# Mathematics and Statistics BSc (Hons)

## Key information

• Course length: 3 years
• UCAS code: GG13
• Year of entry: 2020
• Typical offer: A-level : ABB / IB : 33 / BTEC : D*DD

### Module details

#### Year One Compulsory Modules

• ##### Calculus I (MATH101)
Level 1 15 First Semester 70:30 1. To introduce the basic ideas of differential and integral calculus, to develop the basic skills required to work with them and to apply these skills to a range of problems.2. To introduce some of the fundamental concepts and techniques of real analysis, including limits and continuity.3. To introduce the notions of sequences and series and of their convergence. (LO1) Differentiate and integrate a wide range of functions;(LO2) Sketch graphs and solve problems involving optimisation and mensuration(LO3) Understand the notions of sequence and series and apply a range of tests to determine if a series is convergent(S1) Numeracy
• ##### Calculus II (MATH102)
Level 1 15 Second Semester 80:20 - To discuss local behaviour of functions using Taylor’s theorem.- To introduce multivariable calculus including partial differentiation, gradient, extremum values and double integrals. (LO1) Use Taylor series to obtain local approximations to functions(LO2) Obtain partial derivatives and use them in several applications such as, error analysis, stationary points change of variables.(LO3) Evaluate double integrals using Cartesian and Polar Co-ordinates.
• ##### Math103 - Introduction to Linear Algebra (MATH103)
Level 1 15 First Semester 60:40 • To develop techniques of complex numbers and linear algebra, including equation solving, matrix arithmetic and the computation of eigenvalues and eigenvectors. • To develop geometrical intuition in 2 and 3 dimensions. • To introduce students to the concept of subspace in a concrete situation. • To provide a foundation for the study of linear problems both within mathematics and in other subjects (LO1) Manipulate complex numbers and solve simple equations involving them solve arbitrary systems of linear equations(LO2) Understand and use matrix arithmetic, including the computation of matrix inverses(LO3) Compute and use determinants(LO4) Understand and use vector methods in the geometry of 2 and 3 dimensions(LO5) Calculate eigenvalues and eigenvectors and, if time permits, apply these calculations to the geometry of conics and quadrics.(LO6) calculate eigenvalues and eigenvectors and, if time permits, apply these calculations to the geometry of conics and quadrics(S2) Numeracy
• ##### Introduction to Statistics (MATH162)
Level 1 15 Second Semester 80:20 •To introduce topics in Statistics and to describe and discuss basic statistical methods. •To describe the scope of the application of these methods. (LO1) To know how to describe statistical data.(LO2)  To be able to use the Binomial, Poisson, Exponential and Normal distributions.(LO3) To be able to perform simple goodness-of-fit tests.(LO4) To be able to use an appropriate statistical software package to present data and to make statistical analysis.(S1) Numeracy(S2) Problem solving skills(S3) IT skills(S4) Communication skills
• ##### Mathematical It Skills (MATH111)
Level 1 15 First Semester 0:100 •To acquire key mathematics-specific computer skills.•To reinforce mathematics as a practical discipline by active experience and experimentation, using the computer as a tool.•To illustrate and amplify mathematical concepts and techniques.•To initiate and develop problem solving, group work and report writing skills.•To initiate and develop modelling skills.•To develop team work skills. (LO1) After completing the module, students should be able to tackle project work, including writing up of reports detailing their solutions to problems.(LO2) After completing the module, students should be able to use computers to create documents containing formulae, tables, plots and references.(LO3) After completing the module, students should be able to use mathematical software packages such as Maple and Matlab to manipulate mathematical expressions and to solve simple problems.(LO4) After completing the module, students should be able to better understand the mathematical topics covered, through direct experimentation with the computer.(S1) Problem solving skills(S2) Numeracy(S3) Communication skills(S4) IT skills(S5) Teamwork(S6) Adaptability(S7) Leadership(S8) Mathematical modelling skills
• ##### Introduction to Study and Research in Mathematics (MATH107)
Level 1 15 First Semester 0:100 This module addresses what it means to be a mathematician, as an undergraduate and beyond that into academia or industry, and prepares students to succeed as such. It aims to:- bridge the gap in language and philosophy between A-level and (more rigorous) University mathematics;- equip students with the basic tools they need for their mathematical careers;- enable students to take responsibility for their learning and become active learners;- familiarise students with mathematics research as conducted within the department;- build students' confidence in handling various forms of mathematical communication. (1) Foundational knowledge of objects, processes, logic and reasoning required for university level mathematics.(2) Awareness of the nature of mathematics at University and beyond, and the implications of this for themselves.(3) Proactive engagement in the student's own learning.(4) Development of skills for mathematical communication (including mathematics proofs).
• ##### Newtonian Mechanics (MATH122)
Level 1 15 Second Semester 80:20 To provide a basic understanding of the principles of Classical Mechanics and their application to simple dynamical systems. Learning Outcomes:After completing the module students should be able to analyse real world problems involving:- the motions of bodies under simple force systems- conservation laws for momentum and energy- rigid body dynamics using centre of mass, angular momentum and moments of inertia (LO1) the motions of bodies under simple force systems(LO2) conservation laws for momentum and energy(LO3) rigid body dynamics using centre of mass, angular momentum and moments(LO4) oscillation, vibration, resonance(LO5) oscillation, vibration, resonance(S1) Representing physical problems in a mathematical way(S2) Problem Solving Skills
• ##### Numbers, Groups and Codes (MATH142)
Level 1 15 Second Semester 80:20 - To provide an introduction to rigorous reasoning in axiomatic systems exemplified by the framework of group theory.- To give an appreciation of the utility and power of group theory as the study of symmetries.- To introduce public-key cryptosystems as used in the transmission of confidential data, and also error-correcting codes used to ensure that transmission of data is accurate. Both of these ideas are illustrations of the application of algebraic techniques. (LO1) Be able to apply the Euclidean algorithm to find the greatest common divisor of a pair of positive integers, and use this procedure to find the inverse of an integer modulo a given integer.(LO2) Be able to solve linear congruences and apply appropriate techniques to solve systems of such congruences.(LO3) Be able to perform a range of calculations and manipulations with permutations.(LO4) Recall the definition of a group and a subgroup and be able to identify these in explicit examples.(LO5) Be able to prove that a given mapping between groups is a homomorphism and identify isomorphic groups.(LO6) To be able to apply group theoretic ideas to applications with error correcting codes.(LO7) Engage in group project work to investigate applications of the theoretical material covered in the module.

