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Sperm competition theory predicts that males should tailor ejaculates
according to their social status. Here, we test this in a model vertebrate,
the house mouse (Mus musculus domesticus), combining experimental data
with a quantitative proteomics analysis of seminal fluid composition.
Our analyses reveal that both sperm production and the composition of
proteins found in seminal vesicle secretions differ according to social
status. Dominant males invested more in ejaculate production overall.
Their epididymides contained more sperm than those of subordinate or con-
trol males, despite similar testes size between the groups. Dominant males
also had larger seminal vesicle glands than subordinate or control males,
despite similar body size. However, the seminal vesicle secretions of subor-
dinate males had a significantly higher protein concentration than those of
dominant males. Moreover, detailed proteomic analysis revealed subtle
but consistent differences in the composition of secreted seminal vesicle pro-
teins according to social status, involving multiple proteins of potential
functional significance in sperm competition. These findings have significant
implications for understanding the dynamics and outcome of sperm compe-
tition, and highlight the importance of social status as a factor influencing
both sperm and seminal fluid investment strategies.

This article is part of the theme issue ‘Fifty years of sperm competition’.
1. Introduction
Sperm competition [1] is defined as competition between the ejaculates of
different males to fertilize a given set of eggs. Following the pioneering theor-
etical work of Parker [1–5], celebrated in this special issue, sperm competition is
widely recognized as a key selective force in the evolution of male ejaculate
traits. According to sperm competition theory, males should allocate available
resources to ejaculates prudently, according to likely success in sperm compe-
tition [4,6]. However, ejaculates consist of a complex mixture of sperm and
seminal fluid proteins [7], and while optimal investment strategies for sperm
have been the subject of significant theoretical and empirical interest [4,5,8],
there are still relatively few tests of predictions for optimal investment in semi-
nal fluid production [9–11]. Nonetheless, there is growing evidence of plasticity
in the seminal fluid proteome in relation to sperm competition risk [12–16], and
examples suggesting that such plasticity may be modulated by male social
status [14,17,18].

In species with a hierarchical social system, dominant males typically have a
competitive advantage, placing them in a favoured role during sperm compe-
tition [8]. For example, dominant male mammals can often secure greater
access to females, allowing them to mate more often, or at an optimal time
relative to ovulation [8,19,20]. In this scenario, theoretical models predict that
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a subordinate male, mating in a disfavoured role, should
increase investment in sperm production to compensate for
an inherent disadvantage during sperm competition [8,21].
Additionally, it is predicted that males mating in a disfavoured
role should increase the allocation of resources to other, non-
sperm, components of the ejaculate [9]. While a number of
empirical studies support the prediction that subordinate
males should invest relatively more into sperm production
than dominantmales [22,23], the same trend has not previously
been demonstrated for rodents. Rather, subordinate male
rodents have been found to invest less in sperm production
than dominant males [24–27]. However, as yet, it is unknown
how male rodents allocate resources among non-sperm
ejaculate components according to social status. Hence, it is
possible that subordinate males may partly compensate for
their disadvantaged role in sperm competition by investing
relatively more in the production of functionally relevant non-
sperm ejaculate components. For example, in rodents, the semi-
nal fluid proteins are used to produce a substantial copulatory
plug, which is thought to promote male success in sperm com-
petition by promoting transport of the mating male’s own
sperm, and/or blocking the sperm of rivalmales [28,29]. Subor-
dinate males might, therefore, benefit by investing more in the
production of key proteins used in forming these plugs, poten-
tially facilitating the production of plugs that are more difficult
for rivalmales or females to dislodge. Rodent seminal fluid pro-
teins also have known functions in influencing sperm motility
and capacitation [30–34], differential investment that could
reduce the disadvantage experienced by subordinate males
under sperm competition.

The house mouse (Mus musculus domesticus) has a complex
social system in which dominant males defend territories and
arepreferredasmatesby females [35–38].Accordingly, dominant
males achieve more copulations than subordinates [36] and sire
more litters [39]. Female house mice often mate with more than
one male, resulting in a moderate level of multiple paternity in
natural populations [40]. Subordinate males of laboratory strains
produce fewer and less motile sperm than dominant males
[24,41]. However, as yet, it is unknown if the seminal fluid
proteins ofmale housemice differ according to their social status.

