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SUMMARY
Herpesviruses are ubiquitous in the human population and they extensively remodel the cellular environment
during infection. Multiplexed quantitative proteomic analysis over the time course of herpes simplex virus 1
(HSV-1) infection was used to characterize changes in the host-cell proteome and the kinetics of viral protein
production. Several host-cell proteins are targeted for rapid degradation by HSV-1, including the cellular traf-
ficking factor Golgi-associated PDZ and coiled-coil motif-containing protein (GOPC). We show that the
poorly characterized HSV-1 pUL56 directly binds GOPC, stimulating its ubiquitination and proteasomal
degradation. Plasma membrane profiling reveals that pUL56 mediates specific changes to the cell-surface
proteome of infected cells, including loss of interleukin-18 (IL18) receptor and Toll-like receptor 2 (TLR2),
and that cell-surface expression of TLR2 is GOPC dependent. Our study provides significant resources for
future investigation of HSV-host interactions and highlights an efficient mechanism whereby a single virus
protein targets a cellular trafficking factor to modify the surface of infected cells.
INTRODUCTION

Herpesviruses are ubiquitous in the human population and are

characterized by an ability to establish lifelong infections.

Greater than two-thirds of the world’s population are estimated

to be infected with herpes simplex virus 1 (HSV-1) or HSV-2

(Looker et al., 2008, 2015). These infections are generally asymp-

tomatic or give rise to mild symptoms following viral reactivation

(oral or genital sores), although they can cause severe diseases

of the eye (herpes keratitis), central nervous system (herpes en-

cephalitis), or systemic infections in those with compromised or

immature immune systems (Gnann and Whitley, 2017; Koujah

et al., 2019; Pinninti and Kimberlin, 2018).

The replication cycle of herpesviruses entails a complex and

carefully controlled transcriptional cascade of viral genes that

function both to generate infectious particles and to modulate

host factors. HSV-1 genes are conventionally separated into

three broad temporal classes (immediate early, early, and
This is an open access article und
late), where proteins expressed earliest during infection serve

as transcription factors and/or modulate the host-cell environ-

ment and immune responses, whereas those expressed late

are structural components of the virion. The best-studied

HSV-1 immunomodulatory proteins are infected-cell protein

0 (ICP0) and virion host shutoff protein (vhs). These proteins

are known to change the host-cell proteome by suppressing

the expression and/or promoting the degradation of various

host proteins (Boutell et al., 2011; Chelbi-Alix and de Thé,

1999; Jiang et al., 2016; Lees-Miller et al., 1996; Lilley et al.,

2011; Orzalli et al., 2013; Su and Zheng, 2017; Zenner et al.,

2013). However, the global temporal effects of HSV-1 replica-

tion on the host proteome remain poorly characterized. To

date, there has been one large-scale proteomic analysis of

HSV-1 infection. This work, performed in fibroblasts, quanti-

fied the abundance of approximately 4,000 host proteins

and characterized changes in protein post-translational modi-

fication following infection (Kulej et al., 2017). However, the
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Figure 1. Quantitative Temporal Analysis of HSV-1 Infection

(A) Schematic of the experimental workflow. HaCaT cells were infected at an MOI of 10 or mock infected. Whole cell lysate (WCL) samples were harvested at the

stated times and processed for quantitative proteomic analysis. Data shown in Tables S1 and S7.

(B) Hierarchical cluster analysis of all proteins quantified. An enlargement of two subclusters is shown in the right panel, including multiple proteins that were

substantially up- or downregulated.

(C) Scatterplot of all proteins quantified at 18 hpi. Fold changeswere calculated for each protein by comparing signal:noise (S:N) values from eachHSV-1-infected

sample to the average S:N for that protein from the four mock-infected samples. Benjamini-Hochberg-corrected significance B was used to estimate p values.

This metric calculates the probability of obtaining a log-fold change of at least a given magnitude under the null hypothesis that the distribution of log ratios has

normal upper and lower tails. Twomodifications are included: (1) that the spread of up- and downregulated values can be different (which can occur, for example,

(legend continued on next page)
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molecular mechanisms underlying these changes were not

characterized.

Quantitative temporal viromics (QTV) is a method to enable

highly multiplexed quantitative analysis of temporal changes in

host and viral proteins throughout the course of a productive

infection (Weekes et al., 2014). QTV employs tandem mass

tags (TMTs) and triple-stage mass spectrometry (MS3) to facili-

tate precise quantitation of each protein, and we have applied

this technique to study several viruses including human cyto-

megalovirus (HCMV), Epstein-Barr virus, vaccinia virus, and BK

polyomavirus (Caller et al., 2019; Ersing et al., 2017; Soday

et al., 2019; Weekes et al., 2014).

We have now performed QTV analysis throughout a single

replication cycle of HSV-1 in human keratinocytes, the natural

target of HSV-1 lytic infection. At each time point, we quantified

almost 7,000 human proteins and >90%of canonical HSV-1 pro-

teins, and we have found evidence for the expression of 17 addi-

tional HSV-1 proteins beyond the canonical open reading frames

(ORFs). We have identified host proteins that are rapidly

degraded by HSV-1, including the cellular trafficking factor

Golgi-associated PDZ and coiled-coil motif-containing protein

(GOPC). Further, we demonstrate that GOPC degradation is

mediated by the poorly characterized HSV-1 pUL56. Plasma

membrane profiling shows that pUL56 reduces the cell-surface

abundance of multiple host proteins, including the immune

signaling molecule Toll-like receptor 2 (TLR2), and we demon-

strate that cell-surface expression of TLR2 requires GOPC.

This highlights an unanticipated and highly efficient mechanism

whereby HSV-1 specifically targets a cellular trafficking factor

in order to manipulate the abundance of host proteins on the sur-

face of infected cells.

RESULTS

QTV Study of HSV-1 Infection
To construct an unbiased global picture of changes in host and

viral proteins throughout the course of HSV-1 infection, we in-

fected an immortalized human keratinocyte cell line (HaCaT)

with HSV-1 at a high multiplicity of infection (MOI; 10 plaque-

forming units [PFUs]/cell) (Figure 1; Table S1). Immunofluores-

cence analysis of parallel samples confirmed that >95% of cells

were infected (Figure S1A). Ten-plex TMTs and MS3 were used

to quantify changes in protein expression over six time points

(Figure 1A). A particular advantage of such TMT-based quantita-

tion is the measurement of each protein at every time point. This

generated the most complete proteomic dataset examining the

lytic replication cycle of HSV-1 to date, quantifying 6,956 human

proteins and 67/74 canonical HSV-1 proteins, and provided a

global view of changes in protein expression during infection.

Temporal analysis of viral protein expression over the whole

course of infection can provide a complementary system of pro-
wheremultiple proteins are downregulated in the context of host shutoff); and (2) v

binning, because the spread of fold-change ratios for proteins quantified by peptid

less well quantified with lower total S:N values (Cox and Mann, 2008).

(D) Example temporal profiles for control proteins that are known to be degraded

(E) Validation of temporal profiles shown in (D) by immunoblot of lysates from HaC

(all at MOI 5) for 16 h.
tein classification, in addition to enabling direct correlation be-

tween viral and cellular protein profiles to give insights into

viral-host protein interaction (Soday et al., 2019; Weekes et al.,

2014). The number of classes of viral protein expression was

determined by clustering viral proteins using the K-means

method. This identified at least five distinct temporal profiles of

viral protein expression (Figures S1B–S1E; Table S1). Further-

more, by searching data against a 6-frame translation of the

HSV-1 strain used (KOS), eight putative additional HSV-1 pro-

teins (6FT-ORFs) that increased in abundance over the course

of infection were identified in this dataset (Figure S2A; Table S1).

HSV-1 infection led to >2-fold downregulation of 496 human

proteins and >2-fold upregulation of 34 human proteins. Mock

and immediate-early (2 h) infection samples clustered separately

from early (4, 6 h) and late (9, 12, 18 h) infection time points. The

most extensive changes to the cellular proteome occurred late

during infection, as might be expected for a virus with a potent

host shutoff activity (Figure 1B). This effect can be observed by

a general shift to the left in a scatterplot of fold change (Fig-

ure 1C).Multiple host targets known to be specifically downregu-

lated during HSV-1 infection were confirmed, including DNA-

PKcs (PRKDC) (Lees-Miller et al., 1996; Parkinson et al., 1999),

interferon gamma-inducible protein 16 (IFI16) (Orzalli et al.,

2012), itchy E3 ubiquitin protein ligase (ITCH) (Ushijima et al.,

2010), promyelocytic leukemia (PML) (Chelbi-Alix and de Thé,

1999), tripartite motif-containing 27 (TRIM27) (Conwell et al.,

2015), nucleus accumbens-associated 1 (NACC1) (Sloan et al.,

2015), and MORC family CW-type zinc-finger 3 (MORC3) (Sloan

et al., 2015) (Figures 1C, 1D, and 2D; Table S1). Proteomic data

were validated by comparison to immunoblot analysis of cells in-

fected for 16 h with three independent strains of HSV-1 and with

HSV-2, which suggested that many of the changes observed

were conserved phenotypes (Figure 1E). All data are shown in

Table S1, in which the ‘‘plotter’’ worksheet facilitates interactive

generation of temporal graphs of expression of each of the hu-

man or viral proteins quantified. Our data on HSV-1-dependent

changes to the cellular proteome were compared to data on

HSV-1-dependent changes to the transcriptome (total and newly

synthesized RNA) and translatome (ribosome profiling) from a

recent study (Rutkowski et al., 2015) using the latest time points

from each dataset to compare the greatest abundance changes

(18 h for the proteome and 8 h for the transcriptome/translatome;

Table S2). These data confirm a general decrease in both protein

and total RNA abundance (Figure 2A). However, the data also

suggest the proteins exhibiting the largest decreases in abun-

dance are targeted for specific HSV-1-induced protein degrada-

tion, rather than inhibition of transcription or translation (Fig-

ure 2A). For example, in HSV-1-infected cells the protein

TRIM27 was 22-fold less abundant but TRIM27 total RNA was

only 2.2-fold reduced, newly synthesized RNA was just 4.4-

fold reduced, and there was a slight increase in ribosome-
alues are calculated for consecutive protein subsets obtained by sequential S:N

eswith high S:N values is naturally smaller than the spread of ratios for proteins

.

aT cells infected with HSV-1 strains KOS, S17, and SC16 and HSV-2 strain 333
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Figure 2. Manipulation of Host-Cell Pathways during HSV-1 Infection

(A) Scatterplots comparing the fold change of protein abundance to total RNA (left), newly synthesized RNA (4sU-RNA; middle), and ribosome profiling (RP; right)

data in cells infected with HSV-1 versus mock-infected cells. RNA and RP values are from Rutkowski et al. (2015). Data shown in Table S2.

(B) DAVID enrichment analysis of all human proteins downregulated >2-fold at any point during infection compared to an average of the four mock samples. A

background of all 6,956 quantified human proteins was used. Shown are representative terms from each cluster with Benjamini-Hochberg-corrected p values of

<0.05. Components of each enriched cluster are shown in Table S3. A similar analysis was performed for proteins upregulated >2 fold; however, this did not reveal

any significant enrichment.

(C) Example temporal profiles of proteins downregulated from the ubiquitin-like (Ubl) conjugation pathway.

(legend continued on next page)
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protected fragments. Table S2 shows the comparison of protein

abundance changes at 18 h post infection (hpi) versus total RNA,

newly synthesized RNA (4sU), and ribosome profiling data (from

Rutkowski et al., 2015), including a plotter function for host pro-

teins quantified across all four datasets.

Bioinformatic Enrichment Analysis of HSV-1 Infection
DAVID software (Huang et al., 2009) was used to identify path-

ways significantly enriched among proteins downregulated >2-

fold (Figure 2B). Several of these pathways are known to

influence HSV-1 infection, for example cell-cycle-associated

proteins such as cyclin-dependent kinases (Schang et al.,

1998) and a range of DNAdamage response pathways (reviewed

in Smith and Weller, 2015). The ubiquitin-like (Ubl) conjugation

pathway was significantly enriched, consistent with the known

targeting of certain pathway components by herpesviruses to

direct cellular prey for degradation. For example, three SUMO

family members were downregulated during infection (the fourth

was not quantified) (Figure 2C). Components of each enriched

cluster are shown in Table S3. A similar analysis of host proteins

upregulated >2-fold did not reveal any enriched clusters.