### Programme Year Two

Year Two Optional Modules: Choose at least 1 module from MATH261, MATH260, MATH268.

Choose at least 3 further modules from: MATH225, MATH227, MATH241, MATH243. MATH244, MATH224, MATH228, MATH247, MATH248, MATH266

Choose at least one further optional credit module from: COMP228, MATH291

#### Year Two Compulsory Modules

• ##### Math201 - Ordinary Differential Equations (MATH201)
Level 2 15 First Semester 75:25 •To familiarize students with basic ideas and fundamental techniques to solve ordinary differential equations.•To illustrate the breadth of applications of ODEs and fundamental importance of related concepts. (LO1) To understand the basic properties of ODE, including main features of initial value problems and boundary value problems, such as existence and uniqueness of solutions.(LO2) To know the elementary techniques for the solution of ODEs.(LO3) To understand the idea of reducing a complex ODE to a simpler one.(LO4) To be able to solve linear ODE systems (homogeneous and non-homogeneous) with constant coefficients matrix.(LO5) To understand a range of applications of ODE.(S1) Problem solving skills(S2) Numeracy
• ##### Statistical Theory and Methods I (MATH263)
Level 2 15 Second Semester 85:15 To introduce statistical methods with a strong emphasis on applying standard statistical techniques appropriately and with clear interpretation.  The emphasis is on applications. (LO1) To have a conceptual and practical understanding of a range of commonly applied statistical procedures.(LO2) To have developed some familiarity with an appropriate statistical software package.(S1) Problem solving skills(S2) Numeracy(S3) IT skills(S4) Communication skills
• ##### Statistical Theory and Methods II (MATH264)
Level 2 15 Second Semester 90:10 To introduce statistical distribution theory which forms the basis for all applications of statistics, and for further statistical theory. (LO1) To have an understanding of basic probability calculus.(LO2) To have an understanding of a range of techniques for solving real life problems of probabilistic nature.(S1) Problem solving skills(S2) Numeracy

