Programme Specification

Undergraduate

Applicable to all non-clinical undergraduate programmes*

Please click [here](#) for guidance on completing this specification template.

Excluding Integrated Master's degrees.

Part A: Programme Summary Information

1. **Title of programme:** Biochemistry
2. **Programme Code:** C700
3. **Entry Award:**
 - **BA (Hons):**
 - **BSc (Hons):**
 - **Credit:** 360
 - Level: At least 120 at level 5 or above and 120 at level 6 or above.
 - **Other (please specify below):**

4. **Exit Awards:**
 - **Diploma in Higher Education (Dip HE):**
 - **Credit:** 240
 - Level: At least 120 credits at level 5.
 - **Certificate in Higher Education (Cert HE):**
 - **Credit:** 120
 - Level: At least 120 credits at level 4.

5. **Date of first intake:** September 2013
6. **Frequency of intake:** Annually in September
7. **Duration and mode of study:**
 - 3 years full time

8. **Applicable framework:**
 - Model for Non-Clinical First Degree Programmes

 Framework exemption required:
 - ☒ No (please go to section 9)
 - ☐ Yes (please provide a brief summary below)

 Date exemption approved by AQSC:

9. **Applicable Ordinance:**
 - Ordinance 37

 New/revise d Ordinance required:
 - ☒ No (please go to section 10)
 - ☐ Yes (please provide a brief summary below)

 Date new/revise d Ordinance approved by Council:

10. **Faculty:**
 - Health and Life Sciences

11. **Level 2 School/Institute:**
 - Institute of Learning and Teaching

12. **Level 1 unit:**
 - School of Life Sciences

13. **Campus:**
 - Main

14. **Other contributors from UoL:**
 - Chemistry
 - Institute of Ageing and Chronic Disease
 - Institute of Translational Medicine
 - Institute of Integrative Biology
 - Institute of Infection and Global Health
Part B: Programme Aims & Objectives

2. Aims of the Programme

The BSc degree in Biochemistry provides students with an exciting and modern programme of study that integrates a range of learning and teaching techniques of relevance to both their educational development and career ambitions. The programme covers the latest developments in Biochemistry, and provides theoretical knowledge plus training in the practical and intellectual skills to enable students to understand, and then help solve, some of the global problems in this subject. Graduates from this programme will be critical thinkers, able to solve...
complex problems in Biochemistry and disseminate their findings to international audiences. They will possess the problem-solving skills that will enhance their employability prospects.

No. Aim:

Graduates in Biochemistry will:

1. Be capable of playing leading roles in industry, research and the public services in the UK and overseas;
2. Understand and appreciate major public concerns and issues associated with Biochemistry;
3. Be exposed to an international research environment where the frontiers of knowledge in Biochemistry are under detailed investigation;
4. Be able to adapt and respond positively and flexibly to changing circumstances;
5. Develop the professional skills and personal attributes to deal with complex issues, both systematically and creatively;
6. Have the capacity for individual work and teamwork;
7. Be lifelong learners with intellectual and practical skills.

27. Learning Outcomes

No. Learning outcomes – Bachelor’s Honour’s degree

Graduates in Biochemistry will:

A. Be able to demonstrate systematic understanding of all key aspects of a complex body of knowledge informed by the latest research in the discipline. These aspects are:

1. The subcellular architecture of cells and tissues, including membranes and organelle structure and function;
2. The structure and function of the major cellular macromolecules and the methods required for their analysis;
3. The major metabolic pathways and how they are integrated;
4. How extracellular signals regulate intracellular enzyme activity, and alter metabolism and gene expression;
5. How biochemical and molecular technologies can advance knowledge and solve biotechnological, biomedical and socio-economic problems;
6. Methods for acquiring, interpreting and analysing biological information through the study of texts, original reports and data sets.

B1. Be able to apply the methods and techniques learned to review, extend and apply knowledge and understanding to initiate and carry out projects;

B2. Be able to evaluate evidence, arguments and assumptions to reach sound judgements to achieve a solution, or range of solutions, to a problem.