Identification of Host Targets Most Rapidly Depleted
following HSV-1 Infection
Based on the premise that host proteins downregulated early

during viral infection are likely to be enriched in factors with anti-

viral activity (Nightingale et al., 2018), we analyzed proteins

downregulated >4-fold at the earliest time point after HSV-1

infection (2 hpi; Figures 2D and 2E). Of the six proteins thus iden-

tified, four have previously been shown to be reduced signifi-

cantly in HSV-1-infected cells (methyl-CpG-binding domain pro-

tein 1 [MBD1] [Sloan et al., 2015], MORC3 [Sloan et al., 2015],

TRIM27 [Conwell et al., 2015], and zinc-finger protein 462

[ZNF462] [Sloan et al., 2015]), of which three were shown to be

modulated in an ICP0-dependent manner (MBD1, MORC3,

and TRIM27) (Sloan et al., 2015). The other two proteins (sena-

taxin [SETX] and GOPC) have not been previously identified as

targets of HSV-1-mediated degradation.

pUL56 Binds the NEDD4 Family of Ubiquitin Ligases and
GOPC
ITCH, a member of the NEDD4 family of ubiquitin ligases, was

rapidly depleted during HSV-1 infection (Figures 1B–1E).

pUL56 proteins from HSV-1 and HSV-2 interact with ITCH and

NEDD4, leading to proteasomal degradation of these targets

(Ushijima et al., 2008, 2010). pUL56 is a tail-anchored type II

membrane protein found in purified virions (Koshizuka et al.,

2002) and contains three PPXY motifs that interact with

NEDD4, likely by binding to WW domains (Ushijima et al.,

2008). Notably, pUL56 does not contain any lysine residues

and is thus likely to be refractory to ubiquitination. To further

characterize the cellular binding partners of pUL56, stable

isotope labeling of amino acids in cell culture (SILAC) immuno-
(D) Scatterplot of all proteins quantified at 2 hpi. Fold changes were calculated for

to the average S:N for that protein from the four mock-infected samples. Benjami

Mann, 2008).

(E) Temporal profiles of all proteins downregulated during HSV infection >4-fold
precipitation-mass spectrometry (IP-MS) analysis was per-

formed using cells expressing GFP-tagged pUL56 or GFP alone

(Figures 3A and S3; Table S4). Several members of the NEDD4

family of ubiquitin ligases were enriched in the pUL56 IP, as

were multiple trafficking protein particle complex II (TRAPPCII)

subunits. Strikingly, GOPC was also identified as a binding part-

ner of pUL56. Co-precipitation assays demonstrated that the pu-

rified glutathione S-transferase (GST)-tagged pUL56 cyto-

plasmic domain (residues 1–207) is capable of binding purified

GOPC, confirming that these two proteins interact directly (Fig-

ure 3B). The N-terminal coiled-coil domain of GOPC mediates

its recruitment to the Golgi via an interaction with golgin-160

(Hicks and Machamer, 2005), whereas the PDZ domain medi-

ates interactions with C-terminal PDZ-binding motifs of cellular

partner proteins (Yao et al., 2001). Truncation of GOPC showed

that residues 27–236, comprising the N-terminal coiled-coil re-

gion, are sufficient to bind to pUL56 (Figure 3B). IP experiments

conducted with cells expressing truncated forms of pUL56

demonstrated that residues 1–157 of pUL56 can mediate effi-

cient binding to GOPCwhereas residues 1–104 do not, suggest-

ing that a binding site for GOPC may reside within the 53-amino

acid sequence betweenpUL56 residues 105 and 157 (Figure 3C).

Taken together, these results suggest a model whereby pUL56

binds both GOPC and the NEDD4 family of ubiquitin ligases,

bringing them in close proximity and thus stimulating the ubiqui-

tination and proteolytic degradation of GOPC.

pUL56 Mediates Degradation of GOPC via the
Proteasome
To identify the mechanism of GOPC degradation, cells were in-

fected with wild-type (WT) HSV-1 or HSV-1 lacking expression

of pUL56 (DUL56). Viruses lacking expression of the viral pro-

teins ICP0 (DICP0) or vhs (Dvhs) were also included, as both

are known to deplete host proteins. Cells were further treated

with or without the proteasomal inhibitor MG132. GOPC was

degraded during HSV-1 infection in a pUL56-dependent and

MG132-inhibitable fashion, whereas GOPC degradation was

independent of both ICP0 and vhs (Figure 4A). Immunofluores-

cence microscopy further demonstrated pUL56-dependent

loss of GOPC in HSV-1-infected cells, which was inhibited by

MG132 (Figure 4B). HSV-1 pUL56 contains three PPXY motifs,

which mediate interaction with the NEDD4 family of E3 ubiquitin

ligases (Ushijima et al., 2010). Expression of a GFP-tagged

construct by transfection demonstrated that pUL56 is sufficient

to cause GOPC degradation in the absence of other HSV-1 fac-

tors (Figure 4C). Furthermore, the degradation of GOPC was

shown to rely on the PPXY motifs of pUL56, as GOPC was

not depleted in cells expressing GFP-tagged pUL56 where all

three PPXY motifs have been mutated to AAXA (GFP-pUL56-

AAXA; Figure 4C). GFP-pUL56-AAXA simultaneously co-local-

ized with GOPC and TGN46 at a juxtanuclear compartment,

suggesting pUL56 and GOPC interact at Golgi membranes,

where both proteins are known to localize (Hicks and
each protein by comparing the S:N value from the 2-hpi HSV-1-infected sample

ni-Hochberg-corrected significance B was used to estimate p values (Cox and

at 2 hpi.
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Figure 3. pUL56 Binds GOPC and Cellular Ubiquitin Ligases

(A) SILAC-labeled HEK293T cells were transfected with GFP-tagged pUL56 cytoplasmic domain (residues 1–207) or GFP alone and subjected to immuno-

precipitation (IP) using a GFP affinity resin. In the volcano plot, the horizontal axis shows average fold enrichment in IP of pUL56(1–207)-GFP compared to GFP

across three biological replicates and the vertical axis shows significance (two-sided t test) across the three replicates. Significantly enriched proteins (>2-fold

enrichment and p < 0.05) are colored blue and selected proteins are annotated. Data shown in Table S4.

(B) Pull-down experiment using purified recombinant components, demonstrating that the GST-tagged pUL56 cytoplasmic domain interacts directly with the

coiled-coil region of GOPC. The peptide-binding N-terminal domain of clathrin heavy chain (Clathrin NTD) and GST were used as control prey and bait proteins,

respectively. Proteins were visualized using InstantBlue Coomassie stain.

(C) CoIP of GOPC with GFP-tagged pUL56 and truncations thereof. Immunoblots were stained with the antibodies shown.

(D) Schematic representation of pUL56 and GOPC.
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Machamer, 2005; Koshizuka et al., 2002). To further test the

importance of NEDD4 family E3 ubiquitin ligase binding for

GOPC degradation by pUL56, a recombinant virus was gener-

ated where all three pUL56 PPXY motifs were mutated to

AAXA. This mutant phenocopied the pUL56-deletion virus,

failing to degrade GOPC and ITCH (a known pUL56 target;

Ushijima et al., 2010), even though pUL56 expression was

maintained (Figure 4D). To test our model of pUL56 binding

simultaneously to GOPC and NEDD4 family E3 ubiquitin li-

gases, untagged pUL56 (WT or AAXA) was co-expressed
6 Cell Reports 33, 108235, October 6, 2020
with myc-tagged GOPC plus yellow fluorescent protein (YFP)-

tagged WW domains of NEDD4, which interact with PPXY mo-

tifs, and cell lysates were subjected to IP analysis with a YFP

affinity resin. Capture of the YFP-NEDD4-WW domains effi-

ciently co-precipitated WT pUL56 but not pUL56-AAXA (Fig-

ure 4E). Importantly, myc-GOPC was co-precipitated with

YFP-NEDD4-WW in the presence of WT pUL56, demonstrating

formation of a tripartite complex where binding of GOPC to

NEDD4 is mediated by pUL56. Furthermore, IP experiments

conducted with cells expressing myc-GOPC and hemagglutinin
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Figure 4. pUL56 Is Necessary and Sufficient for GOPC Degradation

(A) HaCaT cells were infected at an MOI of 10 with the indicated viruses. After 2 h, media were replaced with 10 mM MG132 or carrier (DMSO) in DMEM for the

remainder of the infection. Cell lysates were harvested 16 hpi and the indicated proteins were detected by immunoblot.

(B) HFF hTERTcellswere infectedat anMOI of 1 and then treatedwithMG132or carrier as described in (A). At 6 hpi, sampleswere fixedand stained forGOPC (green)

and the infection control gD (red). The merge includes DAPI (blue). The scale bar represents 10 mm. Asterisks indicate HSV-1 infected (gD expressing) cells.

(C) U2-OS cells were transfected with GFP-pUL56 or GFP-pUL56-AAXA expression plasmids. One day post-transfection, cells were fixed and stained for GOPC

(red) and TGN46 (cyan). The merge includes DAPI (blue). The scale bar represents 10 mm. Asterisks indicate GFP-pUL56 and GFP-pUL56 AAXA expressing cells.

(D) HaCaT cells were infected at anMOI of 10with the indicated virus, cell lysateswere harvested 16 hpi, and the indicated proteinswere detected by immunoblot.

(E) HEK293T cells were transfected with YFP-tagged NEDD4-WW domains, myc-tagged GOPC, and untagged pUL56 or pUL56-AAXA expression plasmids.

Samples were subjected to IP using YFP affinity resin and co-precipitated proteins were detected by immunoblot.

(F) HEK293T cells were transfected with HA-tagged ubiquitin (HA-Ub) and myc-GOPC together with empty vector or pUL56 or pUL56-AAXA expression plas-

mids. Samples were subjected to IP using myc affinity resin and probed for the presence of HA-Ub-conjugated GOPC by immunoblot.
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(HA)-tagged ubiquitin demonstrated a marked increase in ubiq-

uitinated myc-GOPC species precipitated from cells co-ex-

pressing WT pUL56 as compared to pUL56-AAXA (Figure 4F).
Overall, these data demonstrate that pUL56 recruits NEDD4

family ubiquitin ligases to mediate the ubiquitination and pro-

teasomal degradation of GOPC.
Cell Reports 33, 108235, October 6, 2020 7
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Figure 5. Identification of pUL56 Degradation Targets

(A) HaCaT cells were infectedwith HSV-1WT andHSV-1DUL56 at anMOI of 10 in biological duplicates and total infectious virus yields at the indicated time points

were determined by plaque assay. Error bars represent standard error of the mean.

(B) Plaque assays of HSV-1WT and HSV-1 DUL56 in HaCaT, HFF hTERT, and Vero cells in biological duplicates. Plaques were visualized by immunostaining the

cells for the viral glycoprotein gD.

(C) Plaque diameters from (B) were measured and normalized to the average for HSV-1 WT. Error bars represent standard deviation; n = 35–67.

(D) Schematic of the proteomics workflow. Cells were infected at an MOI of 10 or mock infected. Samples were harvested at the stated times and processed for

quantitative proteomic analysis. Data shown in Table S5.

(legend continued on next page)
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Replication of HSV-1 in Cell Culture Is Independent of
pUL56
The rapid depletion of GOPC from cells during HSV-1 infection

implies that removal of this host proteinmay be important for effi-

cient viral replication. However, growth kinetics of HSV-1

DUL56, where endogenous levels of GOPC are maintained dur-

ing infection, were essentially identical to kinetics of HSV-1 WT

(Figure 5A). Plaque size analysis also demonstrated no defects

in cell-to-cell spread for HSV-1 DUL56 compared to WT (Figures

5B and 5C). These data demonstrate that pUL56 is dispensable

for HSV replication in cell culture, consistent with previous re-

ports (Ushijima et al., 2008). Given that viruses do not usually

retain genes of no benefit, this suggests that pUL56 plays a

role during viral replication in vivo, perhaps during establishment,

maintenance, or reactivation from latency. Alternatively, pUL56

may be a virulence factor involved in modulating antiviral im-

mune responses against HSV-1, as is the case for a number of

herpesvirus proteins that are dispensable in cell culture but

important for replication in vivo, for example vhs (Strelow and

Leib, 1995).

Identification of Host Proteins Specifically Depleted by
pUL56
ICP0 and vhs are known to cause extensive remodeling of host

protein expression to facilitate viral replication (Boutell and Ever-

ett, 2013; Smiley, 2004). Our data now suggest that pUL56 also

contributes to host protein depletion but in a more targeted

manner. To identify cellular proteins depleted by pUL56, HaCaT

cells were infected with HSV-1 WT or DUL56 and analyzed by

TMT-based proteomics (Figure 5D; Table S5). Of the 7,696 hu-

man proteins quantified, only a small number exhibited signifi-

cant abundance changes between the WT and DUL56 infec-

tions, and the largest change observed was for GOPC (Figures

5E and 5F). A small number of other potential targets of pUL56

were identified, defined by >2-fold reduced abundance in

HSV-1 WT samples compared to mock and DUL56 samples.

These included discs-large MAGUK scaffold protein 3 (DLG3),

leucine-rich repeat-containing 1 (LRRC1), and Erbb2-interacting

protein (ERBIN), which may function as a complex: both LRRC1

(also known as LANO) and ERBIN have been shown to interact

with DLG proteins (Saito et al., 2001). The DLG family has a num-

ber of proposed functions including regulation of cell polarity and

tight junction formation, and they are targeted for degradation by

a number of viral families (Kong et al., 2014; Lee et al., 1997; Rob-

erts et al., 2012). Remodeling cell polarity through pUL56-medi-

ated degradation of these host proteins may facilitate HSV-1

spread in vivo.

