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There is increasing emphasis on the use of new analytical approaches in
subject analysis and classification, particularly in respect to minimal
sample preparation. Here, we demonstrate that rapid evaporative ionization
mass spectrometry (REIMS), a method that captures metabolite mass spectra
after rapid combustive degradation of an intact biological specimen, gener-
ates informative mass spectra from several arthropods, and more specifically,
is capable of discerning differences between species and sex of several adult
Drosophila species. A model including five Drosophila species, built using
pattern recognition, achieves high correct classification rates (over 90%)
using test datasets and is able to resolve closely related species. The ease
of discrimination of male and female specimens also demonstrates that
sex-specific differences reside in the REIMS metabolite patterns, whether
analysed across all five species or specifically for D. melanogaster. Further,
the same approach can correctly discriminate and assign Drosophila species
at the larval stage, where these are morphologically highly similar or
identical. REIMS offers a novel approach to insect typing and analysis,
requiring a few seconds of data acquisition per sample and has considerable
potential as a new tool for the field biologist.

1. Background

Insect identification and monitoring are essential to a number of diverse fields
and settings, seeking to identify and study insect populations to learn more
about their place in ecosystems as well as their impact on the environment
and other species [1]. Long-term biodiversity and environmental impact studies
[2,3] tend to observe and log the changes and make-up of insect populations.
In other circumstances, such as biological control in pest management, main-
taining the population of certain species is desirable or even necessary to
sustain ecosystem balance [4]. Conversely, many arthropod species can cause
considerable harm, economically as well as environmentally, and pose a risk
to human health, requiring population control or reduction. Every year insect
pests cause massive economic damage in agriculture and forestry [5,6], either
by directly attacking important crops or through the transmission of diseases
[7-11]. Biosecurity, which aims at curtailing risk through ‘biological harm’
[12], relies largely on rapid and accurate species identification as it affects risk
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assessments, the handling of imported goods and plans for
future surveillance or eradication [13,14]. Correct identification
likewise influences biological pest control strategies, such as
the use of insect pheromones or prey/predator interactions,
as their success is based on species-specific mechanisms
[15-18]. In countries and regions where insects are a public
health concern (for example, mosquitoes), specimens are
routinely trapped for identification and other analytical pur-
poses. Known vectors for diseases like malaria, dengue fever
or Zika are monitored to inform authorities and the general
public about threat levels and to predict disease transmission.

The long-established approach to identifying specimens
is by morphological taxonomy, which uses taxonomic keys
and requires or at least greatly benefits from experience.
However, far more trained taxonomic experts are needed
for diagnostics than are available to cover the range of
programmes where species identification plays a pivotal role
[19-22]. Additionally, not all insect specimens can be readily
identified based on morphological characteristics. Existing
morpho-taxonomic keys display deficiencies and limitations,
especially when it comes to morphologically indistinguishable
species, immature life stages, cryptic species or damaged
specimens [23-25].

Increasingly, molecular analytical tools have been developed
and applied to aid morphological examination and expand
capabilities. These include cuticular hydrocarbon analysis [26],
immunological [27] or protein-based assays [28] as well as
mass spectrometry-based applications such as matrix-assisted
laser desorption ionization mass spectrometry (MALDI-MS)
[29]. However, DNA barcoding is often the method of choice,
as it can handle a variety of sample conditions, developmental
stages and cover a large number of species and taxa [30-32].
In routine identification or monitoring actions, identifying
unknowns is not the only challenge. The large number of
samples being collected requires fast processing, which has led
to a number of automation efforts, most recently supported by
machine learning and neural network algorithms [33-36].