Here, we test how investment in both sperm and seminal
fluid proteins of male house mice differs according to social
status. We compare epididymal sperm numbers and repro-
ductive morphology of dominant, subordinate and control
(socially isolated) males, and employ a label-free quantitative
proteomic approach to quantify differences in their seminal
fluid proteins. In addition to analysing those proteins
known to be functionally important, this approach allows
subtle differences in the expression of all secreted seminal
vesicle proteins to be explored.
2. Methods
(a) Subjects
Male house mice were from an outbred colony, founded by wild
mice captured in Cheshire, UK. All animals were housed in M3
cages (North Kent Plastic Cages Ltd, UK, 48 cm× 15 cm× 13 cm)
on Absorb 10/14 substrate with shredded paper nest material
and cardboard enrichment. Food (LabDiet 5002) and water were
provided ad libitum. Animals were maintained under controlled
environmental conditions: temperature 20–21°C, relative humidity
45–65% and a reversed 12 : 12 h light cycle (lights off at 08.00).
Subjects were weaned into single-sex sibling groups at age 26
days, and transferred to experimental treatments within 1–2 days.

(b) Experimental design
A matched-pairs design was used to compare ejaculate traits of
sibling males that were housed in sibling pairs to form dominance
relationships (dominant versus subordinate). An additional group
of males originating from the same litters were singly housed for
comparison. This group is hereafter referred to as a control
condition, and was intended primarily to provide a comparison
with reproductive traits of subordinate males, in order to test for
evidence that sperm production or the expression of other repro-
ductive traits are suppressed in the presence of a dominant male.
Subjects (n = 24) originated from seven different litters. Paired
males (n = 16) consisted of six pairs, each originating from six
different litters, and two pairs originating from one litter. Singly
housed males (n = 8) originated from five of the same litters as
the paired males, and sibling-matched trios were distributed
evenly across treatment groups where possible (see electronic
supplementary material, dataset). Since not all litters contained
sufficient males to achieve a fully matched design, we adopted a
different statistical approach to the comparison of paired males,
which were always littermates, and the comparison of singly
housed and paired males, which were not (see §2e).

To allow individual identification of paired subjects, a small
patch of fur was clipped from the hindquarters of one in each
pair, with equivalent handling for other subjects. To stimulate
normal sexual development [42], males were exposed to soiled
bedding from unrelated females every two weeks for the duration
of the study. Pairs were observed daily to monitor their behaviour,
and were separated to individual cages if necessary to prevent
escalated aggression. Five pairs were split, although all but one
pair remained together until the finalweekof the study (separation
duration ranged from 3 to 12 days). Dominance relationships were
maintained after separation via the daily exchange of sibling pairs
between one another’s home cages, providing continued exposure
to fresh scent of the partner. All pairs were split on the penultimate
day of the experiment, so that measurements of reproductive traits
could be taken blind to treatment group.

(i) Establishing dominance status
Dominant male mice deposit significantly more urinary scent
marks than subordinates [43], and these can be visualized using
ultraviolet illumination [44]. The scent-marking behaviour of
subjects was, therefore, quantified to assess their dominance
status. Behaviour was assayed after three weeks in the treatment
groups. Scent marking responses of subjects were recorded in
response to a standardized competitive stimulus of pooled urine
collected from adult male house mice from the same captive
colony. Subjects were placed for 45 min in a clean MB1 cage
(45 × 28 × 13 cm, North Kent Plastics, UK), lined with Benchkote
and marked centrally with 10 µl of stimulus urine. Scent marks
were imaged using a UV scanner (InGenuis EPI UV kit and
GeneSys; Syngene, UK), and the number with an area greater
than 20 pixels were counted using image J [44]. Three scent-
mark tests were performed for each subject over a period of 9
days. A consistent pattern was found within all pairs (electronic
supplementary material, figure S1), and the male depositing the
most scent marks in all three tests was assigned as dominant.
Further analysis shows there was no difference in the number of
scent marks deposited between the dominant and control males
(test 1: v = 20, p = 0.84; test 2: v = 25, p = 0.38; test 3: v = 24,
p = 0.46), but control males deposited significantly more scent
marks than subordinate males (test 1: v = 28, p = 0.022; test 2:
v = 19, p = 0.093; test 3: v = 21, p = 0.036).