Searching this TMT dataset against a 6-frame translation of

KOS-strain HSV-1 identified 14 putative additional HSV-1 pro-

teins that increased in abundance over the course of infection,

including 9 that were not identified in the initial QTV experiment

(Figure S2B; Table S5). Comparison of our two MS datasets on

protein abundance in HSV-1-infected cells by linear regression

analysis showed close correlation (r2 = 0.75) between the
(E) Scatterplot of all proteins quantified. Fold changes were calculated for each

infected samples. Benjamini-Hochberg-corrected significance B was used to es

(F) Temporal profiles of all proteins downregulated >2-fold by HSV-1 WT versus
changes caused by WT HSV-1 at 9 hpi (Table S1, dataset) and

8 hpi (Table S5, dataset), demonstrating the reproducibility of

our data (Figure S4).

pUL56 Activity Alters the Plasma Membrane Proteome
Modulation of proteins at the cell surface is an immune evasion

strategy utilized by multiple viruses. Because GOPC regulates

the trafficking of certain proteins to the plasma membrane

(Cheng et al., 2002), destruction of GOPC through the activity

of pUL56 may be a mechanism to specifically modify the surface

presentation of proteins in HSV-1-infected cells. Plasma mem-

brane profiling was thus performed on cells infected with HSV-

1 WT or DUL56 at an early stage of replication (6 hpi) using SI-

LAC-based MS (Figure 6). Filtering for proteins annotated as

plasma membrane (PM), cell surface (CS), or extracellular (XC)

by Gene Ontology (GO) or with a short GO (ShG) term as previ-

ously described (Weekes et al., 2014) resulted in >700 quantified

host proteins (Table S6). Hierarchical clustering of the resulting

data identified host proteins that are less abundant at the plasma

membrane of HSV-1-WT-infected cells and rescued by pUL56

deletion (Figure 6B). These included immune signaling proteins

TLR2 and interleukin-18R1 (IL18R1) as well as DUOX1 (dual ox-

idase 1) and several members of the solute carrier (SLC) family of

proteins (Figures 6B and 6C).

Comparison of plasma membrane and whole-cell proteomic

datasets for the same time point of HSV-1 infection (6 hpi) iden-

tified 360 proteins conforming to our plasmamembrane filter that

were quantified in both experiments (Table S7). Interestingly, of

121 annotated plasma membrane proteins that were downregu-

lated >2-fold by 6 h of HSV-1 infection, only 9 were also down-

regulated >2-fold at the same time point from whole-cell lysates

(Figure S5; Table S7), including the HSV-1 receptor nectin-1 that

is known to be downregulated in infected cells (Stiles et al.,

2008). Given the majority of plasma membrane proteins,

including major histocompatibility complex class I (MHC-I) (indi-

cated by b2-microglobulin) and DUOX1, were downregulated

substantially more from the plasma membrane than in whole-

cell lysates (Figure S5; Table S7), this suggests that during

HSV-1 infection these and many other plasma membrane pro-

teins may be downregulated by intracellular sequestration as

opposed to degradation or transcriptional downregulation, as

previously shown for MHC-I (York et al., 1994). However, TLR2

and IL18R were only quantified in plasma membrane but not

whole-cell protein samples, precluding a comparison of total

abundance and cell-surface abundance for these proteins (Table

S7). Therefore, we employed immunofluorescence microscopy

to investigate the pUL56-dependent changes to TLR2 plasma

membrane localization. These data demonstrated that expres-

sion of WT pUL56, but not pUL56-AAXA, reduced cell-surface

TLR2without affecting intracellular expression levels (Figure 6D),

indicating that pUL56 modulates TLR2 subcellular localization

rather than targeting it for degradation.

TLR2 is a pattern recognition receptor that has a well-estab-

lished activity against bacterial pathogen-associated molecular
protein by comparing S:N values at 8 hpi for HSV-1-WT- and HSV-1-DUL56-

timate p values (Cox and Mann, 2008).

mock and additionally rescued >2-fold by HSV-1 DUL56.

Cell Reports 33, 108235, October 6, 2020 9
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patterns (PAMPs) but also recognizes HSV-1 and HCMV glyco-

proteins (Boehme et al., 2006; Cai et al., 2013; Leoni et al.,

2012). In response to herpesvirus infection, TLR2 plays a role

in inducing interferon g in neurons and cytokines in peritoneal

macrophages, as well as controlling viral load in the CNS

(Kurt-Jones et al., 2004; Lima et al., 2010; Sørensen et al.,

2008). IL18 is a proinflammatory cytokine that binds IL18R1,

which is important for innate immune responses to HSV-2

infection in vivo (Harandi et al., 2001). Downregulating these im-

mune receptors from the cell surface may be a proviral strategy

to decrease inflammation and immune activation. DUOX1 is a

transmembrane protein that can generate H2O2 and functions

in lactoperoxidase-mediated antimicrobial defense at mucosal

surfaces (Sarr et al., 2018). Production of H2O2 has been shown

to inhibit the splicing of influenza A virus (IAV) transcripts and

decrease production of infectious virus, and IAV has been

shown to downregulate DUOX1 (Strengert et al., 2014).

Removing DUOX1 from the plasma membrane may be similarly

proviral for HSV-1 by inhibiting H2O2 production. The mecha-

nism by which HSV-1 depletes DUOX1 from the plasma mem-

brane may be through pUL56-dependent degradation of DU-

OXA1 (Figure 5F) as DUOXA1 is a chaperone required for the

maturation and transport of DUOX1 from the endoplasmic re-

ticulum (ER) to the plasma membrane (Grasberger and Refet-

off, 2006).

TLR2 Cell-Surface Expression Is GOPC Dependent
To determine whether loss of TLR2 from the cell surface was due

to disruption of GOPC-mediated trafficking, we generated

GOPC-knockout HaCaT cells using CRISPR/Cas9 genome edit-

ing. Plasma membrane profiling was conducted on three inde-

pendent single-cell knockout clones, generated from two inde-

pendent single guide RNAs (sgRNAs) targeting GOPC, using

TMT-based MS (Figures 7A and 7B; Table S8). A particular

benefit of this approach is that although many cell-surface pro-

teins exhibited variation in expression between the cell clones,

a short list of proteins that were commonly modulated due to

loss of GOPC was highlighted. Four proteins were on average

downregulated >2-fold across the three independent GOPC-

knockout clones, with TLR2 most substantially and consistently

downregulated (Figures 7C and 7D). Scatterplots comparing in-

dividual GOPC-knockout clones toWTHaCaT cells are shown in

Figure S6. Loss of TLR2 from cells lacking GOPC was further

confirmed by flow cytometry. Normal HaCaT cells included a

TLR2+ population, whereas all three GOPC-knockout clones ex-

hibited reduced cell-surface TLR2 (Figure 7E). Taken together,
Figure 6. pUL56 Modulates Immune Receptors through Control of Hos

(A) Schematic of the experimental workflow. SILAC-labeled cells were infected at a

plasma membrane enrichment and subsequent quantitative MS. Data shown in

(B) Hierarchical cluster analysis of fold-change values for each pairwise comparis

cell surface (CS), or extracellular (XC) by Gene Ontology (GO), or with a short GO

three clusters is shown in the right panel, which included proteins downregulated

(C) Profiles of example proteins that were downregulated >2-fold by HSV-1 WT

(expressed only in infected cells), NECTIN-1 (removed from the cell surface by H

(D) U2-OS cells were transfected with FLAG-TLR2 together with pUL56 or pUL56

surface TLR2 before fixation or intracellular TLR2 after fixation and permeabilizatio

The scale bars represent 10 mm.
these data demonstrate the expression of TLR2 on the cell sur-

face of keratinocytes relies on the activity of GOPC.

DISCUSSION

In this study, we combined three powerful unbiased proteomic

techniques, QTV (Figures 1, 2, and 5), affinity enrichment (Fig-

ure 3), and plasma membrane proteomics (Figures 6 and 7), to

identify that HSV-1 pUL56 promotes degradation of the host-

cell trafficking factor GOPC and in doing so lowers the abun-

dance of important immune signaling molecules such as TLR2

at the plasma membrane of infected cells. Biochemistry and

cell biology experiments (Figures 3, 4, 5, and 7) confirmed that

pUL56 binds directly to GOPC, is both necessary and sufficient

to promote GOPC degradation, requires the recruitment of the

NEDD4 family of ubiquitin ligases via its PPXYmotifs to stimulate

GOPC ubiquitination and degradation, and results in changes in

the cell-surface proteome through the loss of GOPC. The prote-

omic datasets presented in this manuscript represent a rich

resource for identifying and characterizing the mechanisms by

which HSV modulates both the whole-cell and plasma mem-

brane proteomes of infected cells.

Temporal Insights into HSV-1 Infection
The multiplexed quantitative proteomic data presented herein

represent the most comprehensive analysis of host-cell prote-

ome changes upon HSV-1 infection to date, with >7,000 host

proteins from whole-cell samples and >700 plasma membrane

proteins quantified within three independent datasets (Tables

S1, S5, and S6). Comparison of our whole-cell proteomic data

with published transcriptomic data and with results of our

plasma membrane proteomic experiments highlighted the inter-

esting observation that HSV-1-mediated protein downregulation

from whole-cell samples appeared predominantly degradative

whereas downregulation of proteins from the plasma membrane

appeared primarily due to intracellular sequestration, at least for

the host proteins showing the greatest depletion. These obser-

vations will need further confirmation in future studies, for

example through use of protein degradation inhibitors or immu-

nofluorescence microscopy analysis of protein localization

changes in response to HSV-1 infection.

Our QTV data also provide important insights into the kinetics

of HSV-1 protein production. K-means analysis identified five

distinct profiles of protein expression (Figure S1). Immediate-

early and early genes were found in the same class (Tp2). This

presumably arises from the high MOI, required for complete
t Trafficking to the Plasma Membrane

nMOI of 10 ormock infected. Sampleswere harvested 6 hpi and processed for

Tables S6 and S7.

on. Proteins were included if they were annotated as plasma membrane (PM),

(ShG) term as previously described (Weekes et al., 2014). An enlargement of

during infection with HSV-1 WT but rescued by infection with HSV-1 DUL56.

and rescued >2-fold by HSV-1 DUL56 are shown, as well as the controls gB

SV-1), and EGFR (unchanged).

-AAXA expression plasmids. One day post-transfection, cells were stained for

n (both red) and co-stained for pUL56 (green). The merge includes DAPI (blue).
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Figure 7. GOPC Is Important for Presentation of TLR2 at the Plasma Membrane

(A) Immunoblot analysis of GOPC-knockout cells. Single-cell clones (C8, E3, and F6) were isolated from CRISPR-knockout cells made from two independent

gRNAs (GOPC 1 and GOPC 2).

(B) Schematic of the experimental workflow. Sampleswere harvested and processed for plasmamembrane enrichment and subsequent TMT-based quantitative

MS. Data shown in Table S8.

(C) Scatterplot of all proteins annotated as PM, CS, or XC or with an shG term, comparing the average of the 3 GOPC-knockout cell lines and WT HaCaT cells.

(D) Profiles of proteins that were downregulated >2-fold in the averagedGOPC-knockout cell data are shown for each independent cell line. Benjamini-Hochberg-

corrected significance B was used to estimate p values (Cox and Mann, 2008).

(E) Flow cytometry analysis of TLR2 levels at the plasma membrane of HaCaT WT cells and three GOPC-knockout clones (C8, E3, and F6).
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infection, and the use of 2 hpi as the earliest time point. These

conditions may have masked some of the differences in the ki-

netic profiles of immediate-early and early gene classes. Inter-

estingly, late genes appeared to cluster in three distinct groups

(temporal profile 3 [Tp3]–Tp5). Whereas late genes have previ-

ously been divided into late and true late classes, dependent

on the requirement for prior genome replication (Kibler et al.,

1991), our data suggest that an intermediate kinetic class may

exist. Alternatively, these data may highlight differences in the
12 Cell Reports 33, 108235, October 6, 2020
translation or maturation rates of viral proteins despite their

mRNA expression being induced at the same time.

This kinetic analysis of HSV-1 protein abundance also identi-

fied that ICP47 (US12) has a separate temporal profile (Tp1; Fig-

ure S1). Unlike all other viral proteins, where the abundance in-

creases throughout infection, the amount of ICP47 peaks early

during infection and the protein is subsequently downregulated.

ICP47 binds and inhibits the MHC-I peptide loading complex

transporter of antigenic peptides (TAP), preventing peptide
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presentation at the cell surface and promoting immune evasion

(Hill et al., 1995). The varying abundance of ICP47 during infec-

tion might therefore have the effect of balancing evasion of

CD8+ T cells with preventing activation of natural killer (NK) cell

killing, by precisely regulating the level of MHC-I reduction at

the cell surface.

HSV-1 pUL56 Degrades GOPC by Recruiting Cellular E3
Ligases
HSV-1 strains lacking pUL56 are attenuated in animal models

(Berkowitz et al., 1994; Kulej et al., 2017; Rösen-Wolff et al.,

1991), despite the protein being dispensable for virus replication

in cultured cells (Figures 5A–5C) (Ushijima et al., 2008). Our data

provide a molecular mechanism by which pUL56 may enhance

virulence during infection, by promoting the degradation of

GOPC and subsequent downregulation of immune signaling

molecules from the surface of infected cells.