C1. Be able to plan and execute all the core practical and professional skills relevant to first post-employment in the discipline, independently;

C2. Be fully aware of relevant ethical implications of proposed courses of actions or situations and take the necessary steps to work within the limits of these.

D. Be able to demonstrate qualities and transferrable skills needed for employment.
In particular, they will be able to demonstrate:

1. Initiative;
2. Personal responsibility;
3. Decision-making in complex and unpredictable circumstances;
4. Problem solving skills that can be applied in many types of employment;
5. Lifelong learning skills to address their own learning needs within their discipline and new areas of learning;
6. Communicate effectively and confidently to both specialist and non-specialist audiences.

Learning Outcomes

Non Honours Graduates in Biochemistry will:

A. Be able to demonstrate systematic understanding of the majority of key aspects of a complex body of knowledge informed by the latest research in the discipline. These aspects are:

1. The subcellular architecture of cells and tissues, including membranes and organelle structure and function;
2. The structure and function of the major cellular macromolecules and the methods required for their analysis;
3. The major metabolic pathways and how they are integrated;
4. How extracellular signals regulate intracellular enzyme activity, and alter metabolism and gene expression;
5. How biochemical and molecular technologies can advance knowledge and solve biotechnological, biomedical and socio-economic problems;
6. Methods for acquiring, interpreting and analysing biological information through the study of texts, original reports and data sets.

B1. Be able to apply the methods and techniques learned to review, extend and apply knowledge and understanding to carry out a project under supervision;
B2. Be able to evaluate evidence, arguments and assumptions to reach sound judgements to achieve a solution, or range of solutions, to a limited range of problems.

C1. Be able to plan and execute some practical and professional skills relevant in the discipline, under an appropriate level of supervision;
C2. Awareness of relevant ethical implications of proposed courses of actions or situations and take the necessary steps to work within the limits of these.

D. Be able to demonstrate qualities and transferable skills needed for employment. In particular, they will be able to demonstrate:

1. Initiative;
2. Personal responsibility;
3. Decision-making in complex and unpredictable circumstances;
4. Problem solving skills that can be applied in many types of employment;
5. Lifelong learning skills to address their own learning needs within their discipline.
and new areas of learning;

6 Communicate effectively and confidently to both specialist and non-specialist audiences.

Learning Outcomes

<table>
<thead>
<tr>
<th>No.</th>
<th>Learning outcomes – Diploma in Higher Education award</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diploma Graduates in Anatomy and Human Biology will:</td>
</tr>
<tr>
<td>A</td>
<td>Be able to demonstrate knowledge and critical understanding of basic and applied concepts and principles in all core areas of the discipline. These core areas are:</td>
</tr>
<tr>
<td>1</td>
<td>The subcellular architecture of cells and tissues, including membranes and organelle structure and function;</td>
</tr>
<tr>
<td>2</td>
<td>The structure and function of the major cellular macromolecules and the methods required for their analysis;</td>
</tr>
<tr>
<td>3</td>
<td>The major metabolic pathways and how they are integrated;</td>
</tr>
<tr>
<td>4</td>
<td>How extracellular signals regulate intracellular enzyme activity, and alter metabolism and gene expression;</td>
</tr>
<tr>
<td>5</td>
<td>Molecular and cellular processes in relation to evolutionary biology.</td>
</tr>
<tr>
<td>B1</td>
<td>Be able to demonstrate knowledge and critical understanding of the main methods of enquiry and an ability to evaluate critically the appropriateness of these to qualitative and quantitative data relevant to the discipline;</td>
</tr>
<tr>
<td>B2</td>
<td>Be able to use a range of established techniques to initiate and undertake critical analysis of information, and to propose solutions to problems arising from that analysis.</td>
</tr>
<tr>
<td>C1</td>
<td>Be able to plan and execute a limited range of practical and professional skills relevant to the discipline, under an appropriate level of supervision;</td>
</tr>
<tr>
<td>C2</td>
<td>Be able to demonstrate awareness of relevant ethical implications of proposed courses of actions or situations and can demonstrate limited ability to work within the limits of these.</td>
</tr>
<tr>
<td>D</td>
<td>Be able to demonstrate qualities and transferrable skills needed for employment. In particular, they will be able to demonstrate:</td>
</tr>
<tr>
<td>1</td>
<td>Personal responsibility;</td>
</tr>
<tr>
<td>2</td>
<td>Decision-making;</td>
</tr>
<tr>
<td>3</td>
<td>Different approaches to problem solving;</td>
</tr>
<tr>
<td>4</td>
<td>Ability to undertake further training, develop existing skills and acquire new competencies;</td>
</tr>
<tr>
<td>5</td>
<td>Communicate effectively, in a variety of forms to specialist and non-specialist audiences.</td>
</tr>
</tbody>
</table>