To validate assignment of social status based on scent mark-
ing behaviour, preputial gland mass was also recorded. Preputial
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glands secrete olfactory cues into the urine of house mice, and
are known to be larger in dominant males than subordinates
[45,46]. As expected, males assigned a dominant social status
based on scent marking behaviour had significantly larger
preputial glands than their cage partner ( p = 0.02; electronic
supplementary material, table S1). By comparison, the mean pre-
putial gland mass of control males was intermediate between
that of dominant and subordinate males, although we were
unable to detect significant differences between control and
dominant ( p = 0.085; electronic supplementary material, table
S1) or subordinate males ( p = 0.12; electronic supplementary
material, table S1).

(c) Measuring reproductive traits
Subjects were killed humanely at age two months when sexual
maturity had been reached and a clear dominance relationship
had been established within experimental pairs. Data were
collected in a randomized order, with the experimenter blind to
male social status. Within 30 min post-mortem, the testes, prepu-
tial glands and right seminal vesicle of each male were weighed
individually and frozen whole at −20°C. The left seminal vesicle
of eachmalewas squeezed and the contentswere frozen for further
analysis. Epididymal sperm were isolated by macerating the right
cauda epididymis on a plastic Petri dish in 100 µl of 1% citrate
solution. After 2 min, a further 900 µl of 1% citrate were added
and a pipette was used to homogenize and collect the sperm sus-
pension. Sperm were counted according to standard protocols
using an Improved Neubauer haemocytometer [47]. Briefly, 10 µl
of the sperm suspension were added to each side of the haemocyt-
ometer. Thiswas left in a humid box for 15 min, before countswere
performed using a Leica DM1000 light microscope.

(d) Proteomic analysis of seminal vesicle contents
The seminal vesicle secretion is a highly viscous, protein-rich sub-
stance. Defrosted samples of the secretion were weighed, diluted
to a protein content of 50 mg ml−1 with 50 mM ammonium bicar-
bonate, and triturated to homogeneity. A Coomassie plus protein
assay was then performed on each homogenate to accurately
measure the protein concentration of each sample. Using a stan-
dard protocol, 100 µg of protein within a total final volume of
200 µl were digested using trypsin. Briefly, proteins were
denatured by RapiGest SF Surfactant (Waters) at 80°C for 5 min,
to assist with enzymatic digestion. The disulfide bonds in the
sample were reduced and then alkylated by incubation with
dithiothreitol (60°C, 10 min) followed by iodoacetamide (RT
60 min in the dark). Trypsin (0.2 mg ml−1, Sigma-Aldrich) was
added and the sample incubated overnight at 37°C. After 12 h,
1 M hydrochloric acid and additional trypsin (0.1 mg ml−1) were
added and left to incubate for a further 4 h to ensure complete
digestion. At the end of the digestion, each sample was incubated
at 37°C with trifluoroacetic acid at a final concentration of 0.5%
(v/v) for 45 min. These samples were centrifuged at 17 000g and
4°C for 90 min and the supernatant decanted into ‘low–bind’
Eppendorf tubes. The digests were further centrifuged at 17 000g
and 4°C for a further 90 min, and 10 µl of each digest were checked
using SDS–PAGE to ensure completeness of digestion.