Previous studies fromHSV-1 andHSV-2 have shown pUL56 to

interact with ITCH and NEDD4, leading to their degradation, but

the importance of this activity remained elusive (Ushijima et al.,

2008, 2010). Our IP-MS data revealed that pUL56 binds multiple

cellular NEDD4 family ubiquitin ligases and the trafficking factor

GOPC (Figure 3A). We show that pUL56 binds directly to the

coiled-coil region of GOPC (Figure 3B), is necessary for the pro-

teasome-mediated degradation of GOPC in HSV-1-infected

cells (Figures 4A and 4B), and is sufficient to promote GOPC

degradation in the absence of infection (Figure 4C). Furthermore,

we show that the NEDD4-binding PPXY motifs of pUL56 are

required for GOPC degradation (Figures 4C and 4D), pUL56

can simultaneously bind GOPC and NEDD4 (Figure 4E), and

pUL56 can stimulate ubiquitination of GOPC (Figure 4F). Taken

together, these data demonstrate that pUL56 serves as a scaf-

fold to bring GOPC and a NEDD4 family ubiquitin ligase together

in order to promote GOPC ubiquitination and proteasomal

degradation. pUL56 is itself protected from degradation as it

does not contain lysine residues to which ubiquitin could be con-

jugated, suggesting each molecule of pUL56 could turn over

multiple copies of GOPC and other targets.

GOPC is rapidly degraded during HSV-1 WT infection (Fig-

ure 2D) and its abundance is restored during infection with

HSV-1 DUL56 (Figures 4A, 4B, 5E, and 5F). Several other pro-

teins are also rescued when comparing HSV-1 WT to DUL56

infection. This may reflect direct pUL56-mediated degradation

or be an indirect consequence caused by the loss of GOPC.

HSV-1 Degrades a Trafficking Factor to Modify the
Surface of Infected Cells
Many viruses modify the surface of infected cells in order to

modulate host responses. For example, HIV-1 Vpu recruits an

E3 ubiquitin ligase to promote the ubiquitination and degradation

of several cell-surface proteins (Matheson et al., 2015). Alterna-

tively, it has been shown that multiple HCMV proteins act via

distinct mechanisms to restrict the cell-surface presentation of

MHC-I and NK cell receptors (Wilkinson et al., 2008). Using

global unbiased approaches, we have now identified that HSV-

1 pUL56 modifies the surface abundance of several host

proteins including immune signaling proteins TLR2 and IL18 re-

ceptor, at least in part through specifically degrading the cellular
trafficking factor GOPC. Furthermore, we have shown that the

cell-surface expression of TLR2 in uninfected human keratino-

cytes is dependent onGOPC. This expands the known repertoire

of cellular proteins whose transport is regulated by GOPC, the

best characterized of which being the cystic fibrosis transmem-

brane regulator (Cheng et al., 2002) and G-protein-coupled re-

ceptors such as the b1-adrenergic receptor (Koliwer et al., 2015).

The roles of TLR2 during natural HSV infection are unclear, with

evidence suggesting that TLR2 is important for controlling infec-

tion (Bochud et al., 2007; Sørensen et al., 2008) but also that

TLR2 activation increases immunopathology in mouse models

of HSV infection (Kurt-Jones et al., 2004) and pseudorabies virus

infection (Laval et al., 2019). In addition to our discovery that

pUL56 modulates TLR2 surface levels in infected cells, additional

HSV-1 proteins have also been shown to inhibit TLR2 activity,

including ICP0 (van Lint et al., 2010) and pUS3 (Sen et al.,

2013). How the modulation of TLR2 by pUL56 and other viral pro-

teins differentially affects the pathogenesis of herpesvirus infec-

tions awaits further study. Interestingly, GOPCmay be a common

target for modulation by viruses: human papillomavirus type 16 E6

protein was shown to bind GOPC and mediate its degradation

through the host E3 ubiquitin ligase E6AP (Jeong et al., 2007). Un-

like pUL56, E6 binds to the PDZ domain of GOPC through a PDZ-

binding motif. In addition, the classical swine fever virus NS2 pro-

tein boundGOPC in a yeast two-hybrid screen (Kang et al., 2012),

although it has not yet been determined whether GOPC is

degraded during infection with this virus.

The pUL56 homologs from equine herpesvirus type 1 (EHV-1)

and type 4 (EHV-4) share only 20% identity with HSV-1 pUL56,

yet both are type II transmembrane proteins that possess multi-

ple PPXYmotifs and have few or no cytoplasmic lysine residues.

Interestingly, both EHV-1 and EHV-4 have been shown to down-

regulate MHC-I from the surface of infected cells in a pUL56-

dependent fashion (Ma et al., 2012; Said et al., 2012). Similarly,

U24 from human herpesvirus 6A (HHV-6A) is a tail-anchored

(type II) membrane protein containing a PPXY motif and has

been shown to downregulate the T cell receptor (Koshizuka

et al., 2018; Sullivan and Coscoy, 2008). Furthermore, HCMV

UL42 has been shown to bind and stimulate ubiquitin-mediated

degradation of ITCH (Koshizuka et al., 2016). It therefore seems

likely that recruitment of NEDD4 family ubiquitin ligases by

PPXY-motif-containing virally encoded type II transmembrane

proteins is a conserved mechanism among herpesviruses to

modulate membrane trafficking pathways in infected host cells.

In conclusion, our data provide extensive resources for under-

standing HSV interactions with host cells. Importantly, we iden-

tified that pUL56 targets GOPC for proteasomal degradation,

thereby removing immune signaling molecules from the plasma

membrane. This represents an elegant and efficient mechanism

by which HSV-1 can remodel the surface of infected cells. The

degradation of GOPC by other viruses may represent a common

mechanism to modulate the cell surface of infected cells to

evade host immune surveillance.
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Antibodies

Rabbit monoclonal anti-GOPC (clone EPR4080(2)) Abcam Cat#ab133472; RRID: AB_11156985

Mouse monoclonal anti-DNA PKcs (clone G4) Santa Cruz Biotechnology Cat#sc-5282; RRID: AB_2172848

Mouse monoclonal anti-IFI16 (clone 1G7) Santa Cruz Biotechnology Cat#sc-8023; RRID: AB_627775

Rabbit polyclonal anti-SETX Stephen West, The Francis

Crick Institute (Y€uce and West, 2013)

OY7

Mouse monoclonal anti-ITCH (clone G-11) Santa Cruz Biotechnology Cat#sc-28367; RRID: AB_667798

Mouse monoclonal anti-GAPDH (clone 6C5) ThermoFisher Scientific Cat#AM4300; RRID: AB_2536381

Mouse monoclonal anti-Actin (clone AC-40) Abcam Cat#ab11003; RRID: AB_297660

Rat monoclonal anti-tubulin (clone YL1/2) Abcam Cat#ab6160; RRID: AB_305328

Mouse monoclonal anti-TLR2 (clone QA16A01) BioLegend Cat#153003; RRID: AB_2728203

Sheep polyclonal anti-TGN46 BioRad Cat#AHP500G; RRID: AB_323104

Rabbit polyclonal anti-GFP Sigma-Aldrich Cat#G1544; RRID: AB_439690

Mouse monoclonal anti-c-Myc tag (clone 9E10) Sigma-Aldrich Cat#M4439; RRID: AB_439694

Mouse monoclonal anti-HA tag (HA.11 clone 16B12) Covance Cat#MMS-101R; RRID: AB_291262

Mouse monoclonal anti-FLAG tag (clone M2) Sigma-Aldrich Cat#F1804; RRID: AB_262044

Mouse monoclonal anti-HSV gD (clone LP2) Tony Minson, University of

Cambridge (Minson et al., 1986)

LP2

Mouse monoclonal anti-HSV VP16 (clone LP1) Abcam Cat#ab110226; RRID: AB_10863640

Mouse monoclonal anti-HSV ICP0 (clone 11060) Chris Boutell, MRC-University of

Glasgow Centre for Virus

Research (Everett et al., 1993)

11060

Rabbit polyclonal anti-HSV-1 Vhs Bernard Roizman, University of

Chicago (Taddeo et al., 2006)

N/A

Rabbit polyclonal anti-HSV-1 pUL56 This paper N/A

Donkey anti-Mouse IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 488

ThermoFisher Scientific Cat#A-21202; RRID: AB_141607

Donkey anti-Rabbit IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 488

ThermoFisher Scientific Cat#A-21206; RRID: AB_2535792

Donkey anti-Mouse IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 568

ThermoFisher Scientific Cat#A10037;RRID: AB_2534013

Donkey anti-Rabbit IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 568

ThermoFisher Scientific Cat#A10042; RRID: AB_2534017

Donkey anti-Sheep IgG (H+L) Highly

Cross-Adsorbed Secondary Antibody,

Alexa Fluor 647

ThermoFisher Scientific Cat#A-21448; RRID: AB_2535865

IRDye� 680LT Goat anti-Mouse IgG (H + L) Li-Cor Cat#926-68020; RRID: AB_10706161

IRDye� 800CW Donkey anti-Rabbit IgG (H + L) Li-Cor Cat#926-32213; RRID: AB_621848

IRDye� 680LT Donkey anti-Rabbit IgG (H + L) Li-Cor Cat#926-68023; RRID: AB_10954442

IRDye� 800CW Goat anti-Mouse IgG (H + L) Li-Cor Cat#926-32210

RRID:AB_621842

Goat anti-Mouse HRP conjugated CiteAb Cat#P0447; RRID: AB_2617137

(Continued on next page)
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Bacterial and Virus Strains

HSV-1 KOS BAC David Leib, Geisel School

of Medicine at Dartmouth,

USA (Gierasch et al., 2006)

N/A

HSV-1 S17 Stacey Efstathiou, University

of Cambridge

N/A

HSV-1 SC16 Tony Minson, University

of Cambridge

N/A

HSV-2 333 Stacey Efstathiou, University

of Cambridge

N/A

HSV-1 DUL56 This paper N/A

HSV-1 pUL56-AAXA This paper N/A

HSV-1 DICP0 This paper N/A

HSV-1 Dvhs Zenner et al., 2013 N/A

BL21(DE3)pLysS E. coli cells ThermoFisher Scientific Cat#C606010

T7 Express lysY/Iq E. coli New England Biolabs Cat#C3013

Chemicals, Peptides, and Recombinant Proteins

SILAC medium Life Technologies Cat#A33822

Peptide NH2-CTSSGEGEASERGRSR-CONH2 Eurogentech N/A

Peptide Ac-AARGSSDHAPYRRQGC-CONH2 Eurogentec N/A

SulfoLink Coupling Resin ThermoFisher Scientific Cat#20401

LysC protease, MS-grade Wako Cat#125-02543

Trypsin protease, MS-grade Pierce Cat#90058

Sep-Pak tC18 Vac Cartridge Waters Cat#WAT054960

Tandem mass tag (TMT) 10-plex isobaric reagents Thermo Fisher Scientific Cat#90110

TMT 16-plex isobaric reagents Thermo Fisher Scientific Cat#A44522

LC-MS grade Acetonitrile Merck Cat#1.00029.2500

Acetonitrile, Extra Dry Acros Organics Cat#AC364311000

Formic acid Thermo Fisher Cat#85178

Hydroxylamine Sigma-Aldrich Cat#438227

Aminooxy-biotin Biotium Cat#90113

Aniline Sigma-Aldrich Cat#242284

Triton X-100, high purity ThermoFisher Scientific Cat#28313

cOmplete, EDTA-free Protease Inhibitor Cocktail Roche Cat#11836153001

Iodoacetamide Sigma-Aldrich Cat#I1149-5G

Streptavidin agarose beads ThermoFisher Scientific Cat#20365

Kinetix Evo C18 column Phenomenex Cat#00F-4726-AN

PolySulfethyl A bulk material Nest group Cat#BMSE2003

Acclaim PepMap 100 C18 HPLC column ThermoFisher Scientific Cat#160454

Acclaim PepMap RSLC C18 column ThermoFisher Scientific Cat#164540

Acclaim PepMap RSLC C18 column ThermoFisher Scientific Cat#164536

TransIT�-LT1 Mirus Cat#MIR2306

Lipofectamine 2000 ThermoFisher Scientific Cat#11668019

ImmPACT DAB Peroxidase (HRP) Substrate Vector Laboratories Ltd Cat#SK-4105

ProLong Gold Antifade Mountant with DAPI ThermoFisher Scientific Cat#P36931

IgG from human serum Sigma-Aldrich Cat#I4506

Fetal Bovine Serum PAN Biotech UK Ltd Cat#P30-19375

Accutase Sigma-Aldrich Cat#A6964

EDTA-free Protease Inhibitor Cocktail Sigma-Aldrich Cat#P8849

(Continued on next page)
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Benzonase Nuclease Sigma-Aldrich Cat#E1014