New, easy-to-use high throughput tools capable of hand-
ling a variety of samples in vast amounts are still sought after
and could provide much-needed support in the wide array of
fields requiring rapid insect identification. Here, we introduce
the use of rapid evaporative ionization mass spectrometry
(REIMS) as an addition to the insect identification armamen-
tarium. REIMS uses an ambient ionization source, specifically
designed to analyse aerosols resulting from thermal dis-
integration caused by the passage of electricity through the
sample of interest. The electric current is applied through dia-
thermy tools and the resulting aerosol evacuated through a
tube to the source and subsequently the mass spectrometer.
Identification of single molecules from the acquired mass
spectra is rarely the objective; instead pattern recognition is
applied to identify unique mass patterns that facilitate classi-
fication and consequently sample identification. REIMS is a
novel ionization technique, which has been developed to dis-
tinguish cancerous from healthy tissue during cancer surgery
(iKnife) [37,38], but has found application in a variety of
fields from food security and adulteration detection [39,40]
to identification and characterization of bacterial strains
[41-43] and, most recently, to recover information from
rodent and human faecal matter [44,45].

A mixture of wild-trapped arthropod species and five
laboratory-raised Drosophila species were used for a proof-
of-principle study to investigate REIMS suitability for insect

analysis and gauge its potential as an identification device. [ 2 |

Our results demonstrate the techniques ability to distinguish
species as well as the sex of specimens using models devel-
oped from the uninterpreted mass spectra that are derived
from aerosol analysis.

For the laboratory-derived samples, Drosophila melanogaster
(Dahomey), D. simulans, D. subobscura, D. bifasciata, D. pseu-
doobscura and D. hydei were reared in 250 ml glass bottles. All
species were reared on standard ASG food (for 11 of water:
10 g of agar, 20 g of yeast, 85 g of sugar, 60 g of cornmeal and
25ml of nipagin (100g1™") except for D. hydei which was
reared on banana food (for 11 of water: 15 g agar, 30 g yeast,
150 g frozen bananas, 50 g blackstrap molasses, 30 g malt,
25 ml nipagin (100 g 1™"). Species were reared at the optimal
temperature according to their natural habitats; 25°C for D. mel-
anogaster, D. simulans and D. hydei, 22°C for D. pseudoobscura,
and 18°C for D. bifasciata and D. subobscura with a 12 L:12 D
cycle. Stocks were transferred to new food weekly, with
adults replaced every four to five weeks. To represent what
would realistically be collected in the wild, individuals for
experiments were chosen at random, irrespective of age or
virginity. Sex was determined under CO, anaesthesia.

Species identity was checked using the mitochondrial
universal barcode gene cytochrome oxidase subunit 1 (COI).
DNA was extracted from three male flies with DNeasy kits
(Qiagen) following the Qiagen invertebrate protocol. A sequence
from COI was PCR amplified using the primers C1-J-1718
(5'-GGAGGATTTGGAAATTGATTAGT-3) and CI1-N-2191
(5'-CCCGGTAAAATTAAAATATAAACTTC-3') using Hot-
Start Taq (Promega) with (5 min initial heating, 30 cycles at
95°C for 30 s, 56 for 30 s and 72°C for 30, with a final elongation
step of 72°C for 120 s). The products of these PCRs were visual-
ized using SYBRSafe-stained gel electrophoresis. Products
were then cleaned up using Exonuclease I and Shrimp Alkaline
Phosphatase incubation using the recommended BioLine
protocol. BigDye-based sequence reactions were carried out
with both forward and reverse primers, followed by NaOH
and ethanol clean-up and precipitation. Sequences were then
analysed with an ABi 3500XL Genetic Analyser. Forward and
reverse sequences for each species were aligned to derive a con-
sensus sequence. The sequences were assessed using publicly
available CO1 sequences from the same species available on
the BOLD database.

For the initial study, a few individuals of five different arthro-
pod species were collected from the University Leahurst
campus, killed by freezing and stored at —20°C for 6 days.
A total of 800 specimens of the Drosophila species D. melanoga-
ster, D. subobscura, D. pseudoobscura, D. bifasciata and D. simulans
were selected for REIMS analysis. The conspecifics of each
species were separated into male and female subgroups to
facilitate species as well as sex separation experiments. All
specimens had been raised to their adult stage; further age
differences as well as reproductive state were not taken into
account. Specimens were directly transferred to fresh container



vials and killed by freezing and stored at —20°C for 3-6 days, as
samples were analysed over several days. Approximately
30 min prior to REIMS analysis, specimens were returned to
room temperature. In a separate experiment, 3rd instar
wandering stage larvae of D. melanogaster and D. hydei were
collected, frozen, stored and returned to room temperature
for REIMS as per the adults.