#### Year Two Optional Modules

• ##### Introduction to Methods of Operational Research (MATH261)
Level 2 15 First Semester 70:30 The aims of the module are to develop an understanding of how mathematical modelling and operational research techniques are applied to real-world problems and to gain an understanding of linear and convex programming, multi-objective problems, inventory control and sensitivity analysis. (LO1) To understand the operational research approach.(LO2) To be able to apply standard methods of operational research to a wide range of real-world problems as well as to problems in other areas of mathematics.(LO3) To understand the advantages and disadvantages of particular operational research methods.(LO4) To be able to derive methods and modify them to model real-world problems.(LO5) To understand and be able to derive and apply the methods of sensitivity analysis.(LO6) To understand the importance of sensitivity analysis.(S1) Adaptability(S2) Problem solving skills(S3) Numeracy(S4) Self-management readiness to accept responsibility (i.e. leadership), flexibility, resilience, self-starting, initiative, integrity, willingness to take risks, appropriate assertiveness, time management, readiness to improve own performance based on feedback/reflective learning
• ##### Financial Mathematics (MATH260)
Level 2 15 Second Semester 0:0 To introduce geometric ideas and develop the basic skills in handling them.To study the line, circle, ellipse, hyperbola, parabola, cubics and many other curves.To study theoretical aspects of parametric, algebraic and projective curves.To study and sketch curves using an appropriate computer package. (LO1) Understand the assumptions of CAMP, explain the no riskless lending or borrowing and other lending and borrowing assumptions, be able to use the formulas of CAMP, be able to derive the capital market line and security market line(LO2) Describe the Arbitrage Theory Model (APT) and explain its assumptions, perform estimating and testing in APT(LO3) Be able to explain the terms long/short position, spot/delivery/forward price, understand the use of future contracts, describe what a call/put option (European/American) is and be able to makes graphs and explain their payouts, describe the hedging for reducing the exposure to risk, be able to explain arbitrage, understand the mechanism of short sales(LO4) Explain/describe what arbitrage is, and also the risk neutral probability measure, explain/describe and be able to use (perform calculation) the binomial tree for European and American style options(LO5) Understand the probabilistic interpretation and the basic concept of the random walk of asset pricing(LO6) Understand the concepts of replication, hedging, and delta hedging in continuous time(LO7) Be able to use Ito's formula, derive/use the Black‐Scholes formula, price contingent claims (in particular European/American style options and forward contracts), be able to explain the properties of the Black‐Scholes formula, be able to use the Normal distribution function in numerical examples of pricing(LO8) Understand the role of Greeks , describe intuitively what Delta, Theta, Gamma is, and be able to calculate them in numerical examples.
• ##### Operational Research: Probabilistic Models (MATH268)
Level 2 15 Second Semester 90:10 To introduce a range of models and techniques for solving under uncertainty in Business, Industry, and Finance. (LO1) The ability to understand and describe mathematically real-life optimization problems.(LO2) Understanding the basic methods of dynamical decision making.(LO3) Understanding the basics of forecasting and simulation.(LO4) The ability to analyse elementary queueing systems.(S1) Problem solving skills(S2) Numeracy
• ##### Vector Calculus With Applications in Fluid Mechanics (MATH225)
Level 2 15 First Semester 85:15 •To provide an understanding of the various vector integrals, the operator’s div, grad and curl and the relations between them.•To give an appreciation of the many applications of vector calculus to physical situations.•To provide an introduction to the subjects of fluid mechanics and electromagnetism. (LO1) After completing the module students should be able to: - Work confidently with different coordinate systems. - Evaluate line, surface and volume integrals. - Appreciate the need for the operators div, grad and curl together with the associated theorems of Gauss and Stokes. - Recognise the many physical situations that involve the use of vector calculus. - Apply mathematical modelling methodology to formulate and solve simple problems in electromagnetism and inviscid fluid flow. All learning outcomes are assessed by both examination and course work.
• ##### Mathematical Models: Microeconomics and Population Dynamics (MATH227)
Level 2 15 First Semester 90:10 •To provide an understanding of the techniques used in constructing, analysing, evaluating and interpreting mathematical models.•To do this in the context of two non-physical applications, namely microeconomics and population dynamics. •To use and develop mathematical skills introduced in Year 1 - particularly the calculus of functions of several variables and elementary differential equations. (LO1) After completing the module students should be able to: - Use techniques from several variable calculus in tackling problems in microeconomics. - Use techniques from elementary differential equations in tackling problems in population dynamics. - Apply mathematical modelling methodology in these subject areas. All learning outcomes are assessed by both examination and course work.
• ##### Metric Spaces and Calculus (MATH241)
Level 2 15 First Semester 80:20 To introduce the basic elements of the theory of metric spaces and calculus of several variables. (LO1) After completing the module students should: Be familiar with a range of examples of metric spaces. Have developed their understanding of the notions of convergence and continuity. Understand the contraction mapping theorem and appreciate some of its applications. Be familiar with the concept of the derivative of a vector valued function of several variables as a linear map. Understand the inverse function and implicit function theorems and appreciate their importance. Have developed their appreciation of the role of proof and rigour in mathematics.(S1) Problem solving skills
• ##### Complex Functions (MATH243)
Level 2 15 First Semester 80:20 •To introduce the student to a surprising, very beautiful theory having intimate connections with other areas of mathematics and physical sciences, for instance ordinary and partial differential equations and potential theory. (LO1) To understand the central role of complex numbers in mathematics;.(LO2) To develop the knowledge and understanding of all the classical holomorphic functions.(LO3) To be able to compute Taylor and Laurent series of standard holomorphic functions.(LO4) To understand various Cauchy formulae and theorems and their applications.(LO5) To be able to reduce a real definite integral to a contour integral.(LO6) To be competent at computing contour integrals.(S1) Problem solving skills(S2) Numeracy(S3) Adaptability