GFP-Trap A beads ChromoTek Cat#gta-10

Myc-Trap beads ChromoTek Cat#yta-10

NiNTA agarose QIAGEN Cat#30230

Glutathione Sepharose 4B GE Healthcare Cat#17075604

Glutathione magnetic beads ThermoFisher Scientific Cat#11824131

InstantBlue Coomassie stain Expedion Cat#IST1L

MG132 Calbiochem Cat#474790

DMSO Sigma-Aldrich Cat#D8418

N-ethylmaleimide Sigma-Aldrich Cat#E3876

Electron microscopy-grade formaldehyde Polysciences Cat#04018-1

Mowiol 4-88 Merck Cat#475904

DAPI Sigma-Aldrich Cat#D8417

Critical Commercial Assays

Micro BCA Protein Assay ThermoFisher Scientific Cat#23235

BCA Assay ThermoFisher Scientific Cat#23225

Deposited Data

Mass spectrometry data This paper. Deposited

on PRIDE Archive

(https://www.ebi.ac.uk/

pride/archive)

http://www.ebi.ac.uk/pride/

archive/projects/PXD021351

Experimental Models: Cell Lines

Vero ATCC CRL-1586

HaCaT Boukamp et al., 1988 N/A

HFF hTERT McSharry et al., 2001 N/A

HEK293T ATCC CRL-3216

U2-OS ATCC HTB-96

Oligonucleotides

COL581: Forward primer for deletion of

pUL56 by Red recombination:

CGACGCGGGTCTATGGAGCGCGGGG

AACGCGTTTGCTGATTAGTAATGAATTC

ACGATAGCTTGTCTGGTAGGaggatgacgacgataagtaggg

This paper N/A

COL582: Reverse primer for deletion of pUL56

by Red recombination: ACGACAAACGGCCCCT

CGTTCCTACCAGACAAGCTATCGTGAATTCATT

ACTAATCAGCAAACGCGTTCCCCGcaaccaat

taaccaattctgattag

This paper N/A

COL579: Forward primer for deletion of ICP0 by Red

recombination: GACCCCCATGGAGCCCCGCCCCGG

AGCGAGTACCCGCCGGTAGTAATGAATTCCCCAGC

GCGAGGTGAGGGGCAGGATGACGACGATAAGTAGGG

This paper N/A

COL580: Reverse primer for deletion of ICP0 by Red

recombination: CGCCCCAGACATGGCGCCCGGCC

CCTCACCTCGCGCTGGGGAATTCATTACTACCGGC

GGGTACTCGCTCCGGcaaccaattaaccaattctgattag

This paper N/A

CRISPR GOPC gRNA 1: GGAACATGGATACCCCGCCA This paper N/A

CRISPR GOPC gRNA 2: GAGAGATCGATCCAGACCAAG This paper N/A

Recombinant DNA

Plasmid: GFP-pUL56(1-234) This paper N/A

Plasmid: GFP-pUL56(1-207) This paper N/A

(Continued on next page)
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Plasmid: GFP-pUL56(1-157) This paper N/A

Plasmid: GFP-pUL56(1-104) This paper N/A

Plasmid: GFP-pUL56(1-74) This paper N/A

Plasmid: pUL56(1-207)-GFP This paper N/A

Plasmid: GFP-pUL56-AAXA This paper N/A

Plasmid: YFP-NEDD4-WW Juan Martin-Serrano, King’s

College London; (Martin-Serrano

et al., 2005)

N/A

Plasmid: pF5K myc-GOPC This paper N/A

Plasmid: HA-Ub (pMT123) Paul Lehner, University of Cambridge N/A

Plasmid: GST-UL56(1-207)-His6 This paper N/A

Plasmid: His-GOPC(1-454) This paper N/A

Plasmid: His-GOPC(1-362) This paper N/A

Plasmid: His-GOPC(27-362) This paper N/A

Plasmid: His-GOPC(276-362) This paper N/A

Plasmid: His-GOPC(27-236) This paper N/A

Plasmid: FLAG-tagged TLR2 Nick Gay, University of Cambridge N/A

Plasmid: pEGFP-N1 Clontech Cat#6085-1

Plasmid: pSpCas9(BB)-2A-Puro (PX459) V2 Feng Zhang, Broad Institute

(Ran et al., 2013)

Addgene plasmid #62988

Software and Algorithms

‘‘MassPike,’’ a Sequest-based software

pipeline for quantitative proteomics

Professor Steven Gygi’s lab, Harvard

Medical School, Boston, USA

N/A

MaxQuant v. 1.5.7.4 and 1.5.8.3 (Cox and Mann, 2008) https://www.maxquant.org/maxquant/

Perseus v. 1.5.1.6 and v. 1.6.1.2 (Tyanova et al., 2016) https://www.maxquant.org/perseus/

Cluster 3.0 (de Hoon et al., 2004) http://bonsai.hgc.jp/�mdehoon/software/

cluster/software.htm

Java Treeview (Saldanha, 2004) http://jtreeview.sourceforge.net/

XLSTAT v. 18.06 Addinsoft https://www.xlstat.com/en/

Image Studio v. 5.2 LI-COR https://www.licor.com/bio/image-studio/

DAVID v. 6.8 (Huang et al., 2009) https://david.ncifcrf.gov/

Image-Pro Plus Media Cybernetic https://www.mediacy.com/imagepro

Image-J Research Services Branch https://imagej.nih.gov/ij/

Flowing Software v. 2.5.1 Perttu Terho, Turku Centre

for Biotechnology

http://flowingsoftware.btk.fi/

Other

Unprocessed peptide

data files for Figures 1, 3, 5, 6, and 7

This paper. Deposited

on Mendeley Data

(https://data.mendeley.com)

https://doi.org/10.17632/g5sf93zwtf.3
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Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Colin M.

Crump (cmc56@cam.ac.uk).

Materials Availability
Newly generated materials associated with this study, including plasmids, viruses, cell lines and antibodies, are available on request

from the Lead Contact.
Cell Reports 33, 108235, October 6, 2020 e4

mailto:cmc56@cam.ac.uk
https://www.maxquant.org/maxquant/
https://www.maxquant.org/perseus/
http://bonsai.hgc.jp/%7Emdehoon/software/cluster/software.htm
http://bonsai.hgc.jp/%7Emdehoon/software/cluster/software.htm
http://bonsai.hgc.jp/%7Emdehoon/software/cluster/software.htm
http://jtreeview.sourceforge.net/
https://www.xlstat.com/en/
https://www.licor.com/bio/image-studio/
https://david.ncifcrf.gov/
https://www.mediacy.com/imagepro
https://imagej.nih.gov/ij/
http://flowingsoftware.btk.fi/
https://data.mendeley.com
https://doi.org/10.17632/g5sf93zwtf.3


Resource
ll

OPEN ACCESS
Data and Code Availability
The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Perez-Riverol

et al., 2019) partner repository with the dataset identifier PXD021351 (http://www.ebi.ac.uk/pride/archive/projects/PXD021351).

Unprocessed peptide data files for Figures 1, 3, 5, 6, and 7 are available at https://data.mendeley.com/ with the digital object iden-

tifier https://doi.org/10.17632/g5sf93zwtf.3.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Viral and bacterial strains
See Key Resources Table for details of all virus and bacteria strains used in this research.

Cell lines
The following mammalian cell lines were used in this work: HaCaT cells: human keratinocyte cell line, spontaneously immortalized,

male (Boukamp et al., 1988); HFF hTERT cells: human foreskin fibroblast cell line, telomerase immortalized, male (McSharry et al.,

2001); Vero cells: African green monkey kidney cell line, spontaneously immortalized, female (ATCC, CRL-1586); HEK293T cells: hu-

man embryonic kidney cell line, Adenovirus 5 and SV40 transformed, female (ATCC, CRL-3216); U2-OS cells: human osteosarcoma

cell line, cancer cell line, female (ATCC, HTB-96). All cell lines were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)

supplemented with 10% (v/v) heat-inactivated 0.2 mm sterile filtered fetal bovine serum (FBS; PAN Biotech UK Ltd), 2 mM L-gluta-

mine, 100 U/mL penicillin, and 100 mg/mL streptomycin and cells were grown at 37�C in a humidified 5%CO2 atmosphere. For stable

isotope labeling of amino acids in cell culture (SILAC) experiments, HEK293T or HaCaT cells were grown in SILAC medium (high

glucose DMEM lacking arginine and lysine, Life Technologies) supplemented with 10% (v/v) dialyzed heat-inactivated 0.2 mm

sterile filtered fetal bovine serum (10 kDa cutoff), 2 mM glutamine, 100 U/mL penicillin and 100 mg/mL streptomycin. Media were

supplemented with 84 mg/L arginine (light, unlabelled; medium, Arg6 (13C6); heavy, Arg10 (13C6, 15N4)) and 146 mg/L lysine (light,

unlabelled; medium, Lys4 (2H4); heavy, Lys8 (13C6, 15N2)). Cells were maintained in SILAC media for at least five passages before

use to ensure complete labeling.

Viruses
All HSV-1 strain KOS viruses were reconstituted from a bacterial artificial chromosome (Gierasch et al., 2006). The deletion mutants

were generated by inserting three tandem stop codons in frame using the two-step Red recombination method (Tischer et al., 2010).

For DUL56 this is after residue 21, for DICP0 this is after residue 11, and for Dvhs this is after residue 45 (Zenner et al., 2013). To

generate a mutant virus expressing pUL56 that lacks all three PPXY motifs, site-directed mutagenesis was first used to generate

pUL56 where all three PPXY motifs had been mutated to AAXA. A plasmid containing pUL56-AAXA and an I-SceI/KanR selection

cassette was then used to generate a recombinant HSV-1 strain KOS using the two-step Red recombination method, and the pres-

ence of the correct mutated sites in the reconstituted virus genome confirmed by sequencing the UL56 region. HSV-1 S17 and HSV-2

333 were from S. Efstathiou (University of Cambridge), and HSV-1 SC16was from T.Minson (University of Cambridge). Crude stocks

were generated by infecting Vero cells atMOI of 0.01. After 3 days, the cells were scraped and isolated by centrifugation at 9003 g for

5 min. They were resuspended in 1 mL of complete media per T150 used and freeze/thawed thrice at�70�C before being aliquoted,

titered on Vero cell monolayers, and stored at �70�C until required.

METHOD DETAILS

Gradient purification of HSV-1
HaCaT cells were seeded and infected with crude virus stocks at MOI of 0.1. After 2 days, the cells were scraped and the cell debris

was removed by centrifugation at 9003 g for 5 min. The supernatant was ultracentrifuged at 24,0003 g for 1.5 h, and the pellet was

resuspended in 1%FBS in PBS on ice overnight. This solution was overlaid on a 5%–15% (w/v) continuous Ficoll in PBS gradient and

ultracentrifuged at 17,5003 g for 1.5 h. The virion band was isolated via side-puncture. This solution was diluted 10-fold in PBS, and

the virus was pelleted by ultracentrifugation at 49,0003 g for 2 h. The pellet was resuspended in PBS on ice overnight. This solution

was aliquoted, titered on Vero cell monolayers, and stored at �70�C until required.

Antibodies
See Key Resources Table for details of all primary and secondary antibodies used in this research.

An antibody against pUL56 was generated by commercial immunization of a rabbit using two peptides (peptide 1: NH2-CTSSGE-

GEASERGRSR-CONH2; peptide 2: Ac-AARGSSDHAPYRRQGC-CONH2) coupled to keyhole limpet hemocyanin (Eurogentec). An

affinity purification column was generated by adding 0.96 mg of purified peptide 1 dissolved in coupling buffer (250 mM Tris pH

8.5, 25 mM EDTA) to 0.4 mL of SulfoLink resin (ThermoFisher) equilibrated in the same buffer. The resin was incubated with the

peptide for two hours at 20�C with regular mixing, washed with 1.2 mL of coupling buffer and then blocked using 50 mM cysteine

in coupling buffer at 20�C for 90 minutes with regular mixing. The resin was subsequently washed twice with 1 mL of 1 M NaCl, fol-

lowed by another two washes with 5 mL of PBS. The immune serum was mixed with an equal volume of PBS and incubated with the
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peptide-coupled resin for 20 h at 4�C. The affinity-purified antibody was eluted in fractions using 100 mM glycine pH 2.5 into tubes

containing 10 3 neutralization buffer (1M Tris pH 8.5, 2 M NaCl). Specificity of the antibody for use in immunoblots was tested by

probing against cell lysates where pUL56 was absent or overexpressed, against lysates of cells infected with HSV-1 WT or

DUL56, and against the GST-tagged purified recombinant protein (see below). BSA was added to the antibody for stabilization (final

concentration 1 mg/mL) and the antibody was stored as a 50% (v/v) glycerol stock at �20�C.

Infection
Cell monolayers were infected with HSV-1 at the specified MOI diluted in complete media. For experiments to be analyzed by mass

spectrometry, gradient-purified virus stocks were used. Otherwise, the infection was performed with crude virus stocks generated as

described above. After adsorption for 1 h at 37�Cwith 5%CO2 and rocking every 15min, the appropriatemediawas added to thewell

and this was designated 0 hpi. Infected cells were incubated at 37�C in a humidified 5% CO2 atmosphere until harvest.