Learning Outcomes

<table>
<thead>
<tr>
<th>No.</th>
<th>Learning outcomes – Certificate in Higher Education award</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Certificate in HE Graduates in Anatomy and Human Biology will:</td>
</tr>
<tr>
<td>A</td>
<td>Be able to demonstrate sound knowledge of the basic concepts and principles in a limited number of core areas of the discipline. These are:</td>
</tr>
</tbody>
</table>
| 1 | The subcellular architecture of cells and tissues, including membranes and
organelle structure and function;
2. The major metabolic pathways and how they are integrated;

B1. Be able to present, evaluate and interpret basic qualitative and quantitative data relevant to the discipline;
B2. Be able to recognise the appropriateness of different approaches to solving problems within the context of the discipline.

C. Be able to plan and execute a limited number of practical and professional skills relevant to the discipline, under an appropriate level of supervision.

D. Be able to demonstrate qualities and transferrable skills needed for employment. In particular, they will be able to demonstrate:
1. Some limited personal responsibility where the criteria for decisions and the scope of the task are well defined;
2. Different approaches to problem solving;
4. Ability to undertake further learning within a structured and managed environment;
5. Communicate accurately and reliably.

27a. Mapping of learning outcomes:

<table>
<thead>
<tr>
<th>Learning outcome No.</th>
<th>Module(s) in which this will be delivered</th>
<th>Mode of assessing achievement of learning outcome</th>
<th>PSRB/Subject benchmark statement (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please See Appendix 1 for mapping of the delivery and assessment of Subject based Learning Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

28. Skills and Other Attributes

No. Skills and attributes:

Key Employability skills
Upon successful completion of the programme, students will be able to:

1. Structure and communicate ideas effectively both orally and in writing using a range of formats to a range of audiences;
2. Manage time, work to deadlines and prioritise workloads to achieve targets;
3. Actively participate in groups, demonstrating leadership skills where appropriate, but be capable of independent work;
4. Access and evaluate information and use IT effectively;

5. Assess the relevance and importance of the ideas of others;

6. Develop lifelong learning skills that are flexible and adaptable;

7. Evaluate own performance and professional working standards, and those of others.

28a. Mapping of skills and other attributes:

<table>
<thead>
<tr>
<th>Skills and other attributes No.</th>
<th>Module(s) in which this will be delivered and assessed</th>
<th>Learning skills, research skills, employability skills</th>
<th>Mode of assessing achievement of the skill or other attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please See Appendix 1 for mapping of the delivery and assessment of Skills and other Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

29. Career opportunities:

Graduates with an Honours degree in Biochemistry will be well-qualified to enter a wide range of employment. These opportunities include careers for graduates in general, such as management, accountancy and human resources, where the skills obtained in the degree programme will be of considerable benefit. For those committed to a career as a research scientist, further study for a higher degree (MBiolSci, M.Sc., MRes, M.Phil. or Ph.D.) in our own Graduate School or elsewhere is the normal route. A postgraduate qualification (PGCE) for entry into the teaching profession is also an option, particularly for Biochemistry graduates, to meet the current demand for science teachers. Commercial sectors that actively recruit Biochemistry graduates include the pharmaceutical, food, biotechnology, water and agriculture industries. In the public sector, Biochemistry graduates are in demand in research institutes, government departments, the health service, forensic science and the Environment Agency. There is an increasing demand for Biochemists to contribute to the public understanding of science as journalists, and information/liaison officers in view of the ethical and environmental issues raised by the development of new biology-based technologies.