Seminal vesicle secretions were analysed by global proteomics
using high-resolution mass spectrometry. The seminal vesicle
secretion digestion mixtures were diluted 300 fold with 97 : 3:0.1
HPLC grade water : MeOH : TFA. The sample was diluted owing
to the low complexity and broad dynamic range of this sample,
with eight proteins accounting for over 90% of the total protein
content. The tryptic peptides were resolved over a 50 min
linear organic gradient of 3–40% buffer B (0.1% formic acid in
acetonitrile), using a nanoACQUITY (Waters, Wilmslow, UK)
ultra-performance liquid chromatography system. The HPLC
system was coupled to an electrospray ionization source and an
LTQOrbitrap Velos mass spectrometer (Thermo Fisher), acquiring
high-resolution mass data in a data-dependent manner. The top
20 most intense peptides in each MS scan were selected for
MSMS analysis.

Progenesis LC-MS software (Nonlinear Dynamics/Waters)
was used to analyse the raw HPLC-MSMS data and provide
label-free relative protein abundances. This software aligns raw
data from the HPLC-MSMS runs according to retention time and
m/z values. After all peptide ions were matched, those with
charge states between [M+ 2H]2+ and [M+ 4H]4+ were included
in an aggregate file (.mgf file) that was searched using a local
Mascot server (v. 2.3.01) against a protein database of reviewed
UniProt Mus musculus entries with additional unreviewed ejacu-
late-specific entries of proteins identified elsewhere [30]. Mascot
search parameters were set at 10 ppm peptide tolerance and
0.5 Da MSMS tolerance, with one missed tryptic cleavage, a
fixed cysteinyl carbamidomethylation and variable oxidation of
methioninemodification. TheMascot search resultswere imported
into Progenesis as an .xml file and protein identifications assigned
to each peptide peak. Proteins with at least two unique peptides
were quantified by comparing summed ion intensities for each
peptide within each individual sample. Finally, Progenesis nor-
malizes between individual LC-MSMS runs to compensate for
small variances in, for example, sample loading.

(e) Data analysis
Data analysis was performed in R (v. 3.1.0) [48]. Data were
transformed as appropriate prior to analysis (detailed below).
Non-parametric methods were used for the scent mark counts
as the data were not normally distributed. Paired t-tests were
performed to compare traits of dominant and subordinate
males within each pair. To model the data for comparison of
the dominant and subordinate males to control males, general-
ized linear mixed models were performed using the lme4
package in R [49] to include ‘litter’ as a random effect.

Accurate absolute quantification of proteins was not possible
here but relative quantification, using the same peptide ions, was
used to compare expression of the same protein in the three
groups. The proteomics results, therefore, consist of compositional
data with a high number of predictor variables and a low n
number. Random forest (RF) is a robust non-parametric method
of data analysis suited to analysing high-dimensional proteomics
data [30,50]. Here, RF analysis was performed on samples from
the control, dominant and subordinate males, and trained to clas-
sify the data according to these three groups. Data were uploaded
to R (RStudio Version 1.2.5033), using the ‘compositions’ package
[51], and abundance data were centred log-ratio transformed. The
‘party’ package [52] was used to perform conditional RFs (cforests)
on the transformed data, to predict the classification of each indi-
vidual as dominant, subordinate or control. The average
accuracy was taken from 10 models, each with 1000 trees and an
mtry of 5, and used to create a confusion matrix. The variable
importance measures were computed using the varimp function
within the party package for each of the 10 cforest models. Princi-
pal component analysis (pca) was carried out on the transformed
data and linear discriminant analysis was then performed on the
top 15 pca components using the MASS package [53].
3. Results
(a) Ejaculate production
There was no significant difference in the body mass, testes
mass or epididymidesmass of dominant, subordinate and con-
trol males (electronic supplementary material, table S1).
Dominant males had significantly larger seminal vesicles
than subordinate and control males (electronic supplementary
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Figure 1. Reproductive traits and social status. Plots of male reproductive traits in relation to male social status (dominant (dom), subordinate (sub) or control):
(a) seminal vesicles mass and (b) epididymal sperm count (*p < 0.05). Bars represent median and interquartile ranges. (Online version in colour.)
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material, table S1; figure 1a), and held more spermwithin their
epididymides (electronic supplementary material, table S1;
figure 1b). The same patterns were found when taking into
account variation in bodymass; that is, no difference in relative
testes mass or epididymides mass between treatment groups,
but larger seminal vesicles relative to body mass in dominant
males (electronic supplementary material, table S1). In
addition, subordinatemales had relatively smaller seminal ves-
icles than control males ( p = 0.038; electronic supplementary
material, table S1). Subordinate males also had lower sperm
counts than control males (electronic supplementary material,
table S1; figure 1b). However, the seminal vesicle secretions
of subordinate males had a significantly higher protein con-
centration than those of dominant males (d.f. = 7, t =−3.96,
p = 0.005) and control males (d.f. = 7, t =−2.19, p = 0.046).