Whole cell lysate sample preparation for quantitative temporal viromics
HaCaT cells were seeded into 6-well plates and infected in parallel at the specifiedMOI with gradient purified virus. At each indicated

time point, cells were washed twice with PBS, and 250 mL lysis buffer was added (6M guanidine, 50 mM HEPES pH 8.5). Cell lifters

(Corning) were used to scrape cells in lysis buffer, which was removed to amicrocentrifuge tube, vortexed extensively, and then son-

icated and snap frozen in liquid nitrogen. After harvest, samples were stored at �70�C until all time points were harvested. Samples

were thawed and cell debris was removed by centrifuging at 21,000 3 g for 10 min twice. Dithiothreitol (DTT) was added to a final

concentration of 5 mM and samples were incubated for 20 min. Cysteines were alkylated with 14 mM iodoacetamide and incubated

20 min at room temperature in the dark. Excess iodoacetamide was quenched with DTT for 15 mins. Samples were diluted with

200 mM HEPES pH 8.5 to 1.5 M guanidine, followed by digestion at room temperature for 3 h with LysC protease (Wako) at a

1:100 protease-to-protein ratio. Samples were further diluted with 200 mM HEPES pH 8.5 to 0.5 M guanidine. Trypsin (Pierce)

was then added at a 1:100 protease-to-protein ratio followed by overnight incubation at 37�C. The reaction was quenched with

5% (v/v) formic acid (FA; Thermo-Fisher), then centrifuged at 21,000 3 g for 10 min to remove undigested protein. Peptides were

subjected to C18 solid-phase extraction (SPE; Sep-Pak, Waters) and vacuum-centrifuged to near-dryness.

Peptide labeling with tandem mass tags for whole cell experiments
In preparation for TMT labeling, desalted peptideswere dissolved in 200mMHEPESpH 8.5. Peptide concentrationwasmeasured by

microBCA (Pierce), and > 25 mg of peptide were labeled with TMT reagent. TMT reagents (0.8 mg) were dissolved in 43 mL anhydrous

acetonitrile (Acros Organics) and 5 mL was added to the peptides at a final anhydrous acetonitrile concentration of 30% (v/v). Sample

labeling was as indicated in Tables S1 and S4. Following incubation at room temperature for 1 h, the reaction was quenched with

hydroxylamine (Sigma-Aldrich) to a final concentration of 0.5%. TMT-labeled samples were combined at a 1:1:1:1:1:1:1:1:1:1 ratio.

The sample was vacuum-centrifuged to near dryness and subjected to C18 SPE (Sep-Pak, Waters). An unfractionated sample was

analyzed initially to ensure similar peptide loading across each TMT channel, to avoid the need for excessive (> 2-fold) electronic

normalization. Samples were combined according to the correction factors from the unfractionated analysis and subjected to

C18 SPE (Sep-Pak, Waters) and vacuum-centrifuged to near-dryness. The dried pellet was resuspended in 200 mM ammonium

formate pH 10 and subjected to high pH reversed-phase (HpRP) fractionation is as described below.

Sample preparation for plasma membrane profiling
For the SILAC-based plasmamembrane profiling experiment (Figure 6), SILAC labeled HaCaT cells (as described above) were grown

in 15 cm dishes and infected with gradient purified HSV-1 WT or HSV-1 DUL56 or mock infected in complete media at MOI 10.

Plasma membrane profiling was performed as described previously with minor modifications (Weekes et al., 2010). At 6 hpi cells

were washed twice in ice-cold PBS. Surface sialic acid residues were oxidized and biotinylated for 30 min on ice in the dark using

an oxidation/biotinylation mix comprising 1 mM sodium meta-periodate, 100 mM aminooxy-biotin (Biotium Inc., Hayward, CA) and

10 mM aniline (Sigma-Aldrich) in ice-cold PBS pH 6.7. The reaction was quenched by glycerol to 1 mM final concentration and cells

were washed twice in ice-cold PBS. Biotinylated cells were scraped into lysis buffer (1% Triton X-100 (high purity, ThermoFisher Sci-

entific), 150 mM NaCl, 1 3 protease inhibitor (complete, without EDTA (Roche)), 5 mM iodoacetamide (Sigma-Aldrich), and 10 mM

Tris-HCl pH 7.6) then incubated on ice for 30 mins. Nuclei were removed by centrifugation at 4�C. Biotinylated glycoproteins were

enriched by incubation for 2 h at 4�C with high affinity streptavidin agarose beads (ThermoFisher Scientific). Extensive washing was

performed on a vacuum manifold, using lysis buffer, then PBS/0.5% (w/v) SDS. Beads were incubated for 20 min at RT with PBS/

0.5% (w/v) SDS/100 mMDTT. Further washing was performed with UC buffer (6 M urea, 100 mM Tris-HCl pH 8.5), followed by alkyl-

ation for 20 min at room temperature with UC buffer containing 50 mM iodoacetamide. Beads were washed using UC buffer, 5 M

NaCl, then water. Captured protein was digested on-bead with trypsin in 100 mM HEPES pH 8.5 for 3 h. Tryptic peptides were

collected and fractionated by tip-based SCX strong cation exchange (described below), generating six fractions for MS analysis.

For the TMT-based GOPC knockout plasma membrane experiment (Figure 7), cells were seeded into 15 cm dishes and plasma

membrane profiling was performed as described above the following day. Tryptic peptides were labeled with TMT as described

for whole cell experiments, except 10 mL TMT reagent was added to the entire peptide sample and the reaction was not immediately

quenched after labeling. To assess TMT incorporation and to ensure equal peptide loading, 10% of each labeled sample was
Cell Reports 33, 108235, October 6, 2020 e6
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quenched and combined for initial analysis. If incorporation was below 95%, samples were re-labeled with a further 10 mL TMT re-

agent prior to quenching. Six fractions were generated by HpRp fractionation, as described below.

Offline HpRP fractionation for TMT-based proteomics
TMT-labeled tryptic peptides were subjected to HpRP fractionation using an Ultimate 3000 RSLC UHPLC system (Thermo Fisher

Scientific) equipped with a 2.1 mm internal diameter (ID) x 15 cm long, 1.7 mmparticle Kinetix Evo C18 column (Phenomenex). Mobile

phase consisted of A: 3% (v/v) acetonitrile (MeCN, Merck), B: MeCN and C: 200 mM ammonium formate pH 10. Isocratic conditions

were 90% A / 10% C, and C was maintained at 10% throughout the gradient elution. Separations were conducted at 45�C. Samples

were loaded at 200 mL/min for 5 min. The flow rate was then increased to 400 mL/min over 5 min, after which the gradient elution

proceed as follows: 0%–19% B over 10 min, 19%–34% B over 14.25 min, 34%–50% B over 8.75 min, followed by a 10 min wash

at 90% B. UV absorbance was monitored at 280 nm and 15 s fractions were collected into 96-well microplates using the integrated

fraction collector. Fractions were recombined orthogonally in a checkerboard fashion, combining alternate wells from each column of

the plate into a single fraction, and commencing combination of adjacent fractions in alternating rows. Wells prior to the start or after

the stop of elution of peptide-rich fractions, as identified from the UV trace, were excluded. This yielded two sets of 12 combined

fractions, A and B, which were dried in a vacuum centrifuge and resuspended in 10 mL MS solvent (4% (v/v) MeCN / 5% (v/v) FA)

prior to LC-MS3. For the time course experiment (Figure 1A) and DUL56/wild-type HSV-1 whole cell lysate experiment (Figure 5D),

12 set ‘A’ fractions were used for MS analysis. For the GOPC knockout plasmamembrane profiling experiment, 6 combined fractions

were instead analyzed. These were generated by recombining all wells from sets of two adjacent columns in the plate (i.e., columns

A+B, C+D, E+F etc).

Offline Tip-Based Strong Cation Exchange SCX Fractionation
Our previously described protocol for solid-phase extraction-based SCX peptide fractionation was modified for small peptide

amounts (Dephoure and Gygi, 2011). Briefly, 10 mg of PolySulfethyl A bulk material (Nest Group Inc.) was loaded on to a fritted

200 mL tip in 100% Methanol using a vacuum manifold. SCX material was conditioned slowly with 1 mL SCX buffer A (7M

KH2PO4, pH 2.65, 30% (v/v) MeCN), then 0.5 mL SCX buffer B (7 mM KH2PO4, pH 2.65, 350 mM KCl, 30% (v/v) MeCN) then

2 mL SCX buffer A. Dried peptides were resuspended in 500 mL SCX buffer A and added to the tip at a flow rate of ~150 mL/min,

followed by a 150 mL wash with SCX buffer A. Fractions were eluted in 150 mL buffer at increasing K+ concentrations (10, 25, 40,

60, 90, 150 mM KCl), vacuum-centrifuged to near dryness, then desalted using StageTips and vacuum-centrifuged to complete dry-

ness and resuspended in 10 mL MS solvent (4% (v/v) MeCN / 5% (v/v) FA) prior to LC-MS3.

LC-MS/MS/MS for TMT-based proteomics
Mass spectrometry data was acquired using an Orbitrap Lumos (Thermo Fisher Scientific, San Jose, CA). An Ultimate 3000 RSLC

nano UHPLC equipped with a 300 mm ID x 5 mm Acclaim PepMap m-Precolumn (Thermo Fisher Scientific) and a 75 mm ID x 50 cm

2.1 mmparticle Acclaim PepMap RSLC analytical columnwas used. Loading solvent was 0.1% FA, analytical solvent A: 0.1% FA and

B: 80% (v/v) MeCN + 0.1% FA. All separations were carried out at 55�C. Samples were loaded at 5 mL/min for 5min in loading solvent

before beginning the analytical gradient. For whole cell lysate experiments, the following gradient was used: 3%–7% B over 3 min,

7%–37% B over 173 min, followed by a 4-min wash at 95% B and equilibration at 3% B for 15 min. For plasma membrane profiling

experiments, the following gradient was used: 3%–7% B over 3 min, 7%–37% B over 116 min, followed by a 4-min wash at 95% B

and equilibration at 3% B for 15 min. Each analysis used a MultiNotch MS3-based TMT method (McAlister et al., 2012, 2014). The

following settings were used: MS1: 380-1500 Th, 120,000 Resolution, 23 105 automatic gain control (AGC) target, 50 ms maximum

injection time. MS2: Quadrupole isolation at an isolation width of m/z 0.7, CID fragmentation (normalized collision energy (NCE) 35)

with ion trap scanning in turbo mode from m/z 120, 1.5 3 104 AGC target, 120 ms maximum injection time. MS3: In Synchronous

Precursor Selection mode the top 6 MS2 ions were selected for HCD fragmentation (NCE 65) and scanned in the Orbitrap at

60,000 resolution with an AGC target of 1 3 105 and a maximum accumulation time of 150 ms. Ions were not accumulated for all

parallelizable time. The entire MS/MS/MS cycle had a target time of 3 s. Dynamic exclusion was set to ± 10 ppm for 70 s. MS2 frag-

mentation was trigged on precursors 5 3 103 counts and above.

TMT Data analysis
In the following description, we list the first report in the literature for each relevant algorithm. Mass spectra were processed using a

Sequest-based software pipeline for quantitative proteomics, ‘‘MassPike,’’ through a collaborative arrangement with Professor

Steve Gygi’s laboratory at Harvard Medical School. MS spectra were converted to mzxml using an extractor built upon Thermo

Fisher’s RAW File Reader library (version 4.0.26). In this extractor, the standard mzxml format has been augmented with additional

custom fields that are specific to ion trap and Orbitrap mass spectrometry and essential for TMT quantitation. These additional fields

include ion injection times for each scan, Fourier Transform-derived baseline and noise values calculated for every Orbitrap scan,

isolation widths for each scan type, scan event numbers, and elapsed scan times. This software is a component of the MassPike

software platform and is licensed by Harvard Medical School.

A combined database was constructed from (a) the human UniProt database (26th January, 2017), (b) HSV-1 strain KOS (GenBank

entry JQ673480.1, manually updated with a single amino acid polymorphism in the ICP4 sequence identified in the KOS BAC strain
e7 Cell Reports 33, 108235, October 6, 2020



Resource
ll

OPEN ACCESS
used for virus generation), (c) common contaminants such as porcine trypsin and endoproteinase LysC. The combined databasewas

concatenated with a reverse database composed of all protein sequences in reversed order. Searches were performed using a 20

ppm precursor ion tolerance (Haas et al., 2006). Product ion tolerance was set to 0.03 Th. TMT tags on lysine residues and peptide N

termini (229.162932 Da) and carbamidomethylation of cysteine residues (57.02146 Da) were set as static modifications, while oxida-

tion of methionine residues (15.99492 Da) was set as a variable modification.

To control the fraction of erroneous protein identifications, a target-decoy strategy was employed (Elias and Gygi, 2010). Peptide

spectralmatches (PSMs)were filtered to an initial peptide-level false discovery rate (FDR) of 1%with subsequent filtering to attain a final

protein-level FDRof 1% (Kim et al., 2011;Wuet al., 2011). PSMfilteringwas performed using a linear discriminant analysis (Huttlin et al.,

2010). This distinguishes correct from incorrect peptide IDs in a manner analogous to the widely used Percolator algorithm (Käll et al.,

2007), though employing a distinct machine learning algorithm. The following parameters were considered: XCorr,DCn,missed cleav-

ages, peptide length, charge state, and precursor mass accuracy. Protein assembly was guided by principles of parsimony to produce

the smallest set of proteins necessary to account for all observed peptides (Huttlin et al., 2010). Where all PSMs from a given HSV-1

protein could be explained either by a canonical gene or non-canonical ORF, the canonical gene was picked in preference.

