skills;

    Enable students to analyse and interpret scientific data and communicate results;

    Enhance the employability prospects of students and career awareness.

    Learning Outcomes

    (LO1) Use a range of mathematical and numerical skills relevant to all biologists to summarise and interpret real-world data using graphs and tables.

    (LO2) Develop and test hypotheses within the context of experimental design and within a range of biological fields, select appropriate quantitative methods to answer questions;

    (LO3) To develop programming skills relevant for statistical analysis and apply appropriate statistical and other analysis packages to analyse data;

    (LO4) Recognise the moral and ethical issues of scientific investigations and discuss ethical standards and professional codes of conduct. 

    (LRE1) Structure and communicate ideas effectively, both orally and in writing;

    (LRE2) Discuss and appropriately use relevant literature

    (LRE3) Time management

    (S1) Communication, listening and questioning and respecting others by contributing to discussions.

    (S2) Team (group) working respecting others, co-operating, negotiating / persuading, awareness of interdependence with others

    (S3) Independent working and readiness to improve own performance based on feedback/reflective learning.

    (S4) Problem solving/ critical thinking/ creativity analysing facts and situations and applying creative thinking to develop appropriate solutions.

  • Techniques in Cell Biology (LIFE227)
    Level2
    Credit level7.5
    SemesterFirst Semester
    Exam:Coursework weighting60:40
    Aims

    1. Provide students with practical training in the use of equipment and techniques routinely used in cell biology.

    2. Enhance students acquisition of fundamental research skills; including, information gathering, scientific drawing, report writing and statistical analyses.

    3. Provide students with an understanding of the processes involved in the collection, interpretation and presentation of biological data.

    Learning Outcomes

    (LO1) Present, evaluate and interpret qualitative and quantitative data, and record procedures and protocols;

    (LO2) Manage time effectively to plan and execute a series of experiments

    (LO3) Use microscopes and other lab equipment correctly to efficiently andsafely conduct a series of experiments

    (LO4) Analyse data, interpret validity and apply statistical analyses;

    (LO5) Apply the principles of biotechnology, biomedicine and molecular cell biology  to practical experiments. 

    (S1) Problem solving/ critical thinking/ creativity analysing facts and situations and applying creative thinking to develop appropriate solutions.

    (S2) Team (group) working respecting others, co-operating, negotiating / persuading, awareness of interdependence with others

  • Virology (LIFE209)
    Level2
    Credit level15
    SemesterFirst Semester
    Exam:Coursework weighting80:20
    Aims

    This module aims to develop in students:

    The ability to explain the fundamental features and properties of viruses and viral infections;

    Knowledge and understanding of the use and development of molecular biology technologies in virology;

    The capacity to describe problems associated with viruses and their control, and identify positive applications of viruses;

    Knowledge and understanding in virology, and the ability to apply, evaluate and interpret this knowledge to solve problems in virology.

    Learning Outcomes

    (LO1) On successful completion of this module, the students should be able to: Explain basic terms and terminologies used in virology and describe virus particle structure;

    (LO2) Identify different virus infection life cycles in prokaryotes and eukaryotes, describing the role of key viral proteins in viral life cycles;

    (LO3) Describe impact of viruses on public health, explain how viruses may spread between different species and the concept of species-barrier;

    (LO4) Describe the use of diagnostic tools to detect, quantify, and monitor viruses;

    (LO5) Explain the role of immune system in combating viral infections in plants, invertebrates and mammals;

    (LO6) Demonstrate knowledge and critical understanding of the principles of virology, and how this knowledge has been applied to solve problems.

    (S1) Students will also develop independent learning and self-evaluation skills

Year Two Optional Modules

  • From Genes to Proteins (LIFE201)
    Level2
    Credit level15
    SemesterFirst Semester
    Exam:Coursework weighting70:30
    Aims

    To provide students with a general understanding of the major molecularmechanisms involved in gene expression and its regulation including both eukaryotic and prokary otic systems, extending from transcription though totranslation and the post-translational modification of proteins.   To provide students with a conceptual appreciation of key scientific approachesused to study these processes.   To raise awareness in students ofpotential applications and develop their appreciation of the fundamental nature, conservation andimportance of these systems.  