(b) Proteomic analysis of proteins of seminal vesicle
secretion

The seminal vesicle secretion is dominated by relatively few
proteins when visualized on SDS–PAGE (see below, §3c)
and the instrument loading and subsequent label-free quanti-
tative analysis were directed to obtain quantitative data on
these more abundant proteins. The second group of lower
abundance proteins were more heterogeneous, comprising a
mixture of intracellular and secreted proteins. The non-
secreted proteins are likely to contain cellular debris and
are probably not true components of the seminal vesicle
secretion. Across all 24 replicates, 64 proteins were confi-
dently identified and quantified with at least two unique
peptides. The protein abundances, averaged across all
samples, spanned a broad range, covering at least seven
orders of magnitude (figure 2a). However, the abundance dis-
tribution was highly biased to a few proteins that dominated
the profile; the top 11 proteins were responsible for 97% of the
summed label-free abundance (figure 2b). The protein identi-
ties were also used to explore functional categorization
by known protein : protein interactions, using the StringDB
tool ([54]; figure 2c). Two distinct groupings were clearly
evident from this analysis—a tightly grouped set of proteins
that mapped to all of the seminal vesicle secretion proteins
SVS1–SVS6, seminal vesicle antigen (SVA), PATE4 and a
number of serine protease inhibitors (figure 2d ). This tightly
linked cluster were all located in the high abundance category
(figure 2a,b) and were all true secreted proteins. There have
been several proteomic studies of seminal vesicle fluid in
the mouse [55–58], and our list, specifically of secreted pro-
teins, allowed us to cross-reference and attempt to compile
a consensus of the abundant proteins in this fluid (figure 3).
Perhaps unsurprisingly, proteins were variably present in
different analyses, reflecting in part the depth to which differ-
ent analytical approaches reach. In addition, some analyses
were based on recovery from extruded seminal vesicle
fluid, another from females post-insemination (using stable
isotope labelling to discriminate male-derived from female-
derived proteins [57]). In terms of the analytical approach,
some studies used in-gel digestion of gel slices after SDS–
PAGE fractionation [56,58], which can elicit variable results
owing to uneven recovery and leaching of proteins from the
gel. Other studies perform a tryptic digestion on seminal
vesicle fluid extruded from the gland, as in this study.
These bottom-up proteomics strategies, as might be expected
for studies spanning about a decade, are thus based on differ-
ent instrumentation and quantification methods and figure 3
must, therefore, be seen as a very inadequate attempt to
address emergent knowledge on the mouse seminal fluid pro-
teome. Notwithstanding such complications, a consensus in
protein identifications emerges. As expected, the greatest con-
sistency was obtained from the highest abundance proteins;
these are also the proteins that have the highest abundance in
figure 2a,b. There is substantial overlap between this protein
list and the compilation of 69 true male-derived proteins com-
piled by Dean et al. [57], although those samples were
recovered from ejaculates within the female and thus included
proteins derived from the prostate, for example. To compare
quantitative data, albeit with a degree of approximation, we
normalized the abundance of each protein to the total abun-
dance of the proteins in the list. These data were rather
variable, obviating detailed comparison. The best correlation
was obtained with the 2009 study by Dean et al. [55], which,
in common with our study, used solution phase digestion
and high-resolution proteomics (r2 = 0.57, p < 0.0001). These
comparisons serve to emphasize that we do not possess a com-
prehensive or authoritative profile of the true protein
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complement of seminal vesicle fluid. Ideally, this would be the
consensus of several different laboratories, based on a target
protein list that is used to specify a group of stable isotope-
labelled standards that could be shared and which would
yield absolute values, for example, in terms of the number of
molecules of each protein per microlitre of seminal vesicle
fluid. Such absolute values would inform the stoichiometry
of protease : antiprotease interactions, for example, or allow
monitoring of the loss of proteins during the copulatory pro-
cess (whether by physical loss or by cross-linking or
degradation). Such a rigorous evaluationwould have consider-
able potential, and generate the required tools, for a broad
range of further studies.