Samples were analysed via a rapid evaporative source (REIMS,
Waters, Wilmslow, UK) attached to a Synapt G2Si instru-
ment ion mobility equipped quadrupole time of flight mass
spectrometer (Waters, UK). The specimens were burned/evap-
orated using a monopolar electrosurgical pencil (Erbe Medical
UK Ltd, Leeds), which was connected to a VIO 50 C electrosur-
gical generator, providing electrical current, and to the source
inlet via plastic tubing. A black rubber mat, placed underneath
the samples, acted as a counter electrode and facilitated the
flow of electric current. To avoid inhalation of fumes during
analysis, the burning process was performed within a fume
box (Air Science). Insects were analysed using a 40 W setting
on the generator and the cutting option of the pencil. To
increase conductivity and protect the counter electrode
during analysis, specimens were placed on a piece of glass
microfibre paper (GFF, GE Healthcare Whatman) on top of a
wet paper surface (moistened with MilliQ water).

While burning the entire biomass of single specimens, the
aerosol was aspirated through the pencil and the attached
3m long tubing into the REIMS source, using a nitrogen
powered venturi valve on the source inlet. To increase the
aerosol capture of Drosophila species, a wide bore piece of
plastic tubing was additionally placed over the tip of the elec-
trosurgical pencil. A whistle incorporated into the Venturi
tube guided the aerosol as well as a lock mass solution of
leucine enkephalin (Waters, UK) in propan-2-ol (CHROMA-
SOLV, Honeywell Riedel-de-Haén) into the source. This also
filters the incoming aerosol to prevent larger particles from
entering the inlet capillary. Inside the source, the ionized par-
ticles were declustered through contact with a heated
impactor (Kanthal metal coil at 900°C).

Acquisition of the mass spectra was performed in negative
ion mode at a rate of 1 scan per second over a mass/charge
range of m/z 50-1200. The sample cone and heater bias were
set to 60 V. Instrument calibration was performed daily in res-
olution mode using a 0.5 mM solution of sodium formate (flow
rate 50 il min™"). The lock mass solution (0.4 pg ml™") was con-
tinuously introduced during sample analysis at a flow rate of
either 50 pl min™", used for the initial arthropod sample set,
or 30 ul min', used for all Drosophila samples. For the first
arthropod study, specimens were analysed in species order.
All 800 Drosophila samples, as well as the Drosophila larvae,
however, were analysed in a random order over 3 days.

The mass spectra were imported into the model building soft-
ware packages; Offline Model Builder (OMB-1.1.28; Waters
Research Centre, Hungary) and LivelD (Waters, UK), which
allow separation of sample groups (classifications) based on
principal component analysis (PCA) and linear discriminant

analysis (LDA). Data were additionally analysed using R [ 3 |

(version 3.6.1) [46] and the R Studio environment [47], by
PCA and LDA, as well as random forest analysis.

For Offline Model Builder, the burn events of the analysed
specimens were defined individually, summing up the MS
scans within each chosen area. The option to create only a
single burn event per sample was selected. Other pre-proces-
sing parameters included the intensity threshold, at 4 x 10°,
spectra correction using the lock mass (leucine enkephalin,
mfz 554.26) and background subtraction. To reduce the com-
plexity of the mass spectral data, all acquired data points
from m/z 50 to 1200 were combined into mass bins, each 0.1
mfz units wide. The subsequent model calculation was
based on PCA-LDA. For LivelD, the data files were pre-
processed using Progenesis Bridge (part of MassLynx
software, Waters, UK): mass spectra were lock mass cor-
rected, the background-subtracted and the scans summed
and averaged to provide uniform burn events. This prevented
incorrect splitting of burn events during the automated
recognition in LiveID. Again, a mass range of m/z 50-1200
and a bin size of 0.1 were used to build models based on
PCA and LDA.