    Learning Outcomes

    (LO1) To explain the processes of transcription and translation and their regulation, the differences between them in prokaryotes and eukaryotes and how these are affected in disease.

    (LO2) To elucidate the post-translational events in eukaryotic cells, and how these produce a final functional protein from a primary translation product.

    (LO3) To evaluate the techniques used to investigate the processes of transcription and translation.

    (S1) Students will also develop independent learning and self-evaluation skills.

    (S2) Problem solving/ critical thinking/ creativity analysing facts and situations and applying creative thinking to develop appropriate solutions.

  • Cell Signalling in Health and Disease (LIFE202)
    Level2
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting80:20
    Aims

    This module aims to:

    Provide students with knowledge and understanding of the molecular mechanisms that allow cells to communicate with each other;

    Explain the general principles of these signalling mechanisms and then describe some of these in more detail;

    Illustrate how defects in these signalling processes can result in a variety of diseases;

    Outline the techniques that are used to investigate and define these pathways and to describe how these techniques are used in drug discovery programmes of research;

    Develop in students the ability to apply, evaluate and interpret this knowledge and understanding, to solve problems in molecular cell biology.

    Learning Outcomes

    (LO1) On successful completion of this module, the students should be able to: Describe the fundamental features of a range of common cell signalling mechanisms;

    (LO2) Explain how cell signalling processes may be defective, or modified, in a variety of different diseases;

    (LO3) Demonstrate knowledge of the molecular and biochemical nature and role of the different components of intracellular signalling pathways;

    (LO4) Demonstrate knowledge and critical understanding of the principles of cell signalling, and how this knowledge has been applied to solve problems in biological science.

    (S1) Students will also develop independent learning and self-evaluation skills

  • Molecular and Medical Genetics (LIFE208)
    Level2
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting100:0
    Aims

    This module aims to:

    Introduce students with an interest in genetics and molecular biology to the range of biological mechanisms that control the structure and stability of the genetic material;

    Describe how changes in the structure and stability of DNA can impact on health and disease;

    Use examples from both prokaryotes and eukaryotes to develop principles that help explain problems associated with medical/clinical genetics;

    Develop knowledge and understanding in genetics and molecular biology, and ability to apply, evaluate and interpret this knowledge to solve problems.

    Learning Outcomes

    (LO1) On successful completion of this module, the students should be able to: Describe the principles of DNA replication, DNA damage and mutation, DNA repair, DNA recombination, genetic transfer systems and transposition, cell cycle control and cell division, genetic mapping and cytogenetics;

    (LO2) Explain how these processes underpin an understanding of the genetic basis of human health and disease;

    (LO3) Demonstrate that they can solve problems by applying the above knowledge to identify genes underlying disease and the likely causes of DNA mutations;

    (LO4) Demonstrate knowledge and critical understanding of the principles of genetics and molecular biology, and how this knowledge has been applied to solve problems.

    (S1) Improving own learning/performance - Record-keeping

  • Veterinary Parasitology and Public Health (LIFE216)
    Level2
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting80:20
    Aims

    This module aims to:

    Describe the major parasitic diseases of companion and food producing animals and related parasites that impact on global human health;

    Outline control methods for parasitic infections;

    Develop knowledge and understanding in molecular and cellular biology, ecology and epidemiology relevant to parasitism, and the ability to apply, evaluate and interpret this knowledge to solve problems.

    Learning Outcomes

    (LO1) On successful completion of this module, students will be able to:1.    Describe the diversity, life history, diagnosis and control of economically-important parasites of animals, and those human parasites of global importance;

    (LO2) 2.    Define fundamental concepts in parasitology, such as host-parasite interaction, life cycle, virulence, as well as the consequences of parasitism;

    (LO3) 3.    Evaluate the relative importance and the nature of different threats of parasitic infection in terms of pathogenicity and impact on socio-economics;

    (LO4) 4.    Demonstrate knowledge and critical understanding of the principles of veterinary parasitology and public health, and how this knowledge has been applied to solve problems.

    (S1) Literacy application of literacy, ability to produce clear, structured written work and oral literacy - including listening and questioning

    (S2) Problem solving/ critical thinking/ creativity analysing facts and situations and applying creative thinking to develop appropriate solutions.