(c) The effect of social status on proteins of seminal
vesicle secretion

Seminal vesicle secretion proteins from the three subject
groups (dominant, subordinate, control) were analysed for
comparative proteome expression. The 24 LC-MS/MS ana-
lyses aligned extremely well and the normalization factors
(to correct for small variations in sample preparation and
loading) were also very slight with chromatogram alignment
scores ranging from 90 to 95% and quantitative normalization
scores between 0.65 and 1.5 across all 24 runs.

Using the aligned, normalized data, there were no substan-
tial changes in the expression levels of any of the secreted
proteins; changes in the intracellular proteins probably reflect
different degrees of contamination with cells or cellular
debris. Accordingly, all further analyses focused on proteins
that are either known to be secreted or that identify a clear
signal peptide using the SignalP server [59]. This reduced
the protein list to 29 candidates and resonates well with obser-
vations from other studies (figure 3) [56]. The secreted proteins
are largely the most abundant (figure 2), spanning between
four and five orders of magnitude in label-free abundance.
Further, the label-free abundance of each protein did not
vary considerably between dominant, subordinate or control
groups (figure 4a). This is confirmed by the consistency of
SDS–PAGE analysis of the seminal vesicle fluids (figure 4b),
highlighting a reduced set of major bands corresponding to
those at the top of the label-free abundance list. For the individ-
ual proteins in the ‘seminal vesicle’ cluster, the individual label-
free abundances for the proteins in the three groups were
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extracted and plotted individually, and emphasize the subtlety
of the changes (figure 4c).

Although in classical proteomics terms, the observed
changes in seminal vesicle fluid proteins appear to be small,
biology rarely operates on large-fold differences and it is poss-
ible that a subtle adjustment of the overall seminal vesicle fluid
composition could be as effective in yielding a consistent bio-
logical response. Accordingly, the secreted protein abundance
data were analysed using RF analysis to discern more subtle
changes in the protein profile. The dataset, of 29 proteins and
24 cases (three groups of eight), was used to generate 10 sets
of 1000 trees. From these analyses, the overall performance
in terms of discrimination of dominant and subordinate
was reasonable (figure 5a), achieving 84% accuracy that was
essentially stable (±1%) for 10, 100 or 1000 iterations, each com-
prising 1000 trees. From the 10 iteration analysis, the variable
importance scores of the different variables were highly con-
sistent, with Niemann-Pick Protein 2 (figure 5b, NPC2),
clusterin (CLUS), SVS4, prostate and testis expressed protein
4 (PATE4) and SVS6 ranking the highest. The abundances of
these five proteins are plotted in figure 5c. Some proteins,
such as NPC2, were effective in resolving control animals
from either subordinate or dominant, while other proteins,
such as clusterin and SVS6, differed between subordinate
and dominantmice. This was confirmed by linear discriminant
analysis of the top 15 PCA components (figure 5d ), where the
first linear discriminant component was highly effective at
resolving dominant samples from the other two categories.
However, comparisons of the abundances of individual pro-
teins did not reveal major changes. To illustrate, a paired t-
test comparing dominant and subordinate males for SVS5
(t = 4.16, p = 0.004, d.f. = 7), clusterin (t = 2.75, p = 0.029, d.f. =
7) and CYTC (t =−2.44, p = 0.045, d.f. = 7) yielded individual
p-values < 0.05, but none pass corrections for multiple
comparisons (see electronic supplementary material).
4. Discussion
We find evidence that both sperm and seminal fluid protein
investment differ according to social status in male house
mice. Dominant males invested more in ejaculates overall,
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with significantly higher sperm counts and larger seminal ves-
icles than subordinate and controlmales. However, subordinate
males produced a more concentrated protein secretion from
their seminal vesicles, andwe found subtle but consistent differ-
ences in the seminal fluid protein composition of male mice
according to their social status. These differences in the compo-
sition of the seminal vesicle secretion highlight that comparing
gross production measures, such as gland size, may mask
differences in the relative production of specific proteins that
could have functional significance to a male’s fertilization suc-
cess. Similarly, evidence for differences in sperm production
according to social status were found, despite no significant
difference in testes mass (see also [60]).