The models built by Offline Model Builder and LivelD
were cross-validated (leaving out 20% of data, for outliers
the standard deviation multiplier was set to 5) to obtain the
correct classification rate, as well as the number of failures
and outliers and a matrix displaying the number of correctly
and incorrectly identified samples of each classification. To
additionally test obtained separation results, sample classifi-
cations were randomized and re-analysed, expecting a
random distribution of samples and failed separation.

For further analysis with R, the data matrix of each model
was exported as a .csv file from Offline Model Builder, contain-
ing information about classification and the normalised
intensities for every mass bin. The matrices were used to per-
form random forest analysis in R using the package
‘randomForest’ [48]. The datasets were randomly split into a
training set (approx. 70% of the data) and a test set (approx.
30% of the data). Random forest results are displayed in the
form of confusion matrices. Trees were conducted 10 times
for every model (using a different, randomly selected subset
of samples for training and testing every time); the numbers
of correctly identified and confused samples were turned
into percentages and averaged. The optimal number of
trees and mtry value were determined during the first
analysis of each model and kept the same for each repeated
analysis. The numbers of trees and mtry values used for
random forest analysis of the species and sex datasets are
compiled in electronic supplementary material, figure S4.
A second R package, called ‘randomForestExplainer’ [49],
was used to identify the most informative bins/ions that
were driving class separation. For the sex separation results,
PCA-LDA was also performed with R and plots created
using ‘ggplot2” [50].

All raw data files are freely available in the MetaboLights
database with the accession number MTBLS1878 [51].

REIMS is a destructive method, in which materials are com-
busted by a diathermy current, and the aerosol subsequently
ionized to generate a mass spectrum. To test whether rapid



(a) (c) . (d)
1007 (@
garden spider @
8 ] (n=6)
o Lol M I ”
100, 200 400 600 1000
ii —
(i) plant louse  © model building software
specimen R (n=3) PCA-LDA
0 - y £ ‘ ™ m/z .
100+ ..200 400 600 800 1000
(iii) ] . A
(b) common wood louse @ “
100- L (n=10) o'
0 Luvssvonsllhemomerrttrssliblimsiosiforer mlz -
o 100 200 400 600 1000 ’ LD3
é (v) spring tail © —— - ==l ~— LD1
.ﬂé R — v (n=3) . 4
= .
= e
2
‘A 0 m/z
100, 200 400 600 1000 L
) damsel bug @ — e
0 T T T T T d Q | (n=3)
R LD2
080 090 1.00 1.10
time (min) 0 | T m/z

200 400 600

1000

Figure 1. REIMS analysis of different arthropod species. Arthropods, killed by freezing, were analysed by REIMS using an electrosurgical pen with the knife attach-
ment (a). Each sample from five different arthropod species was burned completely with little or no residual biomass in a burn event of about 10 s duration (b). The
aerosol was aspirated and transported via a long tubing to the REIMS source attached to the mass spectrometer. There are recurrent differences between the
acquired mass spectra of the different species, making them visually distinctive (c). High-resolution mass spectra were processed and analysed by PCA-LDA

using the software Offline Model Builder (d).

evaporative ionization can generate informative mass spectra
from insect samples, we conducted some initial investigations
on five arthropods, the garden spider (Araneidae), the nettle
aphid (Aphididae), the common wood louse (Oniscidae), a
springtail (Collembola) and a damsel bug (Nabidae). For
these samples, relatively small numbers of individuals were col-
lected in the field and analysed. However, each species yielded
detailed REIMS mass spectra, and the spectra were visually dis-
tinct from each other. Even with the caveat of small numbers,
the five species were readily resolved by PCA and LDA of the
ensuing mass spectra, clustering members of one species
together and convincingly resolving different species (figure 1).