• ##### Linear Algebra and Geometry (MATH244)
Level 2 15 First Semester 80:20 To introduce general concepts of linear algebra and its applications in geometry and other areas of mathematics. (LO1) To understand the geometric meaning of linear algebraic ideas.(LO2) To know the concept of an abstract vector space and how it is used in different mathematical situations.(LO3) To be able to apply a change of coordinates to simplify a linear map.(LO4) To be able to work with matrix groups, in particular GL(n), O(n) and SO(n),.(LO5) To understand bilinear forms from a geometric point of view.(S1) Problem solving skills(S2) Numeracy(S3) Adaptability
• ##### Introduction to the Methods of Applied Mathematics (MATH224)
Level 2 15 Second Semester 90:10 •To provide a grounding in elementary approaches to solution of some of the standard partial differential equations encountered in the applications of mathematics.•To introduce some of the basic tools (Fourier Series) used in the solution of differential equations and other applications of mathematics. (LO1) After completing the module students should: - be fluent in the solution of basic ordinary differential equations, including systems of first order equations:- be familiar with the concept of Fourier series and their potential application to the solution of both ordinary and partial differential equations:- be familiar with the concept of Laplace transforms and their potential application to the solution of both ordinary and partial differential equations: - be able to solve simple first order partial differential equations: - be able to solve the basic boundary value problems for second order linear partial differential equations using the method of separation of variables.
• ##### Classical Mechanics (MATH228)
Level 2 15 Second Semester 90:10 To provide an understanding of the principles of Classical Mechanics and their application to dynamical systems. (LO1) To understand the variational principles, Lagrangian mechanics, Hamiltonian mechanics.(LO2) To be able to use Newtonian gravity and Kepler's laws to perform the calculations of the orbits of satellites, comets and planetary motions.(LO3) To understand the motion relative to a rotating frame, Coriolis and centripetal forces, motion under gravity over the Earth's surface.(LO4) To understand the connection between symmetry and conservation laws.(LO5) To be able to work with inertial and non-inertial frames.(S1) Applying mathematics to physical problems(S2) Problem solving skills
• ##### Math247 - Commutative Algebra (MATH247)
Level 2 15 Second Semester 90:10 To give an introduction to abstract commutative algebra and show how it both arises naturally, and is a useful tool, in number theory. (LO1) After completing the module students should be able to: • Work confidently with the basic tools of algebra (sets, maps, binary operations and equivalence relations). • Recognise abelian groups, different kinds of rings (integral, Euclidean, principal ideal and unique factorisation domains) and fields. • Find greatest common divisors using the Euclidean algorithm in Euclidean domains. • Apply commutative algebra to solve simple number-theoretic problems.
• ##### Geometry of Curves (MATH248)
Level 2 15 Second Semester 90:10 To introduce geometric ideas and develop the basic skills in handling them.To study the line, circle, ellipse, hyperbola, parabola, cubics and many other curves.To study theoretical aspects of parametric, algebraic and projective curves.To study and sketch curves using an appropriate computer package. (LO1) After completing this module students should be able to use a computer package to study curves and their evolution in both parametric and algebraic forms.(LO2) After completing this module students should be able to determine and work with tangents, inflexions, curvature, cusps, nodes, length and other features.(LO3) After completing this module students should be able to determine the position and shape of some algebraic curves including conics.(S1) Problem solving skills(S2) Numeracy(S3) IT skills(S4) Adaptability
• ##### Math266 - Numerical Methods for Applied Mathematics (MATH266)
Level 2 15 Second Semester 90:10 To provide an introduction to the main topics in Numerical Analysis and their relation to other branches of Mathematics (LO1) To strengthen students’ knowledge of scientific programming, building on the ideas introduced in MATH111.(LO2) To provide an introduction to the foundations of numerical analysis and its relation to other branches of Mathematics.(LO3) To introduce students to theoretical concepts that underpin numerical methods, including fixed point iteration, interpolation, orthogonal polynomials and error estimates based on Taylor series.(LO4) To demonstrate how analysis can be combined with sound programming techniques to produce accurate, efficient programs for solving practical mathematical problems.(S1) Numeracy(S2) Problem solving skills
• ##### App Development (COMP228)
Level 2 15 First Semester 60:40 To provide guidelines, design principles and experience in developing applications for small, mobile devices, including an appreciation of context and location aware services.  To develop an appreciation of interaction modalities with small, mobile devices through the implementation of simple applications and use cases. To be aware of current developments of mobile interface technologies. (LO1) At the end of the module, the student will have a working understanding of the characteristics and limitations of mobile hardware devices including their user-interface modalities.(LO2) The ability to develop applications that are mobile-device specific and demonstrate current practice in mobile computing contexts.(LO3) A comprehension and appreciation of the design and development of context-aware solutions for mobile devices. (S1) Problem solving skills(S2) Numeracy(S3) Commercial awareness
• ##### Mathematics Education and Communication (MATH291)
Level 2 15 Whole Session 0:100 1.Improving communication skills.2.Exposing students to current pedagogical practice and issues related to child protection3.Encouraging students to reflect on mathematics with which they are familiar in a teaching context. (LO1) Confidence in planning and presenting mathematics to school-age children.(LO2) Knowledge of current best pedagogical practice and child protection issues.(LO3) Ability to work in a team.(LO4) Understanding the role of outreach in mathematics education.(S1) Improving own learning/performance - Reflective practice(S2) Communication (oral, written and visual) - Presentation skills – oral(S3) Communication (oral, written and visual) - Presentation skills - written(S4) Communication (oral, written and visual) - Presentation skills - visual(S5) Communication (oral, written and visual) - Report writing(S6) Working in groups and teams - Group action planning