Subordinate male mice showed a reduced overall invest-
ment in ejaculates, with lower epididymal sperm counts and
smaller seminal vesicles than dominant males, despite having
similar bodymasses. Decreased investment in sperm by subor-
dinate males has previously been reported for laboratory mice
[24,41] and bank voles (Myodes glareolus [26]). Similar to the
findings reported here, subordinate male bank voles also have
smaller seminal vesicle glands than dominants [26].

A comparison of the reproductive traits of subordinate
males in our study with those of singly housed males suggests
that some aspects of subordinate males’ reproductive function
is being suppressed in the presence of a dominant male.
This is also consistent with the dichotomous pattern of scent
marking typical of dominant and subordinate male mice [43],
and may reflect lowered testosterone levels of subordinate
males [25]. As discussed by Lemaitre et al. [26], social suppres-
sion of reproductive function under competitive conditions
could impose significant constraints on ejaculate investment
decisions. This may explain why subordinate male rodents do
not invest more in sperm production, as predicted by sperm
competition theory (e.g. [8]), whereas males in other taxa
have been shown to do so when mating in a disadvantaged
mating role (e.g. [23,61,62]). Conversely, the expression of
some reproductive traits is heightened in dominant males com-
pared to singly housed males, suggesting that an increased
reproductive investment by dominantmalesmay be stimulated
bydirect competition.However, considering the seminal vesicle
secretion of subordinate male mice, we found a higher protein
concentration in the secretion compared to dominants. Hence, it
is possible that some partial compensation for reduced sperm
output by subordinate males might be afforded by adjustments
to the amount and/or composition of seminal vesicle proteins,
despite their overall lower investment.

Seminal fluid components are known to have important
effects on the outcome of postcopulatory sexual selection
(e.g. [63,64]), and may, therefore, be adjusted according to
mating roles under sperm competition risk. For example,
recent studies demonstrate that males can plastically alter the
production and secretion of specific seminal fluid proteins
with functional significance in postcopulatory sexual selection
according to local conditions [12,13,16,65–67]. Here, although
it is clear from multiple analyses (SDS–PAGE, label-free
proteomics) that there is no dramatic change in protein
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composition, a combination of modest changes in several pro-
teins could still potentially alter ejaculate composition to
enhance sperm competition success according to social
status. The seminal vesicle secretion contains several classes
of proteins; the coagulum proteins SVS1–6, protease inhibitors
(SPIKL, ISK3, GDN) and nucleases (DNS2, NUCB2), all of
which act to influence fertilization success, through optimiz-
ation of coagulation plug stability, suppression of proteases
secreted by the female into the reproductive tract and hydroly-
sis of neutrophil NETS, webs of DNA that contain multiple
bound proteins, including proteases [68]. Small adjustments
to several of these proteins might, therefore, combine to elicit
an advantage according to mating role, which resonates well
with the known or proposed functions of key proteins that
allowed discrimination according to social status in our data-
set. Moreover, among proteins with the top 10 highest
variable importance scores in our RF analysis, six (SVS1,
SVS4, SVS6, SVS7, Caecam10 and SPIKL) have previously
been suggested to change plastically in response to sperm com-
petition risk [28]. Among these, SVS6 has been suggested to
function as a protease inhibitor [69] and could, for example,
protect the mating plug against liquefaction in the female
reproductive tract. Expression of SVS6 for males in our study
was relatively high both for subordinate and singly housed
males compared to dominant males. Hence, it appears that
dominant males have reduced investment in SVS6, which
might reflect a lower risk of their mating plug being
prematurely displaced or ejected. By contrast, clusterin was
elevated in subordinate males relative to both dominants and
controls. Clusterin is an extracellular chaperone that functions
to prevent stress-induced aggregation of high concentrations of
protein or its selective uptake [70,71]. It might be argued that
the higher protein concentration of clusterin in subordinate
seminal vesicle fluid could align with the higher total protein
concentration, which would be a stimulus for increased aggre-
gation. In RF analysis, the highest variable importance score
was for Niemann-Pick Protein 2, a sterol-binding protein that
is involved in sperm maturation in the epididymis [72]. This
protein is also secreted by seminal vesicles, but its role in ejacu-
lates is unclear [73], as is the observation of lower levels in both
subordinate and dominant animals compared to controls.