Having established proof-of-concept data that arthropods
were able to yield detailed REIMS spectra that could readily
be used to discriminate species, we explored the subtlety of
the method in a more closely focused study, based on a
higher number of individuals from different laboratory-reared
Drosophila species. Adult male and female D. melanogaster,
D. subobscura, D. pseudoobscura, D. bifasciata and D. simulans
were killed by freezing and stored at -20°C for several days
before being analysed in a randomized order. The analysis
was conducted in a similar fashion to the arthropods: the
individuals were placed on wet glass fibre paper and aeroso-
lized using an electrosurgical pen with knife attachment at a
power level of 40 W. However, an additional wide piece of
tubing (figure 24) was used to maximize aerosol collection
and ensure comparable aerosol aspiration among samples.
The complete set-up is depicted in electronic supplementary
material, figure S1. Analysis of a single fly (dry weight
approx. 200 pg, bionumbers.hms.harvard.edu) generated suffi-
cient aerosol to create a strong REIMS signal.

Replicated analysis of specimens, even from the same
species and sex, can lead to the elaboration of different
signal profiles over time (burn events) when expressed as a
time-dependent total ion current (TIC) trace (figure 2b); this
is because of variability in the manual position of a relatively
large REIMS electrode on a small subject (figure 2a). How-
ever, the mass spectra, summed across the burn events,
yielded consistent mass spectra (figure 2c) and data derived
from different individuals were readily combined into one
group or classification cluster. The first data processing step
reduces the complexity of the mass spectral data by binning
into 0.1 m/z wide windows. Registration and alignment of
individual mass spectra are achieved by locking them, in a
post-acquisition step, to the used ‘lock mass’ (leu-enkephalin,
at m/z 554.26), analysed continuously throughout sample
analysis. The mj/z data, aligned and binned, facilitated
subsequent analysis and model building through pattern rec-
ognition algorithms, including PCA and LDA as well as
random forest classification.

The mass spectra originating from different Drosophila
species exhibited an overall similarity (figure 3a), reducing
the possibility of species-specific ions that would allow separ-
ation and identification. Due to the complexity and similarity
of the REIMS spectra, data analysis was based on pattern rec-
ognition algorithms, which take into account the differences
in overall mass spectral patterns rather than focus on differ-
ences in a single ion. This approach has the advantage that
small differences in the abundance of specific ions between
two groups can still be useful for separation purposes when
combined with further differences elsewhere in the mass
spectrum.
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Figure 2. REIMS analysis of Drosophila species. Drosophila specimens were analysed using the electrosurgical pen with knife attachment, surrounded by a plastic
tube to enhance capture of the aerosol (a). Each sample was completely consumed in a burn event that differed in shape and intensity for individual specimens
(four individuals, b). The mass spectra from individuals was consistent, irrespective of shape or duration of the burn event (c). For subsequent data analysis the
spectra were lock mass corrected, the background was subtracted, and the high-resolution mass spectra were compartmentalized to 0.1 m/z wide bins prior to
further analysis (d). Abbreviation: D.m: Drosophila melanogaster.
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Figure 3. Species discrimination of Drosophila by REIMS. Five Drosophila species (800 samples in total) were analysed by REIMS. Representative mass spectra (of
female specimens, males not shown) are given in a. The discretized, binned mass spectra were used to build the species discrimination model. REIMS data were
analysed using the model building software packages Offline Model Builder (i) and LivelD (i), both constructed the species separation model using PCA-LDA (b).
Additionally, PCA-LDA separation was performed in R and visualized using different orientations and combination of linear discriminants (c). The clustering of the
data points correlates with the phylogenetic relatedness of the five species (d).