    (S3) Self-management readiness to accept responsibility (i.e. leadership), flexibility, resilience, self-starting, initiative, integrity, willingness to take risks, appropriate assertiveness, time management, readiness to improve own performance based on feedback/reflective learning

    (S4) Research management developing a research strategy, project planning and delivery, risk management, formulating questions, selecting literature, using primary/secondary/diverse sources, collecting & using data, applying research methods, applying ethics

  • The Immune System in Health and Disease (LIFE221)
    Level2
    Credit level15
    SemesterFirst Semester
    Exam:Coursework weighting80:20
    Aims

    This module aims to:

    Develop  students knowledge of the immune system and its role in protection against disease;

    Develop in students an appreciation of the importance of different immune mechanisms in different circumstances, and how these can be evaded;

    Enable students to evaluate and appreciate the consequences of immune system dysfunctions in disease.

    Learning Outcomes

    (LO1) Identify the main components of the mammalian immune system

    (LO2) Assess the contribution of innate and adaptive immune mechanisms to host defences

    (LO3) Assess the mechanisms that permit recognition of an infinitely diverse microflora

    (LO4) Discuss the impact of malfunction of immune processes on human health, and explain the bases of autoimmunity and allergy together with the mechanisms by which these can be minimised

    (LO5) Discuss how dysfunction of immune system constituents can cause disease

    (S1) Problem solving skills

    (S2) Organisational skills

  • E-biology: Informatics for Life Sciences (LIFE225)
    Level2
    Credit level7.5
    SemesterFirst Semester
    Exam:Coursework weighting99:0
    Aims

    Provide students with a practical appreciation of the nature and significance of digital data;

    Expose students to bioinformatics tools used in the analysis of data from areas such as genome sequencing, gene expression, and protein structure studies;

    Enable students to utilize digital data for understanding higher order phenomena within cells such as metabolism, gene regulation, and protein-protein interaction;

    Develop students’ knowledge and understanding of the subject and the ability to apply, evaluate, and interpret this knowledge to solve problems in biotechnology, biomedicine, and molecular cell biology.

    Learning Outcomes

    (LO1) Apply informatics tools in the discovery, evaluation, and acquisition of biological data;

    (LO2) Analyse and evaluate datasets of broad biological relevance, using tasks and workflows that will prepare them for third-year projects;

    (LO3) Use local and web-based tools for data analysis, management and collaborative working; 

    (LO4) Design research methods in bioinformatics to solve biological problems.

    (S1) Digital scholarship participating in emerging academic, professional, and research practices that depend on digital systems;

    (S2) Information technology (application of) adopting, adapting and using digital devices, applications, and services;

    (S3) Problem solving, critical thinking, creativity; analysing facts and situations and applying creative thinking to develop appropriate solutions.

  • Advanced Genetics Techniques (LIFE226)
    Level2
    Credit level7.5
    SemesterSecond Semester
    Exam:Coursework weighting50:50
    Aims

    Provide students with a practical training that will help them to carry out projects in genetics;

    Train students in the production and characterisation of specific deletion mutants, mutagen screening, cytogenetics and karyotype analysis, population studies, molecular analysis of genomes and bioinformatics;

    Develop knowledge and understanding in genetics and the ability to apply, evaluate, and interpret this knowledge to solve problems.

    Learning Outcomes

    (LO1) Present, critically evaluate, and interpret qualitative and quantitative data, and record procedures and protocols;

    (LO2) Work individually and as part of a team, manage time effectively, and use laboratory equipment correctly and safely to generate data;

    (LO3) Plan and execute a series of experiments to produce and characterise deletion mutants, screen mutagens, analyse karotypes, carry out population studies and molecular analysis of genomes, and interrogate bioinformatic databases;

    (LO4) Analyse data, interpret validity and apply statistical analyses.

    (S1) Students will also develop independent learning, teamworking and self-evaluation skills

    (S2) Team (group) working respecting others, co-operating, negotiating / persuading, awareness of interdependence with others

  • Molecular Science (LIFE237)
    Level2
    Credit level7.5
    SemesterFirst Semester
    Exam:Coursework weighting60:40
    Aims

    Provide students w ith practical experience in a number of techniques used in molecular biology; Equip student to perform analysis of DNA fragments by agarose gel electrophoresis; Introduce students to PCR based-assays for gene cloning and d emonstrate methods used for cloning, and analysing genes Develop in  students knowledge and understanding in biomedicine, biotechnology and molecular cell biology, and the ability to apply, evaluate and interpret this knowledge to solve biomolecular problems.