In three cases, PSMs assigned to non-canonical ORFs (6FT-ORFs) were a mixture of peptides from the canonical protein and the

6FT-ORF. This most commonly occurred where the 6FT-ORF was a 50-terminal extension of the canonical protein (thus meaning that

the smallest set of proteins necessary to account for all observed peptides included the 6FT-ORFs alone). In these cases, the pep-

tides corresponding to the canonical protein were separated from those specific to the 6FT-ORF, generating two separate entries.

Proteins were quantified by summing TMT reporter ion counts across all matching peptide-spectral matches using ’’MassPike,’’ as

described (McAlister et al., 2012, 2014). Briefly, a 0.003 Th window around the theoretical m/z of each reporter ion (126, 127n, 127c,

128n, 128c, 129n, 129c, 130n, 130c, 131n, 131c) was scanned for ions, and themaximum intensity nearest to the theoretical m/z was

used. The primary determinant of quantitation quality is the number of TMT reporter ions detected in each MS3 spectrum, which is

directly proportional to the signal-to-noise (S:N) ratio observed for each ion (Makarov and Denisov, 2009). Conservatively, every in-

dividual peptide used for quantitation was required to contribute sufficient TMT reporter ions (minimum of ~1250 per spectrum) so

that each on its own could be expected to provide a representative picture of relative protein abundance (McAlister et al., 2012). Addi-

tionally, an isolation specificity filter was employed tominimize peptide co-isolation (Ting et al., 2011). Peptide-spectral matches with

poor quality MS3 spectra (more than 9 TMT channels missing and/or a combined S:N ratio of less than 250 across all TMT reporter

ions) or noMS3 spectra at all were excluded from quantitation. Peptidesmeeting the stated criteria for reliable quantitation were then

summed by parent protein, in effect weighting the contributions of individual peptides to the total protein signal based on their indi-

vidual TMT reporter ion yields. Protein quantitation values were exported for further analysis in Excel (Microsoft).

For protein quantitation, reverse and contaminant proteins were removed, then each reporter ion channel was summed across all

quantified proteins and normalized assuming equal protein loading across all channels. For further analysis and display in figures,

fractional TMT signals were used (i.e., reporting the fraction of maximal signal observed for each protein in each TMT channel, rather

than the absolute normalized signal intensity). This effectively corrected for differences in the numbers of peptides observed per pro-

tein. For TMT experiments, normalized S:N values are presented in Tables S1 and S4 (‘Data’ worksheet).

Significance B was used to estimate the probability that each ratio was significantly different to 1 (Cox and Mann, 2008). Values

were calculated and corrected for multiple hypothesis testing using the method of Benjamini-Hochberg in Perseus version 1.5.1.6

(Cox and Mann, 2008). A corrected p value < 0.05 was considered statistically significant. Hierarchical centroid clustering based

on uncentered Pearson correlation of data normalized by comparing the signal:noise values to the average mock-infection were per-

formed using Cluster 3.0 (Stanford University) (de Hoon et al., 2004), and visualized using Java Treeview (http://jtreeview.

sourceforge.net) (Saldanha, 2004). For analysis of temporal classes, viral protein expression was normalized and subjected to K-

means analysis using XLSTAT base (Addinsoft, version 18.06) and clustered with 1-15 classes.

LC-MS/MS and data analysis for SILAC-based plasma membrane experiments
Mass spectrometry data was acquired using an Orbitrap Lumos (Thermo Fisher Scientific, San Jose, CA). An Ultimate 3000 RSLC

nano UHPLC equipped with a 300 mm ID x 5 mm Acclaim PepMap m-Precolumn (Thermo Fisher Scientific) and a 75 mm ID x 50 cm

2.1 mmparticle Acclaim PepMap RSLC analytical column was used. Loading solvent was 0.1% FA, analytical solvent A: 0.1% FA and

B: 80% (v/v) MeCN + 0.1% FA. All separations were carried out at 55�C. Samples were loaded at 5 mL/min for 5 min in loading solvent

before beginning the analytical gradient. The following gradient was used: 3%–7% B over 4 min, 7%–37% B over 116 min, followed

by a 4-min wash at 95% B and equilibration at 3% B for 15 min. Each analysis used an MS2 DDA acquisition using the following

settings: MS1: 375-1500 Th, 60,000 Resolution, 4 3 105 automatic gain control (AGC) target, 50 ms maximum injection time.

MS2: Quadrupole isolation at an isolation width of m/z 1.6, HCD fragmentation (normalized collision energy (NCE) 35) with ion

trap scanning in rapid mode from m/z 110, 1 3 104 AGC target, 35 ms maximum injection time.

The resulting spectra were processed in Maxquant 1.5.8.3 using medium (Arg6, Lys4) and heavy (Arg10, Lys8) labels. Data was

searched against the human and HSV-1 strain KOS proteomes as used for TMT analysis (above). Carbamidomethyl (C) was set

as a fixed modification, oxidation (M) and acetylation (protein N termini) set as variable modifications. Protein and peptide FDR

were both set to 0.01, re-quantify was enabled and minimum ratio count was set to 2. Hierarchical centroid clustering based on un-

centered Pearson correlation of the normalized ratios generated by MaxQuant was performed using Cluster 3.0 (Stanford University)

(de Hoon et al., 2004) and visualized with Java Treeview (http://jtreeview.sourceforge.net) (Saldanha, 2004).
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Immunoblot of cell lysates
Cells were seeded into 24-well plates and infected with crude virus stocks in complete media. Where indicated, cells were treated

with 10 mM MG132 (Calbiochem) or an equivalent volume of carrier (DMSO). Cells were harvested at the specified time point by

scraping into the media and centrifuging at 16,000 3 g for 1 min. The cell pellet was resuspended in SDS loading buffer (50 mM

Tris pH 6.8, 100 mM 2-mercaptoethanol, 2% (w/v) SDS, 10% (v/v) glycerol). Samples were immediately boiled in a water bath for

5min. Lysate from 13 105 cells was used for SDS-PAGE. Proteins were wet transferred onto 0.45 mmnitrocellulosemembrane. After

incubation with a primary antibody, secondary antibodies conjugated to an IRDye were used, and blots were visualized with an

Odyssey CLx Imaging System (Li-Cor) using control software Image Studio v5.2.

Pathway analysis
The Database for Annotation, Visualization and Integrated Discovery (DAVID) version 6.8 was used to determine pathway enrichment

(Huang et al., 2009). Proteins downregulated > 2-fold were searched against a background of all proteins quantified, using default

settings.

Immunoprecipitation
Monolayers of HEK293T cells grown in 9 cm dishes (5 3 106 cells/dish) were transfected using lipofectamine 2000 (Invitrogen) or

TransIT-LT1 (Mirus) with expression plasmids. For identification of interaction partners and GOPC-binding domain analysis,

plasmids expressing full length pUL56 or various truncation constructs of pUL56 as EGFP fusion proteins or EGFP alone

were used. For analysis of tripartite complex formation plasmids expressing the WW domains of NEDD4 fused to EYFP (Mar-

tin-Serrano et al., 2005), myc-tagged GOPC and either wild-type pUL56 or pUL56-AAXA were used. For GOPC ubiquitination

analysis, plasmids expressing the HA-tagged ubiquitin, myc-tagged GOPC and either wild-type pUL56 or pUL56-AAXA were

used. For experiments with SILAC-labeled cells, the relevant labeled medium was used to prepare the transfection reagent.

For protein interaction assays, cells were harvested 16-24 h post-transfection by scraping into the medium, pelleted (220 3

g, 5 min, 4�C) and washed three times with cold PBS. Cells were then lysed at 4�C in 1 mL lysis buffer (10 mM Tris pH 7.5,

150 mM NaCl, 2 mM MgCl2, 0.5% Triton X-100, 1:100 diluted EDTA-free protease inhibitor cocktail (Sigma-Aldrich), 50 U/mL

benzonase (Sigma-Aldrich)) for 45-90 min. For GOPC ubiquitination analysis, cells were treated with 10 mM MG132 at 30 h

post-transfection and harvested 16 h later by scraping into PBS, pelleted (220 3 g, 5 min, 4�C) and lysed in a modified lysis

buffer (50 mM Tris pH 7.5, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 1% sodium deoxycholate, 100mM N-eth-

ylmaleimide, cOmplete protease inhibitor cocktail (Roche)). The cell lysate was clarified by centrifugation (20,000 3 g, 10 min,

4�C), the supernatant transferred to fresh tubes, a BCA assay (Pierce) was performed to measure total protein concentration of

clarified cell lysates, and samples were normalized (input).

GFP-Trap or Myc-Trap Agarose beads (ChromoTek, 20 mL per sample) were washed three times by dilution in 800 mL wash buffer

(10 mM Tris pH 7.5, 150 mM NaCl, 2 mMMgCl2, 0.05% Triton X-100), centrifugation (25003 g, 2 min, 4�C) to collect the beads and

removal of the supernatant. Washed beads were incubated with the cleared lysate at 4�C on a rotating wheel for 45-70 min. The

beads were collected by centrifugation and the supernatant (unbound) was removed. The beads were washed twice with 1 mL

wash buffer, the supernatant was discarded, 45 mL of 23 SDS-PAGE loading buffer was added per experiment and the was mixture

boiled at 95�C for 10 min to elute bound proteins. Samples were centrifuged again to sediment the beads (20,0003 g, 2 min) and the

supernatant (bound) was transferred to a fresh tube. Input, unbound and bound sampleswere separated by SDS-PAGE and analyzed

by immunoblot. For mass spectroscopy analysis of SILAC samples, 8 mL of light-, medium- and heavy-labeled bound samples were

mixed in a 1:1:1 ratio and frozen at �80�C until mass spectroscopy analysis.

Mass spectrometry of SILAC IP samples
Mass spectrometry analysis was performed by the proteomics facility of the University of Bristol (UK). Three biological repeats of

each triple-labeled SILAC IP experiment were analyzed. Samples were run into precast SDS-PAGE gels for 5minutes, the entire sam-

ple extracted from the gel as a single band, and then in-gel digested, reduced and alkylated using a ProGest automated digestion unit

(Digilab). The resulting peptideswere fractionated using anUltimate 3000 nano-LC system in linewith anOrbitrap Fusion Tribridmass

spectrometer (Thermo Scientific). In brief, peptides in 1% (v/v) FA were injected onto an Acclaim PepMap C18 nano-trap column

(Thermo Scientific). After washing with 0.5% MeCN in 0.1% FA, peptides were resolved on a 250 mm 3 75 mm Acclaim PepMap

C18 reverse phase analytical column (Thermo Scientific) over a 150min organic gradient using 7 gradient segments (1%–6% solvent

B over 1 min, 6%–15% B over 58 min, 15%–32% B over 58 min, 32%–40% B over 5 min, 40%–90%B over 1 min, held at 90% B for

6 min and then reduced to 1%B over 1min) with a flow rate of 300 nL per minute. Solvent A was 0.1% FA and solvent B was aqueous

80%MeCN in 0.1%FA. Peptideswere ionized by nano-electrospray ionization at 2.0 kV using a stainless steel emitter with an internal

diameter of 30 mm (ThermoScientific) and a capillary temperature of 275�C. All spectrawere acquired using anOrbitrap Fusion Tribrid

mass spectrometer controlled by Xcalibur 2.1 software (Thermo Scientific) and operated in data-dependent acquisition mode.

FTMS1 spectra were collected at a resolution of 120,000 over a scan range (m/z) of 350-1550, with an automatic gain control

(AGC) target of 300,000 and a max injection time of 100 ms. Precursors were filtered using an Intensity Range of 1 3 104 to 1 3

1020 and according to charge state (to include charge states 2-6) and with monoisotopic precursor selection. Previously interrogated

precursors were excluded using a dynamic window (40 s ± 10 ppm). The MS2 precursors were isolated with a quadrupole mass filter
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set to a width of 1.4 m/z. ITMS2 spectra were collected with an AGC target of 20,000, max injection time of 40 ms and CID collision

energy of 35%.

The raw data files were processed using MaxQuant v. 1.5.7.4 (Cox and Mann, 2008). The in-built Andromeda search engine (Cox

et al., 2011) was used to search against the human and HSV-1 strain KOS proteomes as used for TMT analysis (above). Trypsin/P

digestion, standard modifications (oxidation, N-terminal acetylation) were selected as group-specific parameters and SILAC quan-

tification was performed using light (Arg0, Lys0), medium (Arg6, Lys4) and heavy (Arg10, Lys8) labels. Re-quantification, razor protein

FDR, and second peptide options were enabled for the processing. The quantified data were analyzed with Perseus v. 1.6.1.2

(Tyanova et al., 2016) using the normalized ratios obtained by MaxQuant. Proteins only identified by site or against the reverse data-

base, as well as common experimental contaminants such as keratins (specified in the MaxQuant contaminants file), were removed

and the experiments grouped by biological repeat. Only proteins identified in at least two of the three biological repeats were consid-

ered for analysis. A one-sample, two-sided t test with a threshold p value of 0.05was performed on each group to identify significantly

enriched proteins. Proteins with a log2 fold change greater than 1 and a p value smaller than 0.05 were designated as potential in-

teractors of pUL56.