The mass spectra obtained from five species were species classifications. The settings for data processing and
imported to model building software packages LivelD and model building used in each software are specified in the
Offline Model Builder (both Waters) or divided into the five Methods section. The models, whether from LivelD and
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Figure 4. Classification of Drosophila species by random forest analysis. The binned m/z data from five species and both sexes were analysed by random forest analysis
and repeated 10 times, using different randomly selected training (70% of the data) and test (30% of the data) datasets. (a) The confusion matrix contains the mean
percentages of correctly identified and misidentified samples for every species, rounded to the nearest integer, as well as the standard error of the mean. The range of
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number of samples per species used for testing the model are listed on the side (n = x). The overall model accuracy was 95 = 0.6% (mean + SEM). For the 10 individual
random forests, prediction accuracies for each species are plotted in b (median, 25th and 75th percentiles, all data shown). Abbreviations are D. mel: Drosophila
melanogaster, D. sub: Drosophila subobscura, D. pse: Drosophila pseudoobscura, D. bif. Drosophila bifasciata and D. sim: Drosophila simulans.

Offline Model Builder, yielded successful separation of the
five Drosophila species using PCA and LDA. (Figure 3b)

The separation could be optimized by the number of prin-
cipal components (PCs) chosen for LDA; more PCs means
added information, but also variance is incorporated into
the model. The models were adjusted individually to find
the optimal number of PCs: 100 PCs were used in Offline
Model Builder (maximum number), 500 PCs in LivelD and
R. Separation was achieved with 100 PCs, additional variance
(PCs) only served the purpose of fine tuning with modest
added gains (example in electronic supplementary material,
figure S2).

The separation between the classification groups in the
models is uneven, placing D. bifasciata, D. pseudoobscura and
D. subobscura closer but separated from a second group com-
prising D. melanogaster and D. simulans. This separation into
groups of three and two species is especially pronounced in
the PCA-LDA model created in R (figure 3c), due largely to
differences in linear discriminant 1 which has the largest dis-
criminatory power in the dataset (0.52). The results can be
correlated with the phylogeny of the five species (figure 3d),
which demonstrates similar clustering. Within each group,
the member species are also differentiated. The separation
of D. melanogaster and D. simulans highlights the ability of
REIMS to distinguish even closely related species that are
phenotypically distinguishable only by examining male gen-
italia. As females of D. melanogaster and D. simulans cannot
reliably be distinguished phenotypically [52], a separate
model was built only using the females of both species
(electronic supplementary material, figure S3). The variance
in the lipid/metabolite profile is greater between
D. melanogaster and D. simulans than between the other
three species (D. subobscura, D. bifasciata and D. pseudoobscura)
as they can be resolved by linear discriminant 2 (0.24; figure 3c
centre), while the larger group is resolved by linear
discriminants 3 (0.15) and 4 (0.1) (figure 3ciii).

In addition to PCA and LDA, the datasets were analysed
using random forest classification. Here, the data were split
before each analysis; 70% being used for model building,
the remaining 30% were used to test the classification perform-
ance. For each model, random forest analysis was repeated 10
times, leading to different randomly selected datasets for train-
ing and testing every time. The number of trees used for forest
calculation was chosen by comparing every possible number of
trees between 1 and 2000 and their respective error rates (elec-
tronic supplementary material, figure S4). The number of trees
used was the same for every repeated analysis. For species sep-
aration, the number of trees was set to 1500 and each forest was
built and tested using the 70% model /30% test data. The classi-
fication performance is displayed as a confusion matrix of
identification for all species (figure 4).

For every species, a correct classification rate
(mean % + SEM) of 91 + 1.3 or higher was achieved, the over-
all model scored an accuracy of 95+0.6. Thus, on average,
95 specimens out of 100 can be assigned to the correct species
by employing REIMS data for model building, using only a
few seconds of acquisition time for each insect. In the case
of D. simulans, it is unlikely that samples would be mistaken
for the closely related D. melanogaster, showing no diffi-
culties in distinguishing even the females, despite their
near-identical morphology.