    Learning Outcomes

    (LO1) Present , evaluate critcally and interpret qualitative and quantitative molecular biology data;

    (LO2) Plan and execute a series of molecular biology experiments to demonstrate practical skills in molecular biology;

    (LO3) Analyse and interpret the validity of experimental data;

    (LO4) Summarise scientific investigations

    (S1) Problem solving/ critical thinking/ creativity analysing facts and situations and applying creative thinking to develop appropriate solutions.

    (S2) Improve time management to successfully complete experiments

  • E-biology: Informatics for Life Sciences (s2) (LIFE242)
    Level2
    Credit level7.5
    SemesterSecond Semester
    Exam:Coursework weighting99:0
    Aims

    Provide students with a practical appreciation of the nature and significance of digital data;

    Expose students to bioinformatics tools used in the analysis of data from areas such as genome sequencing, gene expression, and protein structure studies;

    Enable students to utilize digital data for understanding higher order phenomena within cells such as metabolism, gene regulation, and protein-protein interaction;

    Develop students’ knowledge and understanding of the subject and the ability to apply, evaluate and interpret this knowledge to solve problems in biotechnology, biomedicine, and molecular cell biology.

    Learning Outcomes

    (LO1) Apply informatics tools in the discovery, evaluation and acquisition of biological data.;

    (LO2) Analyse and evaluate datasets of broad biological relevance, using tasks and workflows that will prepare them for third-year projects.;

    (LO3) Use local and web-based tools for data analysis, management and collaborative working;

    (LO4) Design research methods in bioinformatics to solve biological problems.

    (S1) Digital scholarship participating in emerging academic, professional and research practices that depend on digital systems;

    (S2) Information technology (application of) adopting, adapting and using digital devices, applications, and services;

    (S3) Problem solving, critical thinking, creativity; analysing facts and situations and applying creative thinking to develop appropriate solutions.

Year Three Compulsory Modules

  • Bacterial Disease Mechanisms (LIFE318)
    Level3
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting100:0
    Aims

    To explain to students the common themes and diversity of mechanisms used by bacteria to cause disease.   To develop in students an understanding of virulence strategies used to achieve infection, including subversion of host immunity, expression of bacterial toxins motility and intracellular survival   To develop in students an understanding of mechanisms of genetic control, its temporal nature and the contribution of specific virulence determinants to the infection process

    Learning Outcomes

    (LO1) To assess the current knowledge of the innate immune barriers to bacterial infection

    (LO2) To contrast the bacterial pathogenesis strategies of diverse bacterial pathogens

    (LO3) To appraise the ethical aspects of animal experimentation and the scientific considerations for the design of in vivo models of infection

    (LO4) To summarise the molecular mode of action of key virulence determinants within a pathogen’s armoury

    (LO5) To evaluate the environmental, metabolic and temporal regulation of virulence genes and regulons and the mobilisation of virulence loci

    (S1) Communication skills

    (S2) Lifelong learning skills

  • Viral Disease Mechanisms (LIFE320)
    Level3
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting80:20
    Aims

    This module aims to:

    1. Highlight the role of viruses as important pathogens of humans and animals
    2. Explain in detail viral virulence mechanisms, the way viruses evade the immune system and modern approaches to vaccine development;
    3. Develop students knowledge and understanding in microbiology and to develope their ability to apply, evaluate critically and interpret this knowledge to solve complex problems in microbiology.

    Learning Outcomes

    (LO1) On successful completion of this module, the students will be able to: Explain the mechanisms of replication and pathogenesis of different virus families and evaluate modern approaches to investigating virus pathogenesis and their control by immune processes, preventative measure sand treatments

    (LO2) Critically discuss current hypotheses on the evolution of viral virulence, the contribution of virus infection to diseases in both humans and animals and current theories on the importance of globalization and climate change in the emergence and re-emergence of virus disease

    (LO3) Synthesise information, critically review evidence to support conclusions, and define complex problems by applying appropriate knowledge and skills.