### Programme Year Three

Year Three Optional Modules: Choose at least 2 modules from: MATH362, MATH365, MATH360, MATH361, MATH364, MATH366, MATH368, MATH399 (MATH399 cannot be taken with MATL391 or MATH390)

Choose further MATH3 and MATL3 modules to make up a total of 120 credits. Modules should be chosen to ensure a balanced credit load between semesters. Choose from: MATH322, MATH323, MATH324, MATH325, MATH326, MATH343, MATH344, MATH367, MATH390 (* cannot be taken with MATL391 or MATH399), MATL391 (Takes place during summer between 2nd and 3rd year, cannot be taken with MATH390 or MATH399), MATH327, MATH331, MATH332, MATH342, MATH345, MATH346, MATH349

#### Year Three Compulsory Modules

• ##### Linear Statistical Models (MATH363)
Level 3 15 First Semester 70:30 - To understand how regression methods for continuous data extend to include multiple continuous and categorical predictors, and categorical response variables.- To provide an understanding of how this class of models forms the basis for the analysis of experimental and also observational studies.- To understand generalized linear models.- To develop skills in using the computer package SPSS. (LO1) Be able to understand the rationale and assumptions of linear regression and analysis of variance.(LO2) Be able to understand the rationale and assumptions of generalized linear models.(LO3) Be able to recognise the correct analysis for a given experiment.(LO4) Be able to carry out and interpret linear regressions and analyses of variance, and derive appropriate theoretical results.(LO5) Be able to carry out and interpret analyses involving generalised linear models and derive appropriate theoretical results.(LO6) Be able to perform linear regression, analysis of variance and generalised linear model analysis using the SPSS computer package.(S1) Be able to perform linear regression, analysis of variance and generalised linear model analysis using the SPSS computer package.