Following random forest classification, another R package,
randomForestExplainer [49], was used to extract information
about the variables that contributed to class separation. In a
top 10 approach, only variables that were registered as impor-
tant in all repeated random forest runs were included.
Additionally, the '*C isotopomers of certain variables were
removed, after testing the pairs in question for correlation
(electronic supplementary material, figure S5). To visualize
how and to what extent the variables add to the separation of
the five Drosophila species, the bin intensities were plotted
(figure 5). The resulting intensity distribution of the top five
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Figure 5. Comparative m/z bin intensities for five Drosophila species. The m/z bins that are most important for the resolution of five species by random forest were
identified and their individual intensity values plotted here for every individual of each species (male and female samples are not discriminated). These m/z bins
were repeatedly identified as essential separators for the random forest models, using the R package randomForestExplainer. The pattern within each bin shows its
contribution to the identification process, highlighting the differences in relative abundance among the five Drosophila species.

variables allows interpretation of the relative molecule
abundances and their impact on the classifying model.

The five most important variables for species resolution
cover a fairly wide mass range, starting with the bin at m/z
225.2 ranging to the bin at 1m/z 747.5. The former might represent
a fatty acid, whereas the latter is likely to be a phospholipid [37].
The ion bin at m/z 225.2 seems to define a major difference
between the D. melanogaster/D. simulans group and the other
species, which was already observed in the PCA-LDA models.
The higher mass range bins, m/z 720.5 and m/z 747.5, display
intensity variances that contribute to the discrimination of
D. melanogaster and D. simulans. To distinguish D. subobscura,
D. bifasciata and D. pseudoobscura, however, a combination of
several ions with smaller variance is needed.

To confirm that the model separated species based on real
rather than chance differences (given the large number of ion
bins), the model was re-built using randomly assigned classifi-
cation of each specimen to species. As expected, the model
was incapable of separating species when spectra were ran-
domly assigned. A comparison of the species models (built
using the Offline Model Builder software), with correct and
with randomly assigned classifications is presented in electronic
supplementary material, figure S6. The results of the cross-vali-
dation performed after PCA-LDA (details are listed in the
methods section) using Offline Model Builder and LivelD soft-
ware are summarized in electronic supplementary material,
figure S7.

3.1. Sex separation

The acquired REIMS data were used not only to discriminate
species but were also investigated for its potential to

distinguish sex. The sample analysis randomization was
blind to species and to sex. Initially only D. melanogaster speci-
mens were used for model building, to test if the REIMS spectra
exhibited sex-specific variance of sufficient magnitude for sep-
aration (figure 6a,b; upper half). The average accuracy of the
random forest classification (10 repeats) of males and females
of D. melanogaster is 99 + 0.4% (mean + SEM), with only 2% of
females misclassified as males and no males misclassified as
females. PCA-LDA (using 80 PCs) yields a clear separation of
male and female conspecifics, thus supports the existence of
sex-specific variance in the REIMS spectra.