    (S1) Information skills - Information accessing:[Locating relevant information] [Identifying and evaluating information sources]

    (S2) Information skills - Critical reading

  • Microbiomes - Microbial Diversity and Host Interactions (LIFE343)
    Level3
    Credit level15
    SemesterFirst Semester
    Exam:Coursework weighting70:30
    Aims

    To provide a theoretical and practical knowledge to understand and engage with microbiome research.

    Learning Outcomes

    (LO1) Understand the theory and methodology of microbiome research
    - through lectures and participation in practical workshops

    (LO2) Be able to critically assess the microbiome research and papers
    - Paper workshops

    (S1) Generating NGS data for microbiome research

    (S2) Bioinformatics of NGS microbiome data

    (S3) Critical thinking

    (S4) Scientific communication

  • Research Project (LIFE363)
    Level3
    Credit level30
    SemesterWhole Session
    Exam:Coursework weighting0:100
    Aims

    To provide students with an insight into and experience of the process of scientific research and debate;

    To develop in students the confidence to work independently and with others, to effectively and efficiently achieve a scientific aim;

    To further develop students' ability to communicate scientific concepts and findings in a variety of formats.

    Learning Outcomes

    (LO1) To p lan and execute a piece of scientific research, in a responsible, safe and ethical manner

    (LO2) To a nalyse and critically evaluate data, information, literature and observations, and draw valid conclusions

    (LO3) To a ppropriately communicate findings, in a variety of formats (oral, written reports) to supervisor, research staff and peers

    (LO4) To m aintain a clear and accurate record of work and progress

    (LO5) To c ritically evaluate and report upon relevant scientific literature

    (LO6) To e valuate own performance and working standards by reflection, and place work in a wider scientific context

    (S1) Problem solving skills

    (S2) Numeracy

    (S3) Organisational skills

    (S4) Communication skills

    (S5) IT skills

    (S6) Lifelong learning skills

    (S7) Ethical awareness

Year Three Optional Modules

  • Advanced Skills in Microbiology (LIFE325)
    Level3
    Credit level15
    SemesterFirst Semester
    Exam:Coursework weighting0:100
    Aims

    This module aims to develop transferable skills in critical thinking, interpretation of data and science communication in the context of Microbiology.

    Learning Outcomes

    (LO1) To analyse real-world data and present the results clearly and concisely in a poster.

    (LO2) To access and critically evaluate scientific literature in the area of Microbiology.

    (LO3) To communicate, in writing, scientific facts and data to both expert and lay audiences.

    (LO4) To synthesise information on current technologies and topical issues within Microbiology.

    (S1) Scientific Communication

    (S2) Group Working

    (S3) Digital Fluency

    (S4) Critical Thinking

  • Advanced Biotechnology (LIFE327)
    Level3
    Credit level15
    SemesterFirst Semester
    Exam:Coursework weighting80:20
    Aims

    To describe current approaches to exploit microorganisms and microbial processes in the context of modern developments in biotechnology;

    To evaluate economic and ethical aspects of the development of novel products and the potential environmental benefits of using biotechnological processes;

    To explain biotechnological processes, such as antibiotic production, plant biomass conversion and microbial informatics biofuels;

    To develop in students the ability to critically evaluate and interpret this knowledge and understanding, and to apply this to solve complex problems in microbial biotechnology.

    Learning Outcomes

    (LO1) To describe in detail particular biotechnological applications with emphasis on the underlying scientific principles

    (LO2) To critically discuss approaches to strain improvement and manipulation, including the impact of recombinant DNA technology on the biotechnology industry

    (LO3) To appraise the emerging importance of genomics, with reference to the development of new therapeutics, diagnostics and vaccines

    (LO4) To explain how microorganisms and their enzymes can compete with chemical processes for environmental and renewable energy applications

    (S1) Problem solving skills

    (S2) Communication skills

  • Topics in Global Health (LIFE340)
    Level3
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting100:0
    Aims

    To enhance students' awareness of the global distribution of disease and the associated implications and inequalities;

    To enhance students' awareness of the global impact of poverty and the negative and positive impacts of human activity in the spread of disease;

    To develop students' knowledge and deep understanding in the tropical disease biology and their ability to apply, critically evaluate and interpret this knowledge to solve complex problems.