Part C: Entrance Requirements

30. Academic Requirements:

The typical offer for entrance to this degree programme is 320 UCAS tariff points, equivalent to ABB at A level. Applicants will be required to offer Biology and Chemistry at A level. Applications are also welcome from students with other qualifications such as BTEC, International Baccalaureate, Irish Leaving Certificate, Scottish Higher/Advanced Higher (see http://www.liv.ac.uk/study/undergraduate/courses/biochemistry-bsc-hons/entry-requirements/ for details). Mature applicants are particularly welcome and will normally be expected to show evidence of recent academic study, such as an Access course. International students should have an IELTS
score of 6.0 or above, provided that 5.5 or above was obtained in all assessments. Other English Language qualifications may be acceptable (http://www.liv.ac.uk/study/international/countries/english-language/). The University operates an Accredited Prior Learning scheme, and students are advised to visit http://dbweb.liv.ac.uk/cll/cepd_docs/Policy10.2003.pdf, in the first instance.

31. Work experience: n/a

32. Other requirements: n/a

Part D: Programme Structure

33. Programme Structure:

Year 1 (Level 4)(Practical modules are in italics)

Required modules

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE101</td>
<td>Molecules and Cells</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>LIFE103</td>
<td>Evolution and Biodiversity</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>LIFE105</td>
<td>Grand Challenges in Biology</td>
<td>7.5</td>
<td>1</td>
</tr>
<tr>
<td>LIFE107</td>
<td>Experimental Skills in Current Biology</td>
<td>15</td>
<td>1 and 2</td>
</tr>
<tr>
<td>LIFE109</td>
<td>Essential Skills for Life Sciences I</td>
<td>15</td>
<td>1 and 2</td>
</tr>
<tr>
<td>LIFE102</td>
<td>Biochemical and Biomedical Sciences</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>LIFE104</td>
<td>Biological Chemistry</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>LIFE122</td>
<td>Biochemical Methods</td>
<td>7.5</td>
<td>2</td>
</tr>
</tbody>
</table>

Plus 15 credits from optional modules that include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE106</td>
<td>Introduction to Physiology and Pharmacology</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>LIFE108</td>
<td>Applied Genetic and Molecular Technologies</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>LIFE110</td>
<td>Microbiology</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>LIFE114</td>
<td>Developmental Biology</td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

Year 2 (Level 5)(Practical modules are in italics)

Required modules

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE201</td>
<td>From Genes to Proteins</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>LIFE203</td>
<td>Structure/Dynamics of</td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>
Macromolecules
LIFE202 Cell Signalling in Health and Disease 15 2
LIFE237 Molecular Science 7.5 1
LIFE223 Essential Skills for Life Sciences II 15 1 and 2
LIFE227 Techniques in Cell Biology 7.5 1
LIFE242 E-Biology 7.5 1 or 2
LIFE224 Advanced Biochemical Techniques 7.5 2

Plus 30 credits from optional modules that include:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE205</td>
<td>The Multicellular Organism</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>LIFE204</td>
<td>Regulatory and Neuro-Physiology</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>LIFE207</td>
<td>Principles of Pharmacology</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>LIFE221</td>
<td>The Immune System in Health and Disease</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>LIFE206</td>
<td>Drug Action</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>LIFE208</td>
<td>Genome Organisation and Maintenance</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>LIFE210</td>
<td>Biotechnology</td>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

Year 3 (Level 6)

Required modules

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIFE301</td>
<td>Advanced Skills in Biochemistry</td>
<td>15</td>
<td>1 and 2</td>
</tr>
<tr>
<td>LIFE302</td>
<td>Genes and Cancer</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>LIFE304</td>
<td>Biochemical Messengers and Signal Transduction</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>LIFE306</td>
<td>Molecular Medicine</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>LIFE303</td>
<td>Protein Structure and Organisation</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>LIFE323</td>
<td>Gene Expression and Development</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>LIFE363</td>
<td>Research Project</td>
<td>30</td>
<td>1 and 2</td>
</tr>
</tbody>
</table>

34 Industrial placement/work placement/year abroad:

If students wish to undertake an industrial placement and/or gain international experience, they may transfer onto the MBiolSci (Biochemistry) programme, a 4-year integrated masters programme. Transfer onto the MBiolSci is subject to meeting the progression criteria of that programme.