To further explore the ability to resolve sexes, independent
of the species attribute, males and females of all five Drosophila
species were combined for model building in a subsequent step.
A resolving pattern, true for every species, reached 97 +0.5
(mean% + SEM, n=10) accuracy in random forest analysis,
only 2% lower than the accuracy obtained with a single
species. Both types of analysis, random forest and PCA-LDA,
agree that only a few samples are confused in the classification
process. (Figure 6c,d) Subsequently, samples were randomly
assigned to the male or female category, anticipating a large
overlap between the two classes in a repeated classification
attempt. As expected, the classifications were substantially
worse. A comparison of PCA-LDA separation with correctly
and randomly assigned classifications for the D. melanogaster
model, as well as for the model including all species, is presen-
ted in the electronic supplementary material, figures S8 and S9.
In addition, both sex separation models were built with a
lower number of PCs, proving that the numbers of PCs used
in figure 6 were maximized for optimization, but not essential
to achieve separation (electronic supplementary material,
figures S10 and S11).
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Figure 6. REIMS can discriminate sex. Separation of male (red) and female (blue) specimens of either D. melanogaster (a,b) or of all five species combined (c,d).
The models were built using PCA-LDA, results are visualized in form of kernel density and scatterplots (a and ¢), or random forest analysis (confusion matrices and
boxplots, b and d). The random forest models, built and tested 10 times each with a different 70%/30% training/test split, reached an average percentage accuracy
of 99 + 0.4 (mean =+ SEM, n = 10, D. melanogaster only) and 97 £ 0.5 for all species. The boxplots on the right of the confusion matrices display the accuracies of
all 10 random forest models for both classes, male and female.
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Figure 7. REIMS can discriminate species at the larval stage. Larvae from two Drosophila species (D. melanogaster and D. hydei) were analysed by REIMS. The mass
spectrum obtained from the larval stage was clearly different to the adult, but both larval species yielded similar spectra (a) that permitted discrimination by PCA-
LDA (b). Distinct discrimination between species was obtained through cross-validation in Offline Model Builder (c). The random forest models (), built and tested
10 times each with a 70%/30% training/test split, reached an average percentage accuracy of 98 + 1.9 (mean + SEM, n=10). The boxplot adjacent to the
confusion matrix displays the performance for each species across all 10 random forests.
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After successfully separating adult specimens of highly simi-
lar morphology (females of D. melanogaster and D. simulans),
REIMS capabilities were further tested using a small set of
Drosophila larvae. Larval Drosophila of closely related species
are typically very difficult to identify, requiring skilled micro-
dissection and morphological analysis under a microscope
[53], with many species pairs being impossible to distinguish
until adulthood [54]. For this preliminary experiment, the
larvae of D. melanogaster and D. hydei, all in the 3rd instar
stage, were analysed by the same procedures and settings
as adult specimens. The REIMS spectra resulting from the
two species in their larval stage are highly similar, but inter-
estingly, exhibit a mass spectrum that is different from
specimens in their mature state. Even if larvae and adult
are derived from the same species, shown here for D. melano-
gaster, there is a substantial difference in the spectrum in the
higher mass region (m/z 600-900; figure 7a)

Despite the observation that the mass spectra of the
D. melanogaster and D. hydei larvae were strongly alike, the
m/z bin data matrices were used to perform PCA-LDA and
random forest analysis to explore species-related variance of
larval samples. Despite the small number of samples, both
types of analysis located sufficient differences in the mass
patterns to provide a clear separation between the two
species (figure 7b,d). To gauge the model’s performance,
cross-validation was carried out within Offline Model Builder
(leaving 20% of data out). The results, including a confusion
matrix, outlier numbers, as well as the correct classification
rate, are presented in figure 7c. Random classification assign-
ment, by contrast, led to considerable overlap between the
two species (electronic supplementary material, figure S12).

These results suggest that REIMS could be used to identify
insects, whether they are mature or in their immature develop-
mental stages (photos of Drosophila adults in electronic
supplementary material, figure S13). Even in cases of similar
or near-identical morphology, a number of differences can be

found in the REIMS profiles. Despite those differences being [ 9 |

small and variable, pattern recognition across numerous
differences facilitated consistent classification, and hence the
separation of species and sex in this study. Without the need
for sample preparation, entomological expertize or perfectly
preserved specimens, REIMS with pre-built pattern recognition
models could allow identification within seconds, offering a
significant time advantage over other methods. Further investi-
gation of the method’s suitability and limitations, focused on
identification and characterization of insects, is of course
required. Factors such as feed, age of the specimens and storage
conditions or length of storage can be expected to impact the
pattern-based models to various degrees. In order to build a
robust and reliable identification system, capable of identifying
a wide array of specimen and independent of their inherent
properties, these variables will need to be taken into account.
The speed of data acquisition and the subtlety of discrimination
are promising and advocate the exploration of REIMS as a new
insect identification tool.

All raw data files are freely available in the Metabo-
Lights database with the accession number MTBLS1878. Link:
https://www.ebi.ac.uk/metabolights/MTBLS1878 / descriptors
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