    Learning Outcomes

    (LO1) To critically review the distribution of disease and discuss major implications for global health

    (LO2) To evaluate major reasons for the spread of disease and discuss approaches to control

    (LO3) To evaluate the roles of national, international and multinational agencies in the health arena

    (S1) Communication skills

    (S2) Ethical awareness

    (S3) International awareness

  • Genome Biology and Technology (LIFE342)
    Level3
    Credit level15
    SemesterSecond Semester
    Exam:Coursework weighting80:20
    Aims

    To enable students to perform an analysis of genome structure and function;
    To familiarize student with the arguments and the evidence supporting the molecular and evolutionary processes that shape eukaryotic and prokaryotic genomes;  
    To develop in students an understanding of how comparative genomics can provide insights into evolutionary processes as well as biological function of genes;
    To develop in students and understanding of how modern genomic methods can be used to solve biological problems;  
    To raise students' awareness of the limitations of modern genomic methods.

    Learning Outcomes

    (LO1) To assess eukaryotic and prokaryotic genome structure and function

    (LO2) To evaluate both the molecular and evolutionary processes that have shaped genomes in a range of eukaryotic and prokaryotic organisms

    (LO3) To evaluate modern genomic methods, their limitations and how they can be used to solve biological problems

    (LO4) To analyse data derived using modern genomic methods

    (S1) Teamwork

    (S2) Problem solving skills

    (S3) Communication skills

  • Parasitology (LIFE361)
    Level3
    Credit level15
    SemesterFirst Semester
    Exam:Coursework weighting70:30
    Aims

    To provide students with knowledge of the major features of the structure and life histories of a range of protozoan and helminth parasites of humans;

    To develop in students current understanding of the causes of major clinical symptoms and pathology attributable to these parasites, and of the major approaches to their prevention and control;

    To provide students with knowledge and deep understanding in parasitology, and the ability to apply, critically evaluate, and interpret this knowledge to solve complex problems.

    Learning Outcomes

    (LO1) To critically discuss modern molecular methods for examining parasitic diseases;

    (LO2) To evaluate the modern research literature in the area of parasitology with critical insight;

    (LO3) To critically discuss how topical problems in parasitology are currently being addressed, and future developments in this area;

    (LO4) To synthesise information, critically review evidence to support conclusions, and define complex problems by applying appropriate knowledge and skills.

    (S1) Communication skills;

    (S2) Problem solving skills.

  • Life Sciences Work Based Placement (LIFE399)
    Level3
    Credit level15
    SemesterFirst Semester
    Exam:Coursework weighting0:100
    Aims

    To give students an opportunity to develop their skills during a placement at a commercial, research, voluntary, or similar organisation, reflect on their experiences and progress during the placement,and engage with relevant theory and research in the area of occupational psychology.

    Learning Outcomes

    (LO1) Critically reflect on the development of employability skills.

    (LO2) Appraise current work placement practice in relation to both employer and employee outcomes.

    (LO3) Designand justify work placement recommendations with reference to relevant theoryand research and student placement experience.

    (S1) Critical thinking and Problem solving skills

    (S2) Communication (written and oral)

    (S3) Interpersonal (self-management and teamworking) skills

    (S4) Effectiveness

    (S5) Organisational skills

    (S6) Digital literacy (use of VLOG, online reflective log)

    (S7) Technical skills (associated to the placement work)

Programme Year Four

Students can transfer into the C900 (MBiolSci) programme to complete a four-year integrated master’s (subject to performance). This offers 6-week internships and one-year placement opportunities in the UK or abroad (subject to availability).

The programme detail and modules listed are illustrative only and subject to change.


Teaching and Learning

You will experience a range of learning environments during your studies at Liverpool. These will include student-centred activities as well as lectures, tutorials, laboratory practicals, dissection classes, fieldwork, data handling sessions and computer workshops. Some of these activities will be performed individually, such as personal research projects, and others in small tutorial or project groups, in addition to formal lectures and workshops. You will have research staff as well as your own academic adviser for individual tuition on our acclaimed tutorial programme.


Assessment

As well as factual knowledge and understanding, biologists need practical and organisational skills, and an ability to work both alone and with other people. We record development of these abilities through continuous assessment during each semester and by final examination.