#### Year Three Optional Modules

• ##### Applied Probability (MATH362)
Level 3 15 First Semester 100:0 To give examples of empirical phenomena for which stochastic processes provide suitable mathematical models. To provide an introduction to the methods of probabilistic model building for ‘‘dynamic" events occurring over time. To familiarise students with an important area of probability modelling. (LO1) 1. Knowledge and Understanding After the module, students should have a basic understanding of: (a) some basic models in discrete and continuous time Markov chains such as random walk and Poisson processes (b) important subjects like transition matrix, equilibrium distribution, limiting behaviour etc. of Markov chain (c) special properties of the simple finite state discrete time Markov chain and Poisson processes, and perform calculations using these.2. Intellectual Abilities After the module, students should be able to: (a) formulate appropriate situations as probability models: random processes (b) demonstrate knowledge of standard models (c) demonstrate understanding of the theory underpinning simple dynamical systems 3. General Transferable Skills (a) numeracy through manipulation and interpretation of datasets (b) communication through presentation of written work and preparation of diagrams (c) problem solving through tasks set in tutorials (d) time management in the completion of practicals and the submission of assessed work (e) choosing, applying and interpreting results of probability techniques for a range of different problems.
• ##### Measure Theory and Probability (MATH365)
Level 3 15 First Semester 90:10 The main aim is to provide a sufficiently deepintroduction to measure theory and to the Lebesgue theory of integration. Inparticular, this module aims to provide a solid background for the modernprobability theory, which is essential for Financial Mathematics. (LO1) After completing the module students should be ableto:(LO2) master the basic results about measures and measurable functions;(LO3) master the basic results about Lebesgue integrals and their properties;(LO4) to understand deeply the rigorous foundations ofprobability theory;(LO5) to know certain applications of measure theoryto probability, random processes, and financial mathematics.(S1) Problem solving skills(S2) Logical reasoning
• ##### Applied Stochastic Models (MATH360)
Level 3 15 Second Semester 100:0 To give examples of empirical phenomena for which stochastic processes provide suitable mathematical models. To provide an introduction to the methods of stochastic model building for 'dynamic' events occurring over time or space. To enable further study of the theory of stochastic processes by using this course as a base. (LO1) To understans the theory of continuous-time Markov chains.(LO2) To understans the theory of diffusion processes. (LO3) To be able to solve problems arising in epidemiology, mathematical biology, financial mathematics, etc. using the theory of continuous-time Markov chains and diffusion processes. (LO4) To acquire an undertanding of the standard concepts and methods of stochastic modelling.(S1) Problem solving skills(S2) Numeracy
• ##### Theory of Statistical Inference (MATH361)
Level 3 15 Second Semester 90:10 To introduce some of the concepts and principles which provide theoretical underpinning for the various statistical methods, and, thus, to consolidate the theory behind the other second year and third year statistics options. (LO1) To acquire a good understanding of the classical approach to, and especially the likelihood methods for, statistical inference.(LO2) To acquire an understanding of the blossoming area of Bayesian approach to inference.(S1) Problem solving skills(S2) Numeracy
• ##### Medical Statistics (MATH364)
Level 3 15 Second Semester 100:0 The aims of this module are to:•Demonstrate the purpose of medical statistics and the role it plays in the control of disease and promotion of health •Explore different epidemiological concepts and study designs •Apply statistical methods learnt in other programmes, and some new concepts, to medical problems and practical epidemiological research •Enable further study of the theory of medical statistics by using this module as a base. (LO1) identify the types of problems encountered in medical statistics(LO2) demonstrate the advantages and disadvantages of different epidemiological study designs(LO3) apply appropriate statistical methods to problems arising in epidemiology and interpret results(LO4) explain and apply statistical techniques used in survival analysis(LO5) critically evaluate statistical issues in the design and analysis of clinical trials(LO6) discuss statistical issues related to systematic review and apply appropriate methods of meta-analysis(LO7) apply Bayesian methods to simple medical problems.(S1) Problem solving skills
• ##### Mathematical Risk Theory (MATH366)
Level 3 15 Second Semester 100:0 •To provide an understanding of the mathematical risk theory used in the study process of actuarial interest• To provide an introduction to mathematical methods for managing the risk in insurance and finance (calculation of risk measures/quantities)• To develop skills of calculating the ruin probability and the total claim amount distribution in some non‐life actuarial risk models with applications to insurance industry• To prepare the students adequately and to develop their skills in order to be ready to sit for the exams of CT6 subject of the Institute of Actuaries (MATH366 covers 50% of CT6 in much more depth). (LO1) After completing the module students should be able to: (a) Define the loss/risk function and explain intuitively the meaning of it, describe and determine optimal strategies of game theory, apply the decision criteria's, be able to decide a model due to certain model selection criterion, describe and perform calculations with Minimax and Bayes rules. (b) Understand the concept (and the mathematical assumptions) of the sums of independent random variables, derive the distribution function and the moment generating function of finite sums of independent random variables.