35 Liaison between the Level 2 Schools/Institutes involved:
Staff within the Institutes of Learning and Teaching, Integrative Biology, Translational Medicine, Infection and Global Health and Ageing and Chronic Disease deliver teaching that contributes to this programme (depending on the range of optional modules that the students select); staff from the School of Life Sciences are responsible for managing the programme. Staff from all institutes are represented on various Learning and Teaching Committees within the School of Life Sciences. A single Board of Studies (comprised of all staff contributing to this programme) oversees the programme.

Part E: Learning, Teaching And Assessment Strategies

36 Learning, Teaching and Assessment Strategies:

Acquisition of Subject Based Learning Outcomes is via lectures, practicals, coursework, workshops, small-group tutorials, problem-solving exercises and a final year research project, all supported by Web-based materials, selected textbooks and specified source literature. Throughout the programme, the learner is guided and encouraged to undertake independent reading to supplement and consolidate what is formally taught/learnt. This broadens individual knowledge and understanding, and also develops self-learning skills. Formative assessments allow student to reflect on their learning. Thus, as students progress though the levels of study, they become more independent and active-learners.

Intellectual Skills and Key (Transferrable) Skills are developed in the teaching and learning methods described above, and also via compulsory Skills modules in Levels 4 and 5 in which students meet in small groups (5-8 students) regularly with an Academic Advisor. These modules encourage individual and group work where students tackle problems by developing ideas and hypotheses, design learning strategies to solve problems, and then analyse and interpret their findings. As these skills are taught and developed, students self assess their progress and evaluate how their skills are developing. Web-based resources can provide additional support if required and students record the development of their skills. These skills are further developed in Level 4 and 5 practical modules and at Level 6 via an Advanced Skills in Biochemistry module and the final year research project.

Practical skills are developed primarily through practical modules in levels 4 and 5, and project work in level 6. Students work in groups to share learning experiences but are also instructed individually so that each student acquires these skills.

Assessment of Knowledge and Understanding, Practical Skills and Transferrable Skills is through a blended mix of written examinations, containing seen and unseen questions, Extended Matching Items (EMI), short answer questions (SAQ), Multiple Choice Questions (MCQ), and assessed coursework (practical and project reports, essays, completion of workbooks, talks, data handling sessions, posters, EMI, SAQ and MCQ) or other tasks undertaken under examination conditions. For all modules, a minimum of 20 % of the total assessment is via continuous assessments, which provides feedback to students on their learning progress and allows for adjustment of their learning. Students also evaluate their progress and are guided to extra information and help via on-line resources and formative exercises. Learning and teaching is supported by electronic resources available on the virtual learning environment, VITAL.
Learning, Teaching and Assessment methods:

- Lectures;
- Large group seminars/tutorials;
- Small group seminars/tutorials;
- Laboratory work;
- Group work;
- Project work (individual/group);
- On-line discussion boards, wikis;
- Workshops;
- Skills development;
- Private study.

Assessment will be by examinations and continuous assessments. These will include quantitative assessments (e.g. SAQ, MCQ, EMI), essays, reports, posters, presentations and completion of workbooks.

Assessment information for students:

Code of Practice on Assessment

The University has a Code of Practice on Assessment which brings together the main institutional policies and rules on assessment. The Code is an authoritative statement of the philosophy and principles underlying all assessment activities and of the University's expectations in relation to how academic subjects design, implement and review assessment strategies for all taught programmes of study.