Our finding that subordinate male mice appear to be
investing relatively more in specific functionally significant
seminal fluid proteins, as well as having an overall increased
concentration of seminal fluid proteins, is consistent with cer-
tain theoretical predictions in relation to optimal investment
strategies for seminal fluid components [9]. This theory pre-
dicts that for species in which seminal fluid components
can significantly affect fertility, males mating in a disfavoured
role may gain a greater advantage through increasing their
seminal fluid output. Our results partly support this, since
despite their reduced sperm output, subordinate males are
producing significantly more of certain proteins compared
to dominant males, and the overall composition of their
secreted seminal vesicle proteins is distinct from that of domi-
nant males. These findings are also consistent with limited
evidence, suggesting that the mating plugs produced by sub-
ordinate males are comparable in size to those of dominant



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

375:20200083

9
males [74]. Notably, the seminal fluid secretion of dominant
males also appears distinct from that of both subordinate
and control males, suggesting that the dominant male ejacu-
late may be optimized for mating in a favoured role under an
elevated risk of sperm competition.

However, there remains a need for higher quality assess-
ment of the abundances of these proteins in seminal vesicle
secretion, ideally one that does not require alignment and
normalization of the entire dataset. In this regard, absolute
quantification rather than relative label-free quantification is
required to dissect changes in the seminal vesicle secreted
proteome. This would require the use of stable isotope-
labelled standard peptides, several per target protein, that
are used as a reference standard. Multiple proteins are readily
quantified through QconCAT technology, which creates an
artificial protein that is a concatamer of all peptides that are
needed for quantification [75,76].

In the absence of ejaculation, seminal vesicle proteins have
a turnover ratewith a half time of about 10 days [77], which sets
a limit on the rate of change in the protein composition that can
be elicited. However, post-ejaculation, the replenishment of
seminal vesicle secreted proteins would be much more sensi-
tive to the rate of synthesis. Since subordinate males have
fewer mating opportunities, they may lack the opportunity
for rapid change in composition that would be afforded to
dominant males that mate more frequently. It is possible that
comparison of the protein profile would be more informative
if assessed in the context of number of copulations to deplete
and thus, replenish the seminal vesicle secretion. Further
quantification would also be useful to explore how the differ-
ences in sperm and seminal fluid protein production found
here translate into ejaculates recovered under different con-
ditions [16]. Although available evidence for house mice
suggests that dominant males ejaculate more sperm than sub-
ordinates under controlled conditions [74], the extent to which
social status interacts with varying levels of sperm competition
to influence overall ejaculate composition is unknown.

In conclusion, this study combines behavioural and proteo-
mic techniques to show that dominant and subordinate male
house mice exhibit distinct reproductive phenotypes. A novel
application of emerging techniques has shown that subordi-
nate male house mice may compensate for lower overall
investment in ejaculates by increasing the concentration of pro-
teins in their seminal fluid and increasing the production of
specific seminal fluid proteins linked to mating plug function
and fertility. Moreover, the composition of dominant males’
seminal fluid is also distinct from that of socially isolated
males, which could reflect optimization to a favoured role
under elevated sperm competition risk. Overall, our findings
highlight the importance of considering the entire ejaculate
when studying investment strategies. This is particularly
important in species that produce a copulatory plug from
their seminal fluid, as differential investment in specific pro-
teins could greatly affect fertilization success.
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