(c) Define and explain the compound Poisson risk model, the compound binomial risk model, the compound geometric risk model and be able to derive the distribution function, the probability function, the mean, the variance, the moment generating function and the probability generating function for exponential/mixture of exponential severities and gamma (Erlang) severities, be able to calculate the distribution of sums of independent compound Poisson random variables. (d) Understand the use of convolutions and compute the distribution function and the probability function of the compound risk model for aggregate claims using convolutions and recursion relationships.(e) Define the stop‐loss reinsurance and calculate the (mean) stop‐loss premium for exponential and mixtures of exponential severities, be able to compare the original premium and the stoploss premium in numerical examples.(f) Understand and be able to use Panjer's equation when the number of claims belongs to theR(a, b, 0) class of distributions, use the Panjer's recursion in order to derive/evaluate the probability function for the total aggregate claims.(g) Explain intuitively the individual risk model, be able to calculate the expected losses (as well as the variance) of group life/non‐life insurance policies when the benefits of the each person of the group are assumed to have deterministic variables.(h) Derive a compound Poisson approximations for a group of insurance policies (individual risk model as approximation), (i) Understand/describe the classical surplus process ruin model and calculate probabilities of the number of the risks appearing in a specific time period, under the assumption of the Poisson process.(j) Derive the moment generating function of the classical compound Poisson surplus process, calculate and explain the importance of the adjustment coefficient, also be able to make use of Lundberg's inequality for exponential and mixtures of exponential claim severities.(k) Derive the analytic solutions for the probability of ruin, psi(u), by solving the corresponding integro‐differential equation for exponential and mixtures of exponential claim amount severities, (l) Define the discrete time surplus process and be able to calculate the infinite ruin probability, psi(u,t) in numerical examples (using convolutions). (m) Derive Lundberg's equation and explain the importance of the adjustment coefficient under the consideration of reinsurance schemes.(n) Understand the concept of delayed claims and the need for reserving, present claim data as a triangle (most commonly used method), be able to fill in the lower triangle by comparing present data with past (experience) data.(o) Explain the difference and adjust the chain ladder method, when inflation is considered.(p) Describe the average cost per claim method and project ultimate claims, calculate the required reserve (by using the claims of the data table).(q) Use loss ratios to estimate the eventual loss and hence outstanding claims.(r) Describe the Bornjuetter‐Ferguson method (be able to understand the combination of the estimated loss ratios with a projection method). Use the aforementioned method to calculate the revised ultimate losses (by making use of the credibility factor).
• ##### Stochastic Theory and Methods in Data Science (MATH368)
Level 3 15 Second Semester 70:30 1. To develop a understanding of the foundations of stochastics normally including processes and theory.2. To develop an understanding of the properties of simulation methods and their applications to statistical concepts.3. To develop skills in using computer simulations such as Monte-Carlo methods4. To gain an understanding of the learning theory and methods and of their use in the context of machine learning and statistical physics.5. To obtain an understanding of particle filters and stochastic optimisation. (LO1) Develop understanding of the use of probability theory.(LO2) Understand stochastic models and the use statistical data.(LO3) Demonstrate numerical skills for the understanding of stochastic processes.(LO4) Understand the main machine learning techniques.
• ##### Chaos and Dynamical Systems (MATH322)
Level 3 15 First Semester 100:0 To develop expertise in dynamical systems in general and study particular systems in detail. (LO1) After completing the module students will be able to understand the possible behaviour of dynamical systems with particular attention to chaotic motion;(LO2) After completing the module students will be familiar with techniques for extracting fixed points and exploring the behaviour near such fixed points;(LO3) After completing the module students will understand how fractal sets arise and how to characterise them.(S1) Problem solving skills(S2) Numeracy
• ##### Further Methods of Applied Mathematics (MATH323)
Level 3 15 First Semester 100:0 •To give an insight into some specific methods for solving important types of ordinary differential equations.•To provide a basic understanding of the Calculus of Variations and to illustrate the techniques using simple examples in a variety of areas in mathematics and physics.•To build on the students'' existing knowledge of partial differential equations of first and second order. (LO1) After completing the module students should be able to: - use the method of "Variation of Arbitrary Parameters" to find the solutions of some inhomogeneous ordinary differential equations.- solve simple integral extremal problems including cases with constraints;- classify a system of simultaneous 1st-order linear partial differential equations, and to find the Riemann invariants and general or specific solutions in appropriate cases;- classify 2nd-order linear partial differential equations and, in appropriate cases, find general or specific solutions.  [This might involve a practical understanding of a variety of mathematics tools; e.g. conformal mapping and Fourier transforms.]
• ##### Cartesian Tensors and Mathematical Models of Solids and VIscous Fluids (MATH324)
Level 3 15 First Semester 100:0 To provide an introduction to the mathematical theory of viscous fluid flows and solid elastic materials. Cartesian tensors are first introduced. This is followed by modelling of the mechanics of continuous media. The module includes particular examples of the flow of a viscous fluid as well as a variety of problems of linear elasticity. (LO1) To understand and actively use the basic concepts of continuum mechanics such as stress, deformation and constitutive relations.(LO2) To apply mathematical methods for analysis of problems involving the flow of viscous fluid or behaviour of solid elastic materials.(S1) Problem solving skills(S2) Numeracy(S3) Adaptability