The Code of Practice includes a number of Appendices which provide more detail on the regulations and rules that govern assessment activity; these include:

- The University marks scale, marking descriptors and qualification descriptors;
- The model for non-clinical first degree programmes;
- The system for classifying three-year, non-clinical, undergraduate degrees;
- The system for classifying four-year, non-clinical, undergraduate degrees that include a year in industry or a year abroad;
- Information about students’ progress, including guidance for students;
- The procedure for assessment appeals;
- Regulations for the conduct of exams;
- The University’s policy on making adjustments to exam arrangements for disabled students.
- The code of practice relating to external examining (see also below)
- The Academic Integrity Policy, which covers matters such as plagiarism and collusion and includes guidance for students;
- The policy relating to mitigating circumstances which explains what you should do if you have mitigating circumstances that have affected assessment; and
- The policy on providing students with feedback on assessment.

Please click [here](https://vital.liv.ac.uk/webapps/blackboard/content/listContentEditable.jsp?content_id=_445276_1&course_id=_12356_1&mode=reset) to access the Code of Practice on Assessment and its appendices; this link will also give you access to assessment information that is specific to your cohort:

A summary of key assessment information is also available in the ‘Your University’ handbook.

Marking criteria:
https://vital.liv.ac.uk/webapps/blackboard/content/listContentEditable.jsp?content_id=445276_1&course_id=12356_1&mode=reset
38 Student representation and feedback:

A range of external and internal stakeholders, including students, monitors the programme. Student evaluation of the programme will be gained through the following routes:

- Formal written end of module evaluation forms
- Informal discussion with module leader/academic staff
- Exit questionnaire for graduates
- Representatives on the Board of Studies and Student Experience Committee
- Minutes of the student forums and School Staff-Student liaison Committees

The School of Life Sciences operates Staff Student Liaison Committees (SSLCs) in accordance with the University Code of Practice on Student Representation (a copy of the code can be found at http://www.liv.ac.uk/tqsd/pol_strat_cop/index.htm). These comprise student representatives (elected by the student body) from each year of the undergraduate programmes, all of the Honours Schools, plus representatives of the Academic Staff. The terms of reference of SSLCs are wide-ranging and largely self-determined but are likely to include issues associated with lectures, practicals, timetables and assessments, module evaluations, tutorial arrangements, non-curricular student activities (e.g. Student Societies), student facilities or proposed changes in teaching and assessment arrangements. Students on the Biochemistry programme are represented by the Biological Sciences SSLC, and all SSLCs within the School meet once per year to discuss common issues. The School of Life Sciences Quality Enhancement Group and the Student Experience Committee consider minutes of each SSLC meeting, and important matters are forwarded to the Board of Studies and/or the Head of School of Life Sciences. Further details about the SSLC can be found in the School of Life Sciences module in VITAL: https://vital.liv.ac.uk/webapps/login/.

Levels 4, 5 and 6 modules are regularly evaluated by students using a Web-based system, and summary data is reviewed by the Quality Enhancement Group.

Part F: Status Of Professional, Statutory Or Regulatory Body Accreditation

39 Status of Professional, Statutory or Regulatory Body Accreditation:

n/a

Part G: Diversity & Equality Of Opportunity And Widening Participation

40 Diversity & Equality of Opportunity and Widening Participation:

The University of Liverpool is committed to providing a positive learning and working environment where all members of the University community are treated with dignity and respect. We will address direct and indirect discrimination, harassment and victimisation on the grounds of age, disability, gender reassignment, marriage & civil partnership, pregnancy & maternity, race, religion and belief, sex and sexual orientation; spent criminal convictions (where there is no exemption from the legal provisions in place), socioeconomic
background or any other irrelevant factor.

The University’s Diversity and Equality of Opportunity Policy provides the overarching framework for translating this commitment into actions and has supporting Disability, Gender and Race Equality Schemes and Age, Religion and Belief and Sexual Orientation Action Plans. The Dignity at Work and Study Policy further outlines the University’s commitment to eliminating bullying and harassment. These documents and further information can be found at: http://www.liv.ac.uk/hr/diversity_equality

Annex 1

Annex of Modifications Made to the Programme

Please complete the table below to record modifications made to the programme.

<table>
<thead>
<tr>
<th>Description of modification (please include details of any student consultation undertaken or confirm that students’ consent was obtained where this was required)</th>
<th>Minor or major modifications</th>
<th>Date approved by FAQSC</th>
<th>Date approved by AQSC (if applicable)</th>
<th>Cohort affected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>