Recombinant protein expression and purification
For bacterial recombinant expression, the cytoplasmic region (residues 1-207) of UL56 from HSV-1 strain KOS was cloned into a

vector derived from pOPT (Teo et al., 2004) encoding Schistosoma japonicum GST followed by a human rhinovirus 3C cleavage

sequence fused to the N terminus and LysHis6 fused to the C terminus (GST-UL56(1-207)-His). Full-length (residues 1-454) and trun-

cated forms (residues 1-362, 27-362, 27-275, 276-362 and 27-236) of GOPC (UniProt ID Q9HD26-2) were cloned from HeLa cell

cDNA into a vector derived from pOPT (Teo et al., 2004) encoding a MetAlaHis6 tag fused to the N terminus of each construct

(His-GOPC).

His-GOPC (both full-length and truncations) was expressed in Escherichia coliBL21(DE3)pLysS cells (Novagen) and GST-UL56(1–

207)-His was expressed in E. coli T7 Express LysY/Iq cells (New England Biolabs). Cells were cultured in 23 TYmedium to anOD600

between 0.8 and 1.0. For His-GOPC, the culture was cooled to 22�C before adding 0.2 mM IPTG and culturing for a further 16 h. For

GST-UL56(1–207)-His, 1mM IPTGwas added and the cells were cultured for a further 2 h. Cells were harvested by centrifugation and

pellets stored at �80�C.
For His-GOPC, cell pellets were resuspended on ice in Ni2+ wash buffer (20 mM Tris pH 7.5, 20 mM Imidazole, 500mM NaCl) sup-

plemented with 0.5 mM MgCl2, 1.4 mM 2-mercaptoethanol, 0.05% TWEEN-20, 400 U Bovine DNase I and 200 mL EDTA-free pro-

tease inhibitors (Sigma-Aldrich) and lysed by passing through a TS series cells disruptor (Constant Systems) at 24 kpsi. Lysates were

cleared by centrifugation (40,0003 g, 30 min, 4�C) and incubated with NiNTA agarose (QIAGEN) pre-equilibrated in Ni2+ wash buffer

for 60min at 4�C. The resin waswashedwith > 20 column volumes (cv) of Ni2+wash buffer and protein was eluted in Ni2+ elution buffer

(20 mM Tris pH 7.5, 250 mM imidazole, 500mMNaCl) before being concentrated and applied to a Superdex 200 16/600 gel filtration

column (GE Healthcare) that had been pre-equilibrated in gel filtration buffer (20 mM Tris, 200 mM NaCl, 1 mM DTT) at room tem-

perature. Eluted fractions containing purified His-GOPC were pooled, concentrated and small (< 100 mL) aliquots were snap-frozen

in liquid nitrogen for storage at �80�C.
For GST-UL56(1-207)-His, cells were resuspended on ice in 50 mM sodium phosphate pH 7.6, 300 mM NaCl, 0.5 mM MgCl2,

1.4 mM 2-mercaptoethanol, 0.05% TWEEN-20, 400 U Bovine DNase I and 200 mL EDTA-free protease inhibitors (Sigma-Aldrich)

before lysis and clarification as described above. Cleared lysates were incubated with glutathione Sepharose 4B (GE Life Science)

that had been pre-equilibrated in GSH wash buffer (50 mM sodium phosphate pH 7.6, 300 mM NaCl, 1 mM DTT) for 1 h at 4�C. The
resin was washed with 10 cv of GSH wash buffer before being resuspended in 20 cv of 25 mM sodium phosphate pH 7.5, 150 mM

NaCl, 1 MgCl2, 0.5 mM DTT and incubated at room temperature for 30 min with 50 U/mL benzonase nuclease (Sigma-Aldrich) to

digest co-purifying nucleic acids. The resin was then washed with 20 cv of 50 mM sodium phosphate pH 7.6, 1 M NaCl to remove

residual nucleotide binding before being washed with a further 40 cv of GSH wash buffer. Protein was eluted using GSH wash buffer

supplemented with 25 mM reduced glutathione. The protein was then captured using NiNTA agarose that had been equilibrated in

Ni2+ wash buffer, the resin was washed with > 20 cv of Ni2+ wash buffer, and the protein eluted in Ni2+ elution buffer before being

injected onto a 10/300 Superdex 200 gel filtration column (GE Healthcare) equilibrated in gel filtration buffer (as above). Eluted frac-

tions containing UL56 were pooled, concentrated and snap-frozen in small (< 100 mL) aliquots for storage at �80�C.

Protein GST pull-down assays
Bait proteins were diluted to 5 mM in pull-down buffer (20 mM Tris pH 7.5, 200 mM NaCl, 0.1% NP-40, 1 mM DTT, 1 mM EDTA) and,

for each experiment, 200 mL of bait mixture was incubated for 15-30 min at room temperature with 10 mL of glutathione magnetic

beads (Pierce) that had been pre-equilibrated in pull-down buffer. Supernatant was removed and resin was washed twice with

pull-down buffer. Bait-loaded resin was incubated with purified His-GOPC (full-length or truncated) or clathrin N-terminal domain

(Muenzner et al., 2017) diluted to 10 mM in pull-down buffer for 60min at room temperature in a final volume of 200 mL per experiment.

Unbound prey was removed and the beads washed four times with pull-down buffer. Bound proteins were eluted using pull-down

buffer supplemented with 50 mM reduced glutathione. Samples were resolved by SDS-PAGE and visualized using InstantBlue Coo-

massie stain (Expedeon).
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Immunofluorescence microscopy
Cells were seeded to be a third confluent on #1.5 glass coverslips and transfected with TransIT-LT1 or infected at MOI of 1 with crude

virus stocks in complete media. Where indicated, cells were treated with 10 mM MG132 or an equivalent volume of carrier (DMSO).

Plasmids expressing EGFP-tagged pUL56 or pUL56-AAXA were used for pUL56-GOPC co-localization analysis. Plasmids express-

ing FLAG-tagged TLR2 and pUL56 or pUL56-AAXA were used for TLR2 localization analysis. At 1 day post-transfection or 6 hpi, the

samples were fixed by incubation with 3% (v/v) electron microscopy-grade formaldehyde (PFA, Polysciences) in PBS for 15 min at

room temperature (Figures 4B, 6D, and S1A) or by incubation with ice-cold 250mMHEPES pH 7.5, 4% (v/v) PFA for 5min, incubation

with 250 mM HEPES pH 7.5, 8% (v/v) PFA at room temperature for 10 min, washing with PBS and incubation with 25 mM NH4Cl for

5 min (Figure 4C). For surface TLR2 detection, cells were incubated with anti-FLAG antibody for 1 h at 37�C prior to fixation. Cells

were permeabilized and washed using PBS supplemented with 1% (v/v) FBS, 0.1% Triton X-100 (Figures 4B, 6D, and S1A) or

0.1% saponin (Figure 4C). For staining of infected cells where the primary antibody was from a rabbit, a 2 h blocking step using

PBS supplemented with 100 mg/mL human IgG (Sigma-Aldrich), 10% (v/v) FBS was included before incubation with the primary anti-

body. Antibodies were diluted into PBS plus 10% (v/v) FBS supplemented with 100 mg/mL human IgG for staining of infected cells

using antibodies raised in rabbit (Figure 4B), or PBSplus 10% (v/v) FBS supplementedwith 0.1%saponin (Figure 4C), or PBS plus 1%

(v/v) FBS, supplemented with 0.1% Triton X-100 (Figures 6D and S1A). After immunostaining, the coverslips were mounted with

ProLong Gold Antifade Mountant containing 4’,6-diamidino-2-phenylindole (DAPI) (ThermoFisher) (Figures 4B, 6D, and S1A) or

with Mowiol 4-88 (Merck) containing 200 nM DAPI (Figure 4C). For Figures 4B, 6D, and S1A, samples were analyzed with an inverted

Olympus IX81 widefield microscope. Illumination was performed with a Lumen 200 arc lamp (Prior Scientific) and bandpass filters for

DAPI (excitation of 350/50 nm and emission of 455/50 nm), Alexa Fluor 488 (excitation of 490/20 nm and emission of 525/36 nm), and

Alexa Fluor 568 (excitation of 572/35 nm and emission of 605/52 nm) (Chroma Technology Corp). Images were acquired with Image-

Pro Plus software (Media Cybernetics), a Retiga EXi Fast1394 interline CCD camera (QImaging), and a 60 3 Plan Apochromat N oil

objective (numerical aperture 1.42) (Olympus) for a pixel resolution of 107.5 nm/pixel. For Figure 4C, images were acquired using a

Zeiss LSM780 confocal laser scanning microscopy system mounted on an AxioObserver.Z1 inverted microscope using a 643 Plan

Apochromat oil objective (numerical aperture 1.4).

Virus growth curves, and plaque assays
Growth curves were performed using HaCaT cells infected in complete media with crude virus stocks of HSV-1 WT or HSV-1 DUL56

at MOI of 10. After adsorption for 1 h at 37�C, cells were incubated with acid wash (40 mM citric acid, 135 mM NaCl, 10 mM KCl; pH

3.0) for 1min andwashed 3xwith PBS before cell culturemedia was added back. The time of acid washwas deemed 0 hpi. At various

times post-infection, cells were harvested by freezing the plate at �70�C. After freezing the last time point, samples were freeze-

thawed together 2 subsequent times and scraped before they were titered. Titrations were performed on Vero monolayers. Cells

were inoculated with serial dilutions of the samples for 1 h, after which DMEM containing 0.3% high viscosity carboxymethyl cellu-

lose, 0.3% low viscosity carboxymethyl cellulose, 2% (v/v) FBS, 2mML-glutamine, 100U/mL penicillin, and 100 mg/mL streptomycin

was overlaid. After 3 days, cells were fixed in 3.75% (v/v) formaldehyde in PBS for 30 min and stained with 0.1% toluidine blue.

For plaque size measurements, HaCaT, HFF hTERT, or Vero cells were grown in 6-well plates. The cells were infected and fixed as

described above, but they were stained with an anti-gD antibody (LP2). Plaques were visualized with a secondary antibody conju-

gated to horseradish peroxidase and the DAB peroxidase substrate following the manufacturer’s instructions (Vector Laboratories).

Plaques were scanned at 300 dpi and plaque diameters were measured with ImageJ (https://imagej.nih.gov/ij/).

Generation of CRISPR knockout HaCaT cells
HaCaT cells were seeded at 50% confluence and transfected with the PX459 CRISPR plasmid containing relevant guide RNAs

(GOPC 1: GGAACATGGATACCCCGCCA; GOPC 2: GAGAGATCGATCCAGACCAAG) and Lipofectamine 2000 according to the

manufacturer’s instructions. pSpCas9(BB)-2A-Puro (PX459) V2.0 was a gift from Feng Zhang (Addgene plasmid # 62988; http://

n2t.net/addgene:62988; RRID:Addgene_62988) (Ran et al., 2013). One day post-transfection the medium was changed to contain

2 mg/mL puromycin, and 3 days post-transfection the medium was changed to selection-free medium. Clonal cell lines were

expanded and tested for loss of GOPC by western blot analysis and genomic sequencing.

Flow Cytometry
HaCaT cells infected with crude virus stocks were washed 2 times with PBS and detached with accutase (Sigma-Aldrich). Cells were

pelleted at 4003 g for 5 min and washed once with PBS containing 2% (v/v) FBS. For extracellular staining, cells were stained with

anti-humanCD282 (TLR2) antibody (BioLegend, 153003) and incubated for 1 h at room temperature. Stained cells were washed once

and fixed in 4% (v/v) formaldehyde in PBS for 20 min at room temperature. Data was acquired with a FACSCalibur and analyzed with

Flowing Software version 2.5.1 (http://flowingsoftware.btk.fi/).

QUANTIFICATION AND STATISTICAL ANALYSIS

For TMT-based proteomic data statistical analysis Significance B was used to estimate the probability that each ratio was signifi-

cantly different to 1 (Cox and Mann, 2008). Values were calculated and corrected for multiple hypothesis testing using the method
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of Benjamini-Hochberg in Perseus version 1.5.1.6 (Cox andMann, 2008). A corrected p value < 0.05 was considered statistically sig-

nificant. Hierarchical centroid clustering based on uncentered Pearson correlation of data normalized by comparing the signal:noise

values to the average mock-infection were performed using Cluster 3.0 (Stanford University) (de Hoon et al., 2004), and visualized

using Java Treeview (http://jtreeview.sourceforge.net) (Saldanha, 2004). For analysis of temporal classes, viral protein expression

was normalized and subjected to K-means analysis using XLSTAT base (Addinsoft, version 18.06) and clustered with 1-15 classes.

For SILAC-based plasma membrane data statistical analysis hierarchical centroid clustering based on uncentered Pearson cor-

relation of the normalized ratios generated by MaxQuant was performed using Cluster 3.0 (Stanford University) (de Hoon et al.,

2004) and visualized with Java Treeview (http://jtreeview.sourceforge.net) (Saldanha, 2004).

For SILAC-IP data statistical analysis a one-sample, two-sided t test with a threshold p value of 0.05 was performed on each group

to identify significantly enriched proteins. Proteins with a log2 fold change greater than 1 and a p value smaller than 0.05 were desig-

nated as potential interactors.
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