• ##### Quantum Mechanics (MATH325)
Level 3 15 First Semester 90:10 The aim of the module is to lead the student to an understanding of the way that relatively simple mathematics (in modern terms) led Bohr, Einstein, Heisenberg and others to a radical change and improvement in our understanding of the microscopic world. (LO1) To be able to solve Schrodinger's equation for simple systems.(LO2) To have an understanding of the significance of quantum mechanics for both elementary systems and the behaviour of matter.(S1) Problem solving skills(S2) Numeracy
• ##### Relativity (MATH326)
Level 3 15 First Semester 100:0 To impart(i) a firm grasp of the physical principles behind Special and General Relativity and their main consequences;(ii) technical competence in the mathematical framework of the subjects - Lorentz transformation, coordinate transformations and geodesics in Riemann space;(iii) knowledge of some of the classical tests of General Relativity - perihelion shift, gravitational deflection of light;(iv)basic concepts of black holes and (if time) relativistic cosmology. (LO1) After completing this module students should understand why space-time forms a non-Euclidean four-dimensional manifold.(LO2) After completing this module students should be proficient at calculations involving Lorentz transformations, energy-momentum conservation, and the Christoffel symbols.(LO3) After completing this module students should understand the arguments leading to the Einstein's field equations and how Newton's law of gravity arises as a limiting case.(LO4) After completing this module students should be able to calculate the trajectories of bodies in a Schwarzschild space-time.
• ##### Group Theory (MATH343)
Level 3 15 First Semester 100:0 To introduce the basic techniques of finite group theory with the objective of explaining the ideas needed to solve classification results. (LO1) Understanding of abstract algebraic systems (groups) by concrete, explicit realisations (permutations, matrices, Mobius transformations).(LO2) The ability to understand and explain classification results to users of group theory.(LO3) The understanding of connections of the subject with other areas of Mathematics.(LO4) To have a general understanding of the origins and history of the subject.(S1) Problem solving skills(S2) Logical reasoning
• ##### Combinatorics (MATH344)
Level 3 15 First Semester 90:10 To provide an introduction to the problems and methods of Combinatorics, particularly to those areas of the subject with the widest applications such as pairings problems, the inclusion-exclusion principle, recurrence relations, partitions and the elementary theory of symmetric functions. (LO1) After completing the module students should be able to: understand of the type of problem to which the methods of Combinatorics apply, and model these problems; solve counting and arrangement problems; solve general recurrence relations using the generating function method; appreciate the elementary theory of partitions and its application to the study of symmetric functions.
• ##### Networks in Theory and Practice (MATH367)
Level 3 15 First Semester 100:0 •To develop an appreciation of network models for real world problems.•To describe optimisation methods to solve them.•To study a range of classical problems and techniques related to network models. (LO1) After completing the module students should be able to model problems in terms of networks and be able to apply effectively a range of exact and heuristic optimisation techniques.
• ##### Professional Projects and Employability in Mathematics (MATH390)
Level 3 15 First Semester 0:100 The first aim of the module is to further develop students' problem solving abilities and ability to select techniques and apply mathematical knowledge to authentic work-style situations. Specifically, within this aim, the module aims to:1) develop students' ability to solve a problem in depth over an extended period and produce reports;2) develop students' ability to communicate mathematical results to audiences of differing technical ability, including other mathematicians, business clients and the general public;3) develop an appreciation of how groups operate, different roles in group work, and the different skills required to successfully operate as a team.The second aim of the module is to develop students' employability skills in key areas such as public speaking, task management and professionalism. (LO1) Select appropriate techniques and apply mathematical knowledge to solve problems related to real-world phenomena.(LO2) Communicate mathematical results to audiences of differing technical ability via different methods.(LO3) Reflect on skills development and identify areas for further development.(LO4) Articulate employability skills.(LO5) Produce reports based on the development of a piece of work, in depth over an extended period of time.(S1) Problem solving skills(S2) Commercial awareness(S3) Adaptability(S4) Teamwork(S5) Organisational skills(S6) Communication skills

The programme detail and modules listed are illustrative only and subject to change.

#### Teaching and Learning

Your learning activities will consist of lectures, tutorials, practical classes, problem classes, private study and supervised project work. In Year One, lectures are supplemented by a thorough system of group tutorials and computing work is carried out in supervised practical classes. Key study skills, presentation skills and group work start in first-year tutorials and are developed later in the programme. The emphasis in most modules is on the development of problem solving skills, which are regarded very highly by employers. Project supervision is on a one-to-one basis, apart from group projects in Year Two.

#### Assessment

Most modules are assessed by a two and a half hour examination in January or May, but many have an element of coursework assessment. This might be through homework, class tests, mini-project work or key